1
|
Cakar A, Candayan A, Bagırova G, Uyguner ZO, Ceylaner S, Durmus H, Battaloglu E, Parman Y. Delineating the genetic landscape of Charcot-Marie-tooth disease in Türkiye: Distinct distribution, rare phenotypes, and novel variants. Eur J Neurol 2025; 32:e16572. [PMID: 39776111 PMCID: PMC11707620 DOI: 10.1111/ene.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye. METHODS Demographic and clinical findings were recorded. Patients were initially screened for PMP22 duplication. Targeted sequencing or whole-exome sequencing was performed in duplication-negative patients. RESULTS Overall, 311 patients from 265 families were included. Demyelinating CMT (67.4%) was more common than axonal (20.5%) and intermediate subtypes (11.7%). PMP22 duplication was the most frequent mutation, followed by pathogenic variants in GJB1, MFN2, SH3TC2, and GDAP1 genes. MPZ-neuropathy was rare in our cohort (3.0%). Interestingly, CMT4 is the second most common type after CMT1. Lower extremity weakness and foot deformities were the most frequent presenting complaints. Striking clinical features included a high frequency of scoliosis in SH3TC2, peripheral hyperexcitability in HINT1, and central nervous system findings in GJB1. Autosomal recessive CMT subtypes had higher CMTESv2 scores when compared to autosomal dominant ones (12.39 ± 4.81 vs. 8.36 ± 4.15, p: 0.023). Twenty-one patients used wheelchairs during their last examination. Among them, 16 had an autosomal recessive subtype. Causative variants were identified in 31 genes, including 28 novel pathogenic or likely pathogenic changes. CONCLUSIONS Our findings provided robust data regarding the genetic distribution of CMT in Türkiye, which may pave the path for building population-specific diagnostic gene panels. Rare autosomal recessive subtypes were relatively frequent in our cohort. By analyzing genotype-phenotype correlations, our data may provide clinical clues for clinicians.
Collapse
Affiliation(s)
- Arman Cakar
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Ayse Candayan
- Department of Molecular Biology and GeneticsBogazici UniversityIstanbulTurkey
- Molecular Neurogenomics GroupVIB Center for Molecular Neurology, VIBAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Gulandam Bagırova
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Institute of Health SciencesIstanbul UniversityIstanbulTurkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | | | - Hacer Durmus
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Esra Battaloglu
- Department of Molecular Biology and GeneticsBogazici UniversityIstanbulTurkey
| | - Yesim Parman
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| |
Collapse
|
2
|
Nghia HTT, Umapathi T, Duc NM, Hieu NLT, Thao MP. Genetic landscape of Charcot-Marie-Tooth disease in Vietnam: A prospective multicenter study. J Neuromuscul Dis 2025; 12:22143602251313722. [PMID: 39973457 DOI: 10.1177/22143602251313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND In many developing regions, genetic data on Charcot-Marie-Tooth disease (CMT) remains scarce. OBJECTIVE This study aimed to investigate the genetic landscape of CMT in Vietnam to guide the development of cost-effective diagnostic algorithms for patients with suspected genetic neuropathies. METHODS We recruited 44 patients with a diagnosis of CMT from three tertiary centers between March 2021 and December 2023 and recorded their clinical and electrophysiological characteristics. All patients were analyzed for duplications or deletions of PMP22, GJB1, MPZ, and MFN2 via multiplex ligation-dependent probe amplification (MLPA) and for 94 genes via targeted next-generation sequencing (NGS). The identified variants were classified per the American College of Medical Genetics and Genomics 2015 guidelines using VarSome, a bioinformatics engine. RESULTS Among 44 patients, 24 carried a total of 26 variants. Of these 26 variants, 15 were (57.7%) pathogenic, 6 (23.1%) were likely pathogenic, and 5 (19.2%) were variants of uncertain significance (VUS). Excluding the VUS, the diagnostic yield of the targeted sequencing was 43.2% (19/44). Through MLPA, PMP22 duplications were identified in 10 patients with the demyelinating type of CMT and 1 patient with the unclassified CMT type. The combined yield of MLPA and gene panels was 68.2% (30/44). We detected three novel pathogenic/likely pathogenic variants in GJB1, INF2, and IGHMBP2, as well as three novel VUS in MPZ, PMP22, and INF2. IGHMBP2 may represent the most prevalent autosomal recessive gene associated with CMT in Vietnam. CONCLUSIONS We propose a sequential genetic testing approach for CMT in resource-limited settings, with the initial testing via MLPA for demyelinating CMT, followed by NGS for those who test negative. Our findings broaden the CMT genotype-phenotype profile of the Vietnamese population by identifying six novel candidate variants.
Collapse
Affiliation(s)
| | | | - Nguyen Minh Duc
- Department of Neurology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Le Trung Hieu
- Department of Neurology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Neurology, Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Mai Phuong Thao
- Physiology - Pathophysiology - Immunology Department, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Vietnam
| |
Collapse
|
3
|
Barbat du Closel L, Bonello‐Palot N, Delmont E, Péréon Y, Echaniz‐Laguna A, Camdessanché JP, Pakleza AN, Chanson J, Frachet S, Magy L, Cassereau J, Cintas P, Choumert A, Devic P, Louis SL, Tard C, Solé G, Salort‐Campana E, Bouhour F, Latour P, Stojkovic T, Attarian S. Phenotype-genotype correlation in X-linked Charcot-Marie-Tooth disease: A French cohort study. Eur J Neurol 2025; 32:e16523. [PMID: 39569692 PMCID: PMC11622270 DOI: 10.1111/ene.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND AND PURPOSE X-linked Charcot-Marie-Tooth disease type 1 (CMTX1) ranks as the second most prevalent hereditary neuropathy and, currently, has no definitive cure. Emerging preclinical trials offer hope for potential clinical studies in the near future. While it is widely accepted that experimental groups in these trials should be balanced for age and gender, there is a current shortfall in data regarding phenotype-genotype correlations. Our aim was to provide a more detailed understanding of these correlations to facilitate the formation of well-matched patient groups in upcoming clinical trials. METHODS We conducted a retrospective evaluation of CMTX1 patients from 13 designated reference centers in France. Data on genetics, clinical features, and nerve conduction were systematically gathered. RESULTS We analyzed the genotype-phenotype correlations in 275 CMTX1 patients belonging to 162 families and carrying 87 distinct variants. Patients with variants affecting the transmembrane domains demonstrated significantly greater severity, as evidenced by a Charcot-Marie-Tooth Examination Score of 10.5, compared to 7.1 for those with intracellular domain variants and 8.7 for extracellular domain variants (p < 0.000). These patients also experienced an earlier age of onset, showed slower ulnar nerve conduction velocities and had more substantial loss of motor amplitude. CONCLUSIONS This study confirms the presence of a correlation between the mutated protein domain and the clinical phenotype. Patients with a variant in the transmembrane domains demonstrated a more severe clinical and electrophysiological profile. Consequently, the genotype could play a prognostic role in addition to its diagnostic role, and it will be essential to consider this in future clinical trials.
