1
|
Cash DM, Morgan KE, O'Connor A, Veale TD, Malone IB, Poole T, Benzinger TL, Gordon BA, Ibanez L, Li Y, Llibre-Guerra JJ, McDade E, Wang G, Chhatwal JP, Day GS, Huey E, Jucker M, Levin J, Niimi Y, Noble JM, Roh JH, Sánchez-Valle R, Schofield PR, Bateman RJ, Frost C, Fox NC. Sample size estimates for biomarker-based outcome measures in clinical trials in autosomal dominant Alzheimer's disease. J Prev Alzheimers Dis 2025:100133. [PMID: 40118731 DOI: 10.1016/j.tjpad.2025.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Alzheimer disease (AD)-modifying therapies are approved for treatment of early-symptomatic AD. Autosomal dominant AD (ADAD) provides a unique opportunity to test therapies in presymptomatic individuals. METHODS Using data from the Dominantly Inherited Alzheimer Network (DIAN), sample sizes for clinical trials were estimated for various cognitive, imaging, and CSF outcomes. Sample sizes were computed for detecting a reduction of either absolute levels of AD-related pathology (amyloid, tau) or change over time in neurodegeneration (atrophy, hypometabolism, cognitive change). RESULTS Biomarkers measuring amyloid and tau pathology had required sample sizes below 200 participants per arm (examples CSF Aβ42/40: 47[95 %CI 25,104], cortical PIB 49[28,99], CSF p-tau181 74[48,125]) for a four-year trial in presymptomatic individuals (CDR=0) to have 80 % power (5 % statistical significance) to detect a 25 % reduction in absolute levels of pathology, allowing 40 % dropout. For cognitive, MRI, and FDG, it was more appropriate to detect a 50 % reduction in rate of change. Sample sizes ranged from 250 to 900 (examples hippocampal volume: 338[131,2096], cognitive composite: 326[157,1074]). MRI, FDG and cognitive outcomes had lower sample sizes when including indivduals with mild impairment (CDR=0.5 and 1) as well as presymptomatic individuals (CDR=0). DISCUSSION Despite the rarity of ADAD, presymptomatic clinical trials with feasible sample sizes given the number of cases appear possible.
Collapse
Affiliation(s)
- David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK; UK Dementia Research Institute, 6th Floor, Maple House, Tottenham Court Road, London W1T 7NF, UK.
| | - Katy E Morgan
- London School of Hygiene and Tropical Medicine, Keppel Street London, WC1E 7HT, UK
| | - Antoinette O'Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Thomas D Veale
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Teresa Poole
- London School of Hygiene and Tropical Medicine, Keppel Street London, WC1E 7HT, UK
| | - Tammie Ls Benzinger
- Department of Radiology. Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Brian A Gordon
- Department of Radiology. Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4488 Forest Park Ave., Suite 200, St. Louis, MO 63108 USA
| | - Laura Ibanez
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA; Department of Psychiarty, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Yan Li
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Guoqiao Wang
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Jasmeer P Chhatwal
- Brigham and Women's Hospital, Massachusetts General Hospital; Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA
| | - Edward Huey
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, 222 Richmond St., Providence, RI 02903, USA
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller Strasse 27, 72076 Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, 72076 Tübingen, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, Marchioninistr. 15 D-81377, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Yoshiki Niimi
- Unit for early and exploratory clinical development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, GH Sergievksy Center, Columbia University, 710W 168th St #3, New York, NY 10032, USA
| | - Jee Hoon Roh
- Departments of Neurology and Physiology, Korea University Anam Hospital, Korea University College of Medicine, 73 goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic Of Korea
| | - Racquel Sánchez-Valle
- Alzheimer's disease and other cognitive disorders group. Hospital Clínic de Barcelona. FRCB-IDIBAPS. University of Barcelona, Carrer de Villarroel, 170, L'Eixample, 08036 Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Margarete Ainsworth Building Barker Street, Randwick NSW 2031 Australia; School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW 2052 Australia
| | - Randall J Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4488 Forest Park Ave., Suite 200, St. Louis, MO 63108 USA; Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA; Hope Center for Neurological Disorders, Washington University in St Louis, 4370 Duncan Ave., St. Louis, MO 63110, USA
| | - Chris Frost
- London School of Hygiene and Tropical Medicine, Keppel Street London, WC1E 7HT, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK; UK Dementia Research Institute, 6th Floor, Maple House, Tottenham Court Road, London W1T 7NF, UK
| |
Collapse
|
2
|
Leuzy A, Bollack A, Pellegrino D, Teunissen CE, La Joie R, Rabinovici GD, Franzmeier N, Johnson K, Barkhof F, Shaw LM, Arkhipenko A, Schindler SE, Honig LS, Moscoso Rial A, Schöll M, Zetterberg H, Blennow K, Hansson O, Farrar G. Considerations in the clinical use of amyloid PET and CSF biomarkers for Alzheimer's disease. Alzheimers Dement 2025; 21:e14528. [PMID: 40042435 PMCID: PMC11881640 DOI: 10.1002/alz.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 03/09/2025]
Abstract
Amyloid-β (Aβ) positron emission tomography (PET) imaging and cerebrospinal fluid (CSF) biomarkers are now established tools in the diagnostic workup of patients with Alzheimer's disease (AD), and their use is anticipated to increase with the introduction of new disease-modifying therapies. Although these biomarkers are comparable alternatives in research settings to determine Aβ status, biomarker testing in clinical practice requires careful consideration of the strengths and limitations of each modality, as well as the specific clinical context, to identify which test is best suited for each patient. This article provides a comprehensive review of the pathologic processes reflected by Aβ-PET and CSF biomarkers, their performance, and their current and future applications and contexts of use. The primary aim is to assist clinicians in making better-informed decisions about the suitability of each biomarker in different clinical situations, thereby reducing the risk of misdiagnosis or incorrect interpretation of biomarker results. HIGHLIGHTS: Recent advances have positioned Aβ PET and CSF biomarkers as pivotal in AD diagnosis. It is crucial to understand the differences in the clinical use of these biomarkers. A team of experts reviewed the state of Aβ PET and CSF markers in clinical settings. Differential features in the clinical application of these biomarkers were reviewed. We discussed the role of Aβ PET and CSF in the context of novel plasma biomarkers.
Collapse
Grants
- AF-930351 Neurodegenerative Disease Research
- 101053962 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- R01 AG066107 NIA NIH HHS
- FO2022-0270 Bluefield Project, Olav Thon Foundation, Erling-Persson Family Foundation
- 101112145 European Union's Horizon Europe
- Alzheimer Netherlands
- ZEN-21-848495 Alzheimer's Association 2021 Zenith Award
- 2022-0231 Knut and Alice Wallenberg foundation
- KAW 2023.0371 Knut and Alice Wallenberg Foundation
- U19 ADNI4 Harvard Aging Brain Study
- R01 AG081394 NIA NIH HHS
- ADRC P30-AG-072979 Harvard Aging Brain Study
- 2022-1259 Regionalt Forskningsstöd
- Shanendoah Foundation
- 2020-O000028 Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, Skåne University Hospital Foundation
- The Selfridges Group Foundation
- R56 AG057195 NIA NIH HHS
- U01 NS100600 NINDS NIH HHS
- ALZ2022-0006 Hjärnfonden, Sweden
- U01 AG057195 NIA NIH HHS
- Dutch National Dementia Strategy
- ZEN24-1069572 Alzheimer's Association
- R01AG072474 Harvard Aging Brain Study
- 860197 Marie Curie International Training Network
- AF-939721 Neurodegenerative Disease Research
- R01 AG070941 NIA NIH HHS
- P01 AG036694 NIA NIH HHS
- JPND2021-00694 Neurodegenerative Disease Research
- ADSF-21-831376-C AD Strategic Fund, and Alzheimer's Association
- AF-994900 Swedish Alzheimer Foundation
- NIH
- ALFGBG-813971 County Councils, the ALF-agreement
- FO2021-0293 Swedish Brain Foundation
- U19AG063893 NINDS NIH HHS
- 2022-01018 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- 201809-2016862 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- 831434 Innovative Medicines Initiatives 3TR
- 101132933 European Union's Horizon Europe
- European Union Joint Programme
- Cure Alzheimer's fund, Rönström Family Foundation
- ID 390857198 Munich Cluster for Systems Neurology
- U01-AG057195 NIA NIH HHS
- Deutsche Forschungsgemeinschaft
- 2021-06545 Swedish Research Council
- Sahlgrenska Academy at the University of Gothenburg
- U19 AG024904 NIA NIH HHS
- GE Healthcare
- JPND2019-466-236 European Union Joint Program for Neurodegenerative Disorders
- P30 AG062422 NIA NIH HHS
- ADG-101096455 European Research Council
- 2022-00732 Neurodegenerative Disease Research
- 860197 Marie Skłodowska-Curie
- P01 AG019724 NIA NIH HHS
- U01NS100600 NINDS NIH HHS
- AF-980907 Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson's disease) at Lund University, Swedish Alzheimer Foundation
- P30 AG066462 NIA NIH HHS
- 2022-00775 GHR Foundation, Swedish Research Council
- R44 AG071388 NIA NIH HHS
- FO2017-0243 Hjärnfonden, Sweden
- AF-968270 Neurodegenerative Disease Research
- KAW2014.0363 Knut and Alice Wallenberg Foundation
- SG-23-1061717 Alzheimer's Association
- 2021-02678 Swedish Research Council
- R01 AG059013 NIA NIH HHS
- R35 AG072362 NIA NIH HHS
- VGFOUREG-995510 Västra Götaland Region R&D
- American College of Radiology
- R01 AG081394-01 European Union's Horizon Europe
- R21 AG070768 NIA NIH HHS
- U19 AG063893 NIA NIH HHS
- 2022-Projekt0080 Swedish Federal Government under the ALF agreement
- ALFGBG-965326 County Councils, the ALF-agreement
- Alzheimer Drug Discovery Foundation
- Rainwater Charitable Foundation
- Research of the European Commission
- R01AG083740 National Institute of Aging
- ADSF-21-831381-C AD Strategic Fund, and Alzheimer's Association
- SG-23-1038904 Alzheimer's Association 2022-2025
- RS-2023-00263612 National Research Foundation of Korea
- P30-AG062422 NIA NIH HHS
- R21AG070768 Harvard Aging Brain Study
- 2017-02869 Swedish Research Council
- 101034344 Joint Undertaking
- ALFGBG-715986 Swedish state under the agreement between the Swedish government and the County Councils, ALF-agreement
- ERAPERMED2021-184 ERA PerMed
- U19AG024904 Harvard Aging Brain Study
- R01 AG072474 NIA NIH HHS
- UKDRI-1003 Neurodegenerative Disease Research
- 10510032120003 Health Holland, the Dutch Research Council
- 2019-02397 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- EXC 2145 SyNergy Munich Cluster for Systems Neurology
- 1412/22 Parkinson foundation of Sweden
- R01 AG046396 NIA NIH HHS
- ALFGBG-71320 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- P01-AG019724 NIA NIH HHS
- ALFGBG-965240 Swedish state under the agreement between the Swedish government and the County Councils, ALF-agreement
- Deutsche Parkinson Gesellschaft
- ADSF-21-831377-C AD Strategic Fund, and Alzheimer's Association
- National MS Society
- R01 AG083740 NIA NIH HHS
- 2017-00915 Neurodegenerative Disease Research
- 2023-06188 Swedish Research Council
- Alzheimer Association
- National MS Society
- Alzheimer Netherlands
- NIH
- NIA
- National Institute of Neurological Disorders and Stroke
- American College of Radiology
- Rainwater Charitable Foundation
- Deutsche Forschungsgemeinschaft
- NINDS
- Knut and Alice Wallenberg Foundation
- Swedish Research Council
- National Research Foundation of Korea
- Swedish Brain Foundation
- European Research Council
- Alzheimer's Association
- GE Healthcare
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Department of NeuropsychiatrySahlgrenska University HospitalRegion Västra GötalandGothenburgSweden
| | - Ariane Bollack
- The Grove CentreWhite Lion Road BuckinghamshireGE HealthCareAmershamUK
- Department of Medical Physics and BioengineeringCentre for Medical Image Computing (CMIC)University College LondonLondonUK
| | | | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam NeuroscienceNeurodegenerationAmsterdam UMC Vrije UniversiteitAmsterdamThe Netherlands
| | - Renaud La Joie
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Nicolai Franzmeier
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Institute for Stroke and Dementia Research (ISD)University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Keith Johnson
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentBrigham and Women's HospitalBostonMassachusettsUSA
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdam University Medical CenterAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain imagingAmsterdamThe Netherlands
- UCL Queen Square Institute of Neurology and Center for Medical Image ComputingUniversity College LondonLondonUK
| | - Leslie M. Shaw
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Suzanne E. Schindler
- Department of NeurologyKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Lawrence S. Honig
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Alexis Moscoso Rial
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Nuclear Medicine Department and Molecular Imaging GroupInstituto de Investigación Sanitaria de Santiago de CompostelaSantiago de CompostelaSpain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Department of NeuropsychiatrySahlgrenska University HospitalRegion Västra GötalandGothenburgSweden
- Dementia Research CentreInstitute of NeurologyUniversity College LondonLondonUK
| | - Henrik Zetterberg
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research InstituteUniversity College LondonLondonUK
- Hong Kong Center for Neurodegenerative DiseasesScience ParkHong KongChina
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of WisconsinUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Paris Brain InstituteICMPitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiChina
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Gill Farrar
- The Grove CentreWhite Lion Road BuckinghamshireGE HealthCareAmershamUK
| |
Collapse
|
3
|
Egle M, Hamedani AG, Deal JA, Ramulu PY, Walker KA, Wong DF, Sharett AR, Abraham AG, Gottesman RF. Retinal microstructure and microvasculature in association with brain amyloid burden. Brain Commun 2025; 7:fcaf013. [PMID: 39974176 PMCID: PMC11837324 DOI: 10.1093/braincomms/fcaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Cortical amyloid burden is associated with neuronal and vascular abnormalities. The retina shares significant structural and physiological similarities with the brain. This study assessed the association of retinal microstructural and microvascular signs with cortical amyloid burden in the prospective Atherosclerosis Risk in Communities-Positron Emission Tomography study. One hundred and twenty-four participants without a diagnosis of dementia underwent florbetapir PET (2011-13) and optical coherence tomography and optical coherence tomography angiography imaging (2017-19). Retinal nerve fibre thickness, total macular thickness and the ganglion cell-inner plexiform layer thickness were derived from the optical coherence tomography scan. Vessel density and the foveal avascular zone were measured on the 3 × 3 mm2 optical coherence tomography angiography scan. Amyloid burden, defined by global cortical standardized uptake value ratio, was treated as a dichotomous (standardized uptake value ratio > 1.2) and continuous outcome measure in logistic and robust linear regression models, respectively. Only lower intermediate capillary plexus vessel density [β (95% confidence interval) = -0.05 (-0.12, -0.01)] was significantly associated with increased continuous amyloid standardized uptake value ratio but not elevated dichotomous amyloid burden independently of demographic, genetic and vascular risk factors. No other retinal measure showed a significant association. Microvascular signs may accompany greater amyloid burden in late life in individuals without dementia.
Collapse
Affiliation(s)
- Marco Egle
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Pradeep Y Ramulu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Dean F Wong
- Department of Radiology, Washington University School of Medicine in St Louis, St. Louis, MI 63110, USA
| | - A Richey Sharett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Alison G Abraham
- Department of Epidemiology, University of Colorado, Colorado School of Public Health, Aurora, CO 80045, USA
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Cui L, Zhang Z, Tu Y, Wang M, Guan Y, Li Y, Xie F, Guo Q. Association of precuneus Aβ burden with default mode network function. Alzheimers Dement 2025; 21:e14380. [PMID: 39559982 PMCID: PMC11772721 DOI: 10.1002/alz.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION It remains unclear whether the local amyloid-beta (Aβ) burden in key regions within the default mode network (DMN) affects network and cognitive functions. METHODS Participants included 1002 individuals from the Chinese Preclinical Alzheimer's Disease Study cohort who underwent 18F-florbetapir positron emission tomography resting-state functional magnetic resonance imaging scanning and neuropsychological tests. The correlations between precuneus (PRC) Aβ burden, DMN function, and cognitive function were investigated. RESULTS In individuals with high PRC Aβ burden, there is a bidirectional relationship between DMN local function or functional connectivity and PRC Aβ deposition across various cognitive states, which is also linked to cognitive function. Even below the PRC Aβ threshold, DMN function remains related to PRC Aβ deposition and cognitive performance. DISCUSSION The findings reveal the critical role of PRC Aβ deposition in disrupting neural networks associated with cognitive decline and the necessity of early detection and monitoring of PRC Aβ deposition. HIGHLIGHTS Precuneus (PRC) Aβ burden impacts DMN function in different cognitive stages. High PRC Aβ burden is linked to early neural compensation and subsequent dysfunction. Low PRC Aβ burden correlates with neural changes before significant Aβ accumulation. Changes in DMN function and connectivity provide insights into AD progression. Early detection of regional Aβ burden can help monitor the risk of cognitive decline.
