1
|
Bhusal A, Afridi R, Lee WH, Suk K. Bidirectional Communication Between Microglia and Astrocytes in Neuroinflammation. Curr Neuropharmacol 2023; 21:2020-2029. [PMID: 36453496 PMCID: PMC10556371 DOI: 10.2174/1570159x21666221129121715] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is a common feature of diverse nervous system pathologies. In many instances, it begins at an early stage of the disease, paving the way for further exacerbations. The main drivers of neuroinflammation are brain-resident glial cells, such as microglia and astrocytes. Microglia are the primary responders to any insult to the brain parenchyma, translating the signals into diverse molecules. These molecules derived from microglia can regulate the stimuli-dependent reactivity of astrocytes. Once activated, astrocytes in turn, can control microglia phenotypes. Recent evidence indicates that the crosstalk between these glial cells plays an important role in delaying or accelerating neuroinflammation and overall disease progression. To date, various molecules have been recognized as key mediators of the bidirectional communication between microglia and astrocytes. The current review aims to discuss the novel molecules identified recently, which play a critical role in interglial crosstalk, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Sciences, School of Medicine, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Sciences, School of Medicine, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Sciences, School of Medicine, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Li Y, Xu XL, Zhao D, Pan LN, Huang CW, Guo LJ, Lu Q, Wang J. TLR3 ligand Poly IC Attenuates Reactive Astrogliosis and Improves Recovery of Rats after Focal Cerebral Ischemia. CNS Neurosci Ther 2016; 21:905-13. [PMID: 26494128 DOI: 10.1111/cns.12469] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/06/2015] [Accepted: 09/13/2015] [Indexed: 01/08/2023] Open
Abstract
AIMS Brain ischemia activates astrocytes in a process known as astrogliosis. Although this process has beneficial effects, excessive astrogliosis can impair neuronal recovery. Polyinosinic-polycytidylic acid (Poly IC) has shown neuroprotection against cerebral ischemia-reperfusion injury, but whether it regulates reactive astrogliosis and glial scar formation is not clear. METHODS We exposed cultured astrocytes to oxygen-glucose deprivation/reoxygenation (OGD/R) and used a rat middle cerebral artery occlusion (MCAO)/reperfusion model to investigate the effects of Poly IC. Astrocyte proliferation and proliferation-related molecules were evaluated by immunostaining and Western blotting. Neurological deficit scores, infarct volumes and neuroplasticity were evaluated in rats after transient MCAO. RESULTS In vitro, Poly IC inhibited astrocyte proliferation, upregulated Toll-like receptor 3 (TLR3) expression, upregulated interferon-β, and downregulated interleukin-6 production. These changes were blocked by a neutralizing antibody against TLR3, suggesting that Poly IC function is TLR3-dependent. Moreover, in the MCAO model, Poly IC attenuated reactive astrogliosis, reduced brain infarction volume, and improved neurological function. In addition, Poly IC prevented MCAO-induced reductions in soma size, dendrite length, and number of dendritic bifurcations in cortical neurons of the infarct penumbra. CONCLUSIONS By ameliorating astrogliosis-related damage, Poly IC is a potential therapeutic agent for attenuating neuronal damage and promoting recovery after brain ischemia.
Collapse
Affiliation(s)
- Yang Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Lin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Dan Zhao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Na Pan
- Medical Department of Neurology, The Second Hospital of Nanchang, Nanchang, China
| | - Chun-Wei Huang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lian-Jun Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Qing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2016; 22:1258-77. [PMID: 25666795 DOI: 10.2174/0929867322666150209154036] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke.
Collapse
Affiliation(s)
| | - Midori A Yenari
- Dept. of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
4
|
Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 2015; 130:86-120. [PMID: 25930681 DOI: 10.1016/j.pneurobio.2015.04.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives.
Collapse
|
5
|
NF-κB regulates caspase-4 expression and sensitizes neuroblastoma cells to Fas-induced apoptosis. PLoS One 2015; 10:e0117953. [PMID: 25695505 PMCID: PMC4335045 DOI: 10.1371/journal.pone.0117953] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/06/2015] [Indexed: 12/01/2022] Open
Abstract
Found in neurons and neuroblastoma cells, Fas-induced apoptosis and accompanied activation of NF-κB signaling were thought to be associated with neurodegenerative diseases. However, the detailed functions of NF-κB activation in Fas killing and the effect of NF-κB activation on its downstream events remain unclear. Here, we demonstrated that agonistic Fas antibody induces cell death in a dose-dependent way and NF-κB signaling is activated as well, in neuroblastoma cells SH-EP1. Unexpectedly, NF-κB activation was shown to be pro-apoptotic, as suggested by the reduction of Fas-induced cell death with either a dominant negative form of IκBα (DN-IκBα) or an IκB kinase-specific inhibitor. To our interest, when analyzing downstream events of NF-κB signaling, we found that DN-IκBα only suppressed the expression of caspase-4, but not other caspases. Vice versa, enhancement of NF-κB activity by p65 (RelA) overexpression increased the expression of caspase-4 at both mRNA and protein levels. More directly, results from dual luciferase reporter assay demonstrated the regulation of caspase-4 promoter activity by NF-κB. When caspase-4 activity was blocked by its dominant negative (DN) form, Fas-induced cell death was substantially reduced. Consistently, the cleavage of PARP and caspase-3 induced by Fas was also reduced. In contrast, the cleavage of caspase-8 remained unaffected in caspase-4 DN cells, although caspase-8 inhibitor could rescue Fas-induced cell death. Collectively, these data suggest that caspase-4 activity is required for Fas-induced cell apoptosis and caspase-4 may act upstream of PARP and caspase-3 and downstream of caspase-8. Overall, we demonstrate that NF-κB can mediate Fas-induced apoptosis through caspase-4 protease, indicating that caspase-4 is a new mediator of NF-κB pro-apoptotic pathway in neuroblastoma cells.