Collapse
Affiliation(s)
- Luce Barbat du Closel
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
| | | | - Emilien Delmont
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
| | - Yann Péréon
- CHU Nantes, Laboratoire d'Explorations FonctionnellesReference Center for NMD AOC, Filnemus, Euro‐NMDNantesFrance
| | - Andoni Echaniz‐Laguna
- Department of NeurologyAPHP, CHU de BicêtreLe Kremlin‐BicêtreFrance
- French National Reference Center for Rare NeuropathiesLe Kremlin‐BicêtreFrance
- Inserm U1195 and Paris‐Saclay UniversityLe Kremlin‐BicêtreFrance
| | | | - Aleksandra Nadaj Pakleza
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile‐de‐FranceService de Neurologie, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Jean‐Baptiste Chanson
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile‐de‐FranceService de Neurologie, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Simon Frachet
- Service et Laboratoire de NeurologieCentre de Référence Neuropathies Périphériques rares, NNerf, UR NeurIT, CHU LimogesLimogesFrance
| | - Laurent Magy
- Service et Laboratoire de NeurologieCentre de Référence Neuropathies Périphériques rares, NNerf, UR NeurIT, CHU LimogesLimogesFrance
| | - Julien Cassereau
- Reference Center for Neuromuscular Disorders AOC and National Reference Center for Neurogenetic DiseasesAngers University HospitalAngersFrance
| | - Pascal Cintas
- Centre de référence de pathologie neuromusculaire de Toulouse. Hôpital PurpanToulouseFrance
| | - Ariane Choumert
- Service des Maladies Neurologiques RaresCHU de la Réunion—GH Sud Réunion—Saint‐PierreMarseilleFrance
| | - Perrine Devic
- Department of NeurologyHospices Civils de Lyon, Lyon Sud HospitalPierre‐BéniteFrance
| | - Sarah Léonard Louis
- APHP, Centre de référence des maladies neuromusculaires Nord/Est/Ile‐de‐FranceInstitut de Myologie, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Céline Tard
- U1172, centre de référence des maladies neuromusculaires Nord/Est/Ile‐de‐FranceCHU de LilleLilleFrance
| | - Guilhem Solé
- Centre de référence des maladies neuromusculaires AOC CHU de Bordeaux Hôpital PellegrinBordeauxFrance
| | - Emmanuelle Salort‐Campana
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
- Marseille Medical GeneticsAix‐Marseille University–Inserm UMR 1251MarseilleFrance
| | - Françoise Bouhour
- Service d'Electroneuromyographie et Pathologies Neuromusculaires, Hospices Civils de LyonLyonFrance
| | - Philippe Latour
- PGNM, Institut NeuroMyoGèneUniversité Lyon1‐CNRS UMR5261‐INSERMLyonFrance
- Unité fonctionnelle de neurogénétique moléculaireCHU de Lyon‐HCL groupement EstBronFrance
| | - Tanya Stojkovic
- APHP, Centre de référence des maladies neuromusculaires Nord/Est/Ile‐de‐FranceInstitut de Myologie, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
- Marseille Medical GeneticsAix‐Marseille University–Inserm UMR 1251MarseilleFrance
| |
Collapse
|
4
|
Tettey-Matey A, Donati V, Cimmino C, Di Pietro C, Buratto D, Panarelli M, Reale A, Calistri A, Fornaini MV, Zhou R, Yang G, Zonta F, Marazziti D, Mammano F. A fully human IgG1 antibody targeting connexin 32 extracellular domain blocks CMTX1 hemichannel dysfunction in an in vitro model. Cell Commun Signal 2024; 22:589. [PMID: 39639332 PMCID: PMC11619691 DOI: 10.1186/s12964-024-01969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Connexins (Cxs) are fundamental in cell-cell communication, functioning as gap junction channels (GJCs) that facilitate solute exchange between adjacent cells and as hemichannels (HCs) that mediate solute exchange between the cytoplasm and the extracellular environment. Mutations in the GJB1 gene, which encodes Cx32, lead to X-linked Charcot-Marie-Tooth type 1 (CMTX1), a rare hereditary demyelinating disorder of the peripheral nervous system (PNS) without an effective cure or treatment. In Schwann cells, Cx32 HCs are thought to play a role in myelination by enhancing intracellular and intercellular Ca2+ signaling, which is crucial for proper PNS myelination. Single-point mutations (p.S85C, p.D178Y, p.F235C) generate pathological Cx32 HCs characterized by increased permeability ("leaky") or excessive activity ("hyperactive").We investigated the effects of abEC1.1-hIgG1, a fully human immunoglobulin G1 (hIgG1) monoclonal antibody, on wild-type (WT) and mutant Cx32D178Y HCs. Using HeLa DH cells conditionally co-expressing Cx and a genetically encoded Ca2+ biosensor (GCaMP6s), we demonstrated that mutant HCs facilitated 58% greater Ca2+ uptake in response to elevated extracellular Ca2+ concentrations ([Ca2+]ex) compared to WT HCs. abEC1.1-hIgG1 dose-dependently inhibited Ca2+ uptake, achieving a 50% inhibitory concentration (EC50) of ~ 10 nM for WT HCs and ~ 80 nM for mutant HCs. Additionally, the antibody suppressed DAPI uptake and ATP release. An atomistic computational model revealed that serine 56 (S56) of the antibody interacts with aspartate 178 (D178) of WT Cx32 HCs, contributing to binding affinity. Despite the p.D178Y mutation weakening this interaction, the antibody maintained binding to the mutant HC epitope at sub-micromolar concentrations.In conclusion, our study shows that abEC1.1-hIgG1 effectively inhibits both WT and mutant Cx32 HCs, highlighting its potential as a therapeutic approach for CMTX1. These findings expand the antibody's applicability for treating diseases associated with Cx HCs and inform the rational design of next-generation antibodies with enhanced affinity and efficacy against mutant HCs.