Collapse
Affiliation(s)
- Liang Cui
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhen Zhang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - You‐Yi Tu
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min Wang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Yi‐Hui Guan
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Yue‐Hua Li
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Qi‐Hao Guo
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Leisgang Osse AM, Kinney JW, Cummings JL. The Common Alzheimer's Disease Research Ontology (CADRO) for biomarker categorization. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70050. [PMID: 39935614 PMCID: PMC11812129 DOI: 10.1002/trc2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/13/2025]
Abstract
Biomarkers are vital to Alzheimer's disease (AD) drug development and clinical trials, and will have an increasing role in clinical care. In this narrative review, we demonstrate the use of the National Institutes on Aging/Alzheimer's Association (NIA/AA) Common Alzheimer's Disease Research Ontology (CADRO) system for the categorization of biomarkers based on the primary mechanism on which they report. We show that biomarkers are available (in various levels of validation) for all CADRO processes. Application of the CADRO system demonstrates gaps in the field where novel biomarkers are needed for specific aspects of the disease, and assays to detect and measure biological changes, in individuals with symptomatic or preclinical AD. We demonstrate the CADRO system as a means of categorizing established and candidate AD biomarkers, showing the feasibility and practicality of the system. CADRO can assist with biomarker selection for AD clinical trials and drug development, and may eventually be applied to implementing biomarkers in patient care. Highlights The Common Alzheimer's Disease Research Ontology (CADRO) system can be used to categorize biomarkers for drug development.We demonstrate the use of CADRO with Alzheimer's disease (AD) biomarkers.We identified AD biomarkers in each of the CADRO categories.CADRO can be incorporated into current AD drug development and clinical trial systems.
Collapse
Affiliation(s)
- Amanda M. Leisgang Osse
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Jefferson W. Kinney
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Jeffrey L. Cummings
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
6
|
Nuytemans K, Franzen S, Broce IJ, Caramelli P, Ellajosyula R, Finger E, Gupta V, Gupta V, Illán‐Gala I, Loi SM, Morhardt D, Pijnenburg Y, Rascovsky K, Williams MM, Yokoyama JS, Acosta‐Uribe J, Akinyemi R, Alladi S, Ayele BA, Ayhan Y, Bourdage R, Castro‐Suarez S, de Souza LC, Dacks P, de Boer SCM, de Leon J, Dodge S, Grasso S, Ghoshal N, Kamath V, Kumfor F, Matias‐Guiu JA, Narme P, Nielsen TR, Okhuevbie D, Piña‐Escudero S, Ruiz‐Garcia R, Ryan B, Scarioni M, Slachevsky A, Suarez‐Gonzalez A, Tee BL, Tsoy E, Ulugut H, Onyike CU, Babulal GM. Gaps in biomedical research in frontotemporal dementia: A call for diversity and disparities focused research. Alzheimers Dement 2024; 20:9014-9036. [PMID: 39535468 PMCID: PMC11667558 DOI: 10.1002/alz.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
Frontotemporal dementia (FTD) is one of the leading causes of young-onset dementia before age 65, typically manifesting as abnormal behavior (in behavioral variant FTD) or language impairment (in primary progressive aphasia). Although FTD affects all populations across the globe, knowledge regarding the pathophysiology and genetics derives primarily from studies conducted in North America and Western Europe. Globally, biomedical research for FTD is hindered by variable access to diagnosis, discussed in this group's earlier article, and by reduced access to expertise, funding, and infrastructure. This perspective paper was produced by two professional interest areas of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART) and discusses the field's current status on the cross-cultural aspects of basic and translational research in FTD (including that focused on epidemiology, genetics, biomarkers, and treatment). It subsequently provides a summary of gaps and needs to address the disparities and advance global FTD biomedical research.
Collapse
Affiliation(s)
- Karen Nuytemans
- John P. Hussman Institute for Human GenomicsUniversity of MiamiMiller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Department of Human GeneticsUniversity of MiamiMiller School of MedicineMiamiFloridaUSA
| | - Sanne Franzen
- Department of Neurology and Alzheimer CenterErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Iris J. Broce
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology UnitFaculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Ratnavalli Ellajosyula
- Manipal HospitalsBangalore and Annasawmy Mudaliar HospitalBangaloreIndia
- Manipal Academy of Higher Education (MAHE)ManipalKarnatakaIndia
| | - Elizabeth Finger
- Parkwood Institute Research, LondonLondonOntarioCanada
- Robarts Research InstituteUniversity of Western OntarioLondonOntarioCanada
- Department of Clinical Neurological SciencesSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Veer Gupta
- IMPACT—The Institute for Mental and Physical Health and Clinical TranslationSchool of MedicineDeakin UniversityWaurn PondsVictoriaAustralia
| | - Vivek Gupta
- Macquarie Medical schoolFaculty of MedicineHealth and Human SciencesMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Ignacio Illán‐Gala
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Monforte de LemosMadridSpain
| | - Samantha M. Loi
- NeuropsychiatryRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
| | - Darby Morhardt
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease and Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Yolande Pijnenburg
- Alzheimer Center AmsterdamNeurology, Vrije Universiteit AmsterdamAmsterdam UMC location VUmcAmsterdamNorth HollandThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdam UMCAmsterdamNorth HollandThe Netherlands
| | - Katya Rascovsky
- Department of Neurology and Penn Frontotemporal Degeneration CenterUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Jennifer S. Yokoyama
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Juliana Acosta‐Uribe
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínAntioquiaColombia
- Neuroscience Research institute and MolecularCellular and Developmental Biology DepartmentUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research UnitInstitute for Advanced Medical Research and TrainingCollege of MedicineUniversity of IbadanIbadanOyoNigeria
| | - Suvarna Alladi
- Department of NeurologyNational Institute of Mental Health and Neurosciences (NIMHANS)BangaloreIndia
| | - Biniyam A. Ayele
- John P. Hussman Institute for Human GenomicsUniversity of MiamiMiller School of MedicineMiamiFloridaUSA
- Department of Neurology, CHSAddis Ababa UniversityAddis AbabaEthiopia
| | - Yavuz Ayhan
- Institute of Neurological Sciences and PsychiatryHacettepe UniversitySıhhiye/AltindagAnkaraTurkey
- Faculty of MedicineDepartment of PsychiatryHacettepe UniversitySıhhiye/AltindagAnkaraTurkey
| | - Renelle Bourdage
- Department of Neurology and Alzheimer CenterErasmus MC University Medical CenterRotterdamThe Netherlands
- Laboratoire Mémoire Cerveau et Cognition (UR 7536)Institut de PsychologieUniversité Paris CitéBoulogne‐BillancourtFrance
| | - Sheila Castro‐Suarez
- CBI en Demencias y Enfermedades Desmielinizantes del Sistema NerviosoInstituto Nacional de Ciencias NeurológicasLimaPeru
- Global Brain Health InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Leonardo Cruz de Souza
- Behavioral and Cognitive Neurology UnitFaculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Department of Internal MedicineFaculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Penny Dacks
- The Association for Frontotemporal DegenerationKing of PrussiaPennsylvaniaUSA
| | - Sterre C. M. de Boer
- Alzheimer Center AmsterdamNeurology, Vrije Universiteit AmsterdamAmsterdam UMC location VUmcAmsterdamNorth HollandThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdam UMCAmsterdamNorth HollandThe Netherlands
- Brain & Mind Centre and the School of PsychologyThe University of SydneyCamperdownNew South WalesAustralia
| | - Jessica de Leon
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Shana Dodge
- The Association for Frontotemporal DegenerationKing of PrussiaPennsylvaniaUSA
| | - Stephanie Grasso
- Speech, Language and Hearing SciencesThe University of Texas at AustinAustinTexasUSA
| | - Nupur Ghoshal
- Depts. of Neurology and PsychiatryKnight Alzheimer Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fiona Kumfor
- Brain & Mind Centre and the School of PsychologyThe University of SydneyCamperdownNew South WalesAustralia
| | - Jordi A. Matias‐Guiu
- Department of NeurologyHospital Clinico San CarlosSan Carlos Institute for Health Research (IdiSSC)Universidad ComplutenseMadridSpain
| | - Pauline Narme
- Laboratoire Mémoire Cerveau et Cognition (UR 7536)Institut de PsychologieUniversité Paris CitéBoulogne‐BillancourtFrance
| | - T. Rune Nielsen
- Danish Dementia Research CenterCopenhagen University Hospital, Rigshospitaletand Department of PhychologyUniversity of CopenhagenCopenhagenDenmark
| | - Daniel Okhuevbie
- Department of Cell Biology and GeneticsUniversity of LagosTafawa BalewaLagosNigeria
- Waisman Centerand Department of Comparative BiosciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Stefanie Piña‐Escudero
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ramiro Ruiz‐Garcia
- Parkwood Institute Research, LondonLondonOntarioCanada
- Department of Clinical Neurological SciencesSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- National Institute of Neurology and NeurosurgeryMexico CityMexico
| | - Brigid Ryan
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Marta Scarioni
- Department of NeurologyGhent University HospitalGhentBelgium
| | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO)Ñuñoa SantiagoSantiagoChile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC)Physiopathology Department ‐ Institute of Biomedical Sciences (ICBM)Neurocience and East Neuroscience DepartmentsFaculty of MedicineUniversity of ChileIndependenciaSantiagoChile
- Memory and Neuropsychiatric Center (CMYN)Memory UnitNeurology DepartmentHospital del Salvador and Faculty of MedicineUniversity of ChileProvidenciaSantiagoChile
- Neurology and Psychiatry DepartmentClínica Alemana‐Universidad DesarrolloSantiagoChile
| | - Aida Suarez‐Gonzalez
- Dementia Research CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Boon Lead Tee
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Dyslexia CenterDepartment of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Elena Tsoy
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hulya Ulugut
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Alzheimer Center AmsterdamNeurology, Vrije Universiteit AmsterdamAmsterdam UMC location VUmcAmsterdamNorth HollandThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdam UMCAmsterdamNorth HollandThe Netherlands
| | - Chiadi U. Onyike
- Department of Psychiatry and Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ganesh M. Babulal
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Institute of Public HealthWashington University in St. LouisSt. LouisMissouriUSA
- Department of PsychologyFaculty of HumanitiesUniversity of JohannesburgJohannesburgSouth Africa
- Department of Clinical Research and LeadershipThe George Washington University School of Medicine and Health SciencesWashington DCUSA
| | | |
Collapse
|
7
|
Losinski GM, Key MN, Vidoni ED, Clutton J, Morris JK, Burns JM, Watts A. APOE4 and Chronic Health Risk Factors are Associated with Sex-Specific Preclinical Alzheimer's Disease Neuroimaging Biomarkers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.21.24317732. [PMID: 39606325 PMCID: PMC11601779 DOI: 10.1101/2024.11.21.24317732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Introduction Two thirds of Alzheimer's disease (AD) patients are female. Genetic and chronic health risk factors for AD affect females more negatively compared to males. Objective This exploratory multimodal neuroimaging study aimed to examine sex differences in cognitively unimpaired older adults on: (1) amyloid-β via 18F-AV-45 Florbetapir PET imaging, (2) neurodegeneration via T1 weighted MRI volumetrics, (3) cerebral blood flow via ASL-MRI. We identified AD risk factors including genetic (APOE genotype status) and health markers (fasting glucose, mean arterial pressure, waist-to-hip ratio, and android and gynoid body fat) associated with neuroimaging outcomes for which we observed sex differences. Methods Participants were sedentary, amyloid-β positive older adults (N = 112, ages 65-87 years) without evidence of cognitive impairment (CDR = 0). Results Multivariate analysis of covariance models adjusted for intracranial volume, age, and years of education demonstrated lower volume (F (7, 102) = 2.67, p = 0.014) and higher blood flow F (6, 102) = 4.25, p =<0.001) among females compared to males in regions of interest connected to AD pathology and the estrogen receptor network. We did not observe sex differences in amyloid-β levels. Higher than optimal waist to hip ratio was most strongly associated with lower volume, while higher android fat percentage and APOE ε4 carrier status were most strongly associated with higher blood flow among female participants. Discussion Findings suggest genetic and chronic health risk factors are associated with sex-specific AD neuroimaging biomarkers. Underlying sex-specific biological pathways may explain these findings. Our results highlight the importance of considering sex differences in neuroimaging studies and when developing effective interventions for AD prevention and risk reduction.
Collapse
Affiliation(s)
| | - Mickeal N. Key
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Eric D. Vidoni
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Jonathan Clutton
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Amber Watts
- Department of Psychology, University of Kansas
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| |
Collapse
|
8
|
Mielke MM, Anderson M, Ashford JW, Jeromin A, Lin P, Rosen A, Tyrone J, VandeVrede L, Willis D, Hansson O, Khachaturian AS, Schindler SE, Weiss J, Batrla R, Bozeat S, Dwyer JR, Holzapfel D, Jones DR, Murray JF, Partrick KA, Scholler E, Vradenburg G, Young D, Braunstein JB, Burnham SC, de Oliveira FF, Hu YH, Mattke S, Merali Z, Monane M, Sabbagh MN, Shobin E, Weiner MW, Udeh‐Momoh CT. Considerations for widespread implementation of blood-based biomarkers of Alzheimer's disease. Alzheimers Dement 2024; 20:8209-8215. [PMID: 39369283 PMCID: PMC11567842 DOI: 10.1002/alz.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 10/07/2024]
Abstract
Diagnosing Alzheimer's disease (AD) poses significant challenges to health care, often resulting in delayed or inadequate patient care. The clinical integration of blood-based biomarkers (BBMs) for AD holds promise in enabling early detection of pathology and timely intervention. However, several critical considerations, such as the lack of consistent guidelines for assessing cognition, limited understanding of BBM test characteristics, insufficient evidence on BBM performance across diverse populations, and the ethical management of test results, must be addressed for widespread clinical implementation of BBMs in the United States. The Global CEO Initiative on Alzheimer's Disease BBM Workgroup convened to address these challenges and provide recommendations that underscore the importance of evidence-based guidelines, improved training for health-care professionals, patient empowerment through informed decision making, and the necessity of community-based studies to understand BBM performance in real-world populations. Multi-stakeholder engagement is essential to implement these recommendations and ensure credible guidance and education are accessible to all stakeholders.
Collapse
Affiliation(s)
- Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | - J. Wesson Ashford
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
- War Related Illness and Injury Study Center, VA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | | | - Pei‐Jung Lin
- Center for the Evaluation of Value and Risk in Health Institute for Clinical Research and Health Policy Studies, Tufts Medical CenterBostonMassachusettsUSA
| | - Allyson Rosen
- Palo Alto Veterans Affairs Medical CenterPalo AltoCaliforniaUSA
- Stanford University School of MedicineStanfordCaliforniaUSA
| | | | - Lawren VandeVrede
- Memory and Aging CenterDepartment of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Deanna Willis
- Department of Family MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | | | - Suzanne E. Schindler
- Department of NeurologyKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Joan Weiss
- US Department of Health and Human ServicesHealth Resources and Services Administration, Bureau of Health WorkforceRockvilleMarylandUSA
| | | | | | - John R. Dwyer
- Global Alzheimer's Platform FoundationWashingtonDistrict of ColumbiaUSA
| | - Drew Holzapfel
- The Global CEO Initiative on Alzheimer's DiseasePhiladelphiaPennsylvaniaUSA
- Davos Alzheimer's CollaborativePhiladelphiaPennsylvaniaUSA
| | | | | | | | - Emily Scholler
- The Global CEO Initiative on Alzheimer's DiseasePhiladelphiaPennsylvaniaUSA
- Davos Alzheimer's CollaborativePhiladelphiaPennsylvaniaUSA
| | - George Vradenburg
- The Global CEO Initiative on Alzheimer's DiseasePhiladelphiaPennsylvaniaUSA
- Davos Alzheimer's CollaborativePhiladelphiaPennsylvaniaUSA
| | | | | | | | | | | | - Soeren Mattke
- The USC Brain Health ObservatoryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zul Merali
- Brain and Mind InstituteAga Khan UniversityNairobiKenya
| | | | | | | | - Michael W. Weiner
- Departments of Radiology and Biomedical Imaging, Medicine, Psychiatry, and NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Chinedu T. Udeh‐Momoh
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Brain and Mind InstituteAga Khan UniversityNairobiKenya
| |
Collapse
|
9
|
Wang WE, Asken BM, DeSimone JC, Levy SA, Barker W, Fiala JA, Velez-Uribe I, Curiel Cid RE, Rósselli M, Marsiske M, Adjouadi M, Loewenstein DA, Duara R, Smith GE, Armstrong MJ, Barnes LL, Vaillancourt DE, Coombes SA. Neuroimaging and biofluid biomarkers across race and ethnicity in older adults across the spectrum of cognition. Ageing Res Rev 2024; 101:102507. [PMID: 39306249 PMCID: PMC11531386 DOI: 10.1016/j.arr.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Neuroimaging and biofluid biomarkers provide a proxy of pathological changes for Alzheimer's disease (AD) and are useful in improving diagnosis and assessing disease progression. However, it is not clear how race/ethnicity and different prevalence of AD risks impact biomarker levels. In this narrative review, we survey studies focusing on comparing biomarker differences between non-Hispanic White American(s) (NHW), African American(s) (AA), Hispanic/Latino American(s) (HLA), and Asian American(s) with normal cognition, mild cognitive impairment, and dementia. We found no strong evidence of racial and ethnic differences in imaging biomarkers after controlling for cognitive status and cardiovascular risks. For biofluid biomarkers, in AA, higher levels of plasma Aβ42/Aβ40, and lower levels of CSF total tau and p-tau 181, were observed after controlling for APOE status and comorbidities compared to NHW. Examining the impact of AD risks and comorbidities on biomarkers and their contributions to racial/ethnic differences in cognitive impairment are critical to interpreting biomarkers, understanding their generalizability, and eliminating racial/ethnic health disparities.
