1
|
Donison N, Palik J, Volkening K, Strong MJ. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: implications for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:56. [PMID: 40349043 PMCID: PMC12065185 DOI: 10.1186/s13024-025-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Tau protein plays a critical role in the physiological functioning of the central nervous system by providing structural integrity to the cytoskeletal architecture of neurons and glia through microtubule assembly and stabilization. Under certain pathological conditions, tau is aberrantly phosphorylated and aggregates into neurotoxic fibrillary tangles. The aggregation and cell-to-cell propagation of pathological tau leads to the progressive deterioration of the nervous system. The clinical entity of traumatic brain injury (TBI) ranges from mild to severe and can promote tau aggregation by inducing cellular mechanisms and signalling pathways that increase tau phosphorylation and aggregation. Chronic traumatic encephalopathy (CTE), which is a consequence of repetitive TBI, is a unique tauopathy characterized by pathological tau aggregates located at the depths of the sulci and surrounding blood vessels. The mechanisms leading to increased tau phosphorylation and aggregation in CTE remain to be fully defined but are likely the result of the primary and secondary injury sequelae associated with TBI. The primary injury includes physical and mechanical damage resulting from the head impact and accompanying forces that cause blood-brain barrier disruption and axonal shearing, which primes the central nervous system to be more vulnerable to the subsequent secondary injury mechanisms. A complex interplay of neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction activate kinase and cell death pathways, increasing tau phosphorylation, aggregation and neurodegeneration. In this review, we explore the most recent insights into the mechanisms of tau phosphorylation associated with TBI and propose how multiple cellular pathways converge on tau phosphorylation, which may contribute to CTE progression.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline Palik
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada.
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
2
|
Zedde M, Piazza F, Pascarella R. Traumatic Brain Injury and Chronic Traumatic Encephalopathy: Not Only Trigger for Neurodegeneration but Also for Cerebral Amyloid Angiopathy? Biomedicines 2025; 13:881. [PMID: 40299513 PMCID: PMC12024568 DOI: 10.3390/biomedicines13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Traumatic brain injury (TBI) has been linked to the development of neurodegenerative diseases, particularly Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). This review critically assesses the relationship between TBI and cerebral amyloid angiopathy (CAA), highlighting the complexities of diagnosing CAA in the context of prior head trauma. While TBI has been shown to facilitate the accumulation of amyloid plaques and tau pathology, the interplay between neurodegenerative processes and vascular contributions remains underexplored. Epidemiological studies indicate that TBI increases the risk of various dementias, not solely AD, emphasizing the need for a comprehensive understanding of TBI-related neurodegeneration as a polypathological condition. This review further delineates the mechanisms by which TBI can lead to CAA, particularly focusing on the vascular changes that occur post-injury. It discusses the challenges associated with diagnosing CAA after TBI, particularly due to the overlapping symptoms and pathologies that complicate clinical evaluations. Notably, this review includes a clinical case that exemplifies the diagnostic challenges posed by TBI in patients with subsequent cognitive decline and vascular pathology. By synthesizing current research on TBI, CAA, and associated neurodegenerative conditions, this review aims to foster a more nuanced understanding of how these conditions interact and contribute to long-term cognitive outcomes. The findings underscore the importance of developing standardized diagnostic criteria and imaging techniques to better elucidate the relationship between TBI and vascular pathology, which could enhance clinical interventions and inform therapeutic strategies for affected individuals.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- iCAβ International Network
| | - Rosario Pascarella
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- SINdem Study Group “The Inflammatory Cerebral Amyloid Angiopathy and Alzheimer’s Disease Biomarkers”
| |
Collapse
|
3
|
Dybing KM, Vetter CJ, Dempsey DA, Chaudhuri S, Saykin AJ, Risacher SL. Traumatic Brain Injury and Alzheimer's Disease Biomarkers: A Systematic Review of Findings from Amyloid and Tau Positron Emission Tomography. J Neurotrauma 2025; 42:333-348. [PMID: 39639808 PMCID: PMC11971548 DOI: 10.1089/neu.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Traumatic brain injury (TBI) has been discussed as a risk factor for Alzheimer's disease (AD) due to its association with AD risk and earlier cognitive symptom onset. However, the mechanisms behind this relationship are unclear. Some studies have suggested TBI may increase pathological protein deposition in an AD-like pattern; others have failed to find such associations. This review covers literature that uses positron emission tomography (PET) of β-amyloid (Aβ) and/or tau to examine individuals with a history of TBI who are at increased risk for AD due to age. A comprehensive literature search was conducted on January 9, 2023, and 26 resulting citations met inclusion criteria. Common methodological concerns included small samples, limited clinical detail about participants' TBI, recall bias due to reliance on self-reported TBI, and an inability to establish causation. For both Aβ and tau, results were widespread but inconsistent. The regions that showed the most compelling evidence for increased Aβ deposition were the cingulate gyrus and cuneus/precuneus. Evidence for elevated tau was strongest in the medial temporal lobe, entorhinal cortex, precuneus, and frontal, temporal, parietal, and occipital lobes. However, conflicting findings across most regions in both Aβ- and tau-PET studies indicate the critical need for future work in expanded samples and with greater clinical detail to offer a clearer picture of the relationship between TBI and protein deposition in older individuals at risk for AD.
Collapse
Affiliation(s)
- Kaitlyn M. Dybing
- Address correspondence to: Kaitlyn M. Dybing, BS, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202, USA,
| | - Cecelia J. Vetter
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, USA
| | | | | | - Andrew J. Saykin
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon L. Risacher
- Address correspondence to: Shannon L. Risacher, PhD, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202, USA,
| |
Collapse
|
4
|
Hicks AJ, Plourde J, Selmanovic E, de Souza NL, Blennow K, Zetterberg H, Dams-O'Connor K. Trajectories of blood-based protein biomarkers in chronic traumatic brain injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.16.25322303. [PMID: 40034765 PMCID: PMC11875239 DOI: 10.1101/2025.02.16.25322303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Blood-based protein biomarkers may provide important insights into the long-term neuropathology of traumatic brain injury (TBI). This is urgently required to identify mechanistic processes underlying post-traumatic neurodegeneration (PTND); a progressive post-recovery clinical decline experienced by a portion of TBI survivors. The aim of this study was to examine change over time in protein levels in a chronic TBI cohort. We selected six markers (Aβ 42 /Aβ 40 , GFAP, NfL, BD-tau, p-tau231, and p-tau181) with known importance in acute TBI and/or other neurodegenerative conditions. We used a longitudinal design with two time points approximately 3.5 years apart on average (SD 1.34). Proteins were measured in plasma using the ultrasensitive Single molecule array technology for 63 participants with mild to severe chronic TBI (sustained ≥ 1 year ago; M 28 years; SD 16.3 since their first blow to the head) from the Late Effects of TBI study (48% female; current age M 52 years; SD 13.4). Multivariate linear mixed effect models with adjustments for multiple comparisons were performed to examine trajectories in proteins over time with age and age squared as covariates. A series of sensitivity analyses were conducted to account for outliers and to explore effects of key covariates: sex, APOE ε4 carrier status, medical comorbidities, age at first blow to the head, time since first blow to the head, and injury severity. Over an average of 3.5 years, there were significant reductions in plasma Aβ 42 /Aβ 40 (β = -0.004, SE = 0.001, t = -3.75, q = .001) and significant increases in plasma GFAP (β = 12.96, SE = 4.41, t = 2.94, q = .01). There were no significant changes in NFL, BD-tau, p-tau231, or p-tau181. Both plasma Aβ 42 /Aβ 40 and GFAP have been associated with brain amyloidosis, suggesting a role for Aβ mis-metabolism and aggregation in the long-term neuropathological consequences of TBI. These findings are hypothesis generating for future studies exploring the diverse biological mechanisms of PTND.
Collapse
|
5
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial Autophagic Dysregulation in Traumatic Brain Injury: Molecular Insights and Therapeutic Avenues. ACS Chem Neurosci 2025; 16:543-562. [PMID: 39920904 DOI: 10.1021/acschemneuro.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted condition that can result in cognitive and behavioral impairments. One aspect of TBI that has received increasing attention in recent years is the role of microglia, the brain-resident immune cells, in the pathophysiology of the injury. Specifically, increasing evidence suggests that dysfunction in microglial autophagy, the process by which cells degrade and recycle their own damaged components, may contribute to the development and progression of TBI-related impairments. Here, we unravel the pathways by which microglia autophagic dysregulation predisposes the brain to secondary damage and neurological deficits following TBI. An overview of the role of autophagic dysregulation in perpetuation and worsening of the inflammatory response, neuroinflammation, and neuronal cell death in TBI follows. Further, we have evaluated several signaling pathways and processes that contribute to autophagy dysfunction-mediated inflammation, neurodegeneration, and poor outcome in TBI. Additionally, a discussion on the small molecule therapeutics employed to modulate these pathways and mechanisms to treat TBI have been presented. However, additional research is required to fully understand the processes behind these underlying pathways and uncover potential therapeutic targets for restoring microglial autophagic failure in TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, California 92037, United States
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University, Sakaka 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research, New Delhi 201002, India
| | | |
Collapse
|
6
|
Graham NS, Blissitt G, Zimmerman K, Orton L, Friedland D, Coady E, Laban R, Veleva E, Heslegrave AJ, Zetterberg H, Schofield S, Fear NT, Boos CJ, Bull AMJ, Bennett A, Sharp DJ. Poor long-term outcomes and abnormal neurodegeneration biomarkers after military traumatic brain injury: the ADVANCE study. J Neurol Neurosurg Psychiatry 2025; 96:105-113. [PMID: 39393903 PMCID: PMC11877046 DOI: 10.1136/jnnp-2024-333777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is common in military campaigns and is a risk factor for dementia. ArmeD SerVices TrAuma and RehabilitatioN OutComE-TBI (ADVANCE-TBI) aims to ascertain neurological outcomes in UK military personnel with major battlefield trauma, leveraging advances in quantification of axonal breakdown markers like neurofilament light (NfL), and astroglial marker glial fibrillar acidic protein (GFAP) in blood. We aimed to describe the causes, prevalence and consequences of TBI, and its fluid biomarker associations. METHODS TBI history was ascertained in 1145 servicemen and veterans, of whom 579 had been exposed to major trauma. Functional and mental health assessments were administered, and blood samples were collected approximately 8 years postinjury, with plasma biomarkers quantified (n=1125) for NfL, GFAP, total tau, phospho-tau181, amyloid-β 42 and 40. Outcomes were related to neurotrauma exposure. RESULTS TBI was present in 16.9% (n=98) of exposed participants, with 46.9% classified as mild-probable and 53.1% classified as moderate to severe. Depression (β=1.65, 95% CI (1.33 to 2.03)), anxiety (β=1.65 (1.34 to 2.03)) and post-traumatic stress disorder (β=1.30 (1.19 to 1.41)) symptoms were more common after TBI, alongside poorer 6 minute walk distance (β=0.79 (0.74 to 0.84)) and quality of life (β=1.27 (1.19 to 1.36), all p<0.001). Plasma GFAP was 11% (95% CI 2 to 21) higher post-TBI (p=0.013), with greater concentrations in moderate-to-severe injuries (47% higher than mild-probable (95% CI 20% to 82%, p<0.001). Unemployment was more common among those with elevated GFAP levels post-TBI, showing a 1.14-fold increase (95% CI 1.03 to 1.27, p<0.001) for every doubling in GFAP concentration. CONCLUSIONS TBI affected nearly a fifth of trauma-exposed personnel, related to worse mental health, motor and functional outcomes, as well as elevated plasma GFAP levels 8 years post-injury. This was absent after extracranial trauma, and showed a dose-response relationship with the severity of the injury.
