1
|
Robles JP, Zamora M, Garcia-Rodrigo JF, Perez AL, Bertsch T, Martinez de la Escalera G, Triebel J, Clapp C. Vasoinhibin's Apoptotic, Inflammatory, and Fibrinolytic Actions Are in a Motif Different From Its Antiangiogenic HGR Motif. Endocrinology 2023; 165:bqad185. [PMID: 38057149 DOI: 10.1210/endocr/bqad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Vasoinhibin, a proteolytic fragment of the hormone prolactin, inhibits blood vessel growth (angiogenesis) and permeability, stimulates the apoptosis and inflammation of endothelial cells, and promotes fibrinolysis. The antiangiogenic and antivasopermeability properties of vasoinhibin were recently traced to the HGR motif located in residues 46 to 48 (H46-G47-R48), allowing the development of potent, orally active, HGR-containing vasoinhibin analogues for therapeutic use against angiogenesis-dependent diseases. However, whether the HGR motif is also responsible for the apoptotic, inflammatory, and fibrinolytic properties of vasoinhibin has not been addressed. Here, we report that HGR-containing analogues are devoid of these properties. Instead, the incubation of human umbilical vein endothelial cells with oligopeptides containing the sequence HNLSSEM, corresponding to residues 30 to 36 of vasoinhibin, induced apoptosis, nuclear translocation of NF-κB, expression of genes encoding leukocyte adhesion molecules (VCAM1 and ICAM1) and proinflammatory cytokines (IL1B, IL6, and TNF), and adhesion of peripheral blood leukocytes. Also, intravenous or intra-articular injection of HNLSSEM-containing oligopeptides induced the expression of Vcam1, Icam1, Il1b, Il6, and Tnf in the lung, liver, kidney, eye, and joints of mice and, like vasoinhibin, these oligopeptides promoted the lysis of plasma fibrin clots by binding to plasminogen activator inhibitor-1 (PAI-1). Moreover, the inhibition of PAI-1, urokinase plasminogen activator receptor, or NF-κB prevented the apoptotic and inflammatory actions. In conclusion, the functional properties of vasoinhibin are segregated into 2 different structural determinants. Because apoptotic, inflammatory, and fibrinolytic actions may be undesirable for antiangiogenic therapy, HGR-containing vasoinhibin analogues stand as selective and safe agents for targeting pathological angiogenesis.
Collapse
Affiliation(s)
- Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
- VIAN Therapeutics, Inc., San Francisco, CA 94107, USA
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Jose F Garcia-Rodrigo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Alma Lorena Perez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Thomas Bertsch
- Laboratory Medicine and Transfusion Medicine, Institute for Clinical Chemistry, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg 90419, Germany
| | | | - Jakob Triebel
- Laboratory Medicine and Transfusion Medicine, Institute for Clinical Chemistry, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg 90419, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| |
Collapse
|
2
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
3
|
Shaker BT, Ismail AA, Salih R, Hadj Kacem H, Rahmani M, Struman I, Bajou K. The 14-Kilodalton Human Growth Hormone Fragment a Potent Inhibitor of Angiogenesis and Tumor Metastasis. Int J Mol Sci 2023; 24:ijms24108877. [PMID: 37240223 DOI: 10.3390/ijms24108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The 14-kilodalton human growth hormone (14 kDa hGH) N-terminal fragment derived from the proteolytic cleavage of its full-length counterpart has been shown to sustain antiangiogenic potentials. This study investigated the antitumoral and antimetastatic effects of 14 kDa hGH on B16-F10 murine melanoma cells. B16-F10 murine melanoma cells transfected with 14 kDa hGH expression vectors showed a significant reduction in cellular proliferation and migration associated with an increase in cell apoptosis in vitro. In vivo, 14 kDa hGH mitigated tumor growth and metastasis of B16-F10 cells and was associated with a significant reduction in tumor angiogenesis. Similarly, 14 kDa hGH expression reduced human brain microvascular endothelial (HBME) cell proliferation, migration, and tube formation abilities and triggered apoptosis in vitro. The antiangiogenic effects of 14 kDa hGH on HBME cells were abolished when we stably downregulated plasminogen activator inhibitor-1 (PAI-1) expression in vitro. In this study, we showed the potential anticancer role of 14 kDa hGH, its ability to inhibit primary tumor growth and metastasis establishment, and the possible involvement of PAI-1 in promoting its antiangiogenic effects. Therefore, these results suggest that the 14 kDa hGH fragment can be used as a therapeutic molecule to inhibit angiogenesis and cancer progression.
Collapse
Affiliation(s)
- Baraah Tariq Shaker
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Asmaa Anwar Ismail
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rawan Salih
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Rahmani
- Department of Molecular Biology and Genetics, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, 4000 Liège, Belgium
| | - Khalid Bajou
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Kumar A, Ravi R, Sivakumar RK, Chidambaram V, Majella MG, Sinha S, Adamo L, Lau ES, Al’Aref SJ, Asnani A, Sharma G, Mehta JL. Prolactin Inhibition in Peripartum Cardiomyopathy: Systematic Review and Meta-analysis. Curr Probl Cardiol 2023; 48:101461. [PMID: 36261102 PMCID: PMC9805509 DOI: 10.1016/j.cpcardiol.2022.101461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
Heart failure (HF) is one of the leading causes of maternal mortality and morbidity in the United States. Peripartum cardiomyopathy (PPCM) constitutes up to 70% of all HF in pregnancy. Cardiac angiogenic imbalance caused by cleaved 16kDa prolactin has been hypothesized to contribute to the development of PPCM, fueling investigation of prolactin inhibitors for the management of PPCM. We conducted a systematic review and meta-analysis to assess the impact of prolactin inhibition on left ventricular (LV) function and mortality in patients with PPCM. We included English language articles from PubMed and EMBASE published upto March 2022. We pooled the mean difference (MD) for left ventricular ejection fraction (LVEF) at follow-up, odds ratio (OR) for LV recovery and risk ratio (RR) for all-cause mortality using random-effects meta-analysis. Among 548 studies screened, 10 studies (3 randomized control trials (RCTs), 2 retrospective and 5 prospective cohorts) were included in the systematic review. Patients in the Bromocriptine + standard guideline directed medical therapy (GDMT) group had higher LVEF% (pMD 12.56 (95% CI 5.84-19.28, I2=0%) from two cohorts and pMD 14.25 (95% CI 0.61-27.89, I2=88%) from two RCTs) at follow-up compared to standard GDMT alone group. Bromocriptine group also had higher odds of LV recovery (pOR 3.55 (95% CI 1.39-9.1, I2=62)). We did not find any difference in all-cause mortality between the groups. Our analysis demonstrates that the addition of Bromocriptine to standard GDMT was associated with a significant improvement in LVEF% and greater odds of LV recovery, without significant reduction in all-cause mortality.
Collapse
Affiliation(s)
- Amudha Kumar
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ramya Ravi
- Department of Anesthesia and Intensive Care, Chinese university of Hong Kong, Prince of Wales hospital, Shatin, Hong Kong
| | - Ranjith K. Sivakumar
- Department of Anesthesia and Intensive Care, Chinese university of Hong Kong, Prince of Wales hospital, Shatin, Hong Kong
| | - Vignesh Chidambaram
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Marie G. Majella
- Department of Community Medicine, Sri Venkateshwaraa Medical College Hospital & Research Center, Pondicherry, India
| | - Shashank Sinha
- Division of Cardiology, Inova Heart and Vascular Institute, Fairfax, VA
| | - Luigi Adamo
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emily S. Lau
- Division of Cardiology, Massachusetts General Hospital, Boston, MA
| | - Subhi J. Al’Aref
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Aarti Asnani
- Beth Israel Deaconess Medical Center, Harvard Medical School, Cardiovascular Institute, Boston, MA
| | - Garima Sharma
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
5
|
Zhao H, Gong S, Shi Y, Luo C, Qiu H, He J, Sun Y, Huang Y, Wang S, Miao Y, Wu W. The role of prolactin/vasoinhibins in cardiovascular diseases. Animal Model Exp Med 2022; 6:81-91. [PMID: 35923071 PMCID: PMC10158951 DOI: 10.1002/ame2.12264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Prolactin (PRL) is a polypeptide hormone that is mainly synthesized and secreted by the lactotroph cells of the pituitary. There are two main isoforms of PRL: 23-kDa PRL (named full-length PRL) and vasoinhibins (including 5.6-18 kDa fragments). Both act as circulating hormones and cytokines to stimulate or inhibit vascular formation at different stages and neovascularization, including endothelial cell proliferation and migration, protease production, and apoptosis. However, their effects on vascular function and cardiovascular diseases are different or even contrary. In addition to the structure, secretion regulation, and signal transduction of PRL/vasoinhibins, this review focuses on the pathological mechanism and clinical significance of PRL/vasoinhibins in cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China.,Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yongcong Shi
- Respiratory Medicine, Dongchuan District People's Hospital, Kunming, China
| | - Cijun Luo
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hongling Qiu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Sun
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuxia Huang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shang Wang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Abstract
Kidney pathophysiology is influenced by gender. Evidence suggests that kidney damage is more severe in males than in females and that sexual hormones contribute to this. Elevated prolactin concentration is common in renal impairment patients and is associated with an unfavorable prognosis. However, PRL is involved in the osmoregulatory process and promotes endothelial proliferation, dilatation, and permeability in blood vessels. Several proteinases cleavage its structure, forming vasoinhibins. These fragments have antagonistic PRL effects on endothelium and might be associated with renal endothelial dysfunction, but its role in the kidneys has not been enough investigated. Therefore, the purpose of this review is to describe the influence of sexual dimorphism and gonadal hormones on kidney damage, emphasizing the role of the hormone prolactin and its cleavage products, the vasoinhibins.