Collapse
Affiliation(s)
- Abraham Tettey-Matey
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Present Address, CNR Institute of Biophysics, Genoa, 16149, Italy
| | - Viola Donati
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Chiara Cimmino
- CNR Institute of Endocrinology and Experimental Oncology "G. Salvatore", Naples, 80131, Italy
- Present Address: Interdisciplinary Research Centre On Biomaterials, University of Naples Federico II, Naples, 80125, Italy
| | - Chiara Di Pietro
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
| | - Damiano Buratto
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | | | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Francesco Zonta
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China.
| | - Daniela Marazziti
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, 35131, Italy.
| |
Collapse
|
5
|
Doherty CM, Morrow JM, Zuccarino R, Howard P, Wastling S, Pipis M, Zafeiropoulos N, Stephens KJ, Grider T, Feely SME, Nopoulous P, Skorupinska M, Milev E, Nicolaisen E, Dudzeic M, McDowell A, Dilek N, Muntoni F, Rossor AM, Shah S, Laura M, Yousry TA, Thedens D, Thornton J, Shy ME, Reilly MM. Lower limb muscle MRI fat fraction is a responsive outcome measure in CMT X1, 1B and 2A. Ann Clin Transl Neurol 2024; 11:607-617. [PMID: 38173284 DOI: 10.1002/acn3.51979] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE With potential therapies for many forms of Charcot-Marie-Tooth disease (CMT), responsive outcome measures are urgently needed for clinical trials. Quantitative lower limb MRI demonstrated progressive calf intramuscular fat accumulation in the commonest form, CMT1A with large responsiveness. In this study, we evaluated the responsiveness and validity in the three other common forms, due to variants in GJB1 (CMTX1), MPZ (CMT1B) and MFN2 (CMT2A). METHODS 22 CMTX1, 21 CMT1B and 21 CMT2A patients and matched controls were assessed at a 1-year interval. Intramuscular fat fraction (FF) was evaluated using three-point Dixon MRI at thigh and calf level along with clinical measures including CMT examination score, clinical strength assessment, CMT-HI and plasma neurofilament light chain. RESULTS All patient groups had elevated muscle fat fraction at thigh and calf levels, with highest thigh FF and atrophy in CMT2A. There was moderate correlation between calf muscle FF and clinical measures (CMTESv2 rho = 0.405; p = 0.001, ankle MRC strength rho = -0.481; p < 0.001). Significant annualised progression in calf muscle FF was seen in all patient groups (CMTX1 2.0 ± 2.0%, p < 0.001, CMT1B 1.6 ± 2.1% p = 0.004 and CMT2A 1.6 ± 2.1% p = 0.002). Greatest increase was seen in patients with 10-70% FF at baseline (calf 2.7 ± 2.3%, p < 0.0001 and thigh 1.7 ± 2.1%, p = 0.01). INTERPRETATION Our results confirm that calf muscle FF is highly responsive over 12 months in three additional common forms of CMT which together with CMT1A account for 90% of genetically confirmed cases. Calf muscle MRI FF should be a valuable outcome measure in upcoming CMT clinical trials.
Collapse
Affiliation(s)
- Carolynne M Doherty
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jasper M Morrow
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Riccardo Zuccarino
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Fondazione Serena Onlus, Centro Clinico NeMO Trento, Pergine Valsugana, Italy
| | - Paige Howard
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stephen Wastling
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Menelaos Pipis
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Nick Zafeiropoulos
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Katherine J Stephens
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Tiffany Grider
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shawna M E Feely
- Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| | - Peggy Nopoulous
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mariola Skorupinska
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Emma Nicolaisen
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Magdalena Dudzeic
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Amy McDowell
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Nuran Dilek
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | - Alexander M Rossor
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Sachit Shah
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Matilde Laura
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Tarek A Yousry
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Daniel Thedens
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John Thornton
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael E Shy
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
6
|
Yoshimoto Y, Yoshimoto S, Kakiuchi K, Miyagawa R, Ota S, Hosokawa T, Ishida S, Higuchi Y, Hashiguchi A, Takashima H, Arawaka S. Spatial Fluctuation of Central Nervous System Lesions in X-linked Charcot-Marie-Tooth Disease with a Novel GJB1 Mutation. Intern Med 2024; 63:571-576. [PMID: 37407465 PMCID: PMC10937141 DOI: 10.2169/internalmedicine.1713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023] Open
Abstract
X-linked Charcot-Marie-Tooth disease type 1 (CMTX1), the most common form of CMTX, is caused by gap-junction beta 1 (GJB1) mutations. We herein report a 25-year-old Japanese man with disorientation, right hemiparesis, and dysarthria. Brain magnetic resonance imaging (MRI) showed high signal intensities in the bilateral cerebral white matter on diffusion-weighted imaging. He had experienced 2 episodes of transient central nervous system symptoms (at 7 and 13 years old). A genetic analysis identified a novel GJB1 mutation, c.169C>T, p.Gln57*. MRI abnormalities shifted from the cerebral white matter to the corpus callosum and had disappeared at the five-month follow-up. Transient changes between these lesions may indicate CMTX1.
Collapse
Affiliation(s)
- Yukiyo Yoshimoto
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Shoko Yoshimoto
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Kensuke Kakiuchi
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Rumina Miyagawa
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Shin Ota
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Takafumi Hosokawa
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Shimon Ishida
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences, Japan
| | - Shigeki Arawaka
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| |
Collapse
|
7
|
Tettey-Matey A, Di Pietro C, Donati V, Mammano F, Marazziti D. Generation of Connexin-Expressing Stable Cell Pools. Methods Mol Biol 2024; 2801:147-176. [PMID: 38578420 DOI: 10.1007/978-1-0716-3842-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Stable cell pools have the advantage of providing a definite, consistent, and reproducible transmission of a transgene of interest, compared to transient expression from a plasmid transfection. Stably expressing a transgene of interest in cells under induction is a powerful way to (switch on and) study a gene function in both in vitro and in vivo assays. Taking advantage of the ability of lentivirus (LV) to promote transgene delivery, and genomic integration and expression in both dividing and nondividing cells, a doxycycline-inducible transfer vector expressing a bicistronic transgene was developed to study the function of connexins in HeLa DH cells. Here, delving on connexin 32 (Cx32), we report how to use the backbone of this vector as a tool to generate stable pools to study the function of a gene of interest (GOI), especially with assays involving Ca2+ imaging, employing the GCaMP6s indicator. We describe a step-by-step protocol to produce the LV particle by transient transfection and the direct use of the harvested LV stock to generate stable cell pools. We further present step-by-step immunolabeling protocols to characterize the transgene protein expression by confocal microscopy using an antibody that targets an extracellular domain epitope of Cx32 in living cells, and in fixed permeabilized cells using high affinity anti-Cx32 antibodies. Using common molecular biology laboratory techniques, this protocol can be adapted to generate stable pools expressing any transgene of interest, for both in vitro and in vivo functional assays, including molecular, immune, and optical assays.