Collapse
Affiliation(s)
- Neil Sn Graham
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, London, UK
| | - Grace Blissitt
- Department of Brain Sciences, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - Karl Zimmerman
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, London, UK
| | - Lydia Orton
- Department of Brain Sciences, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - Daniel Friedland
- Department of Brain Sciences, Imperial College London, London, UK
| | - Emma Coady
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Rhiannon Laban
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Elena Veleva
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Institute of Neuroscience and Physiology, Goteborgs Universitet, Goteborg, Sweden
| | - Susie Schofield
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicola T Fear
- King's Centre for Military Health Research, King's College London, London, UK
- Academic Department for Military Mental Health, King's College London, London, UK
| | - Christopher J Boos
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
- Faculty of Health & Social Sciences, Bournemouth University, Poole, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| | - Alexander Bennett
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research & Technology, UK Dementia Research Institute, London, UK
| |
Collapse
|
7
|
de Bruin H, Groot C, Kamps S, Vijverberg EGB, Steward A, Dehsarvi A, Pijnenburg YAL, Ossenkoppele R, Franzmeier N. Amyloid-β and tau deposition in traumatic brain injury: a study of Vietnam War veterans. Brain Commun 2025; 7:fcaf009. [PMID: 39845735 PMCID: PMC11752645 DOI: 10.1093/braincomms/fcaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Traumatic brain injury is widely viewed as a risk factor for dementia, but the biological mechanisms underlying this association are still unclear. In previous studies, traumatic brain injury has been associated with the hallmark pathologies of Alzheimer's disease, i.e. amyloid-β plaques and neurofibrillary tangles comprised of hyperphosphorylated tau. Depending on the type and location of trauma, traumatic brain injury can induce spatially heterogeneous brain lesions that may pre-dispose for the development of Alzheimer's disease pathology in aging. Therefore, we hypothesized that a history of traumatic brain injury may be related to spatially heterogeneous amyloid-β and tau pathology patterns that deviate from the stereotypical temporo-parietal patterns in Alzheimer's disease. To test this, we included 103 Vietnam War veterans of whom 65 had experienced traumatic brain injury (n = 40, 38.8% mild; n = 25, 24.3% moderate/severe). Most individuals had a history of 1 (n = 35, 53.8%) or 2 (n = 15, 23.1%) traumatic brain injury events. We included the group without a history of traumatic brain injury (n = 38, 36.9%) as controls. The majority was cognitively normal (n = 80, 77.7%), while a subset had mild cognitive impairment (n = 23, 22.3%). All participants underwent [18F]florbetapir/Amyvid amyloid-β PET and [18F]flortaucipir/Tauvid tau-PET 39.63 ± 18.39 years after their last traumatic brain injury event. We found no differences in global amyloid-β and tau-PET levels between groups, suggesting that a history of traumatic brain injury does not pre-dispose to accumulate amyloid-β or tau pathology in general. However, we found that traumatic brain injury was associated with altered spatial patterns of amyloid-β and tau, with relatively greater deposition in fronto-parietal brain regions. These regions are prone to damage in traumatic brain injury, while they are typically only affected in later stages of Alzheimer's disease. Moreover, in our traumatic brain injury groups, the association between amyloid-β and tau was reduced in Alzheimer-typical temporal regions but increased in frontal regions that are commonly associated with traumatic brain injury. Altogether, while acknowledging the relatively small sample size and generally low levels of Alzheimer's disease pathology in this sample, our findings suggest that traumatic brain injury induces spatial patterns of amyloid-β and tau that differ from patterns observed in typical Alzheimer's disease. Furthermore, traumatic brain injury may be associated with a de-coupling of amyloid-β and tau in regions vulnerable in Alzheimer's disease. These findings indicate that focal brain damage in early/mid-life may change neurodegenerative trajectories in late-life.
Collapse
Affiliation(s)
- Hannah de Bruin
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Colin Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Suzie Kamps
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Anna Steward
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund 221 00, Sweden
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
- The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg 413 45, Sweden
- Munich Cluster for Systems Neurology (SyNergy), University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| |
Collapse
|
8
|
Patil S, Subtirelu R, Teichner E, Kata R, Gerlach A, Ayubcha C, Alnemri A, Werner T, Alavi A, Newberg AB. CT, MRI, and PET Imaging in Patients with Traumatic Brain Injury. PET Clin 2025; 20:133-145. [PMID: 39547731 DOI: 10.1016/j.cpet.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Traumatic brain injury (TBI) is a major health concern in the United States and worldwide. Neuroimaging is a critical element in the clinical evaluation of TBIs, as computed tomography (CT) and MR imaging are commonly used to identify structural changes that may aid in treatment decision-making and long-term patient monitoring. This article reviews the utility of CT and MR imaging while focusing on the emerging applications of PET in TBI. Pertinent research findings in the molecular imaging of cerebral metabolism, tau and β-amyloid, neurotransmitters, and neuroinflammation are discussed.
Collapse
Affiliation(s)
- Shiv Patil
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Subtirelu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Teichner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rithvik Kata
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Gerlach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ahab Alnemri
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew B Newberg
- Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA; Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Mueller SG. Traumatic Brain Injury and Post-Traumatic Stress Disorder and Their Influence on Development and Pattern of Alzheimer's Disease Pathology in Later Life. J Alzheimers Dis 2024; 98:1427-1441. [PMID: 38552112 DOI: 10.3233/jad-231183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Background Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are potential risk factors for the development of dementia including Alzheimer's disease (AD) in later life. The findings of studies investigating this question are inconsistent though. Objective To investigate if these inconsistencies are caused by the existence of subgroups with different vulnerability for AD pathology and if these subgroups are characterized by atypical tau load/atrophy pattern. Methods The MRI and PET data of 89 subjects with or without previous TBI and/or PTSD from the DoD ADNI database were used to calculate an age-corrected gray matter tau mismatch metric (ageN-T mismatch-score and matrix) for each subject. This metric provides a measure to what degree regional tau accumulation drives regional gray matter atrophy (matrix) and can be used to calculate a summary score (score) reflecting the severity of AD pathology in an individual. Results The ageN-T mismatch summary score was positively correlated with whole brain beta-amyloid load and general cognitive function but not with PTSD or TBI severity. Hierarchical cluster analysis identified five different spatial patterns of tau-gray matter interactions. These clusters reflected the different stages of the typical AD tau progression pattern. None was exclusively associated with PTSD and/or TBI. Conclusions These findings suggest that a) although subsets of patients with PTSD and/or TBI develop AD-pathology, a history of TBI or PTSD alone or both is not associated with a significantly higher risk to develop AD pathology in later life. b) remote TBI or PTSD do not modify the typical AD pathology distribution pattern.
Collapse
Affiliation(s)
- Susanne G Mueller
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
10
|
Greutter L, Miller-Michlits Y, Klotz S, Reimann R, Nenning KH, Platzek S, Krause E, Kiesel B, Widhalm G, Langs G, Baumann B, Woehrer A. Frequent Alzheimer's disease neuropathological change in patients with glioblastoma. Neurooncol Adv 2024; 6:vdae118. [PMID: 39220249 PMCID: PMC11362848 DOI: 10.1093/noajnl/vdae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background The incidence of brain cancer and neurodegenerative diseases is increasing with a demographic shift towards aging populations. Biological parallels have been observed between glioblastoma and Alzheimer's disease (AD), which converge on accelerated brain aging. Here, we aimed to map the cooccurrence of AD neuropathological change (ADNC) in the tumor-adjacent cortex of patients with glioblastoma. Methods Immunohistochemical screening of AD markers amyloid beta (Abeta), amyloid precursor protein (APP), and hyperphosphorylated tau (pTau) was conducted in 420 tumor samples of 205 patients. For each cortex area, we quantified ADNC, neurons, tumor cells, and microglia. Results Fifty-two percent of patients (N = 106/205) showed ADNC (Abeta and pTau, Abeta or pTau) in the tumor-adjacent cortex, with histological patterns widely consistent with AD. ADNC was positively correlated with patient age and varied spatially according to Thal phases and Braak stages. It decreased with increasing tumor cell infiltration (P < .0001) and was independent of frequent expression of APP in neuronal cell bodies (N = 182/205) and in tumor necrosis-related axonal spheroids (N = 195/205; P = .46). Microglia response was most present in tumor cell infiltration plus ADNC, being further modulated by patient age and sex. ADNC did not impact patient survival in the present cohort. Conclusions Our findings highlight the frequent presence of ADNC in the glioblastoma vicinity, which was linked to patient age and tumor location. The cooccurrence of AD and glioblastoma seemed stochastic without clear spatial relation. ADNC did not impact patient survival in our cohort.
Collapse
Affiliation(s)
- Lisa Greutter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Yelyzaveta Miller-Michlits
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Sigrid Klotz
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Regina Reimann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Karl-Heinz Nenning
- Center for Biomedical Imaging & Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, New York City, New York, USA
| | - Stephan Platzek
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Elena Krause
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department for Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Litvinenko IV, Naumov KM, Lobzin VY, Emelin AY, Dynin PS, Kolmakova KA, Nikishin VO. [Traumatic brain injury as risk factor of Alzheimer's disease and possibilities of pathogenetic therapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:45-54. [PMID: 38261283 DOI: 10.17116/jnevro202412401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The article examines the potential role of brain mechanical damage as a trigger for the development of neurodegenerative changes. Attention is paid to dysfunction of the neurovascular unit, and disruption of the functional and compensatory capabilities of blood flow. The importance of microhemorrhages that occur in the acute period of injury and the formation of first focal and then diffuse neuroinflammation is emphasized. The importance of mitochondrial dysfunction was separately determined as a significant factor in increasing the risk of developing Alzheimer's disease (AD) in patients after traumatic brain injury (TBI). In TBI, there is a decrease in the expression of tight junction (TC) proteins of endothelial cells, such as occludin, claudin, JP, which leads to increased permeability of the blood-brain barrier. TBI, provoking endothelial dysfunction, contributes to the development of metabolic disorders of β-amyloid and tau protein, which in turn leads to worsening vascular damage, resulting in a vicious circle that can ultimately lead to the development of AD and dementia. Age-related changes in cerebral arteries, which impair perivascular transport of interstitial fluid, are currently considered as an important part of the «amyloid cascade», especially against the background of genetically mediated disorders of glial membranes associated with defective aquaporin-4 (encoded by the APOE4). Studies in animal models of TBI have revealed an increase in tau protein immunoreactivity and its phosphorylation, which correlates with the severity of injury. A comprehensive analysis of research results shows that the cascade of reactions triggered by TBI includes all the main elements of the pathogenesis of AD: disorders of energy metabolism, microcirculation and clearance of cerebral metabolic products. This leads to a disruption in the metabolism of amyloid protein and its accumulation in brain tissue with the subsequent development of tauopathy. Cerebrolysin, by modulating the permeability of the blood-brain barrier, blocks the development of neuroinflammation, reduces the accumulation of pathological forms of proteins and may be slow down the progression of neurodegeneration.