Collapse
Affiliation(s)
- Wei-En Wang
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Breton M Asken
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Jesse C DeSimone
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Shellie-Anne Levy
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Warren Barker
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mt. Sinai Medical Center, Miami, FL, USA
| | - Jacob A Fiala
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Idaly Velez-Uribe
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mt. Sinai Medical Center, Miami, FL, USA
| | - Rosie E Curiel Cid
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Departments of Psychiatry and Behavioral Sciences and Neurology, Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL, USA
| | - Monica Rósselli
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Psychology, Florida Atlantic University, Davie, FL, USA
| | - Michael Marsiske
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Malek Adjouadi
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - David A Loewenstein
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Departments of Psychiatry and Behavioral Sciences and Neurology, Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL, USA
| | - Ranjan Duara
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mt. Sinai Medical Center, Miami, FL, USA
| | - Glenn E Smith
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Melissa J Armstrong
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David E Vaillancourt
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL, USA
| | - Stephen A Coombes
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Lah JJ, Tian G, Risk BB, Hanfelt JJ, Wang L, Zhao L, Hales CM, Johnson ECB, Elmor MB, Malakauskas SJ, Heilman C, Wingo TS, Dorbin CD, Davis CP, Thomas TI, Hajjar IM, Levey AI, Parker MW. Lower Prevalence of Asymptomatic Alzheimer's Disease Among Healthy African Americans. Ann Neurol 2024; 96:463-475. [PMID: 38924596 DOI: 10.1002/ana.26960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) is believed to be more common in African Americans (AA), but biomarker studies in AA populations are limited. This report represents the largest study to date examining cerebrospinal fluid AD biomarkers in AA individuals. METHODS We analyzed 3,006 cerebrospinal fluid samples from controls, AD cases, and non-AD cases, including 495 (16.5%) self-identified black/AA and 2,456 (81.7%) white/European individuals using cutoffs derived from the Alzheimer's Disease Neuroimaging Initiative, and using a data-driven multivariate Gaussian mixture of regressions. RESULTS Distinct effects of race were found in different groups. Total Tauand phospho181-Tau were lower among AA individuals in all groups (p < 0.0001), and Aβ42 was markedly lower in AA controls compared with white controls (p < 0.0001). Gaussian mixture of regressions modeling of cerebrospinal fluid distributions incorporating adjustments for covariates revealed coefficient estimates for AA race comparable with 2-decade change in age. Using Alzheimer's Disease Neuroimaging Initiative cutoffs, fewer AA controls were classified as biomarker-positive asymptomatic AD (8.0% vs 13.4%). After adjusting for covariates, our Gaussian mixture of regressions model reduced this difference, but continued to predict lower prevalence of asymptomatic AD among AA controls (9.3% vs 13.5%). INTERPRETATION Although the risk of dementia is higher, data-driven modeling indicates lower frequency of asymptomatic AD in AA controls, suggesting that dementia among AA populations may not be driven by higher rates of AD. ANN NEUROL 2024;96:463-475.
Collapse
Affiliation(s)
- James J Lah
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Ganzhong Tian
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Benjamin B Risk
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John J Hanfelt
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Liangkang Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Liping Zhao
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Chadwick M Hales
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Erik C B Johnson
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Morgan B Elmor
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Sarah J Malakauskas
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Craig Heilman
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Cornelya D Dorbin
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Crystal P Davis
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Tiffany I Thomas
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Ihab M Hajjar
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Monica W Parker
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Duggan MR, Gomez GT, Joynes CM, Bilgel M, Chen J, Fattorelli N, Hohman TJ, Mancuso R, Cordon J, Castellano T, Koran MEI, Candia J, Lewis A, Moghekar A, Ashton NJ, Kac PR, Karikari TK, Blennow K, Zetterberg H, Martinez-Muriana A, De Strooper B, Thambisetty M, Ferrucci L, Gottesman RF, Coresh J, Resnick SM, Walker KA. Proteome-wide analysis identifies plasma immune regulators of amyloid-beta progression. Brain Behav Immun 2024; 120:604-619. [PMID: 38977137 PMCID: PMC11682725 DOI: 10.1016/j.bbi.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
While immune function is known to play a mechanistic role in Alzheimer's disease (AD), whether immune proteins in peripheral circulation influence the rate of amyloid-β (Aβ) progression - a central feature of AD - remains unknown. In the Baltimore Longitudinal Study of Aging, we quantified 942 immunological proteins in plasma and identified 32 (including CAT [catalase], CD36 [CD36 antigen], and KRT19 [keratin 19]) associated with rates of cortical Aβ accumulation measured with positron emission tomography (PET). Longitudinal changes in a subset of candidate proteins also predicted Aβ progression, and the mid- to late-life (20-year) trajectory of one protein, CAT, was associated with late-life Aβ-positive status in the Atherosclerosis Risk in Communities (ARIC) study. Genetic variation that influenced plasma levels of CAT, CD36 and KRT19 predicted rates of Aβ accumulation, including causal relationships with Aβ PET levels identified with two-sample Mendelian randomization. In addition to associations with tau PET and plasma AD biomarker changes, as well as expression patterns in human microglia subtypes and neurovascular cells in AD brain tissue, we showed that 31 % of candidate proteins were related to mid-life (20-year) or late-life (8-year) dementia risk in ARIC. Our findings reveal plasma proteins associated with longitudinal Aβ accumulation, and identify specific peripheral immune mediators that may contribute to the progression of AD pathophysiology.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gabriela T Gomez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicola Fattorelli
- VIB Center for Brain and Disease Research, Flanders Institute for Biotechnology, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders Laboratory, Center for Molecular Neurology, Flanders Institute for Biotechnology, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jenifer Cordon
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tonnar Castellano
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ellen I Koran
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Biomedical Research Center for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK; Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; ICM Institute, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France; First Affiliated Hospital, University of Science and Technology of China, Anhui, PR China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, University College London Institute of Neurology, London, UK; UK Dementia Research Institute, University College London, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Special Administrative Region; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Martinez-Muriana
- VIB Center for Brain and Disease Research, Flanders Institute for Biotechnology, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Flanders Institute for Biotechnology, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium; UK Dementia Research Institute, University College London, London, UK
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Josef Coresh
- Departments of Population Health and Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
12
|
Jack CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, Hansson O, Ho C, Jagust W, McDade E, Molinuevo JL, Okonkwo OC, Pani L, Rafii MS, Scheltens P, Siemers E, Snyder HM, Sperling R, Teunissen CE, Carrillo MC. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup. Alzheimers Dement 2024; 20:5143-5169. [PMID: 38934362 PMCID: PMC11350039 DOI: 10.1002/alz.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
The National Institute on Aging and the Alzheimer's Association convened three separate work groups in 2011 and single work groups in 2012 and 2018 to create recommendations for the diagnosis and characterization of Alzheimer's disease (AD). The present document updates the 2018 research framework in response to several recent developments. Defining diseases biologically, rather than based on syndromic presentation, has long been standard in many areas of medicine (e.g., oncology), and is becoming a unifying concept common to all neurodegenerative diseases, not just AD. The present document is consistent with this principle. Our intent is to present objective criteria for diagnosis and staging AD, incorporating recent advances in biomarkers, to serve as a bridge between research and clinical care. These criteria are not intended to provide step-by-step clinical practice guidelines for clinical workflow or specific treatment protocols, but rather serve as general principles to inform diagnosis and staging of AD that reflect current science. HIGHLIGHTS: We define Alzheimer's disease (AD) to be a biological process that begins with the appearance of AD neuropathologic change (ADNPC) while people are asymptomatic. Progression of the neuropathologic burden leads to the later appearance and progression of clinical symptoms. Early-changing Core 1 biomarkers (amyloid positron emission tomography [PET], approved cerebrospinal fluid biomarkers, and accurate plasma biomarkers [especially phosphorylated tau 217]) map onto either the amyloid beta or AD tauopathy pathway; however, these reflect the presence of ADNPC more generally (i.e., both neuritic plaques and tangles). An abnormal Core 1 biomarker result is sufficient to establish a diagnosis of AD and to inform clinical decision making throughout the disease continuum. Later-changing Core 2 biomarkers (biofluid and tau PET) can provide prognostic information, and when abnormal, will increase confidence that AD is contributing to symptoms. An integrated biological and clinical staging scheme is described that accommodates the fact that common copathologies, cognitive reserve, and resistance may modify relationships between clinical and biological AD stages.
Collapse
Affiliation(s)
| | - J. Scott Andrews
- Global Evidence & OutcomesTakeda Pharmaceuticals Company LimitedCambridgeMassachusettsUSA
| | - Thomas G. Beach
- Civin Laboratory for NeuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Teresa Buracchio
- Office of NeuroscienceU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Billy Dunn
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Ana Graf
- NovartisNeuroscience Global Drug DevelopmentBaselSwitzerland
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, MalmöLundSweden
| | - Carole Ho
- DevelopmentDenali TherapeuticsSouth San FranciscoCaliforniaUSA
| | - William Jagust
- School of Public Health and Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Eric McDade
- Department of NeurologyWashington University St. Louis School of MedicineSt. LouisMissouriUSA
| | - Jose Luis Molinuevo
- Department of Global Clinical Development H. Lundbeck A/SExperimental MedicineCopenhagenDenmark
| | - Ozioma C. Okonkwo
- Department of Medicine, Division of Geriatrics and GerontologyUniversity of Wisconsin School of MedicineMadisonWisconsinUSA
| | - Luca Pani
- University of MiamiMiller School of MedicineMiamiFloridaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of Medicine at the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Philip Scheltens
- Amsterdam University Medical Center (Emeritus)NeurologyAmsterdamthe Netherlands
| | - Eric Siemers
- Clinical ResearchAcumen PharmaceuticalsZionsvilleIndianaUSA
| | - Heather M. Snyder
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| | - Reisa Sperling
- Department of Neurology, Brigham and Women's HospitalMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Charlotte E. Teunissen
- Department of Laboratory MedicineAmsterdam UMC, Neurochemistry LaboratoryAmsterdamthe Netherlands
| | - Maria C. Carrillo
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| |
Collapse
|
13
|
Evans TE, Vilor-Tejedor N, Operto G, Falcon C, Hofman A, Ibáñez A, Seshadari S, Tan LCS, Weiner M, Alladi S, Anazodo U, Gispert JD, Adams HHH. Structural Brain Differences in the Alzheimer's Disease Continuum: Insights Into the Heterogeneity From a Large Multisite Neuroimaging Consortium. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00207-6. [PMID: 39084525 PMCID: PMC12010407 DOI: 10.1016/j.bpsc.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Neurodegenerative diseases require collaborative, multisite research to comprehensively grasp their complex and diverse pathological progression; however, there is caution in aggregating global data due to data heterogeneity. In the current study, we investigated brain structure across stages of Alzheimer's disease (AD) and how relationships vary across sources of heterogeneity. METHODS Using 6 international datasets (N > 27,000), associations of structural neuroimaging markers were investigated in relation to the AD continuum via meta-analysis. We investigated whether associations varied across elements of magnetic resonance imaging acquisition, study design, and populations. RESULTS Modest differences in associations were found depending on how data were acquired; however, patterns were similar. Preliminary results suggested that neuroimaging marker-AD relationships differ across ethnic groups. CONCLUSIONS Diversity in data offers unique insights into the neural substrate of AD; however, harmonized processing and transparency of data collection are needed. Global collaborations should embrace the inherent heterogeneity that exists in the data and quantify its contribution to research findings at the meta-analytical stage.
Collapse
Affiliation(s)
- Tavia E Evans
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Natalia Vilor-Tejedor
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain; Neurosciences programme, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gregory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | - Albert Hofman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Agustin Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Santiago, Peñalolén, Región Metropolitana, Chile; Universidad de San Andrés & Consejo Nacional de Investigaciones Científicas y técnicas, Victoria, Provincia de Buenos Aires, Argentina; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Sudha Seshadari
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore; Parkinson's Disease and Movement Disorders Centre, International Centre of Excellence, USA Parkinson Foundation, Singapore, Singapore
| | - Michael Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, VA Medical Center, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Suverna Alladi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Udunna Anazodo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Santiago, Peñalolén, Región Metropolitana, Chile.
| |
Collapse
|
14
|
Xiong C, Luo J, Wolk DA, Shaw LM, Roberson ED, Murchison CF, Henson RL, Benzinger TLS, Bui Q, Agboola F, Grant E, Gremminger EN, Moulder KL, Geldmacher DS, Clay OJ, Babulal G, Cruchaga C, Holtzman DM, Bateman RJ, Morris JC, Schindler SE. Baseline levels and longitudinal changes in plasma Aβ42/40 among Black and white individuals. Nat Commun 2024; 15:5539. [PMID: 38956096 PMCID: PMC11219932 DOI: 10.1038/s41467-024-49859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Blood-based biomarkers of Alzheimer disease (AD) may facilitate testing of historically under-represented groups. The Study of Race to Understand Alzheimer Biomarkers (SORTOUT-AB) is a multi-center longitudinal study to compare AD biomarkers in participants who identify their race as either Black or white. Plasma samples from 324 Black and 1,547 white participants underwent analysis with C2N Diagnostics' PrecivityAD test for Aβ42 and Aβ40. Compared to white individuals, Black individuals had higher average plasma Aβ42/40 levels at baseline, consistent with a lower average level of amyloid pathology. Interestingly, this difference resulted from lower average levels of plasma Aβ40 in Black participants. Despite the differences, Black and white individuals had similar longitudinal rates of change in Aβ42/40, consistent with a similar rate of amyloid accumulation. Our results agree with multiple recent studies demonstrating a lower prevalence of amyloid pathology in Black individuals, and additionally suggest that amyloid accumulates consistently across both groups.
Collapse
Affiliation(s)
- Chengjie Xiong
- Division of Biostatistics, Washington University, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center Biostatistics and Qualitative Research Shared Resource, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Wolk
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles F Murchison
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rachel L Henson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Quoc Bui
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - Folasade Agboola
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - Elizabeth Grant
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | | | - Krista L Moulder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David S Geldmacher
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olivio J Clay
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ganesh Babulal
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Royse SK, Snitz BE, Hill AV, Reese AC, Roush RE, Kamboh MI, Bertolet M, Saeed A, Lopresti BJ, Villemagne VL, Lopez OL, Reis SE, Becker JT, Cohen AD. Apolipoprotein E and Alzheimer's disease pathology in African American older adults. Neurobiol Aging 2024; 139:11-19. [PMID: 38582070 DOI: 10.1016/j.neurobiolaging.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
The apolipoprotein-E4 (APOE*4) and apolipoprotein-E2 (APOE*2) alleles are more common in African American versus non-Hispanic white populations, but relationships of both alleles with Alzheimer's disease (AD) pathology among African American individuals are unclear. We measured APOE allele and β-amyloid (Aβ) and tau using blood samples and positron emission tomography (PET) images, respectively. Individual regression models tested associations of each APOE allele with Aβ or tau PET overall, stratified by racialized group, and with a racialized group interaction. We included 358 older adults (42% African American) with Aβ PET, 134 (29% African American) of whom had tau PET. APOE*4 was associated with higher Aβ in non-Hispanic white (P < 0.0001), but not African American (P = 0.64) participants; racialized group modified the association between APOE*4 and Aβ (P < 0.0001). There were no other racialized group differences. These results suggest that the association of APOE*4 and Aβ differs between African American and non-Hispanic white populations. Other drivers of AD pathology in African American populations should be identified as potential therapeutic targets.