Collapse
|
6
|
Cao M, Tan X, Jin W, Zheng H, Xu W, Rui Y, Li L, Cao J, Wu X, Cui G, Ke K, Gao Y. Upregulation of Ras homolog enriched in the brain (Rheb) in lipopolysaccharide-induced neuroinflammation. Neurochem Int 2013; 62:406-17. [PMID: 23391520 DOI: 10.1016/j.neuint.2013.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/16/2012] [Accepted: 01/26/2013] [Indexed: 12/16/2022]
Abstract
Ras homolog enriched in the brain (Rheb) is a homolog of Ras GTPase that regulates cell growth, proliferation, and cell cycle via mammalian target of rapamycin (mTOR). Recently, it has been confirmed that Rheb activation not only promotes cellular proliferation and differentiation but also enhances cellular apoptosis in response to diverse toxic stimuli. However, the function of Rheb in the central nervous system (CNS) is still with limited understanding. To elaborate whether Rheb was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Upregulation of Rheb was observed in the brain cortex by performing western blotting and immunohistochemistry. Double immunofluorescent staining demonstrated that Rheb was mainly in active astrocytes and neurons. PCNA and active caspase-3 were upregulated, and co-labeling with Rheb, which indicated that Rheb might be relevant to astrocytic proliferation and neuronal apoptosis following the inflammatory response by LPS-induced. Furthermore, we also found that the expression profiles of cyclinD1 and CDK4 were parallel with that of Rheb in a time-space dependent manner. Finally, knocking down Rheb by siRNA and treatment with rapamycin or lovastatin showed that not only astrocytic proliferation decreased but also neuronal protection. Based on our data, we suggested that Rheb might play an important role in physiological and pathological functions following neuroinflammation caused by LPS, which might provide a potential target to the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Involvement of early growth response-2 (Egr-2) in lipopolysaccharide-induced neuroinflammation. J Mol Histol 2013; 44:249-57. [PMID: 23307302 DOI: 10.1007/s10735-013-9482-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 01/02/2013] [Indexed: 02/05/2023]
Abstract
Early growth response-2 (Egr-2) protein is a transcription factor, which belongs to Egr family which involve in modulating the peripheral immune response, by means of the induction of differentiation of lymphocyte precursors, activation of T and B cells. Egr-2 plays essential roles in peripheral nerve myelination, adipogenesis, tissue repair and fibrosis, immune tolerance; however, its regulation and role in central nervous system (CNS) remain poorly understood. In contrast to Egr-1, which has been extensively investigated, the regulation and function of Egr-2 remains less well characterized. To elaborate whether Egr-2 was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Egr-2 expression was strongly induced in active glia cells (astrocytes and microglias) in inflamed brain cortex. In vitro studies indicated that the upregulation of Egr-2 may be involved in the subsequent glia cellular activation following LPS exposure; and knock down of Egr-2 in primary mixed glial cultures (MGC) by siRNA showed that Egr-2 promoted the synthesis of TNF-α. Collectively, these results suggested Egr-2 may be important in host defense in CNS immune response, which might provide a potential target to the treatment of neuroinflammation.