Collapse
Affiliation(s)
| | - K M Naumov
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - V Yu Lobzin
- Kirov Military Medical Academy, St. Petersburg, Russia
- Mechnikov North-Western State Medical University, St. Petersburg, Russia
| | - A Yu Emelin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - P S Dynin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - K A Kolmakova
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - V O Nikishin
- Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
12
|
Chen Q, Li L, Xu L, Yang B, Huang Y, Qiao D, Yue X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 2024; 138:207-227. [PMID: 37338605 DOI: 10.1007/s00414-023-03039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.
Collapse
Affiliation(s)
- Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingyue Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
13
|
Tong S, Xie L, Xie X, Xu J, You Y, Sun Y, Zhou S, Ma C, Jiang G, Ma F, Wang Z, Gao X, Chen J. Nano-Plumber Reshapes Glymphatic-Lymphatic System to Sustain Microenvironment Homeostasis and Improve Long-Term Prognosis after Traumatic Brain Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304284. [PMID: 37867233 PMCID: PMC10700187 DOI: 10.1002/advs.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Indexed: 10/24/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Long-term changes in the microenvironment of the brain contribute to the degeneration of neurological function following TBI. However, current research focuses primarily on short-term modulation during the early phases of TBI, not on the critical significance of long-term homeostasis in the brain microenvironment. Notably, dysfunction of the glymphatic-lymphatic system results in the accumulation of danger/damage-associated molecular patterns (DAMPs) in the brain, which is regarded as the leading cause of long-term microenvironmental disturbances following TBI. Here, a nanostructure, Nano-plumber, that co-encapsulates the microenvironment regulator pro-DHA and the lymphatic-specific growth factor VEGF-C is developed, allowing for a sustainable and orderly regulation of the microenvironment to promote long-term neurological recovery. Nano-plumber reverses the injury microenvironment by suppressing microglia and astrocytes activation and maintaining reduced activation via enhanced glymphatic-lymphatic drainage, and significantly improves the neurological function of rodents with TBI. This study demonstrates that glymphatic-lymphatic system reconstruction is essential for enhancing long-term prognosis following TBI, and that the Nano-plumber developed here may serve as a clinically translatable treatment option for TBI.
Collapse
Affiliation(s)
- Shiqiang Tong
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Laozhi Xie
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Xiaoying Xie
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Jianpei Xu
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Yang You
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Yinzhe Sun
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Songlei Zhou
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Chuchu Ma
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Gan Jiang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Fenfen Ma
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
- Department of PharmacyShanghai Pudong HospitalFudan UniversityShanghai201399China
| | - Zhihua Wang
- Department of EmergencyShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jun Chen
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
14
|
Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol 2023; 68:102955. [PMID: 37956598 PMCID: PMC10665957 DOI: 10.1016/j.redox.2023.102955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxygen metabolism abnormality plays a crucial role in the pathogenesis of Alzheimer's disease (AD) via several mechanisms, including hypoxia, oxidative stress, and mitochondrial dysfunction. Hypoxia condition usually results from living in a high-altitude habitat, cardiovascular and cerebrovascular diseases, and chronic obstructive sleep apnea. Chronic hypoxia has been identified as a significant risk factor for AD, showing an aggravation of various pathological components of AD, such as amyloid β-protein (Aβ) metabolism, tau phosphorylation, mitochondrial dysfunction, and neuroinflammation. It is known that hypoxia and excessive hyperoxia can both result in oxidative stress and mitochondrial dysfunction. Oxidative stress and mitochondrial dysfunction can increase Aβ and tau phosphorylation, and Aβ and tau proteins can lead to redox imbalance, thus forming a vicious cycle and exacerbating AD pathology. Hyperbaric oxygen therapy (HBOT) is a non-invasive intervention known for its capacity to significantly enhance cerebral oxygenation levels, which can significantly attenuate Aβ aggregation, tau phosphorylation, and neuroinflammation. However, further investigation is imperative to determine the optimal oxygen pressure, duration of exposure, and frequency of HBOT sessions. In this review, we explore the prospects of oxygen metabolism in AD, with the aim of enhancing our understanding of the underlying molecular mechanisms in AD. Current research aimed at attenuating abnormalities in oxygen metabolism holds promise for providing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
15
|
Dybing KM, Vetter CJ, Dempsey DA, Chaudhuri S, Saykin AJ, Risacher SL. Traumatic brain injury and Alzheimer's Disease biomarkers: A systematic review of findings from amyloid and tau positron emission tomography (PET). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.30.23298528. [PMID: 38077068 PMCID: PMC10705648 DOI: 10.1101/2023.11.30.23298528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Traumatic brain injury (TBI) has been discussed as a risk factor for Alzheimer's disease (AD) due to its association with dementia risk and earlier cognitive symptom onset. However, the mechanisms behind this relationship are unclear. Some studies have suggested TBI may increase pathological protein deposition in an AD-like pattern; others have failed to find such associations. This review covers literature that uses positron emission tomography (PET) of amyloid-β and/or tau to examine subjects with history of TBI who are at risk for AD due to advanced age. A comprehensive literature search was conducted on January 9, 2023, and 24 resulting citations met inclusion criteria. Common methodological concerns included small samples, limited clinical detail about subjects' TBI, recall bias due to reliance on self-reported TBI, and an inability to establish causation. For both amyloid and tau, results were widespread but inconsistent. The regions which showed the most compelling evidence for increased amyloid deposition were the cingulate gyrus, cuneus/precuneus, and parietal lobe. Evidence for increased tau was strongest in the medial temporal lobe, entorhinal cortex, precuneus, and frontal, temporal, parietal, and occipital lobes. However, conflicting findings across most regions of interest in both amyloid- and tau-PET studies indicate the critical need for future work in expanded samples and with greater clinical detail to offer a clearer picture of the relationship between TBI and protein deposition in older subjects at risk for AD.
Collapse
Affiliation(s)
- Kaitlyn M. Dybing
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cecelia J. Vetter
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Desarae A. Dempsey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
16
|
Smolen P, Dash PK, Redell JB. Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases. Front Neurosci 2023; 17:1259405. [PMID: 37795186 PMCID: PMC10546067 DOI: 10.3389/fnins.2023.1259405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer's or Parkinson's are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs - Alzheimer's disease, Parkinson's disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | | | |
Collapse
|
17
|
Sibilia F, Custer RM, Irimia A, Sepehrband F, Toga AW, Cabeen RP. Life After Mild Traumatic Brain Injury: Widespread Structural Brain Changes Associated With Psychological Distress Revealed With Multimodal Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:374-385. [PMID: 37519474 PMCID: PMC10382710 DOI: 10.1016/j.bpsgos.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/01/2023] Open
Abstract
Background Traumatic brain injury (TBI) can alter brain structure and lead to onset of persistent neuropsychological symptoms. This study investigates the relationship between brain injury and psychological distress after mild TBI using multimodal magnetic resonance imaging. Methods A total of 89 patients with mild TBI from the TRACK-TBI (Transforming Research and Clinical Knowledge in Traumatic Brain Injury) pilot study were included. Subscales of the Brief Symptoms Inventory 18 for depression, anxiety, and somatization were used as outcome measures of psychological distress approximately 6 months after the traumatic event. Glasgow Coma Scale scores were used to evaluate recovery. Magnetic resonance imaging data were acquired within 2 weeks after injury. Perivascular spaces (PVSs) were segmented using an enhanced PVS segmentation method, and the volume fraction was calculated for the whole brain and white matter regions. Cortical thickness and gray matter structures volumes were calculated in FreeSurfer; diffusion imaging indices and multifiber tracts were extracted using the Quantitative Imaging Toolkit. The analysis was performed considering age, sex, intracranial volume, educational attainment, and improvement level upon discharge as covariates. Results PVS fractions in the posterior cingulate, fusiform, and postcentral areas were found to be associated with somatization symptoms. Depression, anxiety, and somatization symptoms were associated with the cortical thickness of the frontal-opercularis and occipital pole, putamen and amygdala volumes, and corticospinal tract and superior thalamic radiation. Analyses were also performed on the two hemispheres separately to explore lateralization. Conclusions This study shows how PVS, cortical, and microstructural changes can predict the onset of depression, anxiety, and somatization symptoms in patients with mild TBI.
Collapse
Affiliation(s)
- Francesca Sibilia
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rachel M. Custer
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryan P. Cabeen
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
18
|
Graham NS, Cole JH, Bourke NJ, Schott JM, Sharp DJ. Distinct patterns of neurodegeneration after TBI and in Alzheimer's disease. Alzheimers Dement 2023; 19:3065-3077. [PMID: 36696255 PMCID: PMC10955776 DOI: 10.1002/alz.12934] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a dementia risk factor, with Alzheimer's disease (AD) more common following injury. Patterns of neurodegeneration produced by TBI can be compared to AD and aging using volumetric MRI. METHODS A total of 55 patients after moderate to severe TBI (median age 40), 45 with AD (median age 69), and 61 healthy volunteers underwent magnetic resonance imaging over 2 years. Atrophy patterns were compared. RESULTS AD patients had markedly lower baseline volumes. TBI was associated with increased white matter (WM) atrophy, particularly involving corticospinal tracts and callosum, whereas AD rates were increased across white and gray matter (GM). Subcortical WM loss was shared in AD/TBI, but deep WM atrophy was TBI-specific and cortical atrophy AD-specific. Post-TBI atrophy patterns were distinct from aging, which resembled AD. DISCUSSION Post-traumatic neurodegeneration 1.9-4.0 years (median) following moderate-severe TBI is distinct from aging/AD, predominantly involving central WM. This likely reflects distributions of axonal injury, a neurodegeneration trigger. HIGHLIGHTS We compared patterns of brain atrophy longitudinally after moderate to severe TBI in late-onset AD and healthy aging. Patients after TBI had abnormal brain atrophy involving the corpus callosum and other WM tracts, including corticospinal tracts, in a pattern that was specific and distinct from AD and aging. This pattern is reminiscent of axonal injury following TBI, and atrophy rates were predicted by the extent of axonal injury on diffusion tensor imaging, supporting a relationship between early axonal damage and chronic neurodegeneration.