Collapse
|
7
|
Aroña RM, Arnold E, Macías F, López-Casillas F, Clapp C, Martínez de la Escalera G. Vasoinhibin generation and effect on neuronal apoptosis in the hippocampus of late mouse embryos. Am J Physiol Regul Integr Comp Physiol 2020; 318:R760-R771. [PMID: 32048872 DOI: 10.1152/ajpregu.00286.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Morphological and behavioral evidence suggests that vasoinhibin is present in the central nervous system (CNS), triggering neuroendocrine and behavioral responses to stress. Moreover, vasoinhibin reduces neuronal survival and differentiation of primary sensory neurons of the peripheral nervous system. To address the functional role played by vasoinhibin at the CNS, and to better understand the underlying mechanisms involved in its actions, we treated primary cultured hippocampal neurons obtained from embryonic day 16 (E16) mice with a human recombinant vasoinhibin. We examined the resulting cellular changes, focusing on neuronal cell death, and explored the local generation of vasoinhibin within the hippocampus. Our results show that vasoinhibin significantly reduced neuronal cell density and increased immunoreactive activated caspase-3 and TUNEL-positive staining at 72, 16, and 24 h, respectively. Furthermore, vasoinhibin increased the expression of proapoptotic genes BAX, BAD, BIM, and PUMA and decreased that of the antiapoptotic gene BCL-2 at 24 h, as assessed by quantitative real-time reverse transcription-polymerase chain reaction. Vasoinhibin effects were blocked by coincubation with a vasoinhibin antibody or with prolactin. Immunoreactive bands consistent with vasoinhibin were observed in hippocampal extracts by Western blot analysis, and a prolactin standard was cleaved to vasoinhibin by a hippocampal lysate in a heat- and cathepsin D inhibitor pepstatin A-dependent fashion. Taken together, these data support the notion that vasoinhibin is locally produced by cathepsin D within the embryonic mouse hippocampus, a brain region that plays a critical role in emotional regulation, resulting in decreased neuronal cell viability via the activation of the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Rodrigo M Aroña
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico.,CONACYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | | |
Collapse
|
8
|
Ricke-Hoch M, Pfeffer TJ, Hilfiker-Kleiner D. Peripartum cardiomyopathy: basic mechanisms and hope for new therapies. Cardiovasc Res 2019; 116:520-531. [DOI: 10.1093/cvr/cvz252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/17/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022] Open
Abstract
Abstract
Peripartum cardiomyopathy (PPCM) is a life-threatening cardiomyopathy characterized by acute or slow progression of left ventricular (LV) systolic dysfunction (LV ejection fraction of <45%) late in pregnancy, during delivery, or in the first postpartum months, in women with no other identifiable causes of heart failure. PPCM patients display variable phenotypes and risk factor profiles, pointing to involvement of multiple mechanisms in the pathogenesis of the disease. The higher risk for PPCM in women with African ancestry, the prevalence of gene variants associated with cardiomyopathies, and the high variability in onset and disease progression in PPCM patients also indicate multiple mechanisms at work. Experimental data have shown that different factors can induce and drive PPCM, including inflammation and immunity, pregnancy hormone impairment, catecholamine stress, defective cAMP-PKA, and G-protein-coupled-receptor signalling, and genetic variants. However, several of these mechanisms may merge into a common major pathway, which includes unbalanced oxidative stress and the cleavage of the nursing hormone prolactin (PRL) into an angiostatic, pro-apoptotic, and pro-inflammatory 16 kDa-PRL fragment, resulting in subsequent vascular damage and heart failure. Based on this common pathway, potential disease-specific biomarkers and therapies have emerged. Despite commonalities, the variation in aetiology and mechanisms poses challenges for the diagnosis, treatment, and management of the disease. This review summarizes current knowledge on the clinical presentation of PPCM in the context of recent experimental research. It discusses the challenge to develop disease-specific biomarkers in the context of rapid changing physiology in the peripartum phase, and outlines possible future treatment and management strategies for PPCM patients.
Collapse
Affiliation(s)
- Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Tobias J Pfeffer
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| |
Collapse
|
9
|
Yun BY, Cho C, Cho BN. Differential activity of 16K rat prolactin in different organic systems. Anim Cells Syst (Seoul) 2019; 23:135-142. [PMID: 30949401 PMCID: PMC6440500 DOI: 10.1080/19768354.2018.1554543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023] Open
Abstract
The 16K isoform of rat prolactin (16K rPRL) performs multiple functions in various systems including angiogenesis, tumorigenesis, and reproduction. Recently, 16K rPRL has attained prominence as a possible therapeutic target in pathophysiological conditions. However, the integral function and mechanism of 16K rPRL in various systems has not been elucidated. To this end, a transient gain-of-function animal model was adopted. An expression DNA plasmid containing 16K rPRL or rPRL gene was introduced into the muscle of adult mice by direct injection. The mRNA and protein expression levels of 16K rPRL were detected by initial RT–PCR and subsequent Southern blot and western blot, respectively. When the expression vector was introduced, the results were as follows: First, 16K rPRL combined with rPRL reduced angiogenesis in the testis whereas rPRL alone induced angiogenesis. Second, 16K rPRL combined with rPRL reduced WBC proliferation, whereas rPRL alone increased WBC proliferation. Third, 16K rPRL combined with rPRL reduced diestrus, whereas rPRL alone extended diestrus. Fourth, 16K rPRL combined with rPRL unexpectedly increased testosterone (T) levels, whereas rPRL alone did not increase T levels. Taken together, our data suggest that the 16K rPRL isoform performs integral functions in angiogenesis in the testis, WBC proliferation, and reproduction, although the action of 16K rPRL is not always antagonistic.
Collapse
Affiliation(s)
- Bo-Young Yun
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Chunghee Cho
- Department of Life Science Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Byung-Nam Cho
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
10
|
Kodogo V, Azibani F, Sliwa K. Role of pregnancy hormones and hormonal interaction on the maternal cardiovascular system: a literature review. Clin Res Cardiol 2019; 108:831-846. [PMID: 30806769 DOI: 10.1007/s00392-019-01441-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Hormones have a vital duty in the conservation of physiological cardiovascular function during pregnancy. Alterations in oestrogen, progesterone and prolactin levels are associated with changes in the cardiovascular system to support the growing foetus and counteract pregnancy stresses. Pregnancy hormones are, however, also linked to numerous pathophysiological outcomes on the cardiovascular system. The expression and effects of the three main pregnancy hormones (oestrogen, prolactin and progesterone) vary depending on the gestation period. However, the reaction of a target cell also depends on the abundance of hormone receptors and impacts put forth by other hormones. Hormonal interaction may be synergistic, antagonistic or permissive. It is crucial to explore the cross talk of pregnancy hormones during gestation, as this may have a greater impact on the overall changes to the cardiovascular system.
Collapse
Affiliation(s)
- Vitaris Kodogo
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, 4th floor Chris Barnard Building, Observatory, Cape Town, 7935, South Africa
| | - Feriel Azibani
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, 4th floor Chris Barnard Building, Observatory, Cape Town, 7935, South Africa
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, 4th floor Chris Barnard Building, Observatory, Cape Town, 7935, South Africa.
| |
Collapse
|
11
|
Melo Z, Castillo X, Moreno-Carranza B, Ledesma-Colunga MG, Arnold E, López-Casillas F, Ruíz-Herrera X, Clapp C, Martínez de la Escalera G. Vasoinhibin Suppresses Nerve Growth Factor-Induced Differentiation and Survival of PC12 Pheochromocytoma Cells. Neuroendocrinology 2019; 109:152-164. [PMID: 31091528 DOI: 10.1159/000499507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/09/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Vasoinhibin, a protein derived from prolactin, regulates various vascular functions including endothelial cell survival. Of note, vasoinhibin is present in the central nervous system, where it triggers neuroendocrine and behavioral responses to stress. Moreover, vasoinhibin compromises nerve growth factor (NGF)-induced neurite outgrowth in primary sensory neurons of the peripheral nervous system. Nonetheless, information on the functions of vasoinhibin in developing neurons remains limited. The present study explored whether vasoinhibin affects the neurotrophic actions of NGF by measuring the cell differentiation and survival of PC12 pheochromocytoma cells. METHODS The effects of recombinant or lentiviral vector-transduced human vasoinhibin were tested on differentiating PC12 cells. Neurite outgrowth was quantified by measuring their length and density. The MTT assay was employed to assess cell viability, and ELISA was used to quantify DNA fragmentation as an index of apoptosis. Phosphorylated Akt and ERK1/2 were analyzed by Western blotting. RESULTS The addition of a human recombinant vasoinhibin, and the transduction of a lentiviral vector carrying a human vasoinhibin sequence, significantly reduced NGF-induced neurite outgrowth, cell survival, and phosphorylation of Akt and ERK1/2, and increased DNA fragmentation and caspase 3 activation in PC12 cells. CONCLUSIONS Vasoinhibin downregulates NGF-induced differentiation and survival of PC12 cells, blocking tropomyosin receptor kinase A-triggered signaling pathways and increasing apoptosis. These results establish that vasoinhibin interaction with NGF and other neurotrophins may be critical in mediating pathways involved in neuronal survival and differentiation.