Collapse
|
8
|
Brambilla L, Martorana F, Rossi D. Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion 2012; 7:28-36. [PMID: 23093800 DOI: 10.4161/pri.22512] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Growing evidence indicates that astrocytes cannot be just considered as passive supportive cells deputed to preserve neuronal activity and survival, but rather they are involved in a striking number of active functions that are critical to the performance of the central nervous system (CNS). As a consequence, it is becoming more and more evident that the peculiar properties of these cells can actively contribute to the extraordinary functional complexity of the brain and spinal cord. This new perception of the functioning of the CNS opens up a wide range of new possibilities to interpret various physiological and pathological events, and moves the focus beyond the neuronal compartment toward astrocyte-neuron interactions. With this in mind, here we provide a synopsis of the activities astrocytes perform in normal conditions, and we try to discuss what goes wrong with these cells in specific pathological conditions, such as Alzheimer Disease, prion diseases and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Pavia, Italy
| | | | | |
Collapse
|
9
|
Mehla R, Bivalkar-Mehla S, Nagarkatti M, Chauhan A. Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator. J Neuroinflammation 2012; 9:239. [PMID: 23078780 PMCID: PMC3533742 DOI: 10.1186/1742-2094-9-239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023] Open
Abstract
Background More than 50% of patients undergoing lifelong suppressive antiviral treatment for HIV-1 infection develop minor HIV-1-associated neurocognitive disorders. Neurological complications during HIV-1 infection are the result of direct neuronal damage by proinflammatory products released from HIV-1-infected or -uninfected activated lymphocytes, monocytes, macrophages, microglia and astrocytes. The specific pro-inflammatory products and their roles in neurotoxicity are far from clear. We investigated proinflammatory cytokines and chemokines in the cerebrospinal fluid (CSF) of HIV-demented (HIV-D) and HIV-nondemented (HIV-ND) patients and studied their affect on neuroglial toxicity. Methods and results Bioplex array showed elevated levels of signatory chemokines or cytokines (IL-6, IFN-γ, CXCL10, MCP-1 and PDGF) in the CSF of HIV-D patients (n = 7) but not in that of HIV-ND patients (n = 7). Among the signatory cytokines and chemokines, CXCL10 was distinctly upregulated in-vitro in HIV-1 (NLENG1)-activated human fetal astrocytes, HIV-1 (Ba-L)-infected macrophages, and HIV-1 (NLENG1)-infected lymphocytes. Virus-infected macrophages also had increased levels of TNF-α. Consistently, human fetal astrocytes treated with HIV-1 and TNF-α induced the signatory molecules. CXCL10 in combination with HIV-1 synergistically enhanced neuronal toxicity and showed chemotactic activity (~ 40 fold) for activated peripheral blood mononuclear cells (PBMC), suggesting the intersection of signaling events imparted by HIV-1 and CXCL10 after binding to their respective surface receptors, CXCR4 and CXCR3, on neurons. Blocking CXCR3 and its downstream MAP kinase (MAPK) signaling pathway suppressed combined CXCL10 and HIV-1-induced neurotoxicity. Bryostatin, a PKC modulator and suppressor of CXCR4, conferred neuroprotection against combined insult with HIV-1 and CXCL10. Bryostatin also suppressed HIV-1 and CXCL10-induced PBMC chemotaxis. Although, therapeutic targeting of chemokines in brain may have adverse consequences on the host, current findings and earlier evidence suggest that CXCL10 could strongly impede neuroinflammation. Conclusion We have demonstrated induction of CXCL10 and other chemokines/cytokines during HIV-1 infection in the brain, as well as synergism of CXCL10 with HIV-1 in neuronal toxicity, which was dampened by bryostatin.
Collapse
Affiliation(s)
- Rajeev Mehla
- Department of Pathology, Microbiology & Immunology, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
10
|
Martorana F, Brambilla L, Valori CF, Bergamaschi C, Roncoroni C, Aronica E, Volterra A, Bezzi P, Rossi D. The BH4 domain of Bcl-X(L) rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. Hum Mol Genet 2011; 21:826-40. [PMID: 22072391 DOI: 10.1093/hmg/ddr513] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Collective evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is non-cell-autonomous and requires the interaction with the neighboring astrocytes. Recently, we reported that a subpopulation of spinal cord astrocytes degenerates in the microenvironment of motor neurons in the hSOD1(G93A) mouse model of ALS. Mechanistic studies in vitro identified a role for the excitatory amino acid glutamate in the gliodegenerative process via the activation of its inositol 1,4,5-triphosphate (IP(3))-generating metabotropic receptor 5 (mGluR5). Since non-physiological formation of IP(3) can prompt IP(3) receptor (IP(3)R)-mediated Ca(2+) release from the intracellular stores and trigger various forms of cell death, here we investigated the intracellular Ca(2+) signaling that occurs downstream of mGluR5 in hSOD1(G93A)-expressing astrocytes. Contrary to wild-type cells, stimulation of mGluR5 causes aberrant and persistent elevations of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in the absence of spontaneous oscillations. The interaction of IP(3)Rs with the anti-apoptotic protein Bcl-X(L) was previously described to prevent cell death by modulating intracellular Ca(2+) signals. In mutant SOD1-expressing astrocytes, we found that the sole BH4 domain of Bcl-X(L), fused to the protein transduction domain of the HIV-1 TAT protein (TAT-BH4), is sufficient to restore sustained Ca(2+) oscillations and cell death resistance. Furthermore, chronic treatment of hSOD1(G93A) mice with the TAT-BH4 peptide reduces focal degeneration of astrocytes, slightly delays the onset of the disease and improves both motor performance and animal lifespan. Our results point at TAT-BH4 as a novel glioprotective agent with a therapeutic potential for ALS.
Collapse
Affiliation(s)
- Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pham H, Doerrbecker J, Ramp AA, D'Souza CS, Gorasia DG, Purcell AW, Ayers MM, Orian JM. Experimental autoimmune encephalomyelitis (EAE) IN C57Bl/6 mice is not associated with astrogliosis. J Neuroimmunol 2010; 232:51-62. [PMID: 21056916 DOI: 10.1016/j.jneuroim.2010.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 09/15/2010] [Accepted: 10/04/2010] [Indexed: 12/26/2022]
Abstract
The C57Bl/6 mouse is the preferred host for the maintenance of gene deletion mutants and holds a unique place in investigations of cytokine/chemokine networks in neuroinflammation. It is also susceptible to experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis (MS)-like disease commonly used to assess potential MS therapies. Investigations of glial reactivity in EAE have revealed hitherto undescribed astroglial responses in this model, characterized by progressively diminishing glial fibrillary acidic protein and aquaporin-4 immunostaining, from early disease. These observations show that astrocyte responses vary with the EAE paradigm and are an important pathological criterion for disease mapping and therapy evaluation.