Collapse
Affiliation(s)
- Abraham Tettey-Matey
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Viola Donati
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy.
| |
Collapse
|
8
|
Zhan F, Tian W, Cao Y, Wu J, Ni R, Liu T, Yuan Y, Luan X, Cao L. Episodic Neurological Dysfunction in X-Linked Charcot-Marie-Tooth Disease: Expansion of the Phenotypic and Genetic Spectrum. J Clin Neurol 2024; 20:59-66. [PMID: 38179633 PMCID: PMC10782082 DOI: 10.3988/jcn.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND AND PURPOSE X-linked Charcot-Marie-Tooth disease type 1 (CMTX1) is characterized by peripheral neuropathy with or without episodic neurological dysfunction. We performed clinical, neuropathological, and genetic investigations of a series of patients with mutations of the gap-junction beta-1 gene (GJB1) to extend the phenotypic and genetic description of CMTX1. METHODS Detailed clinical evaluations, sural nerve biopsy, and genetic analysis were applied to patients with CMTX1. RESULTS We collected 27 patients with CMTX1 with GJB1 mutations from 14 unrelated families. The age at onset (AAO) was 20.9±12.2 years (mean±standard deviation; range, 2-45 years). Walking difficulties, weakness in the legs, and pes cavus were common initial symptoms. Compared with female patients, males tended to have a younger AAO (males vs. females=15.4±9.6 vs. 32.0±8.8 years, p=0.002), a longer disease course (16.8±16.1 vs. 5.5±3.8 years, p=0.034), and more-severe electrophysiological results. Besides peripheral neuropathy, six of the patients had special episodic central nervous system (CNS) evidence from symptoms, signs, and/or reversible white-matter lesions. Neuropathology revealed the loss of large myelinated fibers, increased number of regenerated axon clusters with abnormally thin myelin sheaths, and excessively folded myelin. Genetic analysis identified 14 GJB1 variants, 6 of which were novel. CONCLUSIONS These findings expand the phenotypic and genetic spectrum of CMTX1. Although CMTX1 was found to have high phenotypic and CNS involvement variabilities, detailed neurological examinations and nerve conduction studies will provide critical clues for accurate diagnoses. Further exploration of the underlying mechanisms of connexin 32 involvement in neuropathy or CNS dysfunction is warranted to develop promising therapies.
Collapse
Affiliation(s)
- Feixia Zhan
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwen Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Wu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruilong Ni
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Taotao Liu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Anhui University of Science and Technology, Huainan, China.
| |
Collapse
|
9
|
Konda MK, Harmelink M. Adolescent Onset of Muscle Weakness. Med Clin North Am 2024; 108:173-187. [PMID: 37951649 DOI: 10.1016/j.mcna.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Pediatric adolescent muscle weakness can be from a variety of causes. Methodical diagnostic evaluation can lead to the category of diseases whereby phenotypic overlap requires either specialized care or broad testing patterns. However, having the ultimate diagnosis is important for prognostication.
Collapse
Affiliation(s)
- Meghan K Konda
- Department of Neurology, Section of Child Neurology, Medical College of Wisconsin, 9000 West Wisconsin Avenue CCC 540, Milwaukee, WI 53226, USA.
| | - Matthew Harmelink
- Department of Neurology, Section of Child Neurology, Medical College of Wisconsin, 9000 West Wisconsin Avenue CCC 540, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Abstract
In Charcot-Marie-Tooth (CMT) cavovarus surgery, a regimented approach is critical to create a plantigrade foot, restore hindfoot stability, and generate active ankle dorsiflexion. The preoperative motor examination is fundamental to the algorithm, as it is not only guides the initial surgical planning but is key in the decision making that occurs throughout the operation. Surgeons need to be comfortable with multiple techniques to achieve each surgical goal. There is no one operation that works for all patients with CMT. A plantigrade foot is the most important of the surgical goals as hindfoot stability and ankle dorsiflexion can be augmented with bracing.
Collapse
Affiliation(s)
- Glenn B Pfeffer
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, 444 South San Vicente Boulevard, Suite 603, Los Angeles, CA 90048, USA.
| | - Max P Michalski
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, 444 South San Vicente Boulevard, Suite 603, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Tian Y, Hou X, Cao W, Zhou L, Jiao B, Zhang S, Xiao Q, Xue J, Wang Y, Weng L, Fang L, Yang H, Zhou Y, Yi F, Chen X, Du J, Xu Q, Feng L, Liu Z, Zeng S, Sun Q, Xie N, Luo M, Wang M, Zhang M, Zeng Q, Huang S, Yao L, Hu Y, Long H, Xie Y, Chen S, Huang Q, Wang J, Xie B, Zhou L, Long L, Guo J, Wang J, Yan X, Jiang H, Xu H, Duan R, Tang B, Zhang R, Shen L. Diagnostic value of nerve conduction study in NOTCH2NLC-related neuronal intranuclear inclusion disease. J Peripher Nerv Syst 2023; 28:629-641. [PMID: 37749855 DOI: 10.1111/jns.12599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND AND AIMS Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disorder mainly caused by abnormally expanded GGC repeats within the NOTCH2NLC gene. Most patients with NIID show polyneuropathy. Here, we aim to investigate diagnostic electrophysiological markers of NIID. METHODS In this retrospective dual-center study, we reviewed 96 patients with NOTCH2NLC-related NIID, 94 patients with genetically confirmed Charcot-Marie-Tooth (CMT) disease, and 62 control participants without history of peripheral neuropathy, who underwent nerve conduction studies between 2018 and 2022. RESULTS Peripheral nerve symptoms were presented by 53.1% of patients with NIID, whereas 97.9% of them showed peripheral neuropathy according to electrophysiological examinations. Patients with NIID were characterized by slight demyelinating sensorimotor polyneuropathy; some patients also showed mild axonal lesions. Motor nerve conduction velocity (MCV) of the median nerve usually exceeded 35 m/s, and were found to be negatively correlated with the GGC repeat sizes. Regarding the electrophysiological differences between muscle weakness type (n = 27) and non-muscle weakness type (n = 69) of NIID, nerve conduction abnormalities were more severe in the muscle weakness type involving both demyelination and axonal impairment. Notably, specific DWI subcortical lace sign was presented in only 33.3% of muscle weakness type, thus it was difficult to differentiate them from CMT. Combining age of onset, distal motor latency, and compound muscle action potential of the median nerve showed the optimal diagnostic performance to distinguish NIID from major CMT (AUC = 0.989, sensitivity = 92.6%, specificity = 97.4%). INTERPRETATION Peripheral polyneuropathy is common in NIID. Our study suggest that nerve conduction study is useful to discriminate NIID.