Collapse
Affiliation(s)
- Zesergio Melo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Bibiana Moreno-Carranza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - María G Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
- Catedrática CONACYT, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Xarubet Ruíz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | | |
Collapse
|
12
|
Nakajima R, Nakamura E, Harigaya T. Vasoinhibin, an N-terminal Prolactin Fragment, Directly Inhibits Cardiac Angiogenesis in Three-dimensional Heart Culture. Front Endocrinol (Lausanne) 2017; 8:4. [PMID: 28163696 PMCID: PMC5247450 DOI: 10.3389/fendo.2017.00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
Vasoinhibins (Vi) are fragments of the growth hormone/prolactin (PRL) family and have antiangiogenic functions in many species. It is considered that Vi derived from PRL are involved in the pathogenesis of peripartum cardiomyopathy (PPCM). However, the pathogenic mechanism of PPCM, as well as heart angiogenesis, is not yet clear. Therefore, the aim of the present study is to clarify whether Vi act directly on angiogenesis inhibition in heart blood vessels. Endothelial cell viability was decreased by Vi treatment in a culture experiment. Furthermore, expression of proangiogenic genes, such as vascular endothelial growth factor, endothelial nitric oxide synthase, and VE-cadherin, were decreased. On the other hand, apoptotic factor gene, caspase 3, and inflammatory factor genes, tumor necrosis factor α and interleukin 6, were increased by Vi treatment. In three-dimensional left ventricular wall angiogenesis assay in mice, Vi treatment also inhibited cell migration, neovessel sprouting, and growth toward collagen gel. These data demonstrate that Vi treatment directly suppresses angiogenesis of the heart and support the hypothesis that Vi induce PPCM.
Collapse
Affiliation(s)
- Ryojun Nakajima
- Laboratory of Functional Anatomy, Faculty of Agriculture, Department of Life Sciences, Meiji University, Kawasaki, Japan
- *Correspondence: Ryojun Nakajima,
| | - Eri Nakamura
- Laboratory of Functional Anatomy, Faculty of Agriculture, Department of Life Sciences, Meiji University, Kawasaki, Japan
| | - Toshio Harigaya
- Laboratory of Functional Anatomy, Faculty of Agriculture, Department of Life Sciences, Meiji University, Kawasaki, Japan
| |
Collapse
|
13
|
Chirco KR, Whitmore SS, Wang K, Potempa LA, Halder JA, Stone EM, Tucker BA, Mullins RF. Monomeric C-reactive protein and inflammation in age-related macular degeneration. J Pathol 2016; 240:173-83. [PMID: 27376713 DOI: 10.1002/path.4766] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/11/2022]
Abstract
Age-related macular degeneration (AMD) is a devastating disease characterized by central vision loss in elderly individuals. Previous studies have suggested a link between elevated levels of total C-reactive protein (CRP) in the choroid, CFH genotype, and AMD status; however, the structural form of CRP present in the choroid, its relationship to CFH genotype, and its functional consequences have not been assessed. In this report, we studied genotyped human donor eyes (n = 60) and found that eyes homozygous for the high-risk CFH (Y402H) allele had elevated monomeric CRP (mCRP) within the choriocapillaris and Bruch's membrane, compared to those with the low-risk genotype. Treatment of choroidal endothelial cells in vitro with mCRP increased migration rate and monolayer permeability compared to treatment with pentameric CRP (pCRP) or medium alone. Organ cultures treated with mCRP exhibited dramatically altered expression of inflammatory genes as assessed by RNA sequencing, including ICAM-1 and CA4, both of which were confirmed at the protein level. Our data indicate that mCRP is the more abundant form of CRP in human choroid, and that mCRP levels are elevated in individuals with the high-risk CFH genotype. Moreover, pro-inflammatory mCRP significantly affects endothelial cell phenotypes in vitro and ex vivo, suggesting a role for mCRP in choroidal vascular dysfunction in AMD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kathleen R Chirco
- The Stephen A Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, USA
| | - S Scott Whitmore
- The Stephen A Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, USA
| | - Kai Wang
- The Stephen A Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA.,Department of Biostatistics, The University of Iowa, Iowa City, Iowa, USA
| | | | - Jennifer A Halder
- The Stephen A Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- The Stephen A Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, USA
| | - Budd A Tucker
- The Stephen A Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, USA
| | - Robert F Mullins
- The Stephen A Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA. .,Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
14
|
PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nat Med 2014; 20:741-7. [DOI: 10.1038/nm.3552] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/09/2014] [Indexed: 11/08/2022]
|
15
|
Marano RJ, Ben-Jonathan N. Minireview: Extrapituitary prolactin: an update on the distribution, regulation, and functions. Mol Endocrinol 2014; 28:622-33. [PMID: 24694306 DOI: 10.1210/me.2013-1349] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prolactin (PRL) is an important hormone with many diverse functions. Although it is predominantly produced by lactrotrophs of the pituitary there are a number of other organs, cells, and tissues in which PRL is expressed and secreted. The impact of this extrapituitary PRL (ePRL) on localized metabolism and cellular functions is gaining widespread attention. In 1996, a comprehensive review on ePRL was published. However, since this time, there have been a number of advancements in ePRL research. This includes a greater understanding of the components of the control elements located within the superdistal promoter of the ePRL gene. Furthermore, several new sites of ePRL have been discovered, each under unique control by a range of transcription factors and elements. The functional role of ePRL at each of the expression sites also varies widely leading to gender and site bias. This review aims to provide an update to the research conducted on ePRL since the 1996 review. The focus is on new data concerning the sites of ePRL expression, its regulation, and its function within the organs in which it is expressed.
Collapse
Affiliation(s)
- Robert J Marano
- Ear Science Institute Australia (R.J.M.), Subiaco, Western Australia, 6008, Australia; Ear Sciences Centre, School of Surgery (R.J.M.), The University of Western Australia, Nedlands, Western Australia, 6009, Australia; and Department of Cancer Biology (N.B-J.), University of Cincinnati Medical School, Cincinnati, Ohio 45267
| | | |
Collapse
|
16
|
Enninga EAL, Holtan SG, Creedon DJ, Dronca RS, Nevala WK, Ognjanovic S, Markovic SN. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc 2014; 89:520-35. [PMID: 24684874 PMCID: PMC4286150 DOI: 10.1016/j.mayocp.2014.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
Similarities between the pathologic progression of cancer and the physiologic process of placentation (eg, proliferation, invasion, and local/systemic tolerance) have been recognized for many years. Sex hormones such as human chorionic gonadotropin, estrogens, progesterone, and others contribute to induction of immunologic tolerance at the beginning of gestation. Sex hormones have been shown to play contributory roles in the growth of cancers such as breast cancer, prostrate cancer, endometrial cancer, and ovarian cancer, but their involvement as putative mediators of the immunologic escape of cancer is still being elucidated. Herein, we compare the emerging mechanism by which sex hormones modulate systemic immunity in pregnancy and their potentially similar role in cancer. To do this, we conducted a PubMed search using combinations of the following keywords: "immune regulation," "sex hormones," "pregnancy," "melanoma," and "cancer." We did not limit our search to specific publication dates. Mimicking the maternal immune response to pregnancy, especially in late gestation, might aid in design of better therapies to reconstitute endogenous antitumor immunity and improve survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN; Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
17
|
Gunda V, Sudhakar YA. Regulation of Tumor Angiogenesis and Choroidal Neovascularization by Endogenous Angioinhibitors. ACTA ACUST UNITED AC 2013; 5:417-426. [PMID: 25258675 DOI: 10.4172/1948-5956.1000235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is the process of neovascularization from parent blood vessels, which is a prerequisite for many physiological and pathological conditions and is regulated by a balance between endogenous angioinhibitors and angioactivators or angiogenic factors. Imbalance between angioinhibitors and angioactivators is associated with neovascularization capacity during progression of tumor development and Choroidal Neovascularization (CNV). Normalization of pathological angiogenesis is considered as an alternative strategy to prevent the tumor growth in cancer progression or retinal damage in CNV. Various angioinhibitors are being identified and evaluated for their pathological angiogenesis regulation, of which endogenous angioinhibitors are one class derived either from extra cellular matrix or from non-extra cellular matrix of human origin. Endogenous angioinhibitors are gaining much significance as they interact with proliferating endothelial cells by binding to distinct integrins and non-integrin receptors, regulating different intracellular signaling mechanisms leading to inhibition of choroidal neovascularization and tumor growth. This review will focus on endogenous angioinhibitors and their receptor(s) mediated angioinhibitory signaling, which are of major concern in angiogenesis and their clinical and pharmaceutical implications.