Collapse
Affiliation(s)
- Hong Pham
- Department of Biochemistry, La Trobe University, Victoria 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y. The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation 2010; 7:74. [PMID: 21040547 PMCID: PMC2988764 DOI: 10.1186/1742-2094-7-74] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/01/2010] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a key element in the ischemic cascade after cerebral ischemia that results in cell damage and death in the subacute phase. However, anti-inflammatory drugs do not improve outcome in clinical settings suggesting that the neuroinflammatory response after an ischemic stroke is not entirely detrimental. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. Because of its inhibitory influence on several pathways of the ischemic cascade, hypothermia has been introduced as a promising neuroprotective strategy. This review also discusses the influence of hypothermia on the neuroinflammatory response. We conclude that hypothermia exerts both stimulating and inhibiting effects on different aspects of neuroinflammation and hypothesize that these effects are key to neuroprotection.
Collapse
Affiliation(s)
- An-Gaëlle Ceulemans
- Department of Pharmaceutical Chemistry and Drug Analysis, Research Group Experimental Neuropharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Blocking TRAIL-DR5 signaling with soluble DR5 reduces delayed neuronal damage after transient global cerebral ischemia. Neurobiol Dis 2010; 39:138-47. [PMID: 20359534 DOI: 10.1016/j.nbd.2010.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 03/18/2010] [Accepted: 03/23/2010] [Indexed: 01/24/2023] Open
Abstract
Mechanisms underlying delayed selective neuronal death after global cerebral ischemia remain to be clarified. Here, we report a critical role for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in the pathogenesis of cerebral ischemia. C57BL/6j mice were subjected to transient global brain ischemia. RT-PCR and immunohistochemistry showed that the expression of TRAIL and DR5 was upregulated following transient ischemia-reperfusion. Dual immunofluorescence analysis indicated that TRAIL expression was significantly more pronounced in astrocytes and activated microglia/macrophages, whereas DR5 expression was more pronounced in neurons, which had a good correlation with the distribution of apoptotic cells. Treatment with soluble DR5 reduced ischemic cell death after transient global ischemia through blocking the interaction of endogenous TRAIL with DR5. These results indicate that TRAIL plays a deleterious role in the pathogenesis of delayed neuronal damage after global cerebral ischemia and inhibition of TRAIL function in the brain may represent a novel neuroprotective strategy to treat ischemic stroke.
Collapse
|
14
|
Nones J, Stipursky J, Costa SL, Gomes FCA. Flavonoids and Astrocytes Crosstalking: Implications for Brain Development and Pathology. Neurochem Res 2010; 35:955-66. [DOI: 10.1007/s11064-010-0144-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2010] [Indexed: 11/28/2022]
|
15
|
Bone marrow stromal cells reduce ischemia-induced astrocytic activation in vitro. Neuroscience 2008; 152:646-55. [PMID: 18313231 DOI: 10.1016/j.neuroscience.2007.10.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/28/2007] [Accepted: 02/11/2008] [Indexed: 11/21/2022]
Abstract
Transplantation of bone marrow stromal cells (BMSCs) improves animal neurological functional recovery after stroke. To obtain insight into the mechanisms underlying the therapeutic benefit, we directed our attention to the interaction of BMSCs with astrocytes. Astrocytes become reactive (astrogliosis) after a brain injury, such as stroke. Astrogliosis plays both beneficial and detrimental roles in brain recovery. Previously, we have shown that administration of BMSCs to animals with stroke significantly reduces the thickness of the scar wall formed by reactive astrocytes. We tested the influence of mouse bone marrow stromal cell (mBMSC) on astrogliosis under oxygen-glucose deprivation (OGD)/reoxygenation conditions in vitro, employing an anaerobic chamber. Our data indicate that mBMSCs down-regulate glial fibrillary acidic protein (GFAP) expression in astrocytes after 2 h of OGD and an additional 16 h reoxygenation. mBMSCs protected astrocytes from ischemia, maintaining morphological integrity and proliferation. The IL-6/IL-6R/gp130 pathway is associated with astrogliosis in response to CNS (disorders. Therefore, we examined the effects of mBMSC on the IL-6/IL-6R/gp130 pathway as an underlying mechanism of mBMSC-altered astrogliosis. Furthermore, IL-6 siRNA was used to block IL-6 expression in astrocytes to further investigate IL-6 involvement in mBMSC-altered astrogliosis. Our results indicate that the mBMSC-conferred decline of astrogliosis post-ischemia may derive from the down-regulation of the IL-6/IL-6R/gp130 pathway.