Collapse
Affiliation(s)
- Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Xiao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Yi
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sen Zeng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Nina Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mengli Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lingyan Yao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yacen Hu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hongwei Xu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
12
|
Record CJ, Skorupinska M, Laura M, Rossor AM, Pareyson D, Pisciotta C, Feely SME, Lloyd TE, Horvath R, Sadjadi R, Herrmann DN, Li J, Walk D, Yum SW, Lewis RA, Day J, Burns J, Finkel RS, Saporta MA, Ramchandren S, Weiss MD, Acsadi G, Fridman V, Muntoni F, Poh R, Polke JM, Zuchner S, Shy ME, Scherer SS, Reilly MM. Genetic analysis and natural history of Charcot-Marie-Tooth disease CMTX1 due to GJB1 variants. Brain 2023; 146:4336-4349. [PMID: 37284795 PMCID: PMC10545504 DOI: 10.1093/brain/awad187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Shawna M E Feely
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina W Yum
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John Day
- Department of Neurology, Stanford University, Stanford, CA 94304, USA
| | - Joshua Burns
- University of Sydney School of Health Sciences, Faculty of Medicine and Health; Paediatric Gait Analysis Service of New South Wales, Sydney Children’s Hospitals Network, Sydney, 2145Australia
| | - Richard S Finkel
- Department of Neurology, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sindhu Ramchandren
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Titusville, NJ 08560, USA
| | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, WA, 98195USA
| | - Gyula Acsadi
- Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London, WC1N 1EH, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
13
|
Barbat du Closel L, Bonello-Palot N, Péréon Y, Echaniz-Laguna A, Camdessanche JP, Nadaj-Pakleza A, Chanson JB, Frachet S, Magy L, Cassereau J, Cintas P, Choumert A, Devic P, Leonard Louis S, Gravier Dumonceau R, Delmont E, Salort-Campana E, Bouhour F, Latour P, Stojkovic T, Attarian S. Clinical and electrophysiological characteristics of women with X-linked Charcot-Marie-Tooth disease. Eur J Neurol 2023; 30:3265-3276. [PMID: 37335503 DOI: 10.1111/ene.15937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND X-Linked Charcot-Marie-Tooth disease type 1 (CMTX1) is characterized by gender differences in clinical severity. Women are usually clinically affected later and less severely than men. However, their clinical presentation appears to be heterogenous. Our aim was to extend the phenotypic description in a large series of women with CMTX1. METHODS We retrospectively evaluated 263 patients with CMTX1 from 11 French reference centers. Demographic, clinical, and nerve conduction data were collected. The severity was assessed by CMT Examination Score (CMTES) and Overall Neuropathy Limitations Scale (ONLS) scores. We looked for asymmetrical strength, heterogeneous motor nerve conduction velocity (MNCV), and motor conduction blocks (CB). RESULTS The study included 137 women and 126 men from 151 families. Women had significantly more asymmetric motor deficits and MNCV than men. Women with an age of onset after 19 years were milder. Two groups of women were identified after 48 years of age. The first group represented 55%, with women progressing as severely as men, however, with a later onset age. The second group had mild or no symptoms. Some 39% of women had motor CB. Four women received intravenous immunoglobulin before being diagnosed with CMTX1. CONCLUSIONS We identified two subgroups of women with CMTX1 who were over 48 years of age. Additionally, we have demonstrated that women with CMTX can exhibit an atypical clinical presentation, which may result in misdiagnosis. Therefore, in women presenting with chronic neuropathy, the presence of clinical asymmetry, heterogeneous MNCV, and/or motor CB should raise suspicion for X-linked CMT, particularly CMTX1, and be included in the differential diagnosis.
Collapse
Affiliation(s)
- Luce Barbat du Closel
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
| | | | - Yann Péréon
- CHU Nantes, Laboratoire d'Explorations Fonctionnelles, Reference Center for NMD AOC, Filnemus, Euro-NMD, Nantes, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
- French National Reference Center for Rare Neuropathies, Le Kremlin-Bicêtre, France
- Inserm U1195 and Paris-Saclay University, Le Kremlin-Bicêtre, France
| | | | - Aleksandra Nadaj-Pakleza
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-Baptiste Chanson
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Simon Frachet
- Service et Laboratoire de Neurologie, Centre de Référence Neuropathies Périphériques rares (NNERF), UR, Limoges, France
| | - Laurent Magy
- Service et Laboratoire de Neurologie, Centre de Référence Neuropathies Périphériques rares (NNERF), UR, Limoges, France
| | - Julien Cassereau
- Reference Center for Neuromuscular Disorders AOC and National Reference Center for Neurogenetic Diseases, Angers University Hospital, Angers, France
| | - Pascal Cintas
- Centre de référence de pathologie neuromusculaire de ToulouseHôpital Purpan, Toulouse, France
| | - Ariane Choumert
- Service des Maladies Neurologiques Rares, CHU de la Réunion, Saint-Pierre, France
| | - Perrine Devic
- Department of Neurology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | | | - Robinson Gravier Dumonceau
- APHM, Hop Timone, BioSTIC, Biostatistique et Technologies de l'Information et de la Communication, Marseille, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
| | - Emmanuelle Salort-Campana
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
- Marseille Medical Genetics, Aix-Marseille University-Inserm UMR 1251, Marseille, France
| | - Françoise Bouhour
- Service d'Electroneuromyographie et Pathologies Neuromusculaires, Hospices Civils de Lyon, Lyon, France
| | - Philippe Latour
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France
- Unité fonctionnelle de Neurogénétique Moléculaire, CHU de Lyon-HCL groupement Est, Bron, France
| | - Tanya Stojkovic
- Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
- Marseille Medical Genetics, Aix-Marseille University-Inserm UMR 1251, Marseille, France
| |
Collapse
|
14
|
Merico E, Schirinzi E, Baldinotti F, Govoni A, Siciliano G. Phenotypic characterization of c.379A > G GJB1 mutation in a Charcot-Marie-Tooth female patient. Acta Neurol Belg 2023; 123:2031-2033. [PMID: 36175785 DOI: 10.1007/s13760-022-02093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
Affiliation(s)
- E Merico
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, via Roma 67, 56126, Pisa, Italy.