Collapse
Affiliation(s)
- Venugopal Gunda
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yakkanti A Sudhakar
- Cell Signaling Laboratory, Bioscience Division, Center for Cancer and Metabolism, Stanford Research Institute (SRI) International, Menlo Park, CA 94025, USA
| |
Collapse
|
18
|
Radhakrishnan A, Raju R, Tuladhar N, Subbannayya T, Thomas JK, Goel R, Telikicherla D, Palapetta SM, Rahiman BA, Venkatesh DD, Urmila KK, Harsha HC, Mathur PP, Prasad TSK, Pandey A, Shemanko C, Chatterjee A. A pathway map of prolactin signaling. J Cell Commun Signal 2012; 6:169-73. [PMID: 22684822 DOI: 10.1007/s12079-012-0168-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/24/2012] [Indexed: 11/28/2022] Open
|
19
|
Nguyen NQN, Castermans K, Berndt S, Herkenne S, Tabruyn SP, Blacher S, Lion M, Noel A, Martial JA, Struman I. The antiangiogenic 16K prolactin impairs functional tumor neovascularization by inhibiting vessel maturation. PLoS One 2011; 6:e27318. [PMID: 22087289 PMCID: PMC3210157 DOI: 10.1371/journal.pone.0027318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/13/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology. METHODOLOGY/PRINCIPAL FINDINGS Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling. CONCLUSIONS/SIGNIFICANCE Taken together, our data show that 16K hPRL impairs functional tumor neovascularization by inhibiting vessel maturation and for the first time that an endogenous antiangiogenic agent disturbs Notch signaling. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy.
Collapse
Affiliation(s)
- Ngoc-Quynh-Nhu Nguyen
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Karolien Castermans
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Sarah Berndt
- Laboratory of Biology of Tumor and Development, GIGA-Research, University of Liège, Liège, Belgium
| | - Stephanie Herkenne
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Sebastien P. Tabruyn
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Biology of Tumor and Development, GIGA-Research, University of Liège, Liège, Belgium
| | - Michelle Lion
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Agnes Noel
- Laboratory of Biology of Tumor and Development, GIGA-Research, University of Liège, Liège, Belgium
| | - Joseph A. Martial
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Ingrid Struman
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
20
|
Kinet V, Castermans K, Herkenne S, Maillard C, Blacher S, Lion M, Noël A, Martial JA, Struman I. The angiostatic protein 16K human prolactin significantly prevents tumor-induced lymphangiogenesis by affecting lymphatic endothelial cells. Endocrinology 2011; 152:4062-71. [PMID: 21862622 DOI: 10.1210/en.2011-1081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 16-kDa angiostatic N-terminal fragment of human prolactin (16K hPRL) has been reported to be a new potent anticancer compound. This protein has already proven its efficiency in several mouse tumor models in which it prevented tumor-induced angiogenesis and delayed tumor growth. In addition to angiogenesis, tumors also stimulate the formation of lymphatic vessels, which contribute to tumor cell dissemination and metastasis. However, the role of 16K hPRL in tumor-induced lymphangiogenesis has never been investigated. We establish in vitro that 16K hPRL induces apoptosis and inhibits proliferation, migration, and tube formation of human dermal lymphatic microvascular endothelial cells. In addition, in a B16F10 melanoma mouse model, we found a decreased number of lymphatic vessels in the primary tumor and in the sentinel lymph nodes after 16K hPRL treatment. This decrease is accompanied by a significant diminished expression of lymphangiogenic markers in primary tumors and sentinel lymph nodes as determined by quantitative RT-PCR. These results suggest, for the first time, that 16K hPRL is a lymphangiostatic as well as an angiostatic agent with antitumor properties.
Collapse
Affiliation(s)
- Virginie Kinet
- GIGA Research, Molecular Biology and Genetic Engineering Unit, University of Liège, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ferraris J, Radl DB, Zárate S, Jaita G, Eijo G, Zaldivar V, Clapp C, Seilicovich A, Pisera D. N-terminal prolactin-derived fragments, vasoinhibins, are proapoptoptic and antiproliferative in the anterior pituitary. PLoS One 2011; 6:e21806. [PMID: 21760910 PMCID: PMC3131298 DOI: 10.1371/journal.pone.0021806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/07/2011] [Indexed: 11/24/2022] Open
Abstract
The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal.
Collapse
Affiliation(s)
- Jimena Ferraris
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Betiana Radl
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Jaita
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guadalupe Eijo
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica Zaldivar
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, México
| | - Adriana Seilicovich
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Sabatel C, Cornet AM, Tabruyn SP, Malvaux L, Castermans K, Martial JA, Struman I. Sprouty1, a new target of the angiostatic agent 16K prolactin, negatively regulates angiogenesis. Mol Cancer 2010; 9:231. [PMID: 20813052 PMCID: PMC2944818 DOI: 10.1186/1476-4598-9-231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 09/02/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Disorganized angiogenesis is associated with several pathologies, including cancer. The identification of new genes that control tumor neovascularization can provide novel insights for future anti-cancer therapies. Sprouty1 (SPRY1), an inhibitor of the MAPK pathway, might be one of these new genes. We identified SPRY1 by comparing the transcriptomes of untreated endothelial cells with those of endothelial cells treated by the angiostatic agent 16 K prolactin (16 K hPRL). In the present study, we aimed to explore the potential function of SPRY1 in angiogenesis. RESULTS We confirmed 16 K hPRL induced up-regulation of SPRY1 in primary endothelial cells. In addition, we demonstrated the positive SPRY1 regulation in a chimeric mouse model of human colon carcinoma in which 16 K hPRL treatment was shown to delay tumor growth. Expression profiling by qRT-PCR with species-specific primers revealed that induction of SPRY1 expression by 16 K hPRL occurs only in the (murine) endothelial compartment and not in the (human) tumor compartment. The regulation of SPRY1 expression was NF-κB dependent. Partial SPRY1 knockdown by RNA interference protected endothelial cells from apoptosis as well as increased endothelial cell proliferation, migration, capillary network formation, and adhesion to extracellular matrix proteins. SPRY1 knockdown was also shown to affect the expression of cyclinD1 and p21 both involved in cell-cycle regulation. These findings are discussed in relation to the role of SPRY1 as an inhibitor of ERK/MAPK signaling and to a possible explanation of its effect on cell proliferation. CONCLUSIONS Taken together, these results suggest that SPRY1 is an endogenous angiogenesis inhibitor.
Collapse
Affiliation(s)
- Céline Sabatel
- Unit of Molecular Biology and Genetic Engineering, GIGA-research, University of Liège, B34, Avenue de l'Hôpital, 1, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Cruz-Soto ME, Cosío G, Jeziorski MC, Vargas-Barroso V, Aguilar MB, Cárabez A, Berger P, Saftig P, Arnold E, Thebault S, Martínez de la Escalera G, Clapp C. Cathepsin D is the primary protease for the generation of adenohypophyseal vasoinhibins: cleavage occurs within the prolactin secretory granules. Endocrinology 2009; 150:5446-54. [PMID: 19819948 DOI: 10.1210/en.2009-0390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vasoinhibins are a family of N-terminal prolactin (PRL) fragments that inhibit blood vessel growth, dilation, permeability, and survival. The aspartyl endoprotease cathepsin D is active at acidic pH and can cleave rat PRL to generate vasoinhibins. We investigated whether and where vasoinhibins could be generated by cathepsin D in the adenohypophysis of rats and mice and whether their production could be gender dependent. Vasoinhibins were detected in primary cultures of rat adenohypophyseal cells by Western blot with antibodies directed against the N terminus of PRL but not the C terminus. Ovariectomized, estrogen-treated females show greater levels of adenohypophyseal vasoinhibins than males. Peptide sequencing analysis revealed that the cleaved form of PRL in rat adenohypophyseal extracts contains the PRL N terminus and a second N terminus starting at Ser(149), the reported cleavage site of cathepsin D in rat PRL. In addition, cathepsin D inhibition by pepstatin A reduced vasoinhibin levels in rat adenohypophyseal cell cultures. Confocal and electron microscopy showed the colocalization of cathepsin D and PRL within rat adenohypophyseal cells and secretory granules, and a subcellular fraction of rat adenohypophysis enriched in secretory granules contained cathepsin D activity able to generate vasoinhibins from PRL. Of note, vasoinhibins were absent in the adenohypophysis of mice lacking the cathepsin D gene but not in wild-type mice. These findings show that cathepsin D is the main protease responsible for the generation of adenohypophyseal vasoinhibins and that its action can take place within the secretory granules of lactotrophs.