Collapse
|
16
|
Guasch RM, Blanco AM, Pérez-Aragó A, Miñambres R, Talens-Visconti R, Peris B, Guerri C. RhoE participates in the stimulation of the inflammatory response induced by ethanol in astrocytes. Exp Cell Res 2007; 313:3779-88. [PMID: 17707794 DOI: 10.1016/j.yexcr.2007.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/19/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
Astroglial cells are involved in the neuropathogenesis of several inflammatory diseases of the brain, where the activation of inflammatory mediators and cytokines plays an important role. We have previously demonstrated that ethanol up-regulates inflammatory mediators in both brain and astroglial cells. Since Rho GTPases are involved in inflammatory responses of astrocytes where loss of stress fibers takes place and RhoE/Rnd3 disorganizes the actin cytoskeleton, the aim of the present study was to investigate the implication of this protein in the stimulation of inflammatory signaling induced by ethanol. Our findings show that RhoE expression induces a decrease in both RhoA and Rac. In addition, RhoE not only induces actin cytoskeleton disorganization but it also stimulates both the IRAK/ERK/NF-kappaB pathway and the COX-2 expression associated with the inflammatory response in these cells. Our results also show that ethanol exposure induces RhoE signaling in astrocytes. Preincubation of astrocytes with GF109203X, an inhibitor of PKCs, reduces the RhoE levels and abolishes the ethanol-induced activation of IRAK, NF-kappaB and the COX-2 expression. Furthermore, RhoE overexpression restores ethanol responses in astrocytes treated with the PKCs inhibitor. Altogether, our findings suggest that this small GTPase is involved in the stimulation of the inflammatory signaling induced by ethanol in astrocytes. These findings provide new insights into the molecular mechanism involved in the inflammatory responses in astrocytes.
Collapse
Affiliation(s)
- Rosa M Guasch
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ichim TE, Solano F, Glenn E, Morales F, Smith L, Zabrecky G, Riordan NH. Stem cell therapy for autism. J Transl Med 2007; 5:30. [PMID: 17597540 PMCID: PMC1914111 DOI: 10.1186/1479-5876-5-30] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 06/27/2007] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism.
Collapse
Affiliation(s)
| | - Fabio Solano
- Institute for Cellular Medicine, San Jose, Costa Rica
| | - Eduardo Glenn
- Institute for Cellular Medicine, San Jose, Costa Rica
| | - Frank Morales
- Institute for Cellular Medicine, San Jose, Costa Rica
| | - Leonard Smith
- Institute for Cellular Medicine, San Jose, Costa Rica
| | | | - Neil H Riordan
- Medistem Laboratories Inc, Tempe, Arizona, USA
- 2027 E. Cedar Street Suite 102 Tempe, AZ 85281, USA
| |
Collapse
|
18
|
Song JH, Bellail A, Tse MCL, Yong VW, Hao C. Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. J Neurosci 2006; 26:3299-308. [PMID: 16554480 PMCID: PMC6674086 DOI: 10.1523/jneurosci.5572-05.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human astrocytes express Fas yet are resistant to Fas-induced apoptosis. Here, we report that calcium/calmodulin-dependent protein kinase II (CaMKII) is constitutively activated in human astrocytes and protects the cells from apoptotic stimulation by Fas agonist. Once stimulated, Fas recruits Fas-associated death domain and caspase-8 for the assembly of the death-inducing signaling complex (DISC); however, caspase-8 cleavage is inhibited in the DISC. Inhibition of CaMKII kinase activity inhibits the expression of phosphoprotein enriched astrocytes-15 kDa/phosphoprotein enriched in diabetes (PEA-15/PED) and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP), thus releasing their inhibition of caspase-8 cleavage. Inhibition of PEA-15/PED or c-FLIP by small interfering RNA sensitizes human astrocytes to Fas-induced apoptosis. In contrast, inhibition of CaMKII, PEA-15, or c-FLIP does not affect the sensitivity of human astrocytes to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL death receptors (DR4, DR5) are weakly expressed at mRNA, protein, and cell surface levels and thus fail to mediate the assembly of the DISC in human astrocytes. Overexpression of DR5 restores TRAIL signaling pathways and sensitizes the human astrocytes to TRAIL-induced apoptosis if CaMKII kinase activity or expression of PEA-15 and c-FLIP is inhibited; the results suggest that CaMKII-mediated pathways prevent TRAIL-induced apoptosis in human astrocytes under conditions in which TRAIL death receptors are upregulated. This study has therefore identified the molecular mechanisms that protect normal human astrocytes from apoptosis induced by Fas ligand and TRAIL.
Collapse
|
19
|
Poulet R, Gentile MT, Vecchione C, Distaso M, Aretini A, Fratta L, Russo G, Echart C, Maffei A, De Simoni MG, Lembo G. Acute hypertension induces oxidative stress in brain tissues. J Cereb Blood Flow Metab 2006; 26:253-62. [PMID: 16079792 DOI: 10.1038/sj.jcbfm.9600188] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial hypertension is not only a major risk factor for cerebrovascular accidents, such as stroke and cerebral hemorrhage, but is also associated to milder forms of brain injury. One of the main causes of neurodegeneration is the increase in reactive oxygen species (ROS) that is also a common trait of hypertensive conditions, thus suggesting that such a mechanism could play a role even in the onset of hypertension-evoked brain injury. To investigate this issue, we have explored the effect of acute-induced hypertensive conditions on cerebral oxidative stress. To this aim, we have developed a mouse model of transverse aortic coarctation (TAC) between the two carotid arteries, which imposes acutely on the right brain hemisphere a dramatic increase in blood pressure. Our results show that hypertension acutely induced by aortic coarctation induces a breaking of the blood-brain barrier (BBB) and reactive astrocytosis through hyperperfusion, and evokes trigger factors of neurodegeneration such as oxidative stress and inflammation, similar to that observed in cerebral hypoperfusion. Moreover, the derived brain injury is mainly localized in selected brain areas controlling cognitive functions, such as the cortex and hippocampus, and could be a consequence of a defect in the BBB permeability. It is noteworthy to emphasize that, even if these latter events are not enough to produce ischemic/hemorrhagic injury, they are able to alter mechanisms fundamental for maintaining normal brain function, such as protein synthesis, which has a prominent role for memory formation and cortical plasticity.