Collapse
Affiliation(s)
- Sarah K Royse
- University of Pittsburgh Department of Epidemiology, 130 De Soto Street, Pittsburgh, PA 15261, USA; University of Pittsburgh Department of Radiology, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Beth E Snitz
- University of Pittsburgh Department of Neurology, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Ashley V Hill
- University of Pittsburgh Department of Epidemiology, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - Alexandria C Reese
- University of Pittsburgh Department of Radiology, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Rebecca E Roush
- University of Pittsburgh Department of Neurology, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - M Ilyas Kamboh
- University of Pittsburgh Department of Epidemiology, 130 De Soto Street, Pittsburgh, PA 15261, USA; University of Pittsburgh Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; University of Pittsburgh Department of Human Genetics, 130 De Soto Street, Pittsburgh, PA 15213, USA
| | - Marnie Bertolet
- University of Pittsburgh Department of Epidemiology, 130 De Soto Street, Pittsburgh, PA 15261, USA; University of Pittsburgh Department of Biostatistics, 130 De Soto Street, Pittsburgh, PA 15213, USA
| | - Anum Saeed
- University of Pittsburgh Heart and Vascular Institute, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Brian J Lopresti
- University of Pittsburgh Department of Radiology, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Victor L Villemagne
- University of Pittsburgh Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Oscar L Lopez
- University of Pittsburgh Department of Neurology, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA; University of Pittsburgh Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Steven E Reis
- University of Pittsburgh Heart and Vascular Institute, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - James T Becker
- University of Pittsburgh Department of Neurology, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA; University of Pittsburgh Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; University of Pittsburgh Department of Psychology, 210 South Bouquet Street, Pittsburgh, PA 15260, USA
| | - Ann D Cohen
- University of Pittsburgh Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Schindler SE, Galasko D, Pereira AC, Rabinovici GD, Salloway S, Suárez-Calvet M, Khachaturian AS, Mielke MM, Udeh-Momoh C, Weiss J, Batrla R, Bozeat S, Dwyer JR, Holzapfel D, Jones DR, Murray JF, Partrick KA, Scholler E, Vradenburg G, Young D, Algeciras-Schimnich A, Aubrecht J, Braunstein JB, Hendrix J, Hu YH, Mattke S, Monane M, Reilly D, Somers E, Teunissen CE, Shobin E, Vanderstichele H, Weiner MW, Wilson D, Hansson O. Acceptable performance of blood biomarker tests of amyloid pathology - recommendations from the Global CEO Initiative on Alzheimer's Disease. Nat Rev Neurol 2024; 20:426-439. [PMID: 38866966 DOI: 10.1038/s41582-024-00977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Anti-amyloid treatments for early symptomatic Alzheimer disease have recently become clinically available in some countries, which has greatly increased the need for biomarker confirmation of amyloid pathology. Blood biomarker (BBM) tests for amyloid pathology are more acceptable, accessible and scalable than amyloid PET or cerebrospinal fluid (CSF) tests, but have highly variable levels of performance. The Global CEO Initiative on Alzheimer's Disease convened a BBM Workgroup to consider the minimum acceptable performance of BBM tests for clinical use. Amyloid PET status was identified as the reference standard. For use as a triaging test before subsequent confirmatory tests such as amyloid PET or CSF tests, the BBM Workgroup recommends that a BBM test has a sensitivity of ≥90% with a specificity of ≥85% in primary care and ≥75-85% in secondary care depending on the availability of follow-up testing. For use as a confirmatory test without follow-up tests, a BBM test should have performance equivalent to that of CSF tests - a sensitivity and specificity of ~90%. Importantly, the predictive values of all biomarker tests vary according to the pre-test probability of amyloid pathology and must be interpreted in the complete clinical context. Use of BBM tests that meet these performance standards could enable more people to receive an accurate and timely Alzheimer disease diagnosis and potentially benefit from new treatments.
Collapse
Affiliation(s)
- Suzanne E Schindler
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA.
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Gil D Rabinovici
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | | | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Chi Udeh-Momoh
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Joan Weiss
- US Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Workforce, Rockville, MD, USA
| | | | | | - John R Dwyer
- Global Alzheimer's Platform Foundation, Washington, DC, USA
| | - Drew Holzapfel
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, PA, USA
| | | | | | | | - Emily Scholler
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, PA, USA
| | - George Vradenburg
- Davos Alzheimer's Collaborative, Philadelphia, PA, USA
- UsAgainstAlzheimer's, Washington, DC, USA
| | | | | | | | | | | | | | - Soeren Mattke
- The USC Brain Health Observatory, University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universitiet, Amsterdam, The Netherlands
| | | | | | - Michael W Weiner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
17
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
18
|
Egle M, Deal JA, Walker KA, Wong DF, Sharrett AR, Gottesman RF. Association between retinal microvascular abnormalities and late-life brain amyloid-β deposition: the ARIC-PET study. Alzheimers Res Ther 2024; 16:100. [PMID: 38711107 PMCID: PMC11071225 DOI: 10.1186/s13195-024-01461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Retinal microvascular signs are accessible measures of early alterations in microvascular dysregulation and have been associated with dementia; it is unclear if they are associated with AD (Alzheimer's disease) pathogenesis as a potential mechanistic link. This study aimed to test the association of retinal microvascular abnormalities in mid and late life and late life cerebral amyloid. METHODS Participants from the ARIC-PET (Atherosclerosis Risk in Communities-Positron Emission Tomography) study with a valid retinal measure (N = 285) were included. The associations of mid- and late-life retinal signs with late-life amyloid-β (Aβ) by florbetapir PET were tested. Two different measures of Aβ burden were included: (1) elevated amyloid (SUVR > 1.2) and (2) continuous amyloid SUVR. The retinal measures' association with Aβ burden was assessed using logistic and robust linear regression models. A newly created retinal score, incorporating multiple markers of retinal abnormalities, was also evaluated in association with greater Aβ burden. RESULTS Retinopathy in midlife (OR (95% CI) = 0.36 (0.08, 1.40)) was not significantly associated with elevated amyloid burden. In late life, retinopathy was associated with increased continuous amyloid standardized value uptake ratio (SUVR) (β (95%CI) = 0.16 (0.02, 0.32)) but not elevated amyloid burden (OR (95%CI) = 2.37 (0.66, 9.88)) when accounting for demographic, genetic and clinical risk factors. A high retinal score in late life, indicating a higher burden of retinal abnormalities, was also significantly associated with increased continuous amyloid SUVR (β (95% CI) = 0.16 (0.04, 0.32)) independent of vascular risk factors. CONCLUSIONS Retinopathy in late life may be an easily obtainable marker to help evaluate the mechanistic vascular pathway between retinal measures and dementia, perhaps acting via AD pathogenesis. Well-powered future studies with a greater number of retinal features and other microvascular signs are needed to test these findings.
Collapse
Affiliation(s)
- Marco Egle
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - A Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
19
|
Groechel RC, Liu AC, Liu C, Knopman DS, Koton S, Kucharska‐Newton AM, Lutsey PL, Mosley TH, Palta P, Sharrett AR, Walker KA, Wong DF, Gottesman RF. Social relationships, amyloid burden, and dementia: The ARIC-PET study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12560. [PMID: 38571965 PMCID: PMC10988116 DOI: 10.1002/dad2.12560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/21/2023] [Accepted: 01/30/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION This study aimed to assess whether social relationships in mid-life reduce the risk of dementia related to amyloid burden. METHODS Participants in the Atherosclerosis Risk in Communities (ARIC) study were assessed for social support and isolation (visit 2; 1990-1992). A composite measure, "social relationships," was generated. Brain amyloid was evaluated with florbetapir positron emission tomography (PET); (visit 5; 2012-2014). Incident dementia cases were identified following visit 5 through 2019 using ongoing surveillance. Relative contributions of mid-life social relationships and elevated brain amyloid to incident dementia were evaluated with Cox regression models. RESULTS Among 310 participants without dementia, strong mid-life social relationships were associated independently with lower dementia risk. Elevated late-life brain amyloid was associated with greater dementia risk. DISCUSSION Although mid-life social relationships did not moderate the relationship between amyloid burden and dementia, these findings affirm the importance of strong social relationships as a potentially protective factor against dementia.
Collapse
Affiliation(s)
- Renée C. Groechel
- National Institute of Neurological Disorders & Stroke Intramural Research ProgramNational Institutes of HealthBethesdaMarylandUSA
| | - Albert C. Liu
- Department of EpidemiologyUniversity of North Carolina Gillings School of Global Public HealthChapel HillNorth CarolinaUSA
| | - Chelsea Liu
- Department of EpidemiologyGeorge Washington University‐Milken Institute School of Public HealthWashingtonDistrict of ColumbiaUSA
| | | | - Silvia Koton
- Department of NursingThe Stanley Steyer School of Health ProfessionsTel Aviv UniversityTel AvivIsrael
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Anna M. Kucharska‐Newton
- Department of EpidemiologyUniversity of North Carolina Gillings School of Global Public HealthChapel HillNorth CarolinaUSA
| | - Pamela L. Lutsey
- Division of Epidemiology and Community HealthUniversity of Minnesota School of Public HealthMinneapolisMinnesotaUSA
| | - Thomas H. Mosley
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Priya Palta
- Department of NeurologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - A. Richey Sharrett
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Keenan A. Walker
- National Institute on Aging Intramural Research ProgramNational Institutes of HealthBethesdaMarylandUSA
| | - Dean F. Wong
- Mallinckrodt Institute of RadiologyWashington UniversitySt. LouisMissouriUSA
| | - Rebecca F. Gottesman
- National Institute of Neurological Disorders & Stroke Intramural Research ProgramNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
20
|
Rosano C, Karikari TK, Cvejkus R, Bellaver B, Ferreira PCL, Zmuda J, Wheeler V, Pascoal TA, Miljkovic I. Sex differences in Alzheimer's disease blood biomarkers in a Caribbean population of African ancestry: The Tobago Health Study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12460. [PMID: 38617114 PMCID: PMC11010267 DOI: 10.1002/trc2.12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is increasing in the Caribbean, especially for persons of African ancestry (PAA) and women. However, studies have mostly utilized surveys without AD biomarkers. METHODS In the Tobago Health Study (n = 309; 109 women, mean age 70.3 ± 6.6), we assessed sex differences and risk factors for serum levels of phosphorylated tau-181 (p-tau181), amyloid-beta (Aβ)42/40 ratio, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). Blood samples were from 2010 to 2013 for men and from 2019 to 2023 for women. RESULTS Women were more obese, hypertensive, and sedentary but reported less smoking and alcohol use than men (age-adjusted p < 0.04). Compared to men, women had worse levels of AD biomarkers, with higher p-tau181 and lower Aβ42/40, independent of covariates (p < 0.001). In sex-stratified analyses, higher p-tau181 was associated with older age in women and with hypertension in men. GFAP and NfL did not differ by sex. DISCUSSION Women had worse AD biomarkers than men, unexplained by age, cardiometabolic diseases, or lifestyle. Studying risk factors for AD in PAA is warranted, especially for women earlier in life.
Collapse
Affiliation(s)
- Caterina Rosano
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Thomas K. Karikari
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ryan Cvejkus
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bruna Bellaver
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Joseph Zmuda
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Victor Wheeler
- Tobago Health Studies OfficeScarboroughTobagoTrinidad and Tobago
| | - Tharick A. Pascoal
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Iva Miljkovic
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
21
|
Grill JD, Flournoy C, Dhadda S, Ernstrom K, Sperling R, Molina-Henry D, Tranotti K, Harris R, Kanekiyo M, Gee M, Irizarry M, Kramer L, Aisen P, Raman R. Eligibility Rates among Racially and Ethnically Diverse US Participants in Phase 2 and Phase 3 Placebo-Controlled, Double-Blind, Randomized Trials of Lecanemab and Elenbecestat in Early Alzheimer Disease. Ann Neurol 2024; 95:288-298. [PMID: 37830926 PMCID: PMC11733864 DOI: 10.1002/ana.26819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Many factors contribute to inadequate diversity in Alzheimer disease (AD) clinical trials. We evaluated eligibility rates among racial and ethnic groups at US sites in large global multisite trials in early AD. METHODS Using screening data from 4 randomized, double-blind, placebo-controlled clinical trials in early AD, we assessed rates of eligibility among racial and ethnic groups controlling for other demographic covariates. Each trial incorporated positron emission tomography and/or cerebrospinal fluid to evaluate brain amyloid pathology, as well as typical eligibility criteria used in early AD trials. RESULTS Across the trials, 10,804 US participants were screened: 193 (2%) were of Hispanic ethnicity and Black race, 2,624 (25%) were of Hispanic ethnicity and White race, 118 (1%) were of non-Hispanic ethnicity (NH) and Asian race, 696 (7%) were of NH ethnicity and Black race, and 7,017 (65%) were of NH ethnicity and White race. Data from 156 participants who did not fit into these categories were excluded. Accounting for age, sex, and trial and using NH White participants as a reference group, we observed higher probabilities of ineligibility for amyloid biomarker criteria among Hispanic Black (odds ratio [OR] = 3.20, 95% confidence interval [CI] = 2.11-4.88), Hispanic White (OR = 4.15, 95% CI = 3.58-4.83), NH Asian (OR = 2.35, 95% CI = 1.23-4.55), and NH Black (OR = 3.75, 95% CI = 2.80-5.06) participants. INTERPRETATION Differential eligibility may contribute to underrepresentation of some minoritized racial and ethnic groups in early AD trials. Amyloid biomarker eligibility is a requirement to confirm the diagnosis of AD and for treatment with amyloid-lowering drugs and differed among racial and ethnic groups. ANN NEUROL 2024;95:288-298.
Collapse
Affiliation(s)
- Joshua D Grill
- Institute for Memory Impairments and Neurological Disorders, Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Charlene Flournoy
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | | | - Karin Ernstrom
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Reisa Sperling
- Brigham and Women's Hospital, Massachusetts General Hospital, Boston, MA, USA
| | - Doris Molina-Henry
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | | | | | | | | | | | | | - Paul Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Rema Raman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| |
Collapse
|
22
|
Farkhondeh V, DeCarli C. White matter hyperintensities in diverse populations: A systematic review of literature in the United States. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100204. [PMID: 38298455 PMCID: PMC10828602 DOI: 10.1016/j.cccb.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
As the United States' (US) elderly population becomes increasingly diverse, it is imperative that research studies address cognitive health in diverse populations of older Americans. White Matter Hyperintensities (WMH) are useful imaging findings that can be studied in elderly individuals and have been linked to an increased risk of neurological conditions, such as stroke, cognitive impairment, and dementia. We performed a systematic review of literature using PubMed sources to compile all the studies that investigated the prevalence of ethnic and racial differences of WMH burden amongst diverse groups in the US. We identified 23 unique articles that utilized 16 distinct cohorts of which 94 % were prospective, longitudinal studies that included community-based and family-based populations. The overall results were heterogenous in all aspects of data collection and analysis, limiting our ability to run meta-analyses and draw definitive conclusions. General observations suggest increased vascular risk on African American populations, contributing to greater WMH burden in that population. Overall, the findings of this study indicate a need for a standardized approach to investigating WMH in efforts to measure its clinical impact on diverse populations.