Collapse
Affiliation(s)
- Martha E Cruz-Soto
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230 Querétaro, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
25
|
Rosas-Hernández H, Jiménez-Badillo S, Martínez-Cuevas PP, Gracia-Espino E, Terrones H, Terrones M, Hussain SM, Ali SF, González C. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett 2009; 191:305-13. [PMID: 19800954 DOI: 10.1016/j.toxlet.2009.09.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 12/13/2022]
Abstract
This study was undertaken to determine whether silver nanoparticles (Ag-45 nm NPs) induce selective and specific biological effects, such as induction of proliferation and nitric oxide (NO) production, and cytotoxicity in coronary endothelial cells (CECs), and regulation of vascular tone in isolated rat aortic rings. Physical characterization of Ag-45 nm NPs by transmission electron microscopy (TEM) demonstrated that nanoparticles ranging in size from 10 to 90 nm had biological effects on CECs. Increasing concentrations of Ag-45 nm NPs exerted a dual effect on cell proliferation whereby proliferation was inhibited at low concentrations of NPs and stimulated at high concentrations. The effects of high, but not low, concentrations of Ag-45 nm NPs were dependent on NO because the effects were partially blocked by N(G)-nitro-L-arginine methyl ester (L-NAME). We have also shown that high, but not low, concentrations of Ag-45 nm NPs induce NO-dependent proliferation through activation of endothelial nitric oxide synthase (eNOS) by phosphorylation of Serine 1177. Moreover, the antiproliferative and proliferative effects of Ag-45 nm NPs were concentration-dependent and inversely correlated with cellular toxicity. In isolated rat aortic rings, a low concentration of NPs induced vasoconstriction and a high concentration stimulated vasodilation. The physiologic effects induced by a low concentration of Ag-45 nm NPs inhibited acetylcholine- (ACh-) induced NO-mediated relaxation. Vasodilation induced by a high concentration of NPs was partially abolished by L-NAME pretreatment. When the endothelium was removed from the rings, all physiologic responses were blocked. These results clearly demonstrate that the NPs have selective and specific effects on the vascular endothelium in a concentration-dependent manner and suggest that opposite effects could be associated with NPs of different sizes.
Collapse
Affiliation(s)
- Héctor Rosas-Hernández
- Autonomous University of San Luis Potosi, Faculty of Chemistry Sciences, San Luis Potosi, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kinet V, Nguyen NQN, Sabatel C, Blacher S, Noël A, Martial JA, Struman I. Antiangiogenic liposomal gene therapy with 16K human prolactin efficiently reduces tumor growth. Cancer Lett 2009; 284:222-8. [PMID: 19473755 DOI: 10.1016/j.canlet.2009.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/21/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
Human 16K PRL (16K hPRL) is a potent inhibitor of angiogenesis both in vitro and in vivo. It has been shown to prevent tumor growth in three xenograft mouse models. Here we have used a gene transfer method based on cationic liposomes to produce 16K hPRL and demonstrate that 16K hPRL inhibits tumor growth in a subcutaneous B16F10 mouse melanoma model. Computer-assisted image analysis shows that 16K hPRL treatment results in the reduction of tumor vessel length and width, leading to a 57% reduction in average vessel size. We thus show, for the first time, that administration of the 16K hPRL gene complexed to cationic liposomes is effective to maintain antiangiogenic activities of 16K hPRL level.
Collapse
Affiliation(s)
- Virginie Kinet
- GIGA-Research, Molecular Biology and Genetic Engineering Unit, University of Liège, 4000 Sart Tilman, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Clapp C, Thebault S, Arnold E, García C, Rivera JC, de la Escalera GM. Vasoinhibins: novel inhibitors of ocular angiogenesis. Am J Physiol Endocrinol Metab 2008; 295:E772-8. [PMID: 18544641 DOI: 10.1152/ajpendo.90358.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of the quiescent state of blood vessels in the retina leads to aberrant vasopermeability and angiogenesis, the major causes of vision loss in diabetic retinopathy. Prolactin is expressed throughout the retina, where it is proteolytically cleaved to vasoinhibins, a family of peptides (including the 16-kDa fragment of prolactin) with potent antiangiogenic, vasoconstrictive, and antivasopermeability actions. Ocular vasoinhibins act directly on endothelial cells to block blood vessel growth and dilation and to promote apoptosis-mediated vascular regression. Also, vasoinhibins prevent retinal angiogenesis and vasopermeability associated with diabetic retinopathy, and inactivation of endothelial nitric oxide synthase via protein phosphatase 2A is among the various mechanisms mediating their actions. Here, we discuss the potential role of vasoinhibins both in the maintenance of normal retinal vasculature and in the cause and prevention of diabetic retinopathy and other vasoproliferative retinopathies.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Apartado Postal 1-1141, Querétaro, Qro., Mexico, 76001.
| | | | | | | | | | | |
Collapse
|
28
|
García C, Aranda J, Arnold E, Thébault S, Macotela Y, López-Casillas F, Mendoza V, Quiroz-Mercado H, Hernández-Montiel HL, Lin SH, de la Escalera GM, Clapp C. Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A-dependent eNOS inactivation. J Clin Invest 2008; 118:2291-300. [PMID: 18497878 DOI: 10.1172/jci34508] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 04/09/2008] [Indexed: 12/30/2022] Open
Abstract
Increased retinal vasopermeability contributes to diabetic retinopathy, the leading cause of blindness in working-age adults. Despite clinical progress, effective therapy remains a major need. Vasoinhibins, a family of peptides derived from the protein hormone prolactin (and inclusive of the 16-kDa fragment of prolactin), antagonize the proangiogenic effects of VEGF, a primary mediator of retinal vasopermeability. Here, we demonstrate what we believe to be a novel function of vasoinhibins as inhibitors of the increased retinal vasopermeability associated with diabetic retinopathy. Vasoinhibins inhibited VEGF-induced vasopermeability in bovine aortic and rat retinal capillary endothelial cells in vitro. In vivo, vasoinhibins blocked retinal vasopermeability in diabetic rats and in response to intravitreous injection of VEGF or of vitreous from patients with diabetic retinopathy. Inhibition by vasoinhibins was similar to that achieved following immunodepletion of VEGF from human diabetic retinopathy vitreous or blockage of NO synthesis, suggesting that vasoinhibins inhibit VEGF-induced NOS activation. We further showed that vasoinhibins activate protein phosphatase 2A (PP2A), leading to eNOS dephosphorylation at Ser1179 and, thereby, eNOS inactivation. Moreover, intravitreous injection of okadaic acid, a PP2A inhibitor, blocked the vasoinhibin effect on endothelial cell permeability and retinal vasopermeability. These results suggest that vasoinhibins have the potential to be developed as new therapeutic agents to control the excessive retinal vasopermeability observed in diabetic retinopathy and other vasoproliferative retinopathies.
Collapse
Affiliation(s)
- Celina García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Clapp C, Thebault S, Martínez de la Escalera G. Role of prolactin and vasoinhibins in the regulation of vascular function in mammary gland. J Mammary Gland Biol Neoplasia 2008; 13:55-67. [PMID: 18204888 DOI: 10.1007/s10911-008-9067-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 12/19/2022] Open
Abstract
The formation of new blood vessels has become a major focus of mammary gland research stimulated by the therapeutic opportunities of controlling angiogenesis in breast cancer. Normal growth and involution of the mammary gland are profoundly affected by the expansion and regression of blood vessels, whereas dysregulation of angiogenesis is characteristic of breast cancer growth and metastasis. Prolactin stimulates the growth and differentiation of the mammary gland under normal conditions, but its role in breast cancer is controversial. Its action is complicated by the fact that prolactin itself is angiogenic, but proteases cleave prolactin to generate vasoinhibins, a family of peptides that act on endothelial cells to suppress angiogenesis and vasodilation and to promote apoptosis-mediated vascular regression. This review summarizes our current knowledge about the vascular effects of prolactin and the generation and action of vasoinhibins, and discusses their possible contribution to the regulation of blood vessels in the normal and malignant mammary gland.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro, México 76230.
| | | | | |
Collapse
|
30
|
Nguyen NQN, Cornet A, Blacher S, Tabruyn SP, Foidart JM, Noël A, Martial JA, Struman I. Inhibition of Tumor Growth and Metastasis Establishment by Adenovirus-mediated Gene Transfer Delivery of the Antiangiogenic Factor 16K hPRL. Mol Ther 2007; 15:2094-100. [PMID: 17726458 DOI: 10.1038/sj.mt.6300294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tumor metastases, the most fearsome aspect of cancer, are generally resistant to conventional therapies. Angiogenesis is a crucial aspect of tumor growth and metastatic dissemination. Antiangiogenic therapy, therefore, holds potential as an attractive strategy for inhibiting metastasis development. Human 16K PRL (16K hPRL), a potent inhibitor of angiogenesis, has been demonstrated to prevent tumor growth in two xenograft mouse models, but whether it also affects tumor metastasis is unknown. In this study we will investigate the ability of 16K hPRL to prevent the establishment of metastasis. We demonstrate that 16K hPRL administered via adenovirus-mediated gene transfer, inhibits tumor growth by 86% in a subcutaneous (SC) B16-F10 mouse melanoma model. Computer-assisted image analysis shows that 16K hPRL treatment results in a reduction of tumor-vessel length and width, leading to a 57% reduction of average vessel size. In a pre-established tumor model, moreover, 16K hPRL can significantly delay tumor development. Finally, for the first time, we provide evidence that 16K hPRL considerably reduces the establishment of B16-F10 metastasis in an experimental lung metastasis model. Both the number and size of metastases are reduced by 50% in 16K hPRL-treated mice. These results highlight a potential role for 16K hPRL in anticancer therapy for both primary tumors and metastases.