Collapse
Affiliation(s)
- Roberta Poulet
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sharif A, Canton B, Junier MP, Chneiweiss H. PEA-15 Modulates TNFα Intracellular Signaling in Astrocytes. Ann N Y Acad Sci 2006; 1010:43-50. [PMID: 15033692 DOI: 10.1196/annals.1299.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PEA-15 is a small protein (15 kDa) that was first identified as an abundant phosphoprotein in brain astrocytes and subsequently shown to be widely expressed in different tissues and highly conserved among mammals. It is composed of an N-terminal death effector domain (DED) and a C-terminal tail of irregular structure. PEA-15 is regulated by multiple calcium-dependent phosphorylation pathways. PEA-15 is ideally positioned to play a major role in signal integration. Accordingly, it has been demonstrated that PEA-15 diverts astrocytes from TNFalpha-triggered apoptosis and regulates the actions of the ERK MAP kinase cascade by binding to ERK and altering its subcellular localization. Expression of PEA-15 directs TNFalpha outcomes toward survival, whereas its absence allows the development of the cytokine-induced cell death.
Collapse
Affiliation(s)
- Ariane Sharif
- INSERM U114, Department de Neuropharmacologie, Collège de France, 75231 Paris Cedex 05, France
| | | | | | | |
Collapse
|
21
|
Zurich MG, Lengacher S, Braissant O, Monnet-Tschudi F, Pellerin L, Honegger P. Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience 2005; 134:771-82. [PMID: 15994020 DOI: 10.1016/j.neuroscience.2005.04.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Revised: 02/21/2005] [Accepted: 04/13/2005] [Indexed: 11/26/2022]
Abstract
Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.
Collapse
Affiliation(s)
- M-G Zurich
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Kinsner A, Pilotto V, Deininger S, Brown GC, Coecke S, Hartung T, Bal-Price A. Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J Neurochem 2005; 95:1132-43. [PMID: 16144539 DOI: 10.1111/j.1471-4159.2005.03422.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study we investigated the mechanisms of neuronal cell death induced by lipoteichoic acid (LTA) and muramyl dipeptide (MDP) from Gram-positive bacterial cell walls using primary cultures of rat cerebellum granule cells (CGCs) and rat cortical glial cells (astrocytes and microglia). LTA (+/- MDP) from Staphylococcus aureus induced a strong inflammatory response of both types of glial cells (release of interleukin-1beta, tumour necrosis factor-alpha and nitric oxide). The death of CGCs was caused by activated glia because in the absence of glia (treatment with 7.5 microm cytosine-d-arabinoside to inhibit non-neuronal cell proliferation) LTA + MDP did not cause significant cell death (less than 20%). In addition, staining with rhodamine-labelled LTA confirmed that LTA was bound only to microglia and astrocytes (not neurones). Neuronal cell death induced by LTA (+/- MDP)-activated glia was partially blocked by an inducible nitric oxide synthase inhibitor (1400 W; 100 microm), and completely blocked by a superoxide dismutase mimetic [manganese (III) tetrakis (4-benzoic acid)porphyrin chloride; 50 microm] and a peroxynitrite scavenger [5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron (III); 100 microm] suggesting that nitric oxide and peroxynitrite contributed to LTA-induced cell death. Moreover, neuronal cell death was inhibited by selective inhibitors of caspase-3 (z-DEVD-fmk; 50 microm) and caspase-8 (z-Ile-Glu(O-Me)-Thr-Asp(O-Me) fluoromethyl ketone; 50 microm) indicating that they were involved in LTA-induced neuronal cell death.
Collapse
Affiliation(s)
- Agnieszka Kinsner
- European Centre for the Validation of Alternative Methods (ECVAM), European Commission Joint Research Centre, Ispra, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Heffron DS, Mandell JW. Opposing roles of ERK and p38 MAP kinases in FGF2-induced astroglial process extension. Mol Cell Neurosci 2005; 28:779-90. [PMID: 15797724 DOI: 10.1016/j.mcn.2004.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 11/23/2004] [Accepted: 12/21/2004] [Indexed: 11/28/2022] Open
Abstract
The stellate processes of astroglial cells undergo extensive remodeling in response to neural injury. Little is known about intracellular signaling mechanisms controlling process extension. We tested roles for the ERK and p38 MAP kinase pathways in a simplified culture model. FGF2-induced process extension was preceded by a strong and transient phosphorylation of ERK, and a modest activation of p38 MAP kinase, which exhibited significant basal activity. Phosphorylated ERK was found predominantly in the cytoplasm, whereas activated p38 MAP kinase was nuclear. Process extension was completely blocked by the specific MEK inhibitor U0126. Conversely, inhibition of the p38 MAP kinase pathway with SB202190 stimulated spontaneous process growth and greatly potentiated FGF2-induced process extension. The p38 inhibitor effect was reproduced with an adenovirus expressing dominant-negative p38 MAP kinase. Selective pharmacological blockade of MAP kinase pathways may enable modulation of the astroglial response to injury so as to promote neural regeneration.