Collapse
Affiliation(s)
- Neil S.N. Graham
- Department of Brain SciencesImperial College LondonLondonUK
- UK Dementia Research Institute Centre for Care Research and Technology at Imperial College LondonLondonUK
| | - James H. Cole
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
- Centre for Medical Image ComputingUCLLondonUK
| | - Niall J. Bourke
- Department of Brain SciencesImperial College LondonLondonUK
- UK Dementia Research Institute Centre for Care Research and Technology at Imperial College LondonLondonUK
| | | | - David J. Sharp
- Department of Brain SciencesImperial College LondonLondonUK
- UK Dementia Research Institute Centre for Care Research and Technology at Imperial College LondonLondonUK
- Centre for Injury StudiesImperial College LondonLondonUK
| |
Collapse
|
19
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 313] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
20
|
Gaggi NL, Ware JB, Dolui S, Brennan D, Torrellas J, Wang Z, Whyte J, Diaz-Arrastia R, Kim JJ. Temporal dynamics of cerebral blood flow during the first year after moderate-severe traumatic brain injury: A longitudinal perfusion MRI study. Neuroimage Clin 2023; 37:103344. [PMID: 36804686 PMCID: PMC9969322 DOI: 10.1016/j.nicl.2023.103344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with alterations in cerebral blood flow (CBF), which may underlie functional disability and precipitate TBI-induced neurodegeneration. Although it is known that chronic moderate-severe TBI (msTBI) causes decreases in CBF, the temporal dynamics during the early chronic phase of TBI remain unknown. Using arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI), we examined longitudinal CBF changes in 29 patients with msTBI at 3, 6, and 12 months post-injury in comparison to 35 demographically-matched healthy controls (HC). We investigated the difference between the two groups and the within-subject time effect in the TBI patients using whole-brain voxel-wise analysis. Mean CBF in gray matter (GM) was lower in the TBI group compared to HC at 6 and 12 months post-injury. Within the TBI group, we identified widespread regional decreases in CBF from 3 to 6 months post-injury. In contrast, there were no regions with decreasing CBF from 6 to 12 months post-injury, indicating stabilization of hypoperfusion. There was instead a small area of increase in CBF observed in the right precuneus. These CBF changes were not accompanied by cortical atrophy. The change in CBF was correlated with change in executive function from 3 to 6 months post-injury in TBI patients, suggesting functional relevance of CBF measures. Understanding the time course of TBI-induced hypoperfusion and its relationship with cognitive improvement could provide an optimal treatment window to benefit long-term outcome.
Collapse
Affiliation(s)
- Naomi L Gaggi
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Jeffrey B Ware
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Sudipto Dolui
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Daniel Brennan
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Julia Torrellas
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States.
| | - Ze Wang
- University of Maryland School of Medicine, 655 W Baltimore St. S, Baltimore, MD 21201, United States.
| | - John Whyte
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, United States.
| | - Ramon Diaz-Arrastia
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Junghoon J Kim
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| |
Collapse
|
21
|
Marcolini S, Rojczyk P, Seitz-Holland J, Koerte IK, Alosco ML, Bouix S. Posttraumatic Stress and Traumatic Brain Injury: Cognition, Behavior, and Neuroimaging Markers in Vietnam Veterans. J Alzheimers Dis 2023; 95:1427-1448. [PMID: 37694363 PMCID: PMC10578246 DOI: 10.3233/jad-221304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are common in Veterans and linked to behavioral disturbances, increased risk of cognitive decline, and Alzheimer's disease. OBJECTIVE We studied the synergistic effects of PTSD and TBI on behavioral, cognitive, and neuroimaging measures in Vietnam war Veterans. METHODS Data were acquired at baseline and after about one-year from male Veterans categorized into: PTSD, TBI, PTSD+TBI, and Veteran controls without PTSD or TBI. We applied manual tractography to examine white matter microstructure of three fiber tracts: uncinate fasciculus (N = 91), cingulum (N = 87), and inferior longitudinal fasciculus (N = 95). ANCOVAs were used to compare Veterans' baseline behavioral and cognitive functioning (N = 285), white matter microstructure, amyloid-β (N = 230), and tau PET (N = 120). Additional ANCOVAs examined scores' differences from baseline to follow-up. RESULTS Veterans with PTSD and PTSD+TBI, but not Veterans with TBI only, exhibited poorer behavioral and cognitive functioning at baseline than controls. The groups did not differ in baseline white matter, amyloid-β, or tau, nor in behavioral and cognitive functioning, and tau accumulation change. Progression of white matter abnormalities of the uncinate fasciculus in Veterans with PTSD compared to controls was observed; analyses in TBI and PTSD+TBI were not run due to insufficient sample size. CONCLUSIONS PTSD and PTSD+TBI negatively affect behavioral and cognitive functioning, while TBI does not contribute independently. Whether progressive decline in uncinate fasciculus microstructure in Veterans with PTSD might account for cognitive decline should be further studied. Findings did not support an association between PTSD, TBI, and Alzheimer's disease pathology based on amyloid and tau PET.
Collapse
Affiliation(s)
- Sofia Marcolini
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Philine Rojczyk
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Johanna Seitz-Holland
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K. Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Michael L. Alosco
- Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Software Engineering and Information Technology, École de Technologie Supe´rieure, Montre´al, Canada
| | | |
Collapse
|
22
|
Dodd WS, Panther EJ, Pierre K, Hernandez JS, Patel D, Lucke-Wold B. Traumatic Brain Injury and Secondary Neurodegenerative Disease. TRAUMA CARE 2022; 2:510-522. [PMID: 36211982 PMCID: PMC9541088 DOI: 10.3390/traumacare2040042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023] Open
Abstract
Traumatic brain injury (TBI) is a devastating event with severe long-term complications. TBI and its sequelae are one of the leading causes of death and disability in those under 50 years old. The full extent of secondary brain injury is still being intensely investigated; however, it is now clear that neurotrauma can incite chronic neurodegenerative processes. Chronic traumatic encephalopathy, Parkinson's disease, and many other neurodegenerative syndromes have all been associated with a history of traumatic brain injury. The complex nature of these pathologies can make clinical assessment, diagnosis, and treatment challenging. The goal of this review is to provide a concise appraisal of the literature with focus on emerging strategies to improve clinical outcomes. First, we review the pathways involved in the pathogenesis of neurotrauma-related neurodegeneration and discuss the clinical implications of this rapidly evolving field. Next, because clinical evaluation and neuroimaging are essential to the diagnosis and management of neurodegenerative diseases, we analyze the clinical investigations that are transforming these areas of research. Finally, we briefly review some of the preclinical therapies that have shown the most promise in improving outcomes after neurotrauma.
Collapse
Affiliation(s)
- William S. Dodd
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric J. Panther
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Pierre
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jairo S. Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Devan Patel
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
23
|
Katsumoto A, Kokiko-Cochran ON, Bemiller SM, Xu G, Ransohoff RM, Lamb BT. Triggering receptor expressed on myeloid cells 2 deficiency exacerbates injury-induced inflammation in a mouse model of tauopathy. Front Immunol 2022; 13:978423. [PMID: 36389767 PMCID: PMC9664165 DOI: 10.3389/fimmu.2022.978423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) promotes several Alzheimer's disease-like pathological features, including microtubule-associated protein tau (MAPT) accumulation within neurons. Macrophage activation in the injured hTau mouse model of tauopathy raises the question whether there is a relationship between MAPT pathology and alterations in macrophage activation following TBI. Triggering receptor expressed on myeloid cells 2 (TREM2) is a critical regulator of microglia and macrophage phenotype, but its mechanisms on TBI remain unclear. To address the association with TREM2 in TBI and MAPT pathology, we studied TREM2 deficiency in hTau mice (hTau;Trem2-/- ) 3 (acute phase) and 120 (chronic phase) days after experimental TBI. At three days following injury, hTau;Trem2-/- mice exhibited reduced macrophage activation both in the cortex and hippocampus. However, to our surprise, hTau;Trem2-/- mice exposed to TBI augments macrophage accumulation in the corpus callosum and white matter near the site of tissue damage in a chronic phase, which results in exacerbated axonal injury, tau aggregation, and impaired neurogenesis. We further demonstrate that TREM2 deficiency in hTau injured mice promotes neuronal dystrophy in the white matter due to impaired phagocytosis of apoptotic cells. Remarkably, hTau;Trem2-/- exposed to TBI failed to restore blood-brain barrier integrity. These findings imply that TREM2 deficiency accelerates inflammation and neurodegeneration, accompanied by attenuated microglial phagocytosis and continuous blood-brain barrier (BBB) leakage, thus exacerbating tauopathy in hTau TBI mice.
Collapse
Affiliation(s)
- Atsuko Katsumoto
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olga N. Kokiko-Cochran
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States,Department of Neurosciences, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shane M. Bemiller
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Guixiang Xu
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard M. Ransohoff
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States,Neuroinflammation Research Center, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Bruce T. Lamb
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States,*Correspondence: Bruce T. Lamb,
| |
Collapse
|
24
|
Naseer S, Abelleira-Hervas L, Savani D, de Burgh R, Aleksynas R, Donat CK, Syed N, Sastre M. Traumatic Brain Injury Leads to Alterations in Contusional Cortical miRNAs Involved in Dementia. Biomolecules 2022; 12:1457. [PMID: 36291666 PMCID: PMC9599474 DOI: 10.3390/biom12101457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 09/29/2023] Open
Abstract
There is compelling evidence that head injury is a significant environmental risk factor for Alzheimer's disease (AD) and that a history of traumatic brain injury (TBI) accelerates the onset of AD. Amyloid-β plaques and tau aggregates have been observed in the post-mortem brains of TBI patients; however, the mechanisms leading to AD neuropathology in TBI are still unknown. In this study, we hypothesized that focal TBI induces changes in miRNA expression in and around affected areas, resulting in the altered expression of genes involved in neurodegeneration and AD pathology. For this purpose, we performed a miRNA array in extracts from rats subjected to experimental TBI, using the controlled cortical impact (CCI) model. In and around the contusion, we observed alterations of miRNAs associated with dementia/AD, compared to the contralateral side. Specifically, the expression of miR-9 was significantly upregulated, while miR-29b, miR-34a, miR-106b, miR-181a and miR-107 were downregulated. Via qPCR, we confirmed these results in an additional group of injured rats when compared to naïve animals. Interestingly, the changes in those miRNAs were concomitant with alterations in the gene expression of mRNAs involved in amyloid generation and tau pathology, such as β-APP cleaving enzyme (BACE1) and Glycogen synthase-3-β (GSK3β). In addition increased levels of neuroinflammatory markers (TNF-α), glial activation, neuronal loss, and tau phosphorylation were observed in pericontusional areas. Therefore, our results suggest that the secondary injury cascade in TBI affects miRNAs regulating the expression of genes involved in AD dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
25
|
Kim D, Kiss A, Bronskill SE, Lanctôt KL, Herrmann N, Gallagher D. Association between depression, gender and Alzheimer's neuropathology in older adults without dementia. Int J Geriatr Psychiatry 2022; 37. [PMID: 36047339 DOI: 10.1002/gps.5809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Previous studies regarding the relationship between depression and Alzheimer's neuropathology in older adults without dementia have reported conflicting findings. This study examined whether depression is associated with Alzheimer's neuropathology and whether sex moderates these relationships. METHODS This is a cross-sectional study of older adults without dementia (normal cognition or mild cognitive impairment, age 50+; CDR ≤ 0.5) who had autopsy within 1 year of their last clinic visit in the National Alzheimer's Coordinating Center database (2005-2020). Logistic regression models were fitted to determine if a recent or remote history of depression was associated with amyloid spread beyond the neocortex measured by modified Thal phase score, density of amyloid plaques measured by CERAD score or tau neuropathology measured by modified Braak score. A moderator analysis was performed to determine if any of these associations were moderated by sex. RESULTS This study included 407 participants (96 Thal, 405 Braak, and 406 CERAD). Those who had recently active depression (within previous 2 years) but not remote depression only were more likely to have higher Thal phase score compared to those without a history of depression (OR = 3.74; 95% CI, 1.15-12.17; p = 0.028). Sex did not moderate this association. No significant associations between recent depression and Braak or CERAD scores were observed. CONCLUSION Our findings indicate that the association between late life depression and Alzheimer's neuropathology is associated with spread of amyloid pathology beyond the neocortex to include allocortical and subcortical regions critical for regulation of mood and motivated behavior.