Collapse
Affiliation(s)
- Ngoc-Quynh-Nhu Nguyen
- GIGA-Research, Molecular Biology and Genetic Engineering Unit, University of Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ge G, Fernández CA, Moses MA, Greenspan DS. Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc Natl Acad Sci U S A 2007; 104:10010-5. [PMID: 17548836 PMCID: PMC1891225 DOI: 10.1073/pnas.0704179104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to classical expression patterns in pituitary and placenta and functions in growth and reproduction, members of the small family of hormones that includes prolactin (PRL), growth hormone (GH), and placental lactogen are expressed by endothelia and have angiogenic effects. In contrast, 16- to 17-kDa proteolytic fragments of these hormones have antiangiogenic effects. Here we show that PRL and GH are bound and processed by members of the bone morphogenetic protein 1 (BMP1) subgroup of extracellular metalloproteinases, previously shown to play key roles in forming extracellular matrix and in activating certain TGFbeta superfamily members. BMP1 has previously been suggested to play roles in angiogenesis, as high throughput screens have found its mRNA to be one of those induced to highest levels in tumor-associated endothelia compared with resting endothelia. PRL and GH cleavage is shown to occur in each hormone at a single site typical of sites previously characterized in known substrates of BMP1-like proteinases, and the approximately 17-kDa PRL N-terminal fragment so produced is demonstrated to have potent antiangiogenic activity. Mouse embryo fibroblasts are shown to produce both PRL and GH and to process them to approximately 17-kDa forms, whereas GH and PRL processing activity is lost in mouse embryo fibroblasts doubly null for two genes encoding BMP1-like proteinases.
Collapse
Affiliation(s)
- Gaoxiang Ge
- *Department of Pathology and Laboratory Medicine and
| | - Cecilia A. Fernández
- Vascular Biology Program and Department of Surgery, Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Marsha A. Moses
- Vascular Biology Program and Department of Surgery, Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Daniel S. Greenspan
- *Department of Pathology and Laboratory Medicine and
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706; and
- To whom correspondence should be addressed at:
Department of Pathology and Laboratory Medicine, University of Wisconsin, 1300 University Avenue, Madison, WI 53706. E-mail:
| |
Collapse
|
32
|
Tabruyn SP, Sabatel C, Nguyen NQN, Verhaeghe C, Castermans K, Malvaux L, Griffioen AW, Martial JA, Struman I. The Angiostatic 16K Human Prolactin Overcomes Endothelial Cell Anergy and Promotes Leukocyte Infiltration via Nuclear Factor-κB Activation. Mol Endocrinol 2007; 21:1422-9. [PMID: 17405903 DOI: 10.1210/me.2007-0021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The 16-kDa N-terminal fragment of human prolactin (16K hPRL) is a potent angiostatic factor that inhibits tumor growth in mouse models. Using microarray experiments, we have dissected how the endothelial-cell genome responds to 16K hPRL treatment. We found 216 genes that show regulation by 16K hPRL, of which a large proportion turned out to be associated with the process of immunity. 16K hPRL induces expression of various chemokines and endothelial adhesion molecules. These expressions, under the control of nuclear factor-kappaB, result in an enhanced leukocyte-endothelial cell interaction. Furthermore, analysis of B16-F10 tumor tissues reveals a higher expression of adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, or E-selectin) in endothelial cells and a significantly higher number of infiltrated leukocytes within the tumor treated with 16K hPRL compared with the untreated ones. In conclusion, this study describes a new antitumor mechanism of 16K hPRL. Because cellular immunity against tumor cells is a crucial step in therapy, the discovery that treatment with 16K hPRL overcomes tumor-induced anergy may become important for therapeutic perspectives.
Collapse
Affiliation(s)
- Sébastien P Tabruyn
- Unit of Molecular Biology and Genetic Engineering. GIGA Research, GIGA, B34, University of Liege, Sart Tilman 4000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tabruyn SP, Griffioen AW. Molecular pathways of angiogenesis inhibition. Biochem Biophys Res Commun 2007; 355:1-5. [PMID: 17276388 DOI: 10.1016/j.bbrc.2007.01.123] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/23/2007] [Indexed: 11/22/2022]
Abstract
A large body of evidence now demonstrates that angiostatic therapy represents a promising way to fight cancer. This research recently resulted in the approval of the first angiostatic agent for clinical treatment of cancer. Progress has been achieved in decrypting the cellular signaling in endothelial cells induced by angiostatic agents. These agents predominantly interfere with the molecular pathways involved in migration, proliferation and endothelial cell survival. In the current review, these pathways are discussed. A thorough understanding of the mechanism of action of angiostatic agents is required to develop efficient anti-tumor therapies.
Collapse
Affiliation(s)
- Sebastien P Tabruyn
- Angiogenesis Laboratory, Department of Pathology, Research Institute for Growth and Development (GROW), University of Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | | |
Collapse
|
34
|
Nguyen NQN, Tabruyn SP, Lins L, Lion M, Cornet AM, Lair F, Rentier-Delrue F, Brasseur R, Martial JA, Struman I. Prolactin/growth hormone-derived antiangiogenic peptides highlight a potential role of tilted peptides in angiogenesis. Proc Natl Acad Sci U S A 2006; 103:14319-24. [PMID: 16973751 PMCID: PMC1599962 DOI: 10.1073/pnas.0606638103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis is a crucial step in many pathologies, including tumor growth and metastasis. Here, we show that tilted peptides exert antiangiogenic activity. Tilted (or oblique-oriented) peptides are short peptides known to destabilize membranes and lipid cores and characterized by an asymmetric distribution of hydrophobic residues along the axis when helical. We have previously shown that 16-kDa fragments of the human prolactin/growth hormone (PRL/GH) family members are potent angiogenesis inhibitors. Here, we demonstrate that all these fragments possess a 14-aa sequence having the characteristics of a tilted peptide. The tilted peptides of human prolactin and human growth hormone induce endothelial cell apoptosis, inhibit endothelial cell proliferation, and inhibit capillary formation both in vitro and in vivo. These antiangiogenic effects are abolished when the peptides' hydrophobicity gradient is altered by mutation. We further demonstrate that the well known tilted peptides of simian immunodeficiency virus gp32 and Alzheimer's beta-amyloid peptide are also angiogenesis inhibitors. Taken together, these results point to a potential new role for tilted peptides in regulating angiogenesis.
Collapse
Affiliation(s)
- Ngoc-Quynh-Nhu Nguyen
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Sebastien P. Tabruyn
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Laurence Lins
- Center of Numerical Molecular Biophysic, Gembloux Agricultural University, B-5030 Gembloux, Belgium
| | - Michelle Lion
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Anne M. Cornet
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Florence Lair
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Francoise Rentier-Delrue
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Robert Brasseur
- Center of Numerical Molecular Biophysic, Gembloux Agricultural University, B-5030 Gembloux, Belgium
| | - Joseph A. Martial
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Ingrid Struman
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
- To whom correspondence should be addressed at:
Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B6, Allée du 6 Août, B-4000, Sart Tilman, Belgium. E-mail:
| |
Collapse
|
35
|
Macotela Y, Aguilar MB, Guzmán-Morales J, Rivera JC, Zermeño C, López-Barrera F, Nava G, Lavalle C, Martínez de la Escalera G, Clapp C. Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J Cell Sci 2006; 119:1790-800. [PMID: 16608881 DOI: 10.1242/jcs.02887] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 16 kDa N-terminal fragment of prolactin (16K-prolactin) is a potent antiangiogenic factor. Here, we demonstrate that matrix metalloproteases (MMPs) produced and secreted by chondrocytes generate biologically functional 16K-prolactin from full-length prolactin. When incubated with human prolactin at neutral pH, chondrocyte extracts and conditioned medium, as well as chondrocytes in culture, cleaved the Ser155-Leu156 peptide bond in prolactin, yielding - upon reduction of intramolecular disulfide bonds - a 16 kDa N-terminal fragment. This 16K-prolactin inhibited basic fibroblast growth factor (FGF)-induced endothelial cell proliferation in vitro. The Ser155-Leu156 site is highly conserved, and both human and rat prolactin were cleaved at this site by chondrocytes from either species. Conversion of prolactin to 16K-prolactin by chondrocyte lysates was completely abolished by the MMP inhibitors EDTA, GM6001 or 1,10-phenanthroline. Purified MMP-1, MMP-2, MMP-3, MMP-8, MMP-9 and MMP-13 cleaved human prolactin at Gln157, one residue downstream from the chondrocyte protease cleavage site, with the following relative potency: MMP-8>MMP-13 >MMP-3>MMP-1=MMP-2>MMP-9. Finally, chondrocytes expressed prolactin mRNA (as revealed by RT-PCR) and they contained and released antiangiogenic N-terminal 16 kDa prolactin (detected by western blot and endothelial cell proliferation). These results suggest that several matrix metalloproteases in cartilage generate antiangiogenic 16K-prolactin from systemically derived or locally produced prolactin.
Collapse
Affiliation(s)
- Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Barrera MGDL, Trejo B, Luna-Péerez P, López-Barrera F, Escalera GMDL, Clapp C. Opposite association of serum prolactin and survival in patients with colon and rectal carcinomas: influence of preoperative radiotherapy. Dig Dis Sci 2006; 51:54-62. [PMID: 16416212 DOI: 10.1007/s10620-006-3084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 03/22/2005] [Indexed: 01/04/2023]
Abstract
Prolactin (PRL) is a pleiotropic hormone associated with the progression of various cancers, including colorectal cancer (CRC). Here we investigate whether the association of serum PRL concentration and survival is affected by tumor location and preoperative radiotherapy (PRERT) in patients with CRC cancer. Serum PRL was determined in 82 CRC patients without previous treatment. Patients with PRL concentrations at and above the 75th percentile (high PRL) or below this level (low PRL), had a significant correlation with overall survival determined using the Kaplan-Meier method. In colon cancer, there was an increased risk of mortality when PRL values were at and above the highest quartile (22% vs. 73%; P = 0.01). In contrast, in rectal cancer, high PRL values were associated with a significant overall survival advantage (88% vs. 44%; P = 0.05), which became more significant (100% vs. 34%; P = 0.005) when only rectal cancer patients receiving PRERT were compared. These findings suggest that tumor location and adjuvant radiotherapy influence the association between circulating PRL and survival in CRC.