Collapse
Affiliation(s)
- Daniel S Heffron
- Department of Pathology, University of Virginia Health System, PO Box 800904, Charlottesville, VA 22908, USA
| | | |
Collapse
|
24
|
Vallés SL, Blanco AM, Pascual M, Guerri C. Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 2005; 14:365-71. [PMID: 15605983 PMCID: PMC8095743 DOI: 10.1111/j.1750-3639.2004.tb00079.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammatory processes and cytokine expression have been implicated in the pathogenesis of several neurodegenerative disorders. Chronic ethanol intake induces brain damage, although the mechanisms involved in this effect are not well understood. We tested the hypothesis that activation of glial cells by ethanol would induce stimulation of signaling pathways and inflammatory mediators in brain, and would cause neurotoxicity. We used cerebral cortex from control and chronic ethanol-fed rats, which received ethanol-liquid diet for 5 months and cultured of astrocytes exposed to 75 mM ethanol for 7 days. Our results demonstrate that chronic ethanol treatment up-regulates iNOS, COX-2 and IL-1beta in rat cerebral cortex and in cultured astrocytes. Under both experimental conditions, up-regulation of these inflammatory mediators and IL-1RI concomitantly occurs with the stimulation of IRAK and MAP kinases, including ERK1/2, p-38 and JNK, which trigger the downstream activation of oxidant-sensitive transcription factors NF-KB and AP-1. These effects were associated with an increased in both caspase-3 and apoptosis in ethanol-fed rats and in astrocytes exposed to ethanol. In conclusion, chronic ethanol treatment stimulates glial cells, up-regulating the production and the expression of inflammatory mediators in the brain, and activating signalling pathways and transcription factors involved in inflammatory damage and cell death.
Collapse
Affiliation(s)
- Soraya L. Vallés
- Instituto de Investigaciones Citológicas (FVIB), Valencia, Spain
| | - Ana M. Blanco
- Instituto de Investigaciones Citológicas (FVIB), Valencia, Spain
| | - María Pascual
- Instituto de Investigaciones Citológicas (FVIB), Valencia, Spain
| | - Consuelo Guerri
- Instituto de Investigaciones Citológicas (FVIB), Valencia, Spain
| |
Collapse
|
25
|
Hanson DR, Gottesman II. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC MEDICAL GENETICS 2005; 6:7. [PMID: 15707482 PMCID: PMC554096 DOI: 10.1186/1471-2350-6-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 02/11/2005] [Indexed: 12/13/2022]
Abstract
BACKGROUND Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons.
Collapse
Affiliation(s)
- Daniel R Hanson
- Department of Psychiatry, VA Medical Center (116A), One Veterans Drive, Minneapolis, MN, 55417 and Departments of Psychiatry & Psychology, University of Minnesota, USA
| | - Irving I Gottesman
- Departments of Psychiatry & Psychology, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|
26
|
Maurin T, Saillan-Barreau C, Cousin B, Casteilla L, Doglio A, Pénicaud L. Tumor necrosis factor-alpha stimulates HIV-1 production in primary culture of human adipocytes. Exp Cell Res 2005; 304:544-51. [PMID: 15748898 DOI: 10.1016/j.yexcr.2004.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 11/15/2004] [Accepted: 12/07/2004] [Indexed: 10/26/2022]
Abstract
Adipose tissue of HIV-1-infected patients shows severe abnormalities such as profound changes in adipose tissue morphology and metabolism. Does HIV-1 infect the adipose cell remains an unsolved question since previous attempts showed that HIV-1 poorly infects human adipocytes in vitro. In the present study, preadipose cells from human subcutaneous fat pads were differentiated in vitro, checked for HIV receptor expression, then infected with R5 and X4 HIV1 strains. Using a sensitive RT-PCR assay, we showed that HIV-1 tat and rev early viral transcripts were expressed in infected adipocytes giving a clear evidence of HIV-1 transcriptional activity in these cells. However, at the same time, no sign of productive infection was demonstrated since infected adipocytes did not efficiently produce Gag p24 antigen. We hypothesized that such a limitation could result from the lack of activation of adipocyte-signaling pathways able to stimulate HIV-1 gene expression in quiescent adipocytes. Indeed, a significant increase in Gag p24 production was observed after stimulation of infected adipocytes with pro-inflammatory cytokines, such as tumor necrosis factor alpha or interleukin-1-beta. Taken together, these results demonstrate that HIV-1 does infect human adipose cells in vitro and suggest that the initial limited infection can be overcome upon pro-inflammatory cytokine treatment.
Collapse
Affiliation(s)
- T Maurin
- U526-Laboratoire de Virologie, Faculté de Médecine, Av. de Valombrose, 06107- NICE cedex 2, France
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Developing neurons are programmed to die by an apoptotic pathway unless they are rescued by extrinsic growth factors that generate an anti-apoptotic response. By contrast, adult neurons need to survive for the lifetime of the organism, and their premature death can cause irreversible functional deficits. The default apoptotic pathway is shut down when development is complete, and consequently growth factors are no longer required to prevent death. To protect against accidental apoptotic cell death, anti-apoptotic mechanisms are activated in mature neurons in response to stress. Loss or reduced activity of these intrinsic anti-apoptotic 'brakes' might contribute to or accelerate neurodegeneration, whereas their activation might rescue neurons from injury or genetic abnormalities.