Collapse
Affiliation(s)
- Vista Farkhondeh
- Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA, United States
- Imaging of Dementia and Aging Laboratory and Center for Neurosciences, Davis, CA, United States
| | - Charles DeCarli
- Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA, United States
- Imaging of Dementia and Aging Laboratory and Center for Neurosciences, Davis, CA, United States
| |
Collapse
|
23
|
Xiong C, Schindler S, Luo J, Morris J, Bateman R, Holtzman D, Cruchaga C, Babulal G, Henson R, Benzinger T, Bui Q, Agboola F, Grant E, Emily G, Moulder K, Geldmacher D, Clay O, Roberson E, Murchison C, Wolk D, Shaw L. Baseline levels and longitudinal rates of change in plasma Aβ42/40 among self-identified Black/African American and White individuals. RESEARCH SQUARE 2024:rs.3.rs-3783571. [PMID: 38260384 PMCID: PMC10802715 DOI: 10.21203/rs.3.rs-3783571/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Objective The use of blood-based biomarkers of Alzheimer disease (AD) may facilitate access to biomarker testing of groups that have been historically under-represented in research. We evaluated whether plasma Aβ42/40 has similar or different baseline levels and longitudinal rates of change in participants racialized as Black or White. Methods The Study of Race to Understand Alzheimer Biomarkers (SORTOUT-AB) is a multi-center longitudinal study to evaluate for potential differences in AD biomarkers between individuals racialized as Black or White. Plasma samples collected at three AD Research Centers (Washington University, University of Pennsylvania, and University of Alabama-Birmingham) underwent analysis with C2N Diagnostics' PrecivityAD™ blood test for Aβ42 and Aβ40. General linear mixed effects models were used to estimate the baseline levels and rates of longitudinal change for plasma Aβ measures in both racial groups. Analyses also examined whether dementia status, age, sex, education, APOE ε4 carrier status, medical comorbidities, or fasting status modified potential racial differences. Results Of the 324 Black and 1,547 White participants, there were 158 Black and 759 White participants with plasma Aβ measures from at least two longitudinal samples over a mean interval of 6.62 years. At baseline, the group of Black participants had lower levels of plasma Aβ40 but similar levels of plasma Aβ42 as compared to the group of White participants. As a result, baseline plasma Aβ42/40 levels were higher in the Black group than the White group, consistent with the Black group having lower levels of amyloid pathology. Racial differences in plasma Aβ42/40 were not modified by age, sex, education, APOE ε4 carrier status, medical conditions (hypertension and diabetes), or fasting status. Despite differences in baseline levels, the Black and White groups had a similar longitudinal rate of change in plasma Aβ42/40. Interpretation Black individuals participating in AD research studies had a higher mean level of plasma Aβ42/40, consistent with a lower level of amyloid pathology, which, if confirmed, may imply a lower proportion of Black individuals being eligible for AD clinical trials in which the presence of amyloid is a prerequisite. However, there was no significant racial difference in the rate of change in plasma Aβ42/40, suggesting that amyloid pathology accumulates similarly across racialized groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Quoc Bui
- Washington University School of Medicine
| | | | | | | | | | | | | | | | | | - David Wolk
- Department of Neurology, University of Pennsylvania
| | - Leslie Shaw
- Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
24
|
Groechel RC, Liu AC, Koton S, Kucharska-Newton AM, Lutsey PL, Mosley TH, Palta P, Sharrett AR, Walker KA, Wong DF, Gottesman RF. Associations Between Mid-Life Psychosocial Measures and Estimated Late Life Amyloid Burden: The Atherosclerosis Risk in Communities (ARIC)-PET Study. J Alzheimers Dis 2024; 97:1901-1911. [PMID: 38339934 DOI: 10.3233/jad-231218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Background Psychosocial factors are modifiable risk factors for Alzheimer's disease (AD). One mechanism linking psychosocial factors to AD risk may be through biological measures of brain amyloid; however, this association has not been widely studied. Objective To determine if mid-life measures of social support and social isolation in the Atherosclerosis Risk in Communities (ARIC) Study cohort are associated with late life brain amyloid burden, measured using florbetapir positron emission tomography (PET). Methods Measures of social support and social isolation were assessed in ARIC participants (visit 2: 1990-1992). Brain amyloid was evaluated with florbetapir PET standardized uptake value ratios (SUVRs; visit 5: 2012-2014). Results Among 316 participants without dementia, participants with intermediate (odds ratio (OR), 0.47; 95% CI, 0.25-0.88), or low social support (OR, 0.43; 95% CI, 0.22-0.83) in mid-life were less likely to have elevated amyloid SUVRs, relative to participants with high social support. Participants with moderate risk for social isolation in mid-life (OR, 0.32; 95% CI, 0.14-0.74) were less likely to have elevated amyloid burden than participants at low risk for social isolation. These associations were not significantly modified by sex or race. Conclusions Lower social support and moderate risk of social isolation in mid-life were associated with lower odds of elevated amyloid SUVR in late life, compared to participants with greater mid-life psychosocial measures. Future longitudinal studies evaluating mid-life psychosocial factors, in relation to brain amyloid as well as other health outcomes, will strengthen our understanding of the role of these factors throughout the lifetime.
Collapse
Affiliation(s)
- Renee C Groechel
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Albert C Liu
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Silvia Koton
- Department of Nursing, The Stanley Steyer School of Health Professions, Tel Aviv University, Tel Aviv, Israel
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna M Kucharska-Newton
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Pamela L Lutsey
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Priya Palta
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A Richey Sharrett
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keenan A Walker
- National Institute on Aging Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Dean F Wong
- Department of Radiology, Washington University, Saint Louis, MO, USA
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Jiang X, Bahorik AL, Graff-Radford NR, Yaffe K. Association of Plasma Amyloid-β and Dementia Among Black and White Older Adults. J Alzheimers Dis 2024; 99:787-797. [PMID: 38701147 DOI: 10.3233/jad-240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Plasma amyloid-β (Aβ) has emerged as an important tool to detect risks of Alzheimer's disease and related dementias, although research in diverse populations is lacking. Objective We compared plasma Aβ42/40 by race with dementia risk over 15 years among Black and White older adults. Methods In a prospective cohort of 997 dementia-free participants (mean age 74±2.9 years, 55% women, 54% Black), incident dementia was identified based on hospital records, medication, and neurocognitive test over 15 years. Plasma Aβ42/40 was measured at Year 2 and categorized into low, medium, and high tertile. We used linear regression to estimate mean Aβ42/40 by race and race-stratified Cox proportional hazards models to assess the association between Aβ42/40 tertile and dementia risk. Results Black participants had a lower age-adjusted mean Aβ 42/40 compared to White participants, primarily among APOE ɛ4 non-carriers (Black: 0.176, White: 0.185, p = 0.035). Among Black participants, lower Aβ 42/40 was associated with increased dementia risk: 33% in low (hazard ratios [HR] = 1.77, 95% confidence interval 1.09-2.88) and 27% in medium tertile (HR = 1.67, 1.01-2.78) compared with 18% in high Aβ 42/40 tertile; Increased risks were attenuated among White participants: 21% in low (HR = 1.43, 0.81-2.53) and 23% in medium tertile (HR = 1.27, 0.68-2.36) compared with 15% in high Aβ 42/40 tertile. The interaction by race was not statistically significant. Conclusions Among community-dwelling, non-demented older adults, especially APOE ɛ4 non-carriers, Black individuals had lower plasma Aβ 42/40 and demonstrated a higher dementia risk with low Aβ42/40 compared with White individuals.
Collapse
Affiliation(s)
- Xiaqing Jiang
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Amber L Bahorik
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Kristine Yaffe
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- San Francisco VA Health Care System, San Francisco, CA, USA
| |
Collapse
|
26
|
Kimura N, Aota T, Aso Y, Yabuuchi K, Sasaki K, Masuda T, Eguchi A, Maeda Y, Aoshima K, Matsubara E. Predicting positron emission tomography brain amyloid positivity using interpretable machine learning models with wearable sensor data and lifestyle factors. Alzheimers Res Ther 2023; 15:212. [PMID: 38087316 PMCID: PMC10714506 DOI: 10.1186/s13195-023-01363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Developing a screening method for identifying individuals at higher risk of elevated brain amyloid burden is important to reduce costs and burden to patients in clinical trials on Alzheimer's disease or the clinical setting. We developed machine learning models using objectively measured lifestyle factors to predict elevated brain amyloid burden on positron emission tomography. METHODS Our prospective cohort study of non-demented, community-dwelling older adults aged ≥ 65 years was conducted from August 2015 to September 2019 in Usuki, Oita Prefecture, Japan. One hundred and twenty-two individuals with mild cognitive impairment or subjective memory complaints (54 men and 68 women, median age: 75.50 years) wore wearable sensors and completed self-reported questionnaires, cognitive test, and positron emission tomography imaging at baseline. Moreover, 99 individuals in the second year and 61 individuals in the third year were followed up. In total, 282 eligible records with valid wearable sensors, cognitive test results, and amyloid imaging and data on demographic characteristics, living environments, and health behaviors were used in the machine learning models. Amyloid positivity was defined as a standardized uptake value ratio of ≥ 1.4. Models were constructed using kernel support vector machine, Elastic Net, and logistic regression for predicting amyloid positivity. The mean score among 10 times fivefold cross-validation repeats was utilized for evaluation. RESULTS In Elastic Net, the mean area under the receiver operating characteristic curve of the model using objectively measured lifestyle factors alone was 0.70, whereas that of the models using wearable sensors in combination with demographic characteristics and health and life environment questionnaires was 0.79. Moreover, 22 variables were common to all machine learning models. CONCLUSION Our machine learning models are useful for predicting elevated brain amyloid burden using readily-available and noninvasive variables without the need to visit a hospital. TRIAL REGISTRATION This prospective study was conducted in accordance with the Declaration of Helsinki and was approved by the local ethics committee of Oita University Hospital (UMIN000017442). A written informed consent was obtained from all participants. This research was performed based on the Strengthening the Reporting of Observational Studies in Epidemiology reporting guideline.
Collapse
Affiliation(s)
- Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan.
| | - Tomoki Aota
- Microbes & Host Defense Domain Deep Human Biology Learning, Eisai Co., Ltd, 5-1-3, Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Yasuhiro Aso
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| | - Kenichi Yabuuchi
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| | - Kotaro Sasaki
- Microbes & Host Defense Domain Deep Human Biology Learning, Eisai Co., Ltd, 5-1-3, Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Teruaki Masuda
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| | - Atsuko Eguchi
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| | - Yoshitaka Maeda
- Microbes & Host Defense Domain Deep Human Biology Learning, Eisai Co., Ltd, 5-1-3, Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Ken Aoshima
- Microbes & Host Defense Domain Deep Human Biology Learning, Eisai Co., Ltd, 5-1-3, Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| |
Collapse
|
27
|
Deal JA, Jiang K, Rawlings A, Sharrett AR, Reed NS, Knopman D, Mosley T, Wong D, Zhou Y, Lin FR, Gottesman RF. Hearing, β-Amyloid Deposition and Cognitive Test Performance in Black and White Older Adults: The ARIC-PET Study. J Gerontol A Biol Sci Med Sci 2023; 78:2105-2110. [PMID: 37419460 PMCID: PMC10613014 DOI: 10.1093/gerona/glad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Hearing loss is a risk factor for dementia; whether the association is causal or due to a shared pathology is unknown. We estimated the association of brain β-amyloid with hearing, hypothesizing no association. As a positive control, we quantified the association of hearing loss with neurocognitive test performance. METHODS Cross-sectional analysis of Atherosclerosis Risk in Communities-Positron Emission Tomography study data. Amyloid was measured using global cortical and temporal lobe standardized uptake value ratios (SUVRs) calculated from florbetapir-positron emission tomography scans. Composite global and domain-specific cognitive scores were created from 10 neurocognitive tests. Hearing was measured using an average of better-ear air conduction thresholds (0.5-4 kHz). Multivariable-adjusted linear regression estimated mean differences in hearing by amyloid and mean differences in cognitive scores by hearing, stratified by race. RESULTS In 252 dementia-free adults (72-92 years, 37% Black race, and 61% female participants), cortical or temporal lobe SUVR was not associated with hearing (models adjusted for age, sex, education, and APOE ε4). Each 10 dB HL increase in hearing loss was associated with a 0.134 standard deviation lower mean global cognitive factor score (95% CI: -0.248, -0.019), after adjustment for demographic and cardiovascular factors. Observed hearing-cognition associations were stronger in Black versus White participants. CONCLUSIONS Amyloid is not associated with hearing, suggesting that pathways linking hearing and cognition are independent of this pathognomonic Alzheimer's-related brain change. This is the first study to show that the impact of hearing loss on cognition may be stronger in Black versus White adults.
Collapse
Affiliation(s)
- Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kening Jiang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andreea Rawlings
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Kaiser Permanente Center for Health Research, Portland, Oregon, USA
| | - A Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nicholas S Reed
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Mosley
- The MIND Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Dean Wong
- Millinckrodt Institute of Radiology, Washington University School of St. Louis, St. Louis, Missouri, USA
| | - Yun Zhou
- Department of Radiology, Section of High Resolution Brain PET Imaging, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Frank R Lin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Bethesda, Maryland, USA
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Okine DN, Knopman DS, Mosley TH, Wong DF, Johansen MC, Walker KA, Jack CR, Kantarci K, Pike JR, Graff-Radford J, Gottesman RF. Cerebral Microbleed Patterns and Cortical Amyloid-β: The ARIC-PET Study. Stroke 2023; 54:2613-2620. [PMID: 37638398 PMCID: PMC10877560 DOI: 10.1161/strokeaha.123.042835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cerebral microbleeds (CMBs) are associated with cognitive decline, but their importance outside of cerebral amyloid angiopathy and the mechanisms of their impact on cognition are poorly understood. We evaluated the cross-sectional association between CMB patterns and cerebral Aβ (amyloid-β) deposition, by florbetapir positron emission tomography. METHODS The longitudinal ARIC study (Atherosclerosis Risk in Communities) recruited individuals from 4 US communities from 1987 to 1989. From 2012 to 2014, the ARIC-PET (Atherosclerosis Risk in Communities - Positron Emission Tomography) ancillary recruited 322 nondemented ARIC participants who completed 3T brain magnetic resonance imaging with T2*GRE as part of ARIC visit 5 to undergo florbetapir positron emission tomography imaging. Magnetic resonance imaging images were read for CMBs and superficial siderosis; on positron emission tomography, global cortical standardized uptake value ratio >1.2 was considered a positive Aβ scan. Multivariable logistic regression models evaluated CMB characteristics in association with Aβ positivity. Effect modification by sex, race, APOE status, and cognition was evaluated. RESULTS CMBs were present in 24% of ARIC-PET participants. No significant associations were found between CMBs and Aβ positivity, but a pattern of isolated lobar CMBs or superficial siderosis was associated with over 4-fold higher odds of elevated Aβ when compared with those with no CMBs (odds ratio, 4.72 [95% CI, 1.16-19.16]). A similar elevated risk was not observed in those with isolated subcortical or mixed subcortical and either lobar CMBs or superficial siderosis. Although no significant interactions were found, effect estimates for elevated Aβ were nonsignificantly lower (P>0.10, odds ratio, 0.4-0.6) for a mixed CMB pattern, and odds ratios were nonsignificantly higher for lobar-only CMBs for 4 subgroups: women (versus men); Black participants (versus White participants), APOE ε4 noncarriers (versus carriers), and cognitively normal (versus mild cognitive impairment). CONCLUSIONS In this community-based cohort of nondemented adults, lobar-only pattern of CMBs or superficial siderosis is most strongly associated with brain Aβ, with no elevated risk for a mixed CMB pattern. Further studies are needed to understand differences in CMB patterns and their meaning across subgroups.
Collapse
Affiliation(s)
- Derrick N. Okine
- National Institute of Neurological Disorders and Stroke Intramural Research Program, NIH, Bethesda, MD
| | | | - Thomas H. Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Dean F. Wong
- Department of Radiology, Washington University, St. Louis, MO
| | - Michelle C. Johansen
- Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD
| | - Keenan A. Walker
- National Institute on Aging Intramural Program, NIH, Baltimore, MD
| | | | | | - James R. Pike
- Gillings School of Global Public Health, University of North Carolina
| | | | - Rebecca F. Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, NIH, Bethesda, MD
| |
Collapse
|
29
|
Bennett EE, Song Z, Lynch KM, Liu C, Stapp EK, Xu X, Park ES, Ying Q, Smith RL, Stewart JD, Whitsel EA, Mosley TH, Wong DF, Liao D, Yanosky JD, Szpiro AA, Kaufman JD, Gottesman RF, Power MC. The association of long-term exposure to criteria air pollutants, fine particulate matter components, and airborne trace metals with late-life brain amyloid burden in the Atherosclerosis Risk in Communities (ARIC) study. ENVIRONMENT INTERNATIONAL 2023; 180:108200. [PMID: 37774459 PMCID: PMC10620775 DOI: 10.1016/j.envint.2023.108200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Studies suggest associations between long-term ambient air pollution exposure and outcomes related to Alzheimer's disease (AD). Whether a link exists between pollutants and brain amyloid accumulation, a biomarker of AD, is unclear. We assessed whether long-term air pollutant exposures are associated with late-life brain amyloid deposition in Atherosclerosis Risk in Communities (ARIC) study participants. METHODS We used a chemical transport model with data fusion to estimate ambient concentrations of PM2.5 and its components, NO2, NOx, O3 (24-hour and 8-hour), CO, and airborne trace metals. We linked concentrations to geocoded participant addresses and calculated 10-year mean exposures (2002 to 2011). Brain amyloid deposition was measured using florbetapir amyloid positron emission tomography (PET) scans in 346 participants without dementia in 2012-2014, and we defined amyloid positivity as a global cortical standardized uptake value ratio ≥ the sample median of 1.2. We used logistic regression models to quantify the association between amyloid positivity and each air pollutant, adjusting for putative confounders. In sensitivity analyses, we considered whether use of alternate air pollution estimation approaches impacted findings for PM2.5, NO2, NOx, and 24-hour O3. RESULTS At PET imaging, eligible participants (N = 318) had a mean age of 78 years, 56% were female, 43% were Black, and 27% had mild cognitive impairment. We did not find evidence of associations between long-term exposure to any pollutant and brain amyloid positivity in adjusted models. Findings were materially unchanged in sensitivity analyses using alternate air pollution estimation approaches for PM2.5, NO2, NOx, and 24-hour O3. CONCLUSIONS Air pollution may impact cognition and dementia independent of amyloid accumulation, though whether air pollution influences AD pathogenesis later in the disease course or at higher exposure levels deserves further consideration.