Collapse
|
37
|
Lee SH, Nishino M, Mazumdar T, Garcia GE, Galfione M, Lee FL, Lee CL, Liang A, Kim J, Feng L, Eissa NT, Lin SH, Yu-Lee LY. 16-kDa prolactin down-regulates inducible nitric oxide synthase expression through inhibition of the signal transducer and activator of transcription 1/IFN regulatory factor-1 pathway. Cancer Res 2005; 65:7984-92. [PMID: 16140971 DOI: 10.1158/0008-5472.can-05-0631] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenesis plays a key role in promoting tumorigenesis and metastasis. Several antiangiogenic factors have been shown to inhibit tumor growth in animal models. Understanding their mechanism of action would allow for better therapeutic application. 16-kDa prolactin (PRL), a NH2-terminal natural breakdown fragment of the intact 23-kDa PRL, exerts potent antiangiogenic and antitumor activities. The signaling mechanism involved in 16-kDa PRL action in endothelial cells remains unclear. One of the actions of 16-kDa PRL is to attenuate the production of nitric oxide (NO) through the inhibition of inducible NO synthase (iNOS) expression in endothelial cells. To delineate the signaling mechanism from 16-kDa PRL, we examined the effect of 16-kDa PRL on interleukin IL-1beta-inducible iNOS expression, which is regulated by two parallel pathways, one involving IFN regulatory factor 1 (IRF-1) and the other nuclear factor-kappaB (NF-kappaB). Our studies showed that 16-kDa PRL specifically blocked IRF-1 but not NF-kappaB signaling to the iNOS promoter. We found that IL-1beta regulated IRF-1 gene expression through stimulation of p38 mitogen-activated protein kinase (MAPK), which mediated signal transducer and activator of transcription 1 (Stat1) serine phosphorylation and Stat1 nuclear translocation to activate the IRF-1 promoter. 16-kDa PRL effectively inhibited IL-1beta-inducible p38 MAPK phosphorylation, resulting in blocking Stat1 serine phosphorylation, its subsequent nuclear translocation and activation of the Stat1 target gene IRF-1. Thus, 16-kDa PRL inhibits the p38 MAPK/Stat1/IRF-1 pathway to attenuate iNOS/NO production in endothelial cells.
Collapse
Affiliation(s)
- Sok-Hyong Lee
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang Y, Zhang X, Park TS, Gidday JM. Cerebral endothelial cell apoptosis after ischemia-reperfusion: role of PARP activation and AIF translocation. J Cereb Blood Flow Metab 2005; 25:868-77. [PMID: 15729291 DOI: 10.1038/sj.jcbfm.9600081] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral ischemia-reperfusion leads to vascular dysfunction characterized by endothelial cell injury or death. In the present study, we used an in vitro model to elucidate mechanisms of human brain microvascular endothelial cell (HBMEC) injury after episodic ischemia-reperfusion. Near-confluent HBMEC cultures were exposed to intermittent hypoxia-reoxygenation (HX/RO) and, at different recovery time points, cell viability was assessed by the MTT assay, apoptotic death by fluorescence microscopy of terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL)-positive cells, and nuclear translocation of apoptosis-inducing factor (AIF) and cleavage of poly(ADP-ribose) polymerase-1 (PARP-1) by immunoblotting of subcellular fractions. Reductions in HBMEC viability were proportional to the number of HX/RO cycles, and not the total duration of hypoxia. Using four cycles of 1-h HX with 1 h of intervening normoxic RO, cell viability was reduced 30% to 40% between 12 and 48 h. Treatment with the PARP-1 inhibitors 3-aminobenzamide or 4-amino-1,8-naphthalimide during the insult improved HBMEC viability at 24 h after insult, and resulted in dose-dependent reductions in TUNEL-positivity at 16 h after insult, but not if these treatments were delayed by 4 h. HX/RO-induced increases in nuclear AIF translocation, as well as PARP-1 cleavage, were also reduced dose-dependently at 4 h after insult by the inhibitors. The caspase inhibitor z-VAD-fmk blocked PARP-1 cleavage, but did not affect AIF translocation and was only modestly cytoprotective. These findings indicate that PARP-1 activation and a PARP-1-dependent, caspase-independent, nuclear translocation of AIF contribute to apoptotic cerebral endothelial cell death after ischemia-reperfusion, underscoring the potential for ischemic microvascular protection by inhibiting PARP activation or preventing AIF translocation.
Collapse
Affiliation(s)
- Yunhong Zhang
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
39
|
Tabruyn SP, Nguyen NQN, Cornet AM, Martial JA, Struman I. The Antiangiogenic Factor, 16-kDa Human Prolactin, Induces Endothelial Cell Cycle Arrest by Acting at Both the G0–G1 and the G2–M Phases. Mol Endocrinol 2005; 19:1932-42. [PMID: 15746189 DOI: 10.1210/me.2004-0515] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
The 16-kDa N-terminal fragment of human prolactin (16K hPRL) is a potent antiangiogenic factor that has been shown to prevent tumor growth in a xenograph mouse model. In this paper we first demonstrate that 16K hPRL inhibits serum-induced DNA synthesis in adult bovine aortic endothelial cells. This inhibition is associated with cell cycle arrest at both the G0–G1 and the G2–M phase. Western blot analysis revealed that 16K hPRL strongly decreases levels of cyclin D1 and cyclin B1, but not cyclin E. The effect on cyclin D1 is at least partially transcriptional, because treatment with 16K hPRL both reduces the cyclin D1 mRNA level and down-regulates cyclin D1 promoter activity. This regulation may be due to inhibition of the MAPK pathway, but it is independent of the glycogen synthase kinase-3β pathway. Lastly, 16K hPRL induces the expression of negative cell cycle regulators, the cyclin-dependent kinase inhibitors p21(cip1) and p27(kip1). In summary, 16K hPRL inhibits serum-induced proliferation of endothelial cells through combined effects on positive and negative regulators of cell cycle progression.
Collapse
Affiliation(s)
- Sébastien P Tabruyn
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Allée du 6 Aout B6A, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
40
|
Lkhider M, Castino R, Bouguyon E, Isidoro C, Ollivier-Bousquet M. Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J Cell Sci 2004; 117:5155-64. [PMID: 15456852 DOI: 10.1242/jcs.01396] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 16 kDa prolactin fragment arises from partial proteolysis of the native 23 kDa prolactin pituitary hormone. The mammary gland has been involved in this processing, although it has not been clarified whether it occurs in stroma or epithelial cells or extracellularly. Also, the processing enzyme has not been defined yet. Here we show that the incubation medium of stroma-deprived mammary acini from lactating rat contains an enzymatic activity able to cleave, in a temperature- and time-dependent fashion, the 23 kDa prolactin to generate a 16 kDa prolactin detectable under reducing conditions. This cleavage was not impaired in the presence of hirudin, a thrombin inhibitor, but strongly weakened in the presence of pepstatin A, a cathepsin D inhibitor. Cathepsin D immuno-depletion abolished the capability of acini-conditioned medium to cleave the 23 kDa prolactin. Brefeldin A treatment of acini, a condition that largely abolished the apical secretion of milk proteins, did not impair the secretion of the enzymatically active single chain of cathepsin D. These results show that mature cathepsin D from endosomes or lysosomes is released, likely at the baso-lateral site of mammary epithelial cells, and that a cathepsin D-dependent activity is required to effect, under physiological conditions, the cleavage of 23 kDa prolactin in the extracellular medium. This is the first report demonstrating that cathepsin D can perform a limited proteolysis of a substrate at physiological pH outside the cell.
Collapse
Affiliation(s)
- Mustapha Lkhider
- Faculté des Sciences, Université Chouaib Doukkali, BP 20 El Jadida, Morocco
| | | | | | | | | |
Collapse
|
41
|
Piwnica D, Touraine P, Struman I, Tabruyn S, Bolbach G, Clapp C, Martial JA, Kelly PA, Goffin V. Cathepsin D Processes Human Prolactin into Multiple 16K-Like N-Terminal Fragments: Study of Their Antiangiogenic Properties and Physiological Relevance. Mol Endocrinol 2004; 18:2522-42. [PMID: 15192082 DOI: 10.1210/me.2004-0200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
16K prolactin (PRL) is the name given to the 16-kDa N-terminal fragment obtained by proteolysis of rat PRL by tissue extracts or cell lysates, in which cathepsin D was identified as the candidate protease. Based on its antiangiogenic activity, 16K PRL is potentially a physiological inhibitor of tumor growth. Full-length human PRL (hPRL) was reported to be resistant to cathepsin D, suggesting that antiangiogenic 16K PRL may be physiologically irrelevant in humans. In this study, we show that hPRL can be cleaved by cathepsin D or mammary cell extracts under the same conditions as described earlier for rat PRL, although with lower efficiency. In contrast to the rat hormone, hPRL proteolysis generates three 16K-like fragments, which were identified by N-terminal sequencing and mass spectrometry as corresponding to amino acids 1-132 (15 kDa), 1-147 (16.5 kDa), and 1-150 (17 kDa). Biochemical and mutagenetic studies showed that the species-specific digestion pattern is due to subtle differences in primary and tertiary structures of rat and human hormones. The antiangiogenic activity of N-terminal hPRL fragments was assessed by the inhibition of growth factor-induced thymidine uptake and MAPK activation in bovine umbilical endothelial cells. Finally, an N-terminal hPRL fragment comigrating with the proteolytic 17-kDa fragment was identified in human pituitary adenomas, suggesting that the physiological relevance of antiangiogenic N-terminal hPRL fragments needs to be reevaluated in humans.