Collapse
Affiliation(s)
- Susanna C Benn
- Day Neuromuscular Research Lab, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA
| | | |
Collapse
|
28
|
Nishie M, Mori F, Ogawa M, Sannohe S, Tanno K, Kurahashi K, Kuroda N, Wakabayashi K. Multinucleated astrocytes in old demyelinated plaques in a patient with multiple sclerosis. Neuropathology 2004; 24:248-53. [PMID: 15484704 DOI: 10.1111/j.1440-1789.2004.00548.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A 51-year-old woman with MS of 26 years duration is reported. The patient's MS history began at the age of 25 years with an initial relapsing-remitting course, followed by slow progression without distinct relapses. She became bed-ridden at the age of 40 years. A post-mortem examination revealed numerous demyelinated plaques that exhibited fibrillary gliosis with Rosenthal fibers, but without lymphocytic cuffing or foamy macrophages. Activated microglia were found mainly in the marginal portion of the plaques. These plaques were consistent with so-called 'slowly expanding plaques'. Interestingly, multinucleated astrocytes were observed within the plaques, being more numerous in the area where microglial infiltration had occurred. These findings suggest that mild persistent inflammatory processes are present even in old plaques and that certain inflammatory stimuli cause multinucleation of astrocytes. This might explain the gradual deterioration without definite relapses observed in the late stage of MS.
Collapse
Affiliation(s)
- Makoto Nishie
- Department of Neuropathology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Choi C, Benveniste EN. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. ACTA ACUST UNITED AC 2004; 44:65-81. [PMID: 14739003 DOI: 10.1016/j.brainresrev.2003.08.007] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apoptosis, also known as programmed cell death, is the major type of cell death involved in normal development, regeneration, proliferation and pathologic degeneration in the central nervous system (CNS). The apoptotic process can be divided further into two pathways depending on the involvement of mitochondria and related biochemical cascades. The internal pathway of apoptosis is initiated by a variety of cytotoxic stimuli and mediated by the release of cytochrome c and subsequent activation of downstream caspases. The external pathway is mainly triggered by ligation of death receptors such as Fas, tumor necrosis factor (TNF)-related apoptosis inducing ligand-R1 (TRAIL-R1), TRAIL-R2 and TNFRp55, and mediated by direct activation of upstream caspases. The Fas-FasL system has been known as a prototypic inducer of extrinsic cell death responsible for cell-mediated cytotoxicity, peripheral immune regulation, immune privilege and "counterattack" of malignant tumor cells against the host immune system. Fas and FasL are expressed in the normal CNS, and expression increases in inflamed and degenerated brains. Like other specialized tissues such as the eye and testis, the Fas-FasL system is thought to be involved in immune suppressed status in the CNS. Expression of Fas and FasL is significantly elevated in a variety of the neurologic disorders, suggesting the possibility that this system may play roles in degenerative and inflammatory responses in the CNS. Therefore, the FasL-Fas system should be considered as a double-edged sword in the CNS: maintaining the immune suppressed status in normal brain and inducing neuronal cell death and inflammation in a variety of neurologic disorders.
Collapse
Affiliation(s)
- Chulhee Choi
- The Center for Cell Signaling Research and Division of Molecular Life Sciences, Ewha Womans University, 11-1 Daehyun-dong, Sudaemun-gu, Seoul 120-750, South Korea.
| | | |
Collapse
|
30
|
Dunn IF, Black PM. The neurosurgeon as local oncologist: cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery 2003; 52:1411-22; discussion 1422-4. [PMID: 12762886 DOI: 10.1227/01.neu.0000064808.27512.cf] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Accepted: 02/12/2003] [Indexed: 11/19/2022] Open
Abstract
Malignant gliomas are among the most challenging of all cancers to treat successfully, being characterized not only by aggressive proliferation and expansion but also by inexorable tumor invasion into distant brain tissue. Although considerable progress has been made in the treatment of these tumors with combinations of surgery, radiotherapy, and chemotherapy, these efforts have not been curative. Neurosurgeons as oncologists have increasingly turned their attention to therapies on a molecular scale. Of particular interest to neurosurgeons is the ability to deliver therapy locally to the tumor site or to take advantage of existing immunological mediators, enhancing drug concentrations or therapeutic cell numbers while bypassing the blood-brain barrier to maximize efficacy and minimize systemic toxicity. Exciting local-therapy approaches have been proposed for these devastating tumors. In this review, we discuss the potential applications of bioreactors, neural stem cells, immunotherapies, biodegradable polymers, and convection-enhanced drug delivery in the treatment of malignant gliomas. These approaches are at different stages of readiness for application in clinical neurosurgery, and their eventual effects on the morbidity and mortality rates of gliomas among human patients are difficult to ascertain from successes in animal models. Nevertheless, we are entering an exciting era of "nanoneurosurgery," in which molecular therapies such as those discussed here may routinely complement existing surgical, radiological, and chemotherapeutic approaches to the treatment of neuro-oncological disease. The potential to deploy any of a number of eloquently devised molecular therapies may provide renewed hope for neurosurgeons treating malignant gliomas.
Collapse
Affiliation(s)
- Ian F Dunn
- Brain Tumor Laboratories and Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|