| | - E Schirinzi
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, via Roma 67, 56126, Pisa, Italy
| | - F Baldinotti
- Laboratory of Molecular Genetics, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - A Govoni
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, via Roma 67, 56126, Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, via Roma 67, 56126, Pisa, Italy
| |
Collapse
|
15
|
Ma Y, Duan X, Liu X, Fan D. Clinical and mutational spectrum of paediatric Charcot-Marie-Tooth disease in a large cohort of Chinese patients. Front Genet 2023; 14:1188361. [PMID: 37519884 PMCID: PMC10381926 DOI: 10.3389/fgene.2023.1188361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Charcot-Marie-Tooth disease (CMT) is the most common inherited neurological disorder suffered in childhood. To date, the disease features have not been extensively characterized in the Chinese paediatric population. In this study, we aimed to analyse the clinical profiles and genetic distributions of a paediatric CMT cohort in China. Methods: A total of 181 paediatric CMT patients were enrolled. After preexcluding PMP22 duplication/deletion by multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing, targeted next-generation sequencing (NGS) or whole-exome sequencing (WES) was performed to obtain a genetic diagnosis. Detailed information was collected to explore the spectrum of subtypes and genotype-phenotype correlations. Results: Pathogenic mutations were identified in 68% of patients in this study; with PMP22 duplication, MFN2 and GJB1 were the most frequent disease-causing genes. Of note, respect to the higher prevalence worldwide, CMT1A (18.2%) was relatively lower in our cohort. Besides, the mean age at onset (8.3 ± 5.7 years) was significantly older in our series. In genotype-phenotype analyse, PMP22 point mutations were considered the most severe genotypes and were mostly de novo. In addition, the de novo mutations were identified in up to 12.7% of all patients, which was higher than that in other studies. Conclusion: We identified a relatively lower detection rate of PMP22 duplication and a higher frequency of de novo variants among paediatric patients in China. We also identified the genetic and phenotypic heterogeneity of this cohort, which may provide clues for clinicians in directing genetic testing strategies for Chinese patients with early-onset CMT.
Collapse
Affiliation(s)
- Yan Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | | | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
16
|
Reilly MM, Herrmann DN, Pareyson D, Scherer SS, Finkel RS, Züchner S, Burns J, Shy ME. Trials for Slowly Progressive Neurogenetic Diseases Need Surrogate Endpoints. Ann Neurol 2023; 93:906-910. [PMID: 36891823 PMCID: PMC10192108 DOI: 10.1002/ana.26633] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
Heritable neurological disorders provide insights into disease mechanisms that permit development of novel therapeutic approaches including antisense oligonucleotides, RNA interference, and gene replacement. Many neurogenetic diseases are rare and slowly progressive making it challenging to measure disease progression within short time frames. We share our experience developing clinical outcome assessments and disease biomarkers in the inherited peripheral neuropathies. We posit that carefully developed biomarkers from imaging, plasma, or skin can predict meaningful progression in functional and patient reported outcome assessments such that clinical trials of less than 2 years will be feasible for these rare and ultra-rare disorders. ANN NEUROL 2023;93:906-910.
Collapse
Affiliation(s)
- Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Richard S Finkel
- Center for Experimental Neurotherapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Joshua Burns
- Sydney School of Health Sciences, University of Sydney, Sydney, Australia
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa, IA
| |
Collapse
|
17
|
Cipriani S, Guerrero-Valero M, Tozza S, Zhao E, Vollmer V, Beijer D, Danzi M, Rivellini C, Lazarevic D, Pipitone GB, Grosz BR, Lamperti C, Marzoli SB, Carrera P, Devoto M, Pisciotta C, Pareyson D, Kennerson M, Previtali SC, Zuchner S, Scherer SS, Manganelli F, Bähler M, Bolino A. Mutations in MYO9B are associated with Charcot-Marie-Tooth disease type 2 neuropathies and isolated optic atrophy. Eur J Neurol 2023; 30:511-526. [PMID: 36260368 PMCID: PMC10099703 DOI: 10.1111/ene.15601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders caused by mutations in at least 100 genes. However, approximately 60% of cases with axonal neuropathies (CMT2) still remain without a genetic diagnosis. We aimed at identifying novel disease genes responsible for CMT2. METHODS We performed whole exome sequencing and targeted next generation sequencing panel analyses on a cohort of CMT2 families with evidence for autosomal recessive inheritance. We also performed functional studies to explore the pathogenetic role of selected variants. RESULTS We identified rare, recessive variants in the MYO9B (myosin IX) gene in two families with CMT2. MYO9B has not yet been associated with a human disease. MYO9B is an unconventional single-headed processive myosin motor protein with signaling properties, and, consistent with this, our results indicate that a variant occurring in the MYO9B motor domain impairs protein expression level and motor activity. Interestingly, a Myo9b-null mouse has degenerating axons in sciatic nerves and optic nerves, indicating that MYO9B plays an essential role in both peripheral nervous system and central nervous system axons, respectively. The degeneration observed in the optic nerve prompted us to screen for MYO9B mutations in a cohort of patients with optic atrophy (OA). Consistent with this, we found compound heterozygous variants in one case with isolated OA. CONCLUSIONS Novel or very rare variants in MYO9B are associated with CMT2 and isolated OA.