Collapse
Affiliation(s)
- Doyoung Kim
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Alex Kiss
- ICES, Toronto, Ontario, Canada
- Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Susan E Bronskill
- ICES, Toronto, Ontario, Canada
- Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Piccoli T, Blandino V, Maniscalco L, Matranga D, Graziano F, Guajana F, Agnello L, Lo Sasso B, Gambino CM, Giglio RV, La Bella V, Ciaccio M, Colletti T. Biomarkers Related to Synaptic Dysfunction to Discriminate Alzheimer's Disease from Other Neurological Disorders. Int J Mol Sci 2022; 23:10831. [PMID: 36142742 PMCID: PMC9501545 DOI: 10.3390/ijms231810831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, the synaptic proteins neurogranin (Ng) and α-synuclein (α-Syn) have attracted scientific interest as potential biomarkers for synaptic dysfunction in neurodegenerative diseases. In this study, we measured the CSF Ng and α-Syn concentrations in patients affected by AD (n = 69), non-AD neurodegenerative disorders (n-AD = 50) and non-degenerative disorders (n-ND, n = 98). The concentrations of CSF Ng and α-Syn were significantly higher in AD than in n-AD and n-ND. Moreover, the Aβ42/Ng and Aβ42/α-Syn ratios showed statistically significant differences between groups and discriminated AD patients from n-AD patients, better than Ng or α-Syn alone. Regression analyses showed an association of higher Ng concentrations with MMSE < 24, pathological Aβ 42/40 ratios, pTau, tTau and the ApoEε4 genotype. Aβ 42/Ng was associated with MMSE < 24, an AD-related FDG-PET pattern, the ApoEε4 genotype, pathological Aβ 42 levels and Aβ 42/40 ratios, pTau, and tTau. Moreover, APO-Eε4 carriers showed higher Ng concentrations than non-carriers. Our results support the idea that the Aβ 42/Ng ratio is a reliable index of synaptic dysfunction/degeneration able to discriminate AD from other neurological conditions.
Collapse
Affiliation(s)
- Tommaso Piccoli
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Valeria Blandino
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Laura Maniscalco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Domenica Matranga
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Fabiola Graziano
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Fabrizio Guajana
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center and Laboratory of Neurochemistry, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
| | - Tiziana Colletti
- ALS Clinical Research Center and Laboratory of Neurochemistry, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| |
Collapse
|
27
|
Hicks A, Ponsford JL, Spitz G, Dore V, Krishnadas N, Roberts C, Rowe CC. Amyloid- and Tau Imaging in Chronic Traumatic Brain Injury: A Cross-sectional Study. Neurology 2022; 99:e1131-e1141. [PMID: 36096678 DOI: 10.1212/wnl.0000000000200857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Traumatic brain injury (TBI) has been promoted as a risk factor for Alzheimer's disease. There is evidence of elevated amyloid-β and tau, the pathological hallmarks of Alzheimer's disease, immediately following TBI. It is not clear whether amyloid-β and tau remain elevated in the chronic period. To address this issue, we assessed amyloid-β and tau burden in long-term TBI survivors and healthy controls using PET imaging. METHODS Using a cross-sectional design, we recruited individuals following a single moderate to severe TBI at least 10 years previously from an inpatient rehabilitation program. A demographically similar healthy control group was recruited from the community. PET data were acquired using 18F-NAV4694 (amyloid-β) and 18F-MK6240 (tau) tracers. Amyloid-β deposition was quantified using the Centiloid scale. Tau deposition was quantified using the standardized uptake value ratio (SUVR) in four regions of interest (ROI). As a secondary measure, PET scans were also visually read as positive or negative. We examined PET data in relation to time since injury and age at injury. PET data were analysed in a series of regression analyses. RESULTS The sample comprised 87 individuals with TBI (71.3% male; 28.7% female; M = 57.53 years, SD = 11.53) and 59 controls (59.3% male; 40.7% female; M = 60.34 years, SD = 11.97). Individuals with TBI did not have significantly higher 18F-NAV4694 Centiloid values (p = 0.067) or 18F-MK6240 tau SUVRs in any ROI (p = ≤ 0.001; SUVR greater for controls). Visual assessment was consistent with the quantification; individuals with TBI were not more likely than controls to have a positive amyloid-β (p = 0.505) or tau scan (p = 0.221). No associations were identified for amyloid-β or tau burden with time since injury (p = 0.057 to 0.332) or age at injury. DISCUSSION A single moderate to severe TBI was not associated with higher burden of amyloid-β or tau pathologies in the chronic period relative to healthy controls. Amyloid-β and tau burden did not show a significant increase with years since injury, and burden did not appear to be greater for those who were older at the time of injury.
Collapse
Affiliation(s)
- Amelia Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia.
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Vincent Dore
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,CSIRO Health and Biosecurity Flagship, The Australian e-Health Research Centre, Parkville, 3052, Australia
| | - Natasha Krishnadas
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
| | - Caroline Roberts
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
| |
Collapse
|
28
|
Jeong H, Shin H, Hong S, Kim Y. Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer's Disease Therapeutics. Exp Neurobiol 2022; 31:65-88. [PMID: 35673997 PMCID: PMC9194638 DOI: 10.5607/en22004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) progressively inflicts impairment of synaptic functions with notable deposition of amyloid-β (Aβ) as senile plaques within the extracellular space of the brain. Accordingly, therapeutic directions for AD have focused on clearing Aβ plaques or preventing amyloidogenesis based on the amyloid cascade hypothesis. However, the emerging evidence suggests that Aβ serves biological roles, which include suppressing microbial infections, regulating synaptic plasticity, promoting recovery after brain injury, sealing leaks in the blood-brain barrier, and possibly inhibiting the proliferation of cancer cells. More importantly, these functions were found in in vitro and in vivo investigations in a hormetic manner, that is to be neuroprotective at low concentrations and pathological at high concentrations. We herein summarize the physiological roles of monomeric Aβ and current Aβ-directed therapies in clinical trials. Based on the evidence, we propose that novel therapeutics targeting Aβ should selectively target Aβ in neurotoxic forms such as oligomers while retaining monomeric Aβ in order to preserve the physiological functions of Aβ monomers.
Collapse
Affiliation(s)
- Hyomin Jeong
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Heewon Shin
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Seungpyo Hong
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - YoungSoo Kim
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
29
|
Gao L, Xue Q, Gong S, Li G, Tong W, Fan M, Chen X, Yin J, Song Y, Chen S, Huang J, Wang C, Dong Y. Structural and Functional Alterations of Substantia Nigra and Associations With Anxiety and Depressive Symptoms Following Traumatic Brain Injury. Front Neurol 2022; 13:719778. [PMID: 35449518 PMCID: PMC9017679 DOI: 10.3389/fneur.2022.719778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Although there are a certain number of studies dedicated to the disturbances of the dopaminergic system induced by traumatic brain injury (TBI), the associations of abnormal dopaminergic systems with post-traumatic anxiety and depressive disorders and their underlying mechanisms have not been clarified yet. In the midbrain, dopaminergic neurons are mainly situated in the substantia nigra (SN) and the ventral tegmental area (VTA). Thus, we selected SN and VTA as regions of interest and performed a seed-based global correlation to evaluate the altered functional connectivity throughout the dopaminergic system post-TBI. Methods Thirty-three individuals with TBI and 21 healthy controls were recruited in the study. Anxiety and depressive symptoms were examined by the Hospital Anxiety and Depression Scale. All MRI data were collected using a Siemens Prisma 3.0 Tesla MRI system. The volume of SN and the global functional connectivity of the SN and VTA were analyzed. Results In the present study, patients with TBI reported more anxiety and depressive symptoms. More importantly, some structural and functional alterations, such as smaller SN and reduced functional connectivity in the left SN, were seen in individuals with TBI. Patients with TBI had smaller substantia nigra on both right and left sides, and the left substantia nigra was relatively small in contrast with the right one. Among these findings, functional connectivity between left SN and left angular gyrus was positively associated with post-traumatic anxiety symptoms and negatively associated with depressive symptoms. Conclusions The TBI causes leftward lateralization of structural and functional alterations in the substantia nigra. An impaired mesocortical functional connectivity might be implicated in post-traumatic anxiety and depression.
Collapse
Affiliation(s)
- Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Xue
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shun Gong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Gaoyi Li
- Department of Neurosurgery, People's Hospital of Putuo District, Tongji University School of Medicine, Shanghai, China
| | - Wusong Tong
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Xianzhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Yin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Song
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Songyu Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingrong Huang
- Psychology Honors Program, University of California, San Diego, San Diego, CA, United States
| | - Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth People's Hospital Clinical Medicine Scientific and Technical Innovation Park, Shanghai, China
| |
Collapse
|
30
|
Srinivasan G, Brafman DA. The Emergence of Model Systems to Investigate the Link Between Traumatic Brain Injury and Alzheimer's Disease. Front Aging Neurosci 2022; 13:813544. [PMID: 35211003 PMCID: PMC8862182 DOI: 10.3389/fnagi.2021.813544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
31
|
Decourt B, D’Souza GX, Shi J, Ritter A, Suazo J, Sabbagh MN. The Cause of Alzheimer's Disease: The Theory of Multipathology Convergence to Chronic Neuronal Stress. Aging Dis 2022; 13:37-60. [PMID: 35111361 PMCID: PMC8782548 DOI: 10.14336/ad.2021.0529] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
The field of Alzheimer's disease (AD) research critically lacks an all-inclusive etiology theory that would integrate existing hypotheses and explain the heterogeneity of disease trajectory and pathologies observed in each individual patient. Here, we propose a novel comprehensive theory that we named: the multipathology convergence to chronic neuronal stress. Our new theory reconsiders long-standing dogmas advanced by previous incomplete theories. Firstly, while it is undeniable that amyloid beta (Aβ) is involved in AD, in the seminal stage of the disease Aβ is unlikely pathogenic. Instead, we hypothesize that the root cause of AD is neuronal stress in the central nervous system (CNS), and Aβ is expressed as part of the physiological response to protect CNS neurons from stress. If there is no return to homeostasis, then Aβ becomes overexpressed, and this includes the generation of longer forms that are more toxic and prone to oligomerization. Secondly, AD etiology is plausibly not strictly compartmentalized within the CNS but may also result from the dysfunction of other physiological systems in the entire body. This view implies that AD may not have a single cause, but rather needs to be considered as a spectrum of multiple chronic pathological modalities converging to the persistent stressing of CNS neurons. These chronic pathological modalities, which include cardiovascular disease, metabolic disorders, and CNS structural changes, often start individually, and over time combine with other chronic modalities to incrementally escalate the amount of stress applied to CNS neurons. We present the case for considering Aβ as a marker of neuronal stress in response to hypoxic, toxic, and starvation events, rather than solely a marker of AD. We also detail numerous human chronic conditions that can lead to neuronal stress in the CNS, making the link with co-morbidities encountered in daily clinical AD practice. Finally, we explain how our theory could be leveraged to improve clinical care for AD and related dementia in personalized medicine paradigms in the near future.