Collapse
Affiliation(s)
- David Piwnica
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 584, Hormone Targets, Faculté de Médecine Necker, 75730, Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Takiguchi S, Sugino N, Esato K, Karube-Harada A, Sakata A, Nakamura Y, Ishikawa H, Kato H. Differential Regulation of Apoptosis in the Corpus Luteum of Pregnancy and Newly Formed Corpus Luteum after Parturition in Rats1. Biol Reprod 2004; 70:313-8. [PMID: 14522835 DOI: 10.1095/biolreprod.103.018853] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Apoptosis contributes to luteal regression in many species. In the postpartum rat, there are two different types of corpora lutea (CL) in the ovary: CL of pregnancy (CLP) and newly formed CL (NCL). To investigate the regulation of apoptosis in the two different types of CL during luteal regression, apoptosis and caspase-3 activity were examined in the CL obtained on Days 7, 15, and 21 of pregnancy and Days 0, 1, 3, 5, 7, and 9 postpartum. Furthermore, the effect of lactation on apoptosis in the CL was examined in two groups of postpartum rats: lactating rats that nurse more than 10 pups, and nonlactating rats that nurse no pups. Apoptotic cells were detected after Day 21 of pregnancy. In the CLP, remarkable increases in the number of apoptotic cells on Days 5 and 9 postpartum were observed in nonlactating rats (P < 0.01), but not in lactating rats. Changes in caspase-3 activity in the CLP were not consistent with those in number of apoptotic cells. In the NCL, an increase in apoptosis was found only on Day 5 postpartum in nonlactating rats (P < 0.01), but not in lactating rats. Changes in caspase-3 activity in the NCL were consistent with those in number of apoptotic cells. In conclusion, apoptosis is, at least in part, involved in luteal regression after parturition, and lactation appears to inhibit apoptosis. This study also suggests the presence of a caspase-3-independent mechanism for apoptosis in CLP regression in the rat.
Collapse
Affiliation(s)
- Shuji Takiguchi
- Department of Reproductive, Pediatric, and Infectious Science, Yamaguchi University School of Medicine, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mohammad YN, Perone M, Wang L, Ingleton PM, Castro MG, Lovejoy DA. Expression of prolactin receptors and regulation of cell proliferation by prolactin, corticotropin-releasing factor, and corticosterone in a neuroblastoma cell line. Biochem Cell Biol 2003; 80:475-82. [PMID: 12234101 DOI: 10.1139/o02-036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aetiology of neuroblastoma remains obscure, although a number of neuropeptides have been implicated in its pathogenesis. Using the mouse neuroblastoma cell line Neuro2a as a model, we have investigated the mitogenic actions of prolactin (PRL) and two hypothalamo-pituitary-adrenal stress axis hormones, corticotropin-releasing factor (CRF) and corticosterone. Using established polyclonal PRL receptor antisera with immunofluorescence cytochemistry, we show that the Neuro2a cells possess immunoreactive forms of both the long and short forms of the receptor. PRL and CRF were effective as mitogens in Neuro2a cell cultures, where a 10(-7) M concentration of PRL or CRF elicited a two-fold increase in the numbers of cells after 72 h (p < 0.0001). Corticosterone, however, attenuated their proliferation. These data suggest that prolactin may act to increase the proliferation and regulation of neuroblastomas and that the effects of PRL may be modified by hypothalamo-pituitary-adrenal hormones.
Collapse
Affiliation(s)
- Y N Mohammad
- School of Biological Sciences, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
44
|
Kontogeorgos G, Kontogeorgou CN. Hormone regulation of endothelial apoptosis and proliferation in vessel regression and angiogenesis. Microsc Res Tech 2003; 60:59-63. [PMID: 12500261 DOI: 10.1002/jemt.10243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apoptosis and endothelial proliferation represent two adverse events which take place during vessel regression and angiogenesis, respectively. Apoptosis, an intrinsically activated programmed cell death, regulates cell elimination during vessel regression. In contrast, angiogenesis involves endothelial cell proliferation, migration, and vascular formation. Several molecules, including growth factors and cytokines, produced by endothelial cells and by other cells within the vicinity of the capillary network, regulate apoptosis and angiogenesis. Hormones and endocrine peptides acting via specific receptors located on the endothelial and perivascular stromal cells also have been found to be involved in the regulation of these two major antagonistic processes. The need for a better understanding of the mechanisms involved in hormone regulation of endothelial cell during apoptosis and angiogenesis is of great importance. The accumulating knowledge of hormone regulation may contribute to the introduction of new therapeutic strategies targeting the endothelial cells.
Collapse
Affiliation(s)
- George Kontogeorgos
- Department of Pathology, G. Gennimatas Athens General Hospital, Athens, Greece.
| | | |
Collapse
|
45
|
Schuff KG, Hentges ST, Kelly MA, Binart N, Kelly PA, Iuvone PM, Asa SL, Low MJ. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. J Clin Invest 2002; 110:973-81. [PMID: 12370275 PMCID: PMC151153 DOI: 10.1172/jci15912] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypothalamic dopamine inhibits pituitary prolactin secretion and proliferation of prolactin-producing lactotroph cells by activating lactotroph dopamine D2 receptors (D2Rs). Conversely, prolactin (PRL) stimulates hypothalamic dopamine neurons via PRL receptors (PRLRs) in a short-loop feedback circuit. We used Drd2(-/-) and Prlr(-/-) mutant mice to bypass this feedback and investigate possible dopamine-independent effects of PRL on lactotroph function. The absence of either receptor induced hyperprolactinemia and large prolactinomas in females. Small macroadenomas developed in aged Prlr(-/-) males, but only microscopic adenomas were found in Drd2(-/-) male mice. Pharmacologic studies in Prlr(-/-) mice with D2R agonists and antagonists demonstrated a significant loss of endogenous dopamine tone, i.e., constitutive inhibitory signaling by the D2R, in the pituitary. However, Prlr(-/-) mice exhibited more profound hyperprolactinemia and larger tumors than did age-matched Drd2(-/-) mice, and there were additive effects in compound homozygous mutant male mice. In vitro, PRL treatment markedly inhibited the proliferation of wild-type female and male Drd2(-/-) lactotrophs, but had no effect on female Drd2(-/-) lactotrophs, suggesting a downregulation or desensitization of PRLR in response to chronic hyperprolactinemia. We conclude that PRL inhibits lactotrophs by two distinct mechanisms: (a) indirectly by activation of hypothalamic dopamine neurons and (b) directly within the pituitary in a dopamine-independent fashion.
Collapse
Affiliation(s)
- Kathryn G Schuff
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cajero-Juárez M, Avila B, Ochoa A, Garrido-Guerrero E, Varela-Echavarría A, Martínez de la Escalera G, Clapp C. Immortalization of bovine umbilical vein endothelial cells: a model for the study of vascular endothelium. Eur J Cell Biol 2002; 81:1-8. [PMID: 11893074 DOI: 10.1078/0171-9335-00213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells perform a large array of physiological functions that are influenced by their cellular heterogeneity in the different vascular beds. Vein endothelial cells isolated from the umbilical cords are commonly used to study vascular endothelium. Primary cultures of these cells, however, have low proliferative capacity and a limited life span. We have immortalized bovine umbilical vein endothelial cells (BUVEC) by transfection with an expression vector containing the human papillomavirus type 16 E6E7 oncogenes. Expression of E6E7 extended the life span of BUVEC from 40 to more than 1-20 cell replication cycles with no signs of senescence. Four immortalized clones were isolated and found to maintain endothelial cell properties, such as the uptake of acetylated low density lipoprotein, the expression of the von Willebrand protein, the binding of endothelial cell-specific lectins and proliferative responses to the specific endothelial cell mitogen, vascular endothelial growth factor. Moreover, clone BVE-E6E7-1, like its wild-type counterparts, expressed prolactin mRNA and decreased its proliferation in response to the anti-angiogenic 16-kDa fragment of prolactin. This clone showed little signs of genetic instability as revealed by centrosome and chromosome number analysis. Thus, immortalized E6E7 BUVEC cell lines retain endothelial cell characteristics and could facilitate studies to investigate the action of regulatory factors of vascular endothelium. Moreover, being the first non-human umbilical vein endothelial cell lines, their use should provide insights into the mechanisms governing species-related heterogeneity of endothelial cells.
Collapse
|