Collapse
Affiliation(s)
- Silvia Cipriani
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marta Guerrero-Valero
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Edward Zhao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Veith Vollmer
- Institute of Integrative Cell Biology and Physiology, Westfalian Wilhelms University Münster, Münster, Germany
| | - Danique Beijer
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Matt Danzi
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Cristina Rivellini
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Battista Pipitone
- Unit of Genomics for the Diagnosis of Human Pathologies and Laboratory of Clinical and Molecular Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Bianca Rose Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Health and Medicine, University of Sydney, Sydney, Australia
| | - Costanza Lamperti
- Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Bianchi Marzoli
- Neuroophthalmology Service and Ocular Electrophysiology laboratory, Department of Ophthalmology, Scientific Institute, Auxologico Capitanio Hospital, Milan, Italy
| | - Paola Carrera
- Unit of Genomics for the Diagnosis of Human Pathologies and Laboratory of Clinical and Molecular Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- CNR-IRGB, Cagliari, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Health and Medicine, University of Sydney, Sydney, Australia
| | - Stefano C Previtali
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, Westfalian Wilhelms University Münster, Münster, Germany
| | - Alessandra Bolino
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
18
|
Pisciotta C, Shy ME. Hereditary neuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:609-617. [PMID: 37562889 DOI: 10.1016/b978-0-323-98818-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The hereditary neuropathies, collectively referred as Charcot-Marie-Tooth disease (CMT) and related disorders, are heterogeneous genetic peripheral nerve disorders that collectively comprise the commonest inherited neurological disease with an estimated prevalence of 1:2500 individuals. The field of hereditary neuropathies has made significant progress in recent years with respect to both gene discovery and treatment as a result of next-generation sequencing (NGS) approach. These investigations which have identified over 100 causative genes and new mutations have made the classification of CMT even more challenging. Despite so many different mutated genes, the majority of CMT forms share a similar clinical phenotype, and due to this phenotypic homogeneity, genetic testing in CMT is increasingly being performed through the use of NGS panels. The majority of patients still have a mutation in one the four most common genes (PMP22 duplication-CMT1A, MPZ-CMT1B, GJB1-CMTX1, and MFN2-CMT2A). This chapter focuses primarily on these four forms and their potential therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
19
|
Jennings MJ, Kagiava A, Vendredy L, Spaulding EL, Stavrou M, Hathazi D, Grüneboom A, De Winter V, Gess B, Schara U, Pogoryelova O, Lochmüller H, Borchers CH, Roos A, Burgess RW, Timmerman V, Kleopa KA, Horvath R. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 2022; 145:3999-4015. [PMID: 35148379 PMCID: PMC9679171 DOI: 10.1093/brain/awac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT. The severity of neuropathy in the patients was assessed by the CMT Neuropathy Examination Score (CMTES). We performed multitargeted proteomics on both sample sets to identify proteins elevated across multiple mouse models and CMT patients. Selected proteins and additional potential biomarkers, such as growth differentiation factor 15 (GDF15) and cell free mitochondrial DNA, were validated by ELISA and quantitative PCR, respectively. We propose that neural cell adhesion molecule 1 (NCAM1) is a candidate biomarker for CMT, as it was elevated in Gjb1-null, Hspb8K141N, GarsC201R and GarsP278KY mice as well as in patients with both demyelinating (CMT1A) and axonal (CMT2D, CMT2N) forms of CMT. We show that NCAM1 may reflect disease severity, demonstrated by a progressive increase in mouse models with time and a significant positive correlation with CMTES neuropathy severity in patients. The increase in NCAM1 may reflect muscle regeneration triggered by denervation, which could potentially track disease progression or the effect of treatments. We found that member proteins of the complement system were elevated in Gjb1-null and Hspb8K141N mouse models as well as in patients with both demyelinating and axonal CMT, indicating possible complement activation at the impaired nerve terminals. However, complement proteins did not correlate with the severity of neuropathy measured on the CMTES scale. Although the complement system does not seem to be a prognostic biomarker, we do show complement elevation to be a common disease feature of CMT, which may be of interest as a therapeutic target. We also identify serum GDF15 as a highly sensitive diagnostic biomarker, which was elevated in all CMT genotypes as well as in Hspb8K141N, Gjb1-null, GarsC201R and GarsP278KY mouse models. Although we cannot fully explain its origin, it may reflect increased stress response or metabolic disturbances in CMT. Further large and longitudinal patient studies should be performed to establish the value of these proteins as diagnostic and prognostic molecular biomarkers for CMT.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexia Kagiava
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Marina Stavrou
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Dortmund, Germany
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Burkhard Gess
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Ulrike Schara
- Centre for Neuromuscular Disorders in Children, University of Duisburg-Essen, Essen, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andreas Roos
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Kleopas A Kleopa
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Yalcouyé A, Diallo SH, Cissé L, Karembé M, Diallo S, Coulibaly T, Diarra S, Coulibaly D, Keita M, Guinto CO, Fischbeck KH, Wonkam A, Landouré G. GJB1 variants in Charcot-Marie-Tooth disease X-linked type 1 in Mali. J Peripher Nerv Syst 2022; 27:113-119. [PMID: 35383424 PMCID: PMC11000073 DOI: 10.1111/jns.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
X-linked Charcot-Marie-Tooth type 1 (CMTX1) disease is one of the most common subtypes of inherited neuropathies and is caused by mutations in the GJB1 gene. To date, more than 400 mutations have been reported in GJB1 worldwide but none in sub-Saharan Africa (SSA). We aimed to clinically characterize patients with CMTX1 and identify the genetic defects. All patients were examined thoroughly, and Nerve Conduction Studies (NCS) were done. EEG and pure tone audiometry (PTA) were also done in select individuals having additional symptoms. DNA was extracted for CMT gene panel testing (50 genes + mtDNA and PMP22 duplication), and putative variants were screened in available relatives. The predominant starting symptom was tingling, and the chief complaint was gait difficulty. Neurological examination found a distal muscle weakness and atrophy, and sensory loss, skeletal deformities, decreased or absent reflexes and steppage gait. The inheritance pattern was consistent with dominant X-linked. NCS showed no response in most of the tested nerves in lower limbs, and normal or reduced amplitudes in upper limbs. A severe sensorineural hearing impairment and a focal epileptic seizure were observed in one patient each. A high intra and inter-familial clinical variability was observed. Genetic testing found three pathogenic missense variants in GJB1, one in each of the families (Val91Met, Arg15Trp, and Phe235Cys). This is the first report of genetically confirmed cases of CMTX1 in SSA, and confirms its clinical and genetic heterogeneity.