Collapse
Affiliation(s)
- Boris Decourt
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Gary X D’Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Jiong Shi
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Aaron Ritter
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Jasmin Suazo
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Marwan N Sabbagh
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| |
Collapse
|
32
|
Risacher SL, West JD, Deardorff R, Gao S, Farlow MR, Brosch JR, Apostolova LG, McAllister TW, Wu Y, Jagust WJ, Landau SM, Weiner MW, Saykin AJ. Head injury is associated with tau deposition on PET in MCI and AD patients. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12230. [PMID: 34466653 PMCID: PMC8383323 DOI: 10.1002/dad2.12230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Head injuries (HI) are a risk factor for dementia, but the underlying etiology is not fully known. Understanding whether tau might mediate this relationship is important. METHODS Cognition and tau deposition were compared between 752 individuals with (impaired, n = 302) or without cognitive impairment (CN, n = 450) with amyloid and [18F]flortaucipir positron emission tomography, HI history information, and cognitive testing from the Alzheimer's Disease Neuroimaging Initiative and the Indiana Memory and Aging Study. RESULTS Sixty-three (38 CN, 25 impaired) reported a history of HI. Higher neuropsychiatric scores and poorer memory were observed in those with a history of HI. Tau was higher in individuals with a history of HI, especially those who experienced a loss of consciousness (LOC). Results were driven by impaired individuals, especially amyloid beta-positive individuals with history of HI with LOC. DISCUSSION These findings suggest biological changes, such as greater tau, are associated with HI in individuals with cognitive impairment. Small effect sizes were observed; thus, further studies should replicate and extend these results.
Collapse
Affiliation(s)
- Shannon L. Risacher
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - John D. West
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachael Deardorff
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of BiostatisticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Martin R. Farlow
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jared R. Brosch
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Thomas W. McAllister
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yu‐Chien Wu
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - William J. Jagust
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Michael W. Weiner
- Departments of RadiologyMedicine and PsychiatryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | | |
Collapse
|
33
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
34
|
Mohamed AZ, Nestor PJ, Cumming P, Nasrallah FA. Traumatic brain injury fast-forwards Alzheimer's pathology: evidence from amyloid positron emission tomorgraphy imaging. J Neurol 2021; 269:873-884. [PMID: 34191080 DOI: 10.1007/s00415-021-10669-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) has been proposed as a risk factor for Alzheimer's disease (AD), although the mechanisms underlying the putative association are poorly understood. We investigated elderly individuals with a remote history of TBI, aiming to understand how this may have influenced amyloidosis, neurodegeneration, and clinical expression along the AD continuum. METHODS Total of 241 individual datasets including amyloid beta (Aβ) positron emission tomography ([18F]-AV45), structural MRI, and neuropsychological measures, were obtained from the Alzheimer's Disease Neuroimaging Initiative. The data were stratified into groups with (TBI +) or without (TBI -) history of head injury, and by clinical dementia rating (CDR) scores, into subgroups with normal cognition (CDR = 0) and those with symptomatic cognitive decline (CDR ≥ 0.5). We contrasted the TBI + and TBI - subgroups with respect to the onset age and extent of cognitive decline, cortical thickness changes, and Aβ standard uptake value (SUVr). RESULTS Compared to the TBI -/CDR ≥ 0.5 subgroup, the TBI + /CDR ≥ 0.5 subgroup showed a 3-4 year earlier age of cognitive impairment onset (ACIO, p = 0.005). Among those participants on the AD continuum (Aβ + , as defined by a cortical SUVr ≥ 1.23), irrespective of current CDR, a TBI + history was associated with greater Aβ deposition and more pronounced cortical thinning. When matched for severity of cognitive status, the TBI + /CDR ≥ 0.5 group showed greater Aβ burden, but earlier ACIO as compared to the TBI -/CDR ≥ 0.5, suggesting a more indolent clinical AD progression in those with TBI history. CONCLUSION Remote TBI history may alter the AD onset trajectory, with approximately 4 years earlier ACIO, greater amyloid deposition, and cortical thinning.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- The Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia.,Thompson Institute, University of The Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Peter J Nestor
- The Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia.,Mater Hospital, South Brisbane, QLD, 4101, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia.
| | | |
Collapse
|
35
|
Asken BM, Rabinovici GD. Identifying degenerative effects of repetitive head trauma with neuroimaging: a clinically-oriented review. Acta Neuropathol Commun 2021; 9:96. [PMID: 34022959 PMCID: PMC8141132 DOI: 10.1186/s40478-021-01197-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND SCOPE OF REVIEW Varying severities and frequencies of head trauma may result in dynamic acute and chronic pathophysiologic responses in the brain. Heightened attention to long-term effects of head trauma, particularly repetitive head trauma, has sparked recent efforts to identify neuroimaging biomarkers of underlying disease processes. Imaging modalities like structural magnetic resonance imaging (MRI) and positron emission tomography (PET) are the most clinically applicable given their use in neurodegenerative disease diagnosis and differentiation. In recent years, researchers have targeted repetitive head trauma cohorts in hopes of identifying in vivo biomarkers for underlying biologic changes that might ultimately improve diagnosis of chronic traumatic encephalopathy (CTE) in living persons. These populations most often include collision sport athletes (e.g., American football, boxing) and military veterans with repetitive low-level blast exposure. We provide a clinically-oriented review of neuroimaging data from repetitive head trauma cohorts based on structural MRI, FDG-PET, Aβ-PET, and tau-PET. We supplement the review with two patient reports of neuropathology-confirmed, clinically impaired adults with prior repetitive head trauma who underwent structural MRI, FDG-PET, Aβ-PET, and tau-PET in addition to comprehensive clinical examinations before death. REVIEW CONCLUSIONS Group-level comparisons to controls without known head trauma have revealed inconsistent regional volume differences, with possible propensity for medial temporal, limbic, and subcortical (thalamus, corpus callosum) structures. Greater frequency and severity (i.e., length) of cavum septum pellucidum (CSP) is observed in repetitive head trauma cohorts compared to unexposed controls. It remains unclear whether CSP predicts a particular neurodegenerative process, but CSP presence should increase suspicion that clinical impairment is at least partly attributable to the individual's head trauma exposure (regardless of underlying disease). PET imaging similarly has not revealed a prototypical metabolic or molecular pattern associated with repetitive head trauma or predictive of CTE based on the most widely studied radiotracers. Given the range of clinical syndromes and neurodegenerative pathologies observed in a subset of adults with prior repetitive head trauma, structural MRI and PET imaging may still be useful for differential diagnosis (e.g., assessing suspected Alzheimer's disease).
Collapse
Affiliation(s)
- Breton M. Asken
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143 USA
| | - Gil D. Rabinovici
- Departments of Neurology, Radiology & Biomedical Imaging, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143 USA
| |
Collapse
|
36
|
Mohamed AZ, Cumming P, Nasrallah FA. White Matter Alterations Are Associated With Cognitive Dysfunction Decades After Moderate-to-Severe Traumatic Brain Injury and/or Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1100-1109. [PMID: 33957321 DOI: 10.1016/j.bpsc.2021.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Possible white matter (WM) alterations following moderate-to-severe traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) and their relationship to clinical outcome have yet to be investigated decades after trauma. We utilized structural magnetic resonance imaging and diffusion tensor images to investigate brain volume and WM alterations in Vietnam War veterans with moderate-to-severe TBI and/or PTSD examined 5 decades after trauma. METHODS Data from 160 veterans-history of moderate-to-severe TBI (n = 23), history of TBI+PTSD (n = 36), history of PTSD (n = 53), and control veterans (n = 48)-were obtained from the Department of Defense Alzheimer's Disease Neuroimaging Initiative database. Voxel-based morphometry and tract-based spatial statistics were used to investigate ongoing brain morphometry and WM abnormalities. The fractional anisotropy (FA) and mean diffusivity were then correlated with neuropsychological scores and amyloid deposition in the trauma groups. RESULTS Compared with control subjects, the three trauma groups showed gray matter atrophy, lower FA, and distinctly higher diffusivity in the major WM tracts, including the corpus callosum, external and internal capsules, cingulum, and inferior and superior longitudinal fasciculi. The FA and mean diffusivity correlated with cognitive deficits in the trauma groups. Furthermore, the FA in the cingulum correlated negatively with amyloid deposition in the posterior cingulate cortex of all three trauma groups. CONCLUSIONS Diffusion tensor imaging detected WM abnormalities that correlated with the severity of present cognitive dysfunction and the degree of cortical amyloid deposition decades after moderate-to-severe TBI and/or PTSD. These results may hint that PTSD secondary to TBI may incur late cognitive sequalae and persistence of brain microstructure alterations.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Thompson Institute, University of The Sunshine Coast, Birtinya, Queensland, Australia
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia; Department of Nuclear Medicine, University of Bern, Inselspital, Bern, Switzerland
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
37
|
Wu Y, Wu H, Zeng J, Pluimer B, Dong S, Xie X, Guo X, Ge T, Liang X, Feng S, Yan Y, Chen JF, Sta Maria N, Ma Q, Gomez-Pinilla F, Zhao Z. Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice. Acta Neuropathol Commun 2021; 9:74. [PMID: 33892818 PMCID: PMC8063402 DOI: 10.1186/s40478-021-01178-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is considered as the most robust environmental risk factor for Alzheimer's disease (AD). Besides direct neuronal injury and neuroinflammation, vascular impairment is also a hallmark event of the pathological cascade after TBI. However, the vascular connection between TBI and subsequent AD pathogenesis remains underexplored. METHODS In a closed-head mild TBI (mTBI) model in mice with controlled cortical impact, we examined the time courses of microvascular injury, blood-brain barrier (BBB) dysfunction, gliosis and motor function impairment in wild type C57BL/6 mice. We also evaluated the BBB integrity, amyloid pathology as well as cognitive functions after mTBI in the 5xFAD mouse model of AD. RESULTS mTBI induced microvascular injury with BBB breakdown, pericyte loss, basement membrane alteration and cerebral blood flow reduction in mice, in which BBB breakdown preceded gliosis. More importantly, mTBI accelerated BBB leakage, amyloid pathology and cognitive impairment in the 5xFAD mice. DISCUSSION Our data demonstrated that microvascular injury plays a key role in the pathogenesis of AD after mTBI. Therefore, restoring vascular functions might be beneficial for patients with mTBI, and potentially reduce the risk of developing AD.