Collapse
Affiliation(s)
- Erin E Bennett
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA.
| | - Ziwei Song
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Katie M Lynch
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Chelsea Liu
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Emma K Stapp
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Xiaohui Xu
- Department of Epidemiology & Biostatistics, Texas A&M Health Science Center School of Public Health, College Station, TX, USA
| | - Eun Sug Park
- Texas A&M Transportation Institute, College Station, TX, USA
| | - Qi Ying
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX, USA
| | - Richard L Smith
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas H Mosley
- The University of Mississippi Medical Center, Jackson, MS, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Duanping Liao
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA; Department of Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Melinda C Power
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| |
Collapse
|
30
|
Misiura MB, Butts B, Hammerschlag B, Munkombwe C, Bird A, Fyffe M, Hemphill A, Dotson VM, Wharton W. Intersectionality in Alzheimer's Disease: The Role of Female Sex and Black American Race in the Development and Prevalence of Alzheimer's Disease. Neurotherapeutics 2023; 20:1019-1036. [PMID: 37490246 PMCID: PMC10457280 DOI: 10.1007/s13311-023-01408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
It is well known that vascular factors and specific social determinants of health contribute to dementia risk and that the prevalence of these risk factors differs according to race and sex. In this review, we discuss the intersection of sex and race, particularly female sex and Black American race. Women, particularly Black women, have been underrepresented in Alzheimer's disease clinical trials and research. However, in recent years, the number of women participating in clinical research has steadily increased. A greater prevalence of vascular risk factors such as hypertension and type 2 diabetes, coupled with unique social and environmental pressures, puts Black American women particularly at risk for the development of Alzheimer's disease and related dementias. Female sex hormones and the use of hormonal birth control may offer some protective benefits, but results are mixed, and studies do not consistently report the demographics of their samples. We argue that as a research community, greater efforts should be made to not only recruit this vulnerable population, but also report the demographic makeup of samples in research to better target those at greatest risk for the disease.
Collapse
Affiliation(s)
- Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA.
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Bruno Hammerschlag
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Chinkuli Munkombwe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Arianna Bird
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Mercedes Fyffe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Asia Hemphill
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Whitney Wharton
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
31
|
Williams T, Bathe T, Vo Q, Sacilotto P, McFarland K, Ruiz AJ, Hery GP, Sullivan P, Borchelt DR, Prokop S, Chakrabarty P. Humanized APOE genotypes influence lifespan independently of tau aggregation in the P301S mouse model of tauopathy. Acta Neuropathol Commun 2023; 11:99. [PMID: 37337279 DOI: 10.1186/s40478-023-01581-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
Apolipoprotein (APOE) E4 isoform is a major risk factor of Alzheimer's disease and contributes to metabolic and neuropathological abnormalities during brain aging. To provide insights into whether APOE4 genotype is related to tau-associated neurodegeneration, we have generated human P301S mutant tau transgenic mice (PS19) that carry humanized APOE alleles (APOE2, APOE3 or APOE4). In aging mice that succumbed to paralysis, PS19 mice homozygous for APOE3 had the longest lifespan when compared to APOE4 and APOE2 homozygous mice (APOE3 > APOE4 ~ APOE2). Heterozygous mice with one human APOE and one mouse Apoe allele did not show any variations in lifespan. At end-stage, PS19 mice homozygous for APOE3 and APOE4 showed equivalent levels of phosphorylated tau burden, inflammation levels and ventricular volumes. Compared to these cohorts, PS19 mice homozygous for APOE2 showed lower induction of phosphorylation on selective epitopes, though the effect sizes were small and variable. In spite of this, the APOE2 cohort showed shorter lifespan relative to APOE3 homozygous mice. None of the cohorts accumulated appreciable levels of phosphorylated tau compartmentalized in the insoluble cell fraction. RNAseq analysis showed that the induction of immune gene expression was comparable across all the APOE genotypes in PS19 mice. Notably, the APOE4 homozygous mice showed additional induction of transcripts corresponding to the Alzheimer's disease-related plaque-induced gene signature. In human Alzheimer's disease brain tissues, we found no direct correlation between higher burden of phosphorylated tau and APOE4 genotype. As expected, there was a strong correlation between phosphorylated tau burden with amyloid deposition in APOE4-positive Alzheimer's disease cases. Overall, our results indicate that APOE3 genotype may confer some resilience to tauopathy, while APOE4 and APOE2 may act through multiple pathways to increase the pathogenicity in the context of tauopathy.
Collapse
Affiliation(s)
- Tristan Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Eli Lilly & Company, Indianapolis, IN, 46285, USA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Patricia Sacilotto
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Karen McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Alejandra Jolie Ruiz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Gabriela P Hery
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | | | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
32
|
Kim SY. Personalized Explanations for Early Diagnosis of Alzheimer's Disease Using Explainable Graph Neural Networks with Population Graphs. Bioengineering (Basel) 2023; 10:701. [PMID: 37370632 DOI: 10.3390/bioengineering10060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Leveraging recent advances in graph neural networks, our study introduces an application of graph convolutional networks (GCNs) within a correlation-based population graph, aiming to enhance Alzheimer's disease (AD) prognosis and illuminate the intricacies of AD progression. This methodological approach leverages the inherent structure and correlations in demographic and neuroimaging data to predict amyloid-beta (Aβ) positivity. To validate our approach, we conducted extensive performance comparisons with conventional machine learning models and a GCN model with randomly assigned edges. The results consistently highlighted the superior performance of the correlation-based GCN model across different sample groups in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, suggesting the importance of accurately reflecting the correlation structure in population graphs for effective pattern recognition and accurate prediction. Furthermore, our exploration of the model's decision-making process using GNNExplainer identified unique sets of biomarkers indicative of Aβ positivity in different groups, shedding light on the heterogeneity of AD progression. This study underscores the potential of our proposed approach for more nuanced AD prognoses, potentially informing more personalized and precise therapeutic strategies. Future research can extend these findings by integrating diverse data sources, employing longitudinal data, and refining the interpretability of the model, which potentially has broad applicability to other complex diseases.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea
- Department of Software and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
33
|
Groechel RC, Tripodis Y, Alosco ML, Mez J, Qiu WQ, Mercier G, Goldstein L, Budson AE, Kowall N, Killiany RJ. Annualized changes in rate of amyloid deposition and neurodegeneration are greater in participants who become amyloid positive than those who remain amyloid negative. Neurobiol Aging 2023; 127:33-42. [PMID: 37043881 DOI: 10.1016/j.neurobiolaging.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
This study longitudinally examined participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) who underwent a conversion in amyloid-beta (Aβ) status in comparison to a group of ADNI participants who did not show a change in amyloid status over the same follow-up period. Participants included 136 ADNI dementia-free participants with 2 florbetapir positron emission tomography (PET) scans. Of these participants, 68 showed amyloid conversion as measured on florbetapir PET, and the other 68 did not. Amyloid converters and non-converters were chosen to have representative demographic data (age, education, sex, diagnostic status, and race). The amyloid converter group showed increased prevalence of APOE ε4 (p < 0.001), greater annualized percent volume loss in selected magnetic resonance imaging (MRI) regions (p < 0.05), lower cerebrospinal fluid Aβ1-42 (p < 0.001), and greater amyloid retention (as measured by standard uptake value ratios) on florbetapir PET scans (p < 0.001) in comparison to the non-converter group. These results provide compelling evidence that important neuropathological changes are occurring alongside amyloid conversion.
Collapse
|
34
|
Kociolek AJ, Fernandez KK, Hernandez M, Jin Z, Cosentino S, Zhu CW, Gu Y, Devanand DP, Stern Y. Neuropsychiatric Symptoms and Trajectories of Dependence and Cognition in a Sample of Community-dwelling Older Adults with Dementia. Curr Alzheimer Res 2023; 20:409-419. [PMID: 37694796 PMCID: PMC10726418 DOI: 10.2174/1567205020666230908163414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Neuropsychiatric symptoms (NPS), including psychotic symptoms (hallucinations, illusions, delusions), agitation/aggression, and depressed mood, are common in individuals with Alzheimer's disease (AD) and predict poorer outcomes, including faster disease progression. We aimed to evaluate associations between NPS and cognition and dependence in a multi-ethnic sample of community-dwelling older adults with AD. METHODS Predictors 3 (P3) is a cohort study of AD disease courses recruiting older adults aged 65 and above residing in upper Manhattan. A total of 138 of 293 participants had probable AD at the study baseline. We fit linear mixed models to examine longitudinal associations of time-varying NPS (psychotic symptoms, agitation/aggression, and depressed mood) with dependence and cognition, adjusted for race-ethnicity, sex, education, age, clinical dementia rating score, APOE-ε4, and comorbidity burden; separate interaction models were fit for age, Hispanic ethnicity, and sex. RESULTS Psychotic symptoms were associated with faster rates of increasing dependence and declining cognition over time, agitation/aggression with faster rates of declining cognition, and depressed mood with faster rates of increasing dependence. Among psychotic symptoms, delusions, but not hallucinations or illusions, were associated with worse outcome trajectories. Depressed mood predicted an accelerated increase in dependence in males but not females. CONCLUSION Our results confirm and extend prior results in clinic-based samples. The presence of NPS was associated with worse trajectories of dependence and cognition in this muti-ethnic sample of older adults with AD. Importantly, sex modified the association between depressed mood and dependence. Our results on NPS as predictors of differential AD progression in a community-dwelling, ethnically diverse sample serve to better inform the clinical care of patients and the future development of AD therapies.
Collapse
Affiliation(s)
- Anton J. Kociolek
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kayri K. Fernandez
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michelle Hernandez
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Zhezhen Jin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Stephanie Cosentino
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Carolyn W. Zhu
- Brookdale Department of Geriatrics & Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Bronx, NY, USA
| | - Yian Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Davangere P. Devanand
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
35
|
Boerwinkle AH, Gordon BA, Wisch J, Flores S, Henson RL, Butt OH, McKay N, Chen CD, Benzinger TLS, Fagan AM, Handen BL, Christian BT, Head E, Mapstone M, Rafii MS, O'Bryant S, Lai F, Rosas HD, Lee JH, Silverman W, Brickman AM, Chhatwal JP, Cruchaga C, Perrin RJ, Xiong C, Hassenstab J, McDade E, Bateman RJ, Ances BM. Comparison of amyloid burden in individuals with Down syndrome versus autosomal dominant Alzheimer's disease: a cross-sectional study. Lancet Neurol 2023; 22:55-65. [PMID: 36517172 PMCID: PMC9979840 DOI: 10.1016/s1474-4422(22)00408-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/14/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Important insights into the early pathogenesis of Alzheimer's disease can be provided by studies of autosomal dominant Alzheimer's disease and Down syndrome. However, it is unclear whether the timing and spatial distribution of amyloid accumulation differs between people with autosomal dominant Alzheimer's disease and those with Down syndrome. We aimed to directly compare amyloid changes between these two groups of people. METHODS In this cross-sectional study, we included participants (aged ≥25 years) with Down syndrome and sibling controls who had MRI and amyloid PET scans in the first data release (January, 2020) of the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study. We also included carriers of autosomal dominant Alzheimer's disease genetic mutations and non-carrier familial controls who were within a similar age range to ABC-DS participants (25-73 years) and had MRI and amyloid PET scans at the time of a data freeze (December, 2020) of the Dominantly Inherited Alzheimer Network (DIAN) study. Controls from the two studies were combined into a single group. All DIAN study participants had genetic testing to determine PSEN1, PSEN2, or APP mutation status. APOE genotype was determined from blood samples. CSF samples were collected in a subset of ABC-DS and DIAN participants and the ratio of amyloid β42 (Aβ42) to Aβ40 (Aβ42/40) was measured to evaluate its Spearman's correlation with amyloid PET. Global PET amyloid burden was compared with regards to cognitive status, APOE ɛ4 status, sex, age, and estimated years to symptom onset. We further analysed amyloid PET deposition by autosomal dominant mutation type. We also assessed regional patterns of amyloid accumulation by estimated number of years to symptom onset. Within a subset of participants the relationship between amyloid PET and CSF Aβ42/40 was evaluated. FINDINGS 192 individuals with Down syndrome and 33 sibling controls from the ABC-DS study and 265 carriers of autosomal dominant Alzheimer's disease mutations and 169 non-carrier familial controls from the DIAN study were included in our analyses. PET amyloid centiloid and CSF Aβ42/40 were negatively correlated in carriers of autosomal dominant Alzheimer's disease mutations (n=216; r=-0·565; p<0·0001) and in people with Down syndrome (n=32; r=-0·801; p<0·0001). There was no difference in global PET amyloid burden between asymptomatic people with Down syndrome (mean 18·80 centiloids [SD 28·33]) versus asymptomatic mutation carriers (24·61 centiloids [30·27]; p=0·11) and between symptomatic people with Down syndrome (77·25 centiloids [41·76]) versus symptomatic mutation carriers (69·15 centiloids [51·10]; p=0·34). APOE ɛ4 status and sex had no effect on global amyloid PET deposition. Amyloid deposition was elevated significantly earlier in mutation carriers than in participants with Down syndrome (estimated years to symptom onset -23·0 vs -17·5; p=0·0002). PSEN1 mutations primarily drove this difference. Early amyloid accumulation occurred in striatal and cortical regions for both mutation carriers (n=265) and people with Down syndrome (n=128). Although mutation carriers had widespread amyloid accumulation in all cortical regions, the medial occipital regions were spared in people with Down syndrome. INTERPRETATION Despite minor differences, amyloid PET changes were similar between people with autosomal dominant Alzheimer's disease versus Down syndrome and strongly supported early amyloid dysregulation in individuals with Down syndrome. Individuals with Down syndrome aged at least 35 years might benefit from early intervention and warrant future inclusion in clinical trials, particularly given the relatively high incidence of Down syndrome. FUNDING The National Institute on Aging, Riney and Brennan Funds, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the German Center for Neurodegenerative Diseases, and the Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Anna H Boerwinkle
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Brian A Gordon
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Julie Wisch
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Shaney Flores
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Rachel L Henson
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Omar H Butt
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Nicole McKay
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Charles D Chen
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Tammie L S Benzinger
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley T Christian
- Department of Medical Physics and Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Mark Mapstone
- Department of Neurology, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Sid O'Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph H Lee
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Wayne Silverman
- Department of Pediatrics, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Adam M Brickman
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; G H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Carlos Cruchaga
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Radiology, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
36
|
Affiliation(s)
- Heather E Dark
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
37
|
Sedaghat S, Ji Y, Hughes TM, Coresh J, Grams ME, Folsom AR, Sullivan KJ, Murray AM, Gottesman RF, Mosley TH, Lutsey PL. The Association of Kidney Function with Plasma Amyloid-β Levels and Brain Amyloid Deposition. J Alzheimers Dis 2023; 92:229-239. [PMID: 36710673 PMCID: PMC10124796 DOI: 10.3233/jad-220765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Reduced kidney function is related to brain atrophy and higher risk of dementia. It is not known whether kidney impairment is associated with higher levels of circulating amyloid-β and brain amyloid-β deposition, which could contribute to elevated risk of dementia. OBJECTIVE To investigate whether kidney impairment is associated with higher levels of circulating amyloid-β and brain amyloid-β deposition. METHODS This cross-sectional study was performed within the community-based Atherosclerosis Risk in Communities (ARIC) Study cohort. We used estimated glomerular filtration rate (eGFR) based on serum creatinine and cystatin C levels and urine albumin-to-creatinine ratio (ACR) to assess kidney function. Amyloid positivity was defined as a standardized uptake value ratios > 1.2 measured with florbetapir positron emission tomography (PET) (n = 340). Plasma amyloid-β1 - 40 and amyloid-β1 - 42 were measured using a fluorimetric bead-based immunoassay (n = 2,569). RESULTS Independent of demographic and cardiovascular risk factors, a doubling of ACR was associated with 1.10 (95% CI: 1.01,1.20) higher odds of brain amyloid positivity, but not eGFR (odds ratio per 15 ml/min/1.73 m2 lower eGFR: 1.08; 95% CI: 0.95,1.23). A doubling of ACR was associated with a higher level of plasma amyloid-β1 - 40 (standardized difference: 0.12; 95% CI: 0.09,0.14) and higher plasma amyloid-β1 - 42 (0.08; 95% CI: 0.05,0.10). Lower eGFR was associated with higher plasma amyloid-β1 - 40 (0.36; 95% CI: 0.33,0.39) and higher amyloid-β1 - 42 (0.32; 95% CI: 0.29,0.35). CONCLUSION Low clearance of amyloid-β and elevated brain amyloid positivity may link impaired kidney function with elevated risk of dementia. kidney function should be considered in interpreting amyloid biomarker results in clinical and research setting.