Collapse
Affiliation(s)
- Yingxi Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Haijian Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Jianxiong Zeng
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Brock Pluimer
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shirley Dong
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xiaochun Xie
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Tenghuan Ge
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinyan Liang
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sudi Feng
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Youzhen Yan
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Naomi Sta Maria
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Fernando Gomez-Pinilla
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
38
|
Hicks AJ, Spitz G, Rowe CC, Roberts CM, McKenzie DP, Ponsford JL. Does cognitive decline occur decades after moderate to severe traumatic brain injury? A prospective controlled study. Neuropsychol Rehabil 2021; 32:1530-1549. [PMID: 33858304 DOI: 10.1080/09602011.2021.1914674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This prospective controlled study examined long-term trajectories of neuropsychological performance in individuals with traumatic brain injury (TBI) compared to healthy controls, and the impact of IQ, age at injury, time since injury, and injury severity on change over time. Fifty-three individuals with moderate to severe TBI (60.37% male; M = 59.77 yrs, SD = 14.03), and 26 controls (46.15% male; M = 63.96 yrs, SD = 14.42) were studied prospectively (M = 12.72 yrs between assessments). Participants completed measures of premorbid IQ (Weschler Test of Adult Reading), processing speed (Digit Symbol Coding Test), working memory (Digit Span Backwards), memory (Rey Auditory Verbal Learning Test) and executive function (Trail Making Test Part B; Hayling Errors), at a mean of 10.62 yrs (Initial) and 23.91 yrs (Follow-Up) post injury. Individuals with TBI did not show a significantly greater decline in neuropsychological performance over time compared with demographically similar controls. There was no association between change over time with IQ, time since injury or injury severity. Being older at injury had a greater adverse impact on executive function at follow-up. In this small sample, a single moderate to severe TBI was not associated with ongoing cognitive decline up to three decades post injury. Changes in cognitive function were similar between the groups and likely reflect healthy aging.
Collapse
Affiliation(s)
- Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg and Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Caroline M Roberts
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Dean P McKenzie
- Research Development and Governance Unit, Epworth HealthCare Melbourne, Australia and Department of Epidemiology and Preventive Medicine, Monash University Melbourne, Melbourne, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
39
|
Olsen A, Babikian T, Bigler ED, Caeyenberghs K, Conde V, Dams-O'Connor K, Dobryakova E, Genova H, Grafman J, Håberg AK, Heggland I, Hellstrøm T, Hodges CB, Irimia A, Jha RM, Johnson PK, Koliatsos VE, Levin H, Li LM, Lindsey HM, Livny A, Løvstad M, Medaglia J, Menon DK, Mondello S, Monti MM, Newcombe VFJ, Petroni A, Ponsford J, Sharp D, Spitz G, Westlye LT, Thompson PM, Dennis EL, Tate DF, Wilde EA, Hillary FG. Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging Behav 2021; 15:526-554. [PMID: 32797398 PMCID: PMC8032647 DOI: 10.1007/s11682-020-00313-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The global burden of mortality and morbidity caused by traumatic brain injury (TBI) is significant, and the heterogeneity of TBI patients and the relatively small sample sizes of most current neuroimaging studies is a major challenge for scientific advances and clinical translation. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Adult moderate/severe TBI (AMS-TBI) working group aims to be a driving force for new discoveries in AMS-TBI by providing researchers world-wide with an effective framework and platform for large-scale cross-border collaboration and data sharing. Based on the principles of transparency, rigor, reproducibility and collaboration, we will facilitate the development and dissemination of multiscale and big data analysis pipelines for harmonized analyses in AMS-TBI using structural and functional neuroimaging in combination with non-imaging biomarkers, genetics, as well as clinical and behavioral measures. Ultimately, we will offer investigators an unprecedented opportunity to test important hypotheses about recovery and morbidity in AMS-TBI by taking advantage of our robust methods for large-scale neuroimaging data analysis. In this consensus statement we outline the working group's short-term, intermediate, and long-term goals.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Virginia Conde
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen Genova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Neurology, Department of Psychiatry & Department of Psychology, Cognitive Neurology and Alzheimer's, Center, Feinberg School of Medicine, Weinberg, Chicago, IL, USA
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hopsital, Trondheim University Hospital, Trondheim, Norway
| | - Ingrid Heggland
- Section for Collections and Digital Services, NTNU University Library, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ruchira M Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, Pittsburgh, PA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Vassilis E Koliatsos
- Departments of Pathology(Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Harvey Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Lucia M Li
- C3NL, Imperial College London, London, UK
- UK DRI Centre for Health Care and Technology, Imperial College London, London, UK
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Marianne Løvstad
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - John Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- Department of Neurology, Drexel University, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Brain Injury Research Center (BIRC), UCLA, Los Angeles, CA, USA
| | | | - Agustin Petroni
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Computer Science, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific & Technical Research Council, Institute of Research in Computer Science, Buenos Aires, Argentina
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - David Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research & Technology Centre, UK Dementia Research Institute, London, UK
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Frank G Hillary
- Department of Neurology, Hershey Medical Center, State College, PA, USA.
| |
Collapse
|
40
|
Apolipoprotein ɛ4 Status and Brain Structure 12 Months after Mild Traumatic Injury: Brain Age Prediction Using Brain Morphometry and Diffusion Tensor Imaging. J Clin Med 2021; 10:jcm10030418. [PMID: 33499167 PMCID: PMC7865561 DOI: 10.3390/jcm10030418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Apolipoprotein E (APOE) ɛ4 is associated with poor outcome following moderate to severe traumatic brain injury (TBI). There is a lack of studies investigating the influence of APOE ɛ4 on intracranial pathology following mild traumatic brain injury (MTBI). This study explores the association between APOE ɛ4 and MRI measures of brain age prediction, brain morphometry, and diffusion tensor imaging (DTI). Methods: Patients aged 16 to 65 with acute MTBI admitted to the trauma center were included. Multimodal MRI was performed 12 months after injury and associated with APOE ɛ4 status. Corrections for multiple comparisons were done using false discovery rate (FDR). Results: Of included patients, 123 patients had available APOE, volumetric, and DTI data of sufficient quality. There were no differences between APOE ɛ4 carriers (39%) and non-carriers in demographic and clinical data. Age prediction revealed high accuracy both for the DTI-based and the brain morphometry based model. Group comparisons revealed no significant differences in brain-age gap between ɛ4 carriers and non-carriers, and no significant differences in conventional measures of brain morphometry and volumes. Compared to non-carriers, APOE ɛ4 carriers showed lower fractional anisotropy (FA) in the hippocampal part of the cingulum bundle, which did not remain significant after FDR adjustment. Conclusion: APOE ɛ4 carriers might be vulnerable to reduced neuronal integrity in the cingulum. Larger cohort studies are warranted to replicate this finding.
Collapse
|
41
|
Maigler KC, Buhr TJ, Park CS, Miller SA, Kozlowski DA, Marr RA. Assessment of the Effects of Altered Amyloid-Beta Clearance on Behavior following Repeat Closed-Head Brain Injury in Amyloid-Beta Precursor Protein Humanized Mice. J Neurotrauma 2021; 38:665-676. [PMID: 33176547 DOI: 10.1089/neu.2020.6989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) increases the risk for dementias including Alzheimer's disease (AD) and chronic traumatic encephalopathy. Further, both human and animal model data indicate that amyloid-beta (Aβ) peptide accumulation and its production machinery are upregulated by TBI. Considering the clear link between chronic Aβ elevation and AD as well as tau pathology, the role(s) of Aβ in TBI is of high importance. Endopeptidases, including the neprilysin (NEP)-like enzymes, are key mediators of Aβ clearance and may affect susceptibility to pathology post-TBI. Here, we use a "humanized" mouse model of Aβ production, which expresses normal human amyloid-beta precursor protein (APP) under its natural transcriptional regulation and exposed them to a more clinically relevant repeated closed-head TBI paradigm. These transgenic mice also were crossed with mice deficient for the Aβ degrading enzymes NEP or NEP2 to assess models of reduced cerebral Aβ clearance in our TBI model. Our results show that the presence of the human form of Aβ did not exacerbate motor (Rotarod) and spatial learning/memory deficits (Morris water maze) post-injuries, while potentially reduced anxiety (Open Field) was observed. NEP and NEP2 deficiency also did not exacerbate these deficits post-injuries and was associated with protection from motor (NEP and NEP2) and spatial learning/memory deficits (NEP only). These data suggest that normally regulated expression of wild-type human APP/Aβ does not contribute to deficits acutely after TBI and may be protective at this stage of injury.
Collapse
Affiliation(s)
- Kathleen C Maigler
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Trevor J Buhr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Christopher S Park
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Steven A Miller
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Dorothy A Kozlowski
- Department of Biological Sciences and Neuroscience Program, DePaul University, Chicago, Illinois, USA
| | - Robert A Marr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
42
|
Sakai K, Takata F, Yamanaka G, Yasunaga M, Hashiguchi K, Tominaga K, Itoh K, Kataoka Y, Yamauchi A, Dohgu S. Reactive pericytes in early phase are involved in glial activation and late-onset hypersusceptibility to pilocarpine-induced seizures in traumatic brain injury model mice. J Pharmacol Sci 2021; 145:155-165. [PMID: 33357774 DOI: 10.1016/j.jphs.2020.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, among neurovascular unit (NVU) cells, we focused on pericyte reactivity in mice subjected to controlled cortical impact (CCI) to understand how traumatic brain injury (TBI) causes uncoordinated crosstalk in the NVU and alters neuronal activity. Histological analyses of brain pericytes, microglia and astrocytes were performed for up to 28 days after CCI in the injured ipsilateral hippocampus. To evaluate altered neuronal activity caused by CCI, we measured seizure susceptibility to a sub-threshold dose of pilocarpine on postoperative day 7, 14, 21 and 28. Platelet-derived growth factor receptor (PDGFR) β immunoreactivity in pericytes significantly increased from 1 h to 4 days after CCI. The expression of Iba1 and GFAP, as markers of microglia and astrocytes, respectively, increased from 4 to 28 days after CCI. The severity of seizure induced by pilocarpine gradually increased, becoming significant at 28 days after CCI. Then, we treated CCI mice with an inhibitor of PDGFR signaling, imatinib, during the postoperative day 0-4 period. Imatinib lowered seizure susceptibility to pilocarpine and suppressed microglial activation in the injured hippocampus at postoperative day 28. These findings indicate that brain pericytes with rapidly increased PDGFRβ expression may drive TBI-induced dysregulation of NVU function and brain hyperexcitability.
Collapse
Affiliation(s)
- Kenta Sakai
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.
| | - Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Miho Yasunaga
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kana Hashiguchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kazuki Tominaga
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| |
Collapse
|
43
|
LoBue C, Munro C, Schaffert J, Didehbani N, Hart J, Batjer H, Cullum CM. Traumatic Brain Injury and Risk of Long-Term Brain Changes, Accumulation of Pathological Markers, and Developing Dementia: A Review. J Alzheimers Dis 2020; 70:629-654. [PMID: 31282414 DOI: 10.3233/jad-190028] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injuries (TBI) have received widespread media attention in recent years as being a risk factor for the development of dementia and chronic traumatic encephalopathy (CTE). This has sparked fears about the potential long-term effects of TBI of any severity on cognitive aging, leading to a public health concern. This article reviews the evidence surrounding TBI as a risk factor for the later development of changes in brain structure and function, and an increased risk of neurodegenerative disorders. A number of studies have shown evidence of long-term brain changes and accumulation of pathological biomarkers (e.g., amyloid and tau proteins) related to a history of moderate-to-severe TBI, and research has also demonstrated that individuals with moderate-to-severe injuries have an increased risk of dementia. While milder injuries have been found to be associated with an increased risk for dementia in some recent studies, reports on long-term brain changes have been mixed and often are complicated by factors related to injury exposure (i.e., number of injuries) and severity/complications, psychiatric conditions, and opioid use disorder. CTE, although often described as a neurodegenerative disorder, remains a neuropathological condition that is poorly understood. Future research is needed to clarify the significance of CTE pathology and determine whether that can explain any clinical symptoms. Overall, it is clear that most individuals who sustain a TBI (particularly milder injuries) do not experience worse outcomes with aging, as the incidence for dementia is found to be less than 7% across the literature.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Munro
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Schaffert
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nyaz Didehbani
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hunt Batjer
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
44
|
Chu TH, Cummins K, Stys PK. Traumatic Injury Reduces Amyloid Plaque Burden in the Transgenic 5xFAD Alzheimer's Mouse Spinal Cord. J Alzheimers Dis 2020; 77:1315-1330. [PMID: 32925040 DOI: 10.3233/jad-200387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Axonal injury has been implicated in the development of amyloid-β in experimental brain injuries and clinical cases. The anatomy of the spinal cord provides a tractable model for examining the effects of trauma on amyloid deposition. OBJECTIVE Our goal was to examine the effects of axonal injury on plaque formation and clearance using wild type and 5xFAD transgenic Alzheimer's disease mice. METHODS We contused the spinal cord at the T12 spinal level at 10 weeks, an age at which no amyloid plaques spontaneously accumulate in 5xFAD mice. We then explored plaque clearance by impacting spinal cords in 27-week-old 5xFAD mice where amyloid deposition is already well established. We also examined the cellular expression of one of the most prominent amyloid-β degradation enzymes, neprilysin, at the lesion site. RESULTS No plaques were found in wild type animals at any time points examined. Injury in 5xFAD prevented plaque deposition rostral and caudal to the lesion when the cords were examined at 2 and 4 months after the impact, whereas age-matched naïve 5xFAD mice showed extensive amyloid plaque deposition. A massive reduction in the number of plaques around the lesion was found as early as 7 days after the impact, preceded by neprilysin upregulation in astrocytes at 3 days after injury. At 7 days after injury, the majority of amyloid was found inside microglia/macrophages. CONCLUSION These observations suggest that the efficient amyloid clearance after injury in the cord may be driven by the orchestrated efforts of astroglial and immune cells.
Collapse
Affiliation(s)
- Tak-Ho Chu
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen Cummins
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter K Stys
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Panwar A, Jhun M, Rentsendorj A, Mardiros A, Cordner R, Birch K, Yeager N, Duvall G, Golchian D, Koronyo-Hamaoui M, Cohen RM, Ley E, Black KL, Wheeler CJ. Functional recreation of age-related CD8 T cells in young mice identifies drivers of aging- and human-specific tissue pathology. Mech Ageing Dev 2020; 191:111351. [PMID: 32910956 PMCID: PMC7567339 DOI: 10.1016/j.mad.2020.111351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/02/2023]
Abstract
Mitigating effects of aging on human health remains elusive because aging impacts multiple systems simultaneously, and because experimental animals exhibit critical aging differences relative to humans. Separation of aging into discrete processes may identify targetable drivers of pathology, particularly when applied to human-specific features. Gradual homeostatic expansion of CD8 T cells dominantly alters their function in aging humans but not in mice. Injecting T cells into athymic mice induces rapid homeostatic expansion, but its relevance to aging remains uncertain. We hypothesized that homeostatic expansion of T cells injected into T-deficient hosts models physiologically relevant CD8 T cell aging in young mice, and aimed to analyze age-related T cell phenotype and tissue pathology in such animals. Indeed, we found that such injection conferred uniform age-related phenotype, genotype, and function to mouse CD8 T cells, heightened age-associated tissue pathology in young athymic hosts, and humanized amyloidosis after brain injury in secondary wild-type recipients. This validates a model conferring a human-specific aging feature to mice that identifies targetable drivers of tissue pathology. Similar examination of independent aging features should promote systematic understanding of aging and identify additional targets to mitigate its effects on human health.
Collapse
Affiliation(s)
- Akanksha Panwar
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Michelle Jhun
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Altan Rentsendorj
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Armen Mardiros
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Ryan Cordner
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States; Dep. Biomedical Sciences, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Kurtis Birch
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Nicole Yeager
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States; Dep. Biomedical Sciences, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Gretchen Duvall
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - David Golchian
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Maya Koronyo-Hamaoui
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States; Dep. Biomedical Sciences, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Robert M Cohen
- Dept. Psychiatry & Behavioral Sciences and Neuroscience Program, GDBBS, Emory University, 201 Dowman Dr., Atlanta, GA 30322, United States
| | - Eric Ley
- Dept. Surgery, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Keith L Black
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Christopher J Wheeler
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States; Brain Mapping Foundation, Society for Brain Mapping & Therapeutics, 860 Via De la Paz, Pacific Palisades, CA 90272, United States; T-Neuro Pharma, 1451 Innovation Parkway SE, Albuquerque, NM 87123, United States.
| |
Collapse
|
46
|
Forcione M, Chiarelli AM, Davies DJ, Perpetuini D, Sawosz P, Merla A, Belli A. Cerebral perfusion and blood-brain barrier assessment in brain trauma using contrast-enhanced near-infrared spectroscopy with indocyanine green: A review. J Cereb Blood Flow Metab 2020; 40:1586-1598. [PMID: 32345103 PMCID: PMC7370372 DOI: 10.1177/0271678x20921973] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Contrast-enhanced near-infrared spectroscopy (NIRS) with indocyanine green (ICG) can be a valid non-invasive, continuous, bedside neuromonitoring tool. However, its usage in moderate and severe traumatic brain injury (TBI) patients can be unprecise due to their clinical status. This review is targeted at researchers and clinicians involved in the development and application of contrast-enhanced NIRS for the care of TBI patients and can be used to design future studies. This review describes the methods developed to monitor the brain perfusion and the blood-brain barrier integrity using the changes of diffuse reflectance during the ICG passage and the results on studies in animals and humans. The limitations in accuracy of these methods when applied on TBI patients and the proposed solutions to overcome them are discussed. Finally, the analysis of relative parameters is proposed as a valid alternative over absolute values to address some current clinical needs in brain trauma care. In conclusion, care should be taken in the translation of the optical signal into absolute physiological parameters of TBI patients, as their clinical status must be taken into consideration. Discussion on where and how future studies should be directed to effectively incorporate contrast-enhanced NIRS into brain trauma care is given.
Collapse
Affiliation(s)
- Mario Forcione
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antonio M Chiarelli
- Department of Neuroscience Imaging and Clinical Science, Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - David J Davies
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David Perpetuini
- Department of Neuroscience Imaging and Clinical Science, Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Arcangelo Merla
- Department of Neuroscience Imaging and Clinical Science, Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonio Belli
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
47
|
A critical review of radiotracers in the positron emission tomography imaging of traumatic brain injury: FDG, tau, and amyloid imaging in mild traumatic brain injury and chronic traumatic encephalopathy. Eur J Nucl Med Mol Imaging 2020; 48:623-641. [DOI: 10.1007/s00259-020-04926-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
|
48
|
Zhou Y, Chen Q, Wang Y, Wu H, Xu W, Pan Y, Gao S, Dong X, Zhang JH, Shao A. Persistent Neurovascular Unit Dysfunction: Pathophysiological Substrate and Trigger for Late-Onset Neurodegeneration After Traumatic Brain Injury. Front Neurosci 2020; 14:581. [PMID: 32581697 PMCID: PMC7296179 DOI: 10.3389/fnins.2020.00581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) represents one of the major causes of death worldwide and leads to persisting neurological deficits in many of the survivors. One of the most significant long-term sequelae deriving from TBI is neurodegenerative disease, which is a group of incurable diseases that impose a heavy socio-economic burden. However, mechanisms underlying the increased susceptibility of TBI to neurodegenerative disease remain elusive. The neurovascular unit (NVU) is a functional unit composed of neurons, neuroglia, vascular cells, and the basal lamina matrix. The key role of NVU dysfunction in many central nervous system diseases has been revealed. Studies have proved the presence of prolonged structural and functional abnormalities of the NVU after TBI. Moreover, growing evidence suggests impaired NVU function is also implicated in neurodegenerative diseases. Therefore, we propose the Neurovascular Unit Dysfunction (NVUD) Hypothesis, in which the persistent NVU dysfunction is thought to underlie the development of post-TBI neurodegeneration. We deduce NVUD Hypothesis through relational inference and supporting evidence, and suggest continued NVU abnormalities following TBI serve as the pathophysiological substrate and trigger yielding chronic neuroinflammation, proteinopathies and oxidative stress, consequently leading to the progression of neurodegenerative diseases. The NVUD Hypothesis may provide potential treatment and prevention strategies for TBI and late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Dong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
50
|
Poudel GR, Dominguez D JF, Verhelst H, Vander Linden C, Deblaere K, Jones DK, Cerin E, Vingerhoets G, Caeyenberghs K. Network diffusion modeling predicts neurodegeneration in traumatic brain injury. Ann Clin Transl Neurol 2020; 7:270-279. [PMID: 32105414 PMCID: PMC7086000 DOI: 10.1002/acn3.50984] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 02/03/2023] Open
Abstract
Objective Traumatic brain injury (TBI) is a heterogeneous disease with multiple neurological deficits that evolve over time. It is also associated with an increased incidence of neurodegenerative diseases. Accordingly, clinicians need better tools to predict a patient’s long‐term prognosis. Methods Diffusion‐weighted and anatomical MRI data were collected from 17 adolescents (mean age = 15y8mo) with moderate‐to‐severe TBI and 19 healthy controls. Using a network diffusion model (NDM), we examined the effect of progressive deafferentation and gray matter thinning in young TBI patients. Moreover, using a novel automated inference method, we identified several injury epicenters in order to determine the neural degenerative patterns in each TBI patient. Results We were able to identify the subject‐specific patterns of degeneration in each patient. In particular, the hippocampus, temporal cortices, and striatum were frequently found to be the epicenters of degeneration across the TBI patients. Orthogonal transformation of the predicted degeneration, using principal component analysis, identified distinct spatial components in the temporal–hippocampal network and the cortico‐striatal network, confirming the vulnerability of these networks to injury. The NDM model, best predictive of the degeneration, was significantly correlated with time since injury, indicating that NDM can potentially capture the pathological progression in the chronic phase of TBI. Interpretation These findings suggest that network spread may help explain patterns of distant gray matter thinning, which would be consistent with Wallerian degeneration of the white matter connections (i.e., “diaschisis”) from diffuse axonal injuries and multifocal contusive injuries, and the neurodegenerative patterns of abnormal protein aggregation and transmission, which are hallmarks of brain changes in TBI. NDM approaches could provide highly subject‐specific biomarkers relevant for disease monitoring and personalized therapies in TBI.
Collapse
Affiliation(s)
- Govinda R Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Juan F Dominguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Helena Verhelst
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Oost-Vlaanderen, Belgium
| | | | - Karel Deblaere
- Department of Neuroradiology, Ghent University Hospital, Ghent, Oost-Vlaanderen, Belgium
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ester Cerin
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Guy Vingerhoets
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Oost-Vlaanderen, Belgium
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| |
Collapse
|