Collapse
Affiliation(s)
- Sanaz Sedaghat
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Yuekai Ji
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Aaron R. Folsom
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Kevin J Sullivan
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Anne M Murray
- Department of Medicine, Geriatrics Division, Hennepin HealthCare, and Hennepin HealthCare Institute, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, NIH, Bethesda, Maryland
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| |
Collapse
|
38
|
Power MC, Engelman BC, Wei J, Glymour MM. Closing the Gap Between Observational Research and Randomized Controlled Trials for Prevention of Alzheimer Disease and Dementia. Epidemiol Rev 2022; 44:17-28. [PMID: 35442427 PMCID: PMC10362937 DOI: 10.1093/epirev/mxac002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
Although observational studies have identified modifiable risk factors for Alzheimer disease and related dementias (ADRD), randomized controlled trials (RCTs) of risk factor modification for ADRD prevention have been inconsistent or inconclusive. This finding suggests a need to improve translation between observational studies and RCTs. However, many common features of observational studies reduce their relevance to designing related RCTs. Observational studies routinely differ from RCTs with respect to eligibility criteria, study population, length of follow-up, treatment conditions, outcomes, and effect estimates. Using the motivating example of blood pressure reduction for ADRD prevention, we illustrate the need for a tighter connection between observational studies and RCTs, discuss barriers to using typically reported observational evidence in developing RCTs, and highlight methods that may be used to make observational research more relevant to clinical trial design. We conclude that the questions asked and answered by observational research can be made more relevant to clinical trial design and that better use of observational data may increase the likelihood of successful, or at least definitive, trials. Although we focus on improving translation of observational studies on risk factors for ADRD to RCTs in ADRD prevention, the overarching themes are broadly applicable to many areas of biomedical research.
Collapse
Affiliation(s)
- Melinda C Power
- Correspondence to Melinda C. Power, Milken Institute School of Public Health, George Washington University, 950 New Hampshire Avenue, NW, Washington, DC 20052 (e-mail: )
| | | | | | | |
Collapse
|
39
|
Casten R, Leiby BE, Kelley M, Rovner BW. A randomized controlled trial to test the efficacy of a diabetes behavioral intervention to prevent memory decline in older blacks/African Americans with diabetes and mild cognitive impairment. Contemp Clin Trials 2022; 123:106977. [PMID: 36341847 PMCID: PMC9787831 DOI: 10.1016/j.cct.2022.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The prevalence of dementia in Blacks/African Americans (AAs) is almost twice that of Whites. Inequities in access to health care, socioeconomic conditions, and diabetes contribute to this disparity. Poorly controlled diabetes, which is more prevalent in Blacks/AAs, causes microvascular disease and neurodegeneration and increases dementia risk. Improving glycemic control, therefore, may prevent cognitive decline. To address this issue, we developed Diabetes Regulation for Eyesight and Memory (DREAM), a community health worker (CHW)-led behavioral intervention to improve diabetes self-management and thereby prevent cognitive decline. DREAM consists of home-based diabetes education, goal setting, and telehealth visits with a diabetes nurse educator. Exploratory aims will investigate whether APOE genotype moderates and retinal biomarkers mediate treatment effects. This report describes the trial's rationale, methodology, and study procedures. (clinicaltrials.gov identifier NCT04259047). METHODS This randomized controlled trial will test the efficacy of DREAM to prevent decline in memory (primary outcome) in Blacks/AAs aged 65+ with poorly controlled diabetes and Mild Cognitive Impairment (MCI). Two hundred participants will be randomized to DREAM or an attention control condition, and will receive 11 in-home treatment sessions over two years. Outcome data are collected at 6, 12, 18, and 24 months. The primary outcome is verbal learning as measured by Hopkins Verbal Learning Test (HVLT) Total Recall scores. Participants will have retinal imaging at baseline, 12, and 24 months. CONCLUSIONS This research aims to prevent cognitive decline in older Blacks/AAs with diabetes and MCI. If successful, this research will preserve health in an underserved population and reduce racial health disparities.
Collapse
Affiliation(s)
- Robin Casten
- Department of Psychiatry and Human Behavior, Sidney Kimmel Medical College at Thomas, Jefferson University, 1015 Walnut Street, Suite 709, Philadelphia, PA 19107, USA.
| | - Benjamin E Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney, Kimmel Medical College at Thomas Jefferson University, 130 S. 19(th) St, 17(th) Floor, Philadelphia, PA 19107, USA.
| | - Megan Kelley
- Department of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, 1015, Walnut Street, Suite 709, Philadelphia, PA 19107, USA.
| | - Barry W Rovner
- Departments of Neurology, Psychiatry, and Ophthalmology, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
40
|
Xiong C, Luo J, Schindler SE, Fagan AM, Benzinger T, Hassenstab J, Balls-Berry JE, Agboola F, Grant E, Moulder KL, Morris JC. Racial differences in longitudinal Alzheimer's disease biomarkers among cognitively normal adults. Alzheimers Dement 2022; 18:2570-2581. [PMID: 35218143 PMCID: PMC9402805 DOI: 10.1002/alz.12608] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Longitudinal changes in Alzheimer's disease (AD) biomarkers, including cerebrospinal fluid (CSF) analytes, amyloid uptakes from positron emission tomography (PET), structural outcomes from magnetic resonance imaging (MRI), and cognition, have not been compared between Blacks and Whites. METHODS A total of 179 Blacks and 1180 Whites who were cognitively normal at baseline and had longitudinal data from at least one biomarker modality were analyzed for the annual rates of change. RESULTS CSF amyloid beta (Aβ)42/Aβ40 declined more slowly (P = .0390), and amyloid (PET) accumulated more slowly (P = .0157), in Blacks than Whites. CSF Aβ42 changed in opposite directions over time between Blacks and Whites (P = .0039). The annual increase in CSF total tau and phosphorylated tau181 for Blacks was about half of that for Whites. DISCUSSION Longitudinal racial differences in amyloid biomarkers are observed. It will be important to comprehensively and prospectively examine the effects of apolipoprotein E genotype and sociocultural factors on these differences.
Collapse
Affiliation(s)
- Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Suzanne E. Schindler
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M. Fagan
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Hassenstab
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joyce E. Balls-Berry
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Folasade Agboola
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth Grant
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Krista L. Moulder
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C. Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
41
|
Youn YC, Kim HR, Shin HW, Jeong HB, Han SW, Pyun JM, Ryoo N, Park YH, Kim S. Prediction of amyloid PET positivity via machine learning algorithms trained with EDTA-based blood amyloid-β oligomerization data. BMC Med Inform Decis Mak 2022; 22:286. [DOI: 10.1186/s12911-022-02024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
The tendency of amyloid-β to form oligomers in the blood as measured with Multimer Detection System-Oligomeric Amyloid-β (MDS-OAβ) is a valuable biomarker for Alzheimer’s disease and has been verified with heparin-based plasma. The objective of this study was to evaluate the performance of ethylenediaminetetraacetic acid (EDTA)-based MDS-OAβ and to develop machine learning algorithms to predict amyloid positron emission tomography (PET) positivity.
Methods
The performance of EDTA-based MDS-OAβ in predicting PET positivity was evaluated in 312 individuals with various machine learning models. The models with various combinations of features (i.e., MDS-OAβ level, age, apolipoprotein E4 alleles, and Mini-Mental Status Examination [MMSE] score) were tested 50 times on each dataset.
Results
The random forest model best-predicted amyloid PET positivity based on MDS-OAβ combined with other features with an accuracy of 77.14 ± 4.21% and an F1 of 85.44 ± 3.10%. The order of significance of predictive features was MDS-OAβ, MMSE, Age, and APOE. The Support Vector Machine using the MDS-OAβ value only showed an accuracy of 71.09 ± 3.27% and F−1 value of 80.18 ± 2.70%.
Conclusions
The Random Forest model using EDTA-based MDS-OAβ combined with the MMSE and apolipoprotein E status can be used to prescreen for amyloid PET positivity.
Collapse
|
42
|
Gillis C, Montenigro P, Nejati M, Maserejian N. Estimating prevalence of early Alzheimer's disease in the United States, accounting for racial and ethnic diversity. Alzheimers Dement 2022; 19:1841-1848. [PMID: 36322470 DOI: 10.1002/alz.12822] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Updated estimates of the US Alzheimer's disease (AD) population, including under-represented populations, are needed to improve clinical trial diversity. METHODS A step-wise approach calculating prevalent numbers from clinical syndrome to biomarker-positive mild cognitive impairment (MCI) due to AD and mild AD was developed, using age-and-race/ethnicity-stratified data where available. RESULTS The estimated percentage of Americans aged ≥ 65 years with MCI due to AD was 9.2% of non-Hispanic Whites, 13.6% of non-Hispanic Blacks, 11.1% Hispanics, and 9.7% other race/ethnicities. The estimated percentage of Americans aged ≥ 65 years with mild dementia due to AD among non-Hispanic Whites was 3.7%, non-Hispanic Blacks 7.0%, Hispanics 5.3%, and 3.9% other race/ethnicities. Of these early-stage AD cases, few are likely diagnosed, ranging from 13% of prevalent non-Hispanic Black cases to 27% of non-Hispanic White cases. DISCUSSION Under-representation in clinical trials may be improved by setting recruitment goals reflecting the diversity of the AD patient population and supporting efforts toward timely diagnosis.
Collapse
|
43
|
Hajjar I, Yang Z, Okafor M, Liu C, Waligorska T, Goldstein FC, Shaw LM. Association of Plasma and Cerebrospinal Fluid Alzheimer Disease Biomarkers With Race and the Role of Genetic Ancestry, Vascular Comorbidities, and Neighborhood Factors. JAMA Netw Open 2022; 5:e2235068. [PMID: 36201209 PMCID: PMC9539715 DOI: 10.1001/jamanetworkopen.2022.35068] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Differences in cerebrospinal fluid (CSF) tau Alzheimer dementia (AD) biomarkers by self-identified race have been observed in prior studies. More recently, plasma biomarkers have been gaining recognition, but whether they exhibit similar differences is unclear. Furthermore, the underlying explanation for these differences in AD biomarkers is still unexplored. OBJECTIVES To investigate differences in plasma biomarkers by race and genetic ancestry and explore potential underlying explanations for these differences. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study used participant data from the Brain, Stress, Hypertension, and Aging Research Program (B-SHARP), an observational study conducted in the greater Atlanta metropolitan area. Participants were enrolled from March 1, 2016, to January 1, 2020. MAIN OUTCOMES AND MEASURES Main outcomes were plasma and CSF amyloid-β (Aβ) 42, Aβ40, phosphorylated tau181 (p-tau181), and neurofilament light. General linear models were used for key comparisons. EXPOSURES Main independent variables were self-identified race and genetic ancestry. Additional variables were cardiovascular factors, APOE4, educational attainment, Area Deprivation Index, and C-reactive protein (reflecting systemic inflammation state). RESULTS This analysis included 617 participants (mean [SD] age, 66 [7.9] years; 300 [49%] African American and 317 [51%] White; 429 [70%] with mild cognitive impairment). On the basis of self-reported race, plasma levels of Aβ42 (adjusted mean difference, -1.20 pg/mL; 95% CI, -2.33 to -0.07 pg/mL), Aβ40 (adjusted mean difference, -37.78 pg/mL; 95% CI, -60.16 to -15.39 pg/mL), p-tau181 (adjusted mean difference, -4.66 pg/mL; 95% CI, -7.05 to -1.90 pg/mL), and neurofilament light (adjusted mean difference, -1.58; 95% CI, -2.83 to -0.19 pg/mL) were consistently lower in African American individuals after adjusting for demographic characteristics, educational attainment, cognition, APOE4, and cardiovascular factors. A similar pattern was observed in the CSF biomarkers except for Aβ42 and Aβ40. Although unadjusted analyses revealed an association between these biomarkers and African ancestry, these associations were not significant after adjusting for the same covariates. Differences by self-reported race were not explained by varied cardiovascular risk factors, C-reactive protein, educational attainment, or Area Deprivation Index. CONCLUSIONS AND RELEVANCE In this cross-sectional study of plasma biomarkers by race and genetic ancestry, the results indicated that plasma p-tau181, Aβ40, and NFL were lower in African American individuals based on self-reported race but not genetic ancestry. These differences were not explained by cardiovascular risks or clinical stage differences. These racial differences should be considered in clinical interpretations and clinical trial screenings to avoid an additional increase in underrepresentation of African American individuals in AD trials.
Collapse
Affiliation(s)
- Ihab Hajjar
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
- Department of Neurology, University of Texas Southwestern, Dallas
| | - Zhiyi Yang
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Maureen Okafor
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Chang Liu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Teresa Waligorska
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia
| | | | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia
| |
Collapse
|
44
|
Wilkins CH, Windon CC, Dilworth-Anderson P, Romanoff J, Gatsonis C, Hanna L, Apgar C, Gareen IF, Hill CV, Hillner BE, March A, Siegel BA, Whitmer RA, Carrillo MC, Rabinovici GD. Racial and Ethnic Differences in Amyloid PET Positivity in Individuals With Mild Cognitive Impairment or Dementia: A Secondary Analysis of the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) Cohort Study. JAMA Neurol 2022; 79:2796653. [PMID: 36190710 PMCID: PMC9531087 DOI: 10.1001/jamaneurol.2022.3157] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023]
Abstract
Importance Racial and ethnic groups with higher rates of clinical Alzheimer disease (AD) are underrepresented in studies of AD biomarkers, including amyloid positron emission tomography (PET). Objective To compare amyloid PET positivity among a diverse cohort of individuals with mild cognitive impairment (MCI) or dementia. Design, Setting, and Participants Secondary analysis of the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS), a single-arm multisite cohort study of Medicare beneficiaries who met appropriate-use criteria for amyloid PET imaging between February 2016 and September 2017 with follow-up through January 2018. Data were analyzed between April 2020 and January 2022. This study used 2 approaches: the McNemar test to compare amyloid PET positivity proportions between matched racial and ethnic groups and multivariable logistic regression to assess the odds of having a positive amyloid PET scan. IDEAS enrolled participants at 595 US dementia specialist practices. A total of 21 949 were enrolled and 4842 (22%) were excluded from the present analysis due to protocol violations, not receiving an amyloid PET scan, not having a positive or negative scan, or because of small numbers in some subgroups. Exposures In the IDEAS study, participants underwent a single amyloid PET scan. Main Outcomes and Measures The main outcomes were amyloid PET positivity proportions and odds. Results Data from 17 107 individuals (321 Asian, 635 Black, 829 Hispanic, and 15 322 White) with MCI or dementia and amyloid PET were analyzed between April 2020 and January 2022. The median (range) age of participants was 75 (65-105) years; 8769 participants (51.3%) were female and 8338 (48.7%) were male. In the optimal 1:1 matching analysis (n = 3154), White participants had a greater proportion of positive amyloid PET scans compared with Asian participants (181 of 313; 57.8%; 95% CI, 52.3-63.2 vs 142 of 313; 45.4%; 95% CI, 39.9-50.9, respectively; P = .001) and Hispanic participants (482 of 780; 61.8%; 95% CI, 58.3-65.1 vs 425 of 780; 54.5%; 95% CI, 51.0-58.0, respectively; P = .003) but not Black participants (359 of 615; 58.4%; 95% CI, 54.4-62.2 vs 333 of 615; 54.1%; 95% CI, 50.2-58.0, respectively; P = .13). In the adjusted model, the odds of having a positive amyloid PET scan were lower for Asian participants (odds ratio [OR], 0.47; 95% CI, 0.37-0.59; P < .001), Black participants (OR, 0.71; 95% CI, 0.60-0.84; P < .001), and Hispanic participants (OR, 0.68; 95% CI, 0.59-0.79; P < .001) compared with White participants. Conclusions and Relevance Racial and ethnic differences found in amyloid PET positivity among individuals with MCI and dementia in this study may indicate differences in underlying etiology of cognitive impairment and guide future treatment and prevention approaches.
Collapse
Affiliation(s)
- Consuelo H. Wilkins
- Department of Medicine, Division of Geriatric Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charles C. Windon
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Peggye Dilworth-Anderson
- Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill
| | - Justin Romanoff
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Constantine Gatsonis
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Lucy Hanna
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Charles Apgar
- Center for Research and Innovation, American College of Radiology, Reston, Virginia
| | - Ilana F. Gareen
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | | | - Bruce E. Hillner
- Department of Medicine, Virginia Commonwealth University, Richmond
| | - Andrew March
- Center for Research and Innovation, American College of Radiology, Philadelphia, Pennsylvania
| | - Barry A. Siegel
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Rachel A. Whitmer
- Division of Research, Kaiser Permanente, Oakland, California
- Department of Public Health Sciences, University of California, Davis
| | | | - Gil D. Rabinovici
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
- Associate Editor, JAMA Neurology
- Department of Radiology & Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
45
|
Gottesman RF, Wu A, Coresh J, Knopman DS, Jack CR, Rahmim A, Sharrett AR, Spira AP, Wong DF, Wagenknecht LE, Hughes TM, Walker KA, Mosley TH. Associations of Vascular Risk and Amyloid Burden with Subsequent Dementia. Ann Neurol 2022; 92:607-619. [PMID: 35732594 PMCID: PMC11412067 DOI: 10.1002/ana.26447] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Midlife vascular risk factors (MVRFs) are associated with incident dementia, as are amyloid β (Aβ) deposition and neurodegeneration. Whether vascular and Alzheimer disease-associated factors contribute to dementia independently or interact synergistically to reduce cognition is poorly understood. METHODS Participants in the Atherosclerosis Risk in Communities-Positron Emission Tomography study were followed from 1987-1989 (45-64 years old) through 2016-2017 (74-94 years old), with repeat cognitive assessment and dementia adjudication. In 2011-2013, dementia-free participants underwent brain magnetic resonance imaging (with white matter hyperintensity [WMH] and brain volume measurement) and florbetapir (Aβ) positron emission tomography. The relative contributions of vascular risk and injury (MVRFs, WMH volume), elevated Aβ standardized uptake value ratio (SUVR), and neurodegeneration (smaller temporoparietal brain regions) to incident dementia were evaluated with adjusted Cox models. RESULTS In 298 individuals, 36 developed dementia (median follow-up = 4.9 years). Midlife hypertension and Aβ each independently predicted dementia risk (hypertension: hazard ratio [HR] = 2.57, 95% confidence interval [CI] = 1.16-5.67; Aβ SUVR [per standard deviation (SD)]: HR = 2.57, 95% CI = 1.72-3.84), but did not interact significantly, whereas late life diabetes (HR = 2.50, 95% CI = 1.18-5.28) and Aβ independently predicted dementia risk. WMHs (per SD: HR = 1.51, 95% CI = 1.03-2.20) and Aβ SUVR (HR = 2.52, 95% CI = 1.83-3.47) independently contributed to incident dementia, but WMHs lost significance when MVRFs were included. Smaller temporoparietal brain regions were associated with incident dementia, independent of Aβ and MVRFs (HR = 2.18, 95% CI = 1.18-4.01). INTERPRETATION Midlife hypertension and late life Aβ are independently associated with dementia risk, without evidence for synergy on a multiplicative scale. Given the independent contributions of vascular and amyloid mechanisms, multiple pathways should be considered when evaluating interventions to reduce the burden of dementia. ANN NEUROL 2022;92:607-619.
Collapse
Affiliation(s)
- Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Program, National Institutes of Health, Bethesda, MD, USA
| | - Aozhou Wu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Adam P Spira
- Department of Mental Health and Center on Aging and Health, Johns Hopkins Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dean F Wong
- Department of Radiology, Washington University, St Louis, MO, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Timothy M Hughes
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Keenan A Walker
- National Institute on Aging Intramural Program, National Institutes of Health, Bethesda, MD, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
46
|
Lao PJ, Boehme AK, Morales C, Laing KK, Chesebro A, Igwe KC, Gutierrez J, Gu Y, Stern Y, Schupf N, Manly JJ, Mayeux R, Brickman AM. Amyloid, cerebrovascular disease, and neurodegeneration biomarkers are associated with cognitive trajectories in a racially and ethnically diverse, community-based sample. Neurobiol Aging 2022; 117:83-96. [PMID: 35679806 PMCID: PMC9997572 DOI: 10.1016/j.neurobiolaging.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
We characterized the additive contribution of cerebrovascular biomarkers to amyloid and neurodegeneration biomarkers (AV(N)) when modeling prospective, longitudinal cognitive trajectories within 3 major racial/ethnic groups. Participants (n = 172; age = 69-96 years; 62% women; 31%/49%/20% Non-Hispanic White/Non-Hispanic Black/Hispanic) from the Washington Heights-Inwood Columbia Aging Project were assessed for amyloid (Florbetaben PET), neurodegeneration (cortical thickness, hippocampal volume), and cerebrovascular disease (white matter hyperintensity (WMH), infarcts). Neuropsychological assessments occurred every 2.3 ± 0.6 years for up to 6 visits (follow-up time: 4.2 ± 3.2 years). Linear mixed-effects models were stratified by race/ethnicity groups. Higher amyloid was associated with faster memory decline in all 3 racial/ethnic groups, but was related to faster cognitive decline beyond memory in minoritized racial/ethnic groups. Higher WMH was associated with faster language, processing speed/executive function, and visuospatial ability decline in Non-Hispanic Black participants, while infarcts were associated with faster processing speed/executive function decline in Non-Hispanic White participants. Complementary information from AD, neurodegenerative, and cerebrovascular biomarkers explain decline in multiple cognitive domains, which may differ within each racial/ethnic group. Importantly, treatment strategies exist to minimize vascular contributions to cognitive decline.
Collapse
Affiliation(s)
- Patrick J Lao
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Amelia K Boehme
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Clarissa Morales
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Krystal K Laing
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anthony Chesebro
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kay C Igwe
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jose Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yian Gu
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yaakov Stern
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nicole Schupf
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jennifer J Manly
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Richard Mayeux
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adam M Brickman
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
47
|
Hwangbo S, Kim YJ, Park YH, Kim HJ, Na DL, Jang H, Seo SW. Relationships between educational attainment, hypertension, and amyloid negative subcortical vascular dementia: The brain-battering hypothesis. Front Neurosci 2022; 16:934149. [PMID: 35992915 PMCID: PMC9388911 DOI: 10.3389/fnins.2022.934149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Many epidemiological studies suggest that lower education levels and vascular risk factors increase the likelihood of developing Alzheimer's disease dementia (ADD) and subcortical vascular dementia (SVaD). However, whether the brain-battering hypothesis can explain the relationship between education levels and the clinical diagnosis of dementia remains controversial. The objective of this study was to investigate whether vascular risk factors mediate the association between education level and the diagnosis of amyloid-beta positive (Aβ+) ADD and amyloid-beta negative (Aβ-) SVaD. Methods We analyzed 376 participants with Aβ normal cognition (Aβ- NC), 481 with Aβ+ ADD, and 102 with Aβ- SVaD. To investigate the association of education level and vascular risk factors with these diagnoses, multivariable logistic regression analysis was used, with age, sex, and APOE ε4 carrier status used as covariates. Path analysis was performed to investigate the mediation effects of hypertension on the diagnosis of Aβ- SVaD. Results The Aβ- SVaD group (7.9 ± 5.1 years) had lower education levels than did the Aβ- NC (11.8 ± 4.8 years) and Aβ+ ADD (11.2 ± 4.9 years) groups. The frequencies of hypertension and diabetes mellitus were higher in the Aβ- SVaD group (78.4 and 32.4%, respectively) than in the Aβ- NC (44.4 and 20.8%) and Aβ+ ADD (41.8 and 15.8%, respectively) groups. Increased education level was associated with a lower risk of Aβ- SVaD [odds ratio (OR) 0.866, 95% confidence interval (CI), 0.824–0.911], but not Aβ+ ADD (OR 0.971, 95% CI 0.940–1.003). The frequency of hypertension was associated with a higher risk of developing Aβ- SVaD (OR 3.373, 95% CI, 1.908–5.961), but not Aβ+ ADD (OR 0.884, 95% CI, 0.653–1.196). In the path analysis, the presence of hypertension partially mediated the association between education level and the diagnosis of Aβ- SVaD. Conclusion Our findings revealed that education level might influence the development of Aβ- SVaD through the brain-battering hypothesis. Furthermore, our findings suggest that suitable strategies, such as educational attainment and prevention of hypertension, are needed for the prevention of Aβ- SVaD.
Collapse
Affiliation(s)
- Song Hwangbo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Young Ju Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Yu Hyun Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- *Correspondence: Hyemin Jang
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Samsung Alzheimer Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Sang Won Seo ;
| |
Collapse
|
48
|
Salwierz P, Davenport C, Sumra V, Iulita MF, Ferretti MT, Tartaglia MC. Sex and gender differences in dementia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:179-233. [PMID: 36038204 DOI: 10.1016/bs.irn.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dementia landscape has undergone a striking paradigm shift. The advances in understanding of neurodegeneration and proteinopathies has changed our approach to patients with cognitive impairment. Firstly, it has recently been shown that the various proteinopathies that are the cause of the dementia begin to build up long before the appearance of any obvious symptoms. This has cemented the idea that there is an urgency in diagnosis as it occurs very late in the pathophysiology of these diseases. Secondly, that accurate diagnosis is required to deliver targeted therapies, that is precision medicine. With this latter point, the realization that various factors of a person need to be considered as they may impact the presentation and progression of disease has risen to the forefront. Two of these factors aside from race and age are biological sex and gender (social construct), as both can have tremendous impact on manifestation of disease. This chapter will cover what is known and remains to be known on the interaction of sex and gender with some of the major causes of dementia.
Collapse
Affiliation(s)
- Patrick Salwierz
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Carly Davenport
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Vishaal Sumra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - M Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Women's Brain Project, Guntershausen, Switzerland
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Memory Clinic, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
49
|
Gleason CE, Zuelsdorff M, Gooding DC, Kind AJH, Johnson AL, James TT, Lambrou NH, Wyman MF, Ketchum FB, Gee A, Johnson SC, Bendlin BB, Zetterberg H. Alzheimer's disease biomarkers in Black and non-Hispanic White cohorts: A contextualized review of the evidence. Alzheimers Dement 2022; 18:1545-1564. [PMID: 34870885 PMCID: PMC9543531 DOI: 10.1002/alz.12511] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Black Americans are disproportionately affected by dementia. To expand our understanding of mechanisms of this disparity, we look to Alzheimer's disease (AD) biomarkers. In this review, we summarize current data, comparing the few studies presenting these findings. Further, we contextualize the data using two influential frameworks: the National Institute on Aging-Alzheimer's Association (NIA-AA) Research Framework and NIA's Health Disparities Research Framework. The NIA-AA Research Framework provides a biological definition of AD that can be measured in vivo. However, current cut-points for determining pathological versus non-pathological status were developed using predominantly White cohorts-a serious limitation. The NIA's Health Disparities Research Framework is used to contextualize findings from studies identifying racial differences in biomarker levels, because studying biomakers in isolation cannot explain or reduce inequities. We offer recommendations to expand study beyond initial reports of racial differences. Specifically, life course experiences associated with racialization and commonly used study enrollment practices may better account for observations than exclusively biological explanations.
Collapse
Affiliation(s)
- Carey E. Gleason
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Megan Zuelsdorff
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- University of Wisconsin School of NursingMadisonWisconsinUSA
| | - Diane C. Gooding
- Department of PsychologyUniversity of Wisconsin, MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Amy J. H. Kind
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Center for Health Disparities ResearchDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Adrienne L. Johnson
- Center for Tobacco Research and InterventionUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Taryn T. James
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
| | - Nickolas H. Lambrou
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Mary F. Wyman
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Department of PsychologyUniversity of Wisconsin, MadisonMadisonWisconsinUSA
| | - Fred B. Ketchum
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alexander Gee
- Nehemiah Center for Urban Leadership DevelopmentMadisonWisconsinUSA
| | - Sterling C. Johnson
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for NeurodegenerationHong KongChina
| |
Collapse
|
50
|
Schindler SE, Karikari TK, Ashton NJ, Henson RL, Yarasheski KE, West T, Meyer MR, Kirmess KM, Li Y, Saef B, Moulder KL, Bradford D, Fagan AM, Gordon BA, Benzinger TLS, Balls-Berry J, Bateman RJ, Xiong C, Zetterberg H, Blennow K, Morris JC. Effect of Race on Prediction of Brain Amyloidosis by Plasma Aβ42/Aβ40, Phosphorylated Tau, and Neurofilament Light. Neurology 2022; 99:e245-e257. [PMID: 35450967 PMCID: PMC9302933 DOI: 10.1212/wnl.0000000000200358] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate whether plasma biomarkers of amyloid (Aβ42/Aβ40), tau (p-tau181 and p-tau231), and neuroaxonal injury (neurofilament light chain [NfL]) detect brain amyloidosis consistently across racial groups. METHODS Individuals enrolled in studies of memory and aging who self-identified as African American (AA) were matched 1:1 to self-identified non-Hispanic White (NHW) individuals by age, APOE ε4 carrier status, and cognitive status. Each participant underwent blood and CSF collection, and amyloid PET was performed in 103 participants (68%). Plasma Aβ42/Aβ40 was measured by a high-performance immunoprecipitation-mass spectrometry assay. Plasma p-tau181, p-tau231, and NfL were measured by Simoa immunoassays. CSF Aβ42/Aβ40 and amyloid PET status were used as primary and secondary reference standards of brain amyloidosis, respectively. RESULTS There were 76 matched pairs of AA and NHW participants (n = 152 total). For both AA and NHW groups, the median age was 68.4 years, 42% were APOE ε4 carriers, and 91% were cognitively normal. AA were less likely than NHW participants to have brain amyloidosis by CSF Aβ42/Aβ40 (22% vs 43% positive; p = 0.003). The receiver operating characteristic area under the curve of CSF Aβ42/Aβ40 status with the plasma biomarkers was as follows: Aβ42/Aβ40, 0.86 (95% CI 0.79-0.92); p-tau181, 0.76 (0.68-0.84); p-tau231, 0.69 (0.60-0.78); and NfL, 0.64 (0.55-0.73). In models predicting CSF Aβ42/Aβ40 status with plasma Aβ42/Aβ40 that included covariates (age, sex, APOE ε4 carrier status, race, and cognitive status), race did not affect the probability of CSF Aβ42/Aβ40 positivity. In similar models based on plasma p-tau181, p-tau231, or NfL, AA participants had a lower probability of CSF Aβ42/Aβ40 positivity (odds ratio 0.31 [95% CI 0.13-0.73], 0.30 [0.13-0.71], and 0.27 [0.12-0.64], respectively). Models of amyloid PET status yielded similar findings. DISCUSSION Models predicting brain amyloidosis using a high-performance plasma Aβ42/Aβ40 assay may provide an accurate and consistent measure of brain amyloidosis across AA and NHW groups, but models based on plasma p-tau181, p-tau231, and NfL may perform inconsistently and could result in disproportionate misdiagnosis of AA individuals.
Collapse
Affiliation(s)
- Suzanne E Schindler
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China.
| | - Thomas K Karikari
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Nicholas J Ashton
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Rachel L Henson
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Kevin E Yarasheski
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Tim West
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Mathew R Meyer
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Kristopher M Kirmess
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Yan Li
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Benjamin Saef
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Krista L Moulder
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - David Bradford
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Anne M Fagan
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Brian A Gordon
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Tammie L S Benzinger
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Joyce Balls-Berry
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Randall J Bateman
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Chengjie Xiong
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Henrik Zetterberg
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Kaj Blennow
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - John C Morris
- From the Department of Neurology (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., J.B.-B., R.J.B., J.C.M), Knight Alzheimer Disease Research Center (S.E.S., R.L.H., Y.L., B.S., K.L.M., D.B., A.M.F., B.A.G., T.L.S.B., J.B.-B., R.J.B., C.X., J.C.M.), Hope Center for Neurological Disorders (A.M.F.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Division of Biostatistics (C.X.), Washington University School of Medicine, St. Louis, MO; Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry (T.K.K., N.J.A., H.Z., K.B.), Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry (T.K.K.), University of Pittsburgh, PA; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Sweden; Institute of Psychiatry, Psychology and Neuroscience (N.J.A.), Maurice Wohl Institute Clinical Neuroscience Institute, King's College London,; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; C2N Diagnostics (K.E.Y., T.W., M.R.M., K.M.K.), St. Louis, MO; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London,; UK Dementia Research Institute at UCL (H.Z.), London, UK; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| |
Collapse
|