Collapse
Affiliation(s)
- Abdoulaye Yalcouyé
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
| | - Seybou H. Diallo
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire Gabriel Touré, Bamako, Mali
| | - Lassana Cissé
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Mamadou Karembé
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Salimata Diallo
- Service de Neurologie, Centre Hospitalier Universitaire Gabriel Touré, Bamako, Mali
| | - Thomas Coulibaly
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Salimata Diarra
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Dramane Coulibaly
- Service de Médecine, Centre Hospitalier Universitaire Mère-Enfant le “Luxembourg”, Bamako, Mali
| | - Mohamed Keita
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service d’ORL, Centre Hospitalier Universitaire Gabriel Touré, Bamako, Mali
| | - Cheick O. Guinto
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Kenneth H. Fischbeck
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Guida Landouré
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | |
Collapse
|
21
|
Abati E, Manini A, Velardo D, Del Bo R, Napoli L, Rizzo F, Moggio M, Bresolin N, Bellone E, Bassi MT, D'Angelo MG, Comi GP, Corti S. Clinical and genetic features of a cohort of patients with MFN2-related neuropathy. Sci Rep 2022; 12:6181. [PMID: 35418194 PMCID: PMC9008012 DOI: 10.1038/s41598-022-10220-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Charcot–Marie–Tooth disease type 2A (CMT2A) is a rare inherited axonal neuropathy caused by mutations in MFN2 gene, which encodes Mitofusin 2, a transmembrane protein of the outer mitochondrial membrane. We performed a cross-sectional analysis on thirteen patients carrying mutations in MFN2, from ten families, describing their clinical and genetic characteristics. Evaluated patients presented a variable age of onset and a wide phenotypic spectrum, with most patients presenting a severe phenotype. A novel heterozygous missense variant was detected, p.K357E. It is located at a highly conserved position and predicted as pathogenic by in silico tools. At a clinical level, the p.K357E carrier shows a severe sensorimotor axonal neuropathy. In conclusion, our work expands the genetic spectrum of CMT2A, disclosing a novel mutation and its related clinical effect, and provides a detailed description of the clinical features of a cohort of patients with MFN2 mutations. Obtaining a precise genetic diagnosis in affected families is crucial both for family planning and prenatal diagnosis, and in a therapeutic perspective, as we are entering the era of personalized therapy for genetic diseases.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy. .,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Arianna Manini
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Daniele Velardo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Rizzo
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilia Bellone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi) - Medical Genetics, University of Genoa, Genoa, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Maria Grazia D'Angelo
- Neuromuscular Disorder Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
22
|
Prada V, Zuccarino R, Schenone C, Mennella G, Grandis M, Shy ME, Schenone A. Charcot-Marie-Tooth neuropathy score and ambulation index are both predictors of orthotic need for patients with CMT. Neurol Sci 2022; 43:2759-2764. [PMID: 34613504 PMCID: PMC8918134 DOI: 10.1007/s10072-021-05646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common hereditary neuropathy with an estimated prevalence of 1 person affected on 2500. Frequent symptoms include distal weakness and muscle wasting, sensory loss, reduced deep tendon reflexes, and skeletal deformities, such as hammer toes and pes cavus. CMT is a progressive disease and patients' needs change over their lifetime. In particular, ambulation aids are increasingly needed to maintain ambulation and reduce the risk of falls. We performed a retrospective analysis of medical records from 149 patients with confirmed CMT to evaluate patients ambulation needs related to the severity of their CMT as measured by the CMT Neuropathy Score (CMTNS) and Ambulation Index (AI). Most patients required some form of orthotics (86.6%). The CMTNS and AI scores both differed significantly between patients with no orthotics compared to those who wore insoles/inserts. The CMTNS and AI also differed significantly between patients wearing insoles and those with ankle foot orthotics (AFOs). CMTNS and the AI were valid predictors of the type and choice of the orthotics. Both the CMTNS and AI can be effective tools to aid in the correct choice of orthotics in patients affected by CMT.
Collapse
Affiliation(s)
- Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, Genova, Italy.
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242-1009, USA.
| | - Riccardo Zuccarino
- Neuromuscular Omnicentre (NeMO) Trento-Fondazione Serena Onlus, Pergine Valsugana, TN, Italy
| | - Cristina Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, Genova, Italy
| | - Giulia Mennella
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, Genova, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, Genova, Italy
- Ospedale Policlinico IRCCS San Martino, Genova, Italy
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242-1009, USA
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, Genova, Italy
- Ospedale Policlinico IRCCS San Martino, Genova, Italy
| |
Collapse
|
23
|
Laird DW, Lampe PD. Cellular mechanisms of connexin-based inherited diseases. Trends Cell Biol 2022; 32:58-69. [PMID: 34429228 PMCID: PMC8688313 DOI: 10.1016/j.tcb.2021.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
The 21-member connexin gene family exhibits distinct tissue expression patterns that can cause a diverse array of over 30 inherited connexin-linked diseases ranging from deafness to skin defects and blindness. Intriguingly, germline mutations can cause disease in one tissue while other tissues that abundantly express the mutant connexin remain disease free, highlighting the importance of the cellular context of mutant expression. Modeling connexin pathologies in genetically modified mice and tissue-relevant cells has informed extensively on no less than a dozen gain- and loss-of-function mechanisms that underpin disease. This review focuses on how a deeper molecular understanding of the over 930 mutations in 11 connexin-encoding genes is foundational for creating a framework for therapeutic interventions.
Collapse
Affiliation(s)
- Dale W. Laird
- Departments of Anatomy and Cell Biology, and Physiology and Pharmacology, University of Western Ontario, London, ON, CANADA
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
24
|
Kagiava A, Karaiskos C, Richter J, Tryfonos C, Jennings MJ, Heslegrave AJ, Sargiannidou I, Stavrou M, Zetterberg H, Reilly MM, Christodoulou C, Horvath R, Kleopa KA. AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy. Gene Ther 2021; 28:659-675. [PMID: 33692503 PMCID: PMC8599011 DOI: 10.1038/s41434-021-00250-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/31/2023]
Abstract
Mutations in the GJB1 gene, encoding the gap junction (GJ) protein connexin32 (Cx32), cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited demyelinating neuropathy. We developed a gene therapy approach for CMT1X using an AAV9 vector to deliver the GJB1/Cx32 gene under the myelin protein zero (Mpz) promoter for targeted expression in Schwann cells. Lumbar intrathecal injection of the AAV9-Mpz.GJB1 resulted in widespread biodistribution in the peripheral nervous system including lumbar roots, sciatic and femoral nerves, as well as in Cx32 expression in the paranodal non-compact myelin areas of myelinated fibers. A pre-, as well as post-onset treatment trial in Gjb1-null mice, demonstrated improved motor performance and sciatic nerve conduction velocities along with improved myelination and reduced inflammation in peripheral nerve tissues. Blood biomarker levels were also significantly ameliorated in treated mice. This study provides evidence that a clinically translatable AAV9-mediated gene therapy approach targeting Schwann cells could potentially treat CMT1X.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Jan Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Amanda J Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Christina Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
25
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
Pipis M, Feely SME, Polke JM, Skorupinska M, Perez L, Shy RR, Laura M, Morrow JM, Moroni I, Pisciotta C, Taroni F, Vujovic D, Lloyd TE, Acsadi G, Yum SW, Lewis RA, Finkel RS, Herrmann DN, Day JW, Li J, Saporta M, Sadjadi R, Walk D, Burns J, Muntoni F, Ramchandren S, Horvath R, Johnson NE, Züchner S, Pareyson D, Scherer SS, Rossor AM, Shy ME, Reilly MM. Natural history of Charcot-Marie-Tooth disease type 2A: a large international multicentre study. Brain 2021; 143:3589-3602. [PMID: 33415332 PMCID: PMC7805791 DOI: 10.1093/brain/awaa323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 01/02/2023] Open
Abstract
Mitofusin-2 (MFN2) is one of two ubiquitously expressed homologous proteins in eukaryote cells, playing a critical role in mitochondrial fusion. Mutations in MFN2 (most commonly autosomal dominant) cause Charcot-Marie-Tooth disease type 2A (CMT2A), the commonest axonal form of CMT, with significant allelic heterogeneity. Previous, moderately-sized, cross sectional genotype-phenotype studies of CMT2A have described the phenotypic spectrum of the disease, but longitudinal natural history studies are lacking. In this large multicentre prospective cohort study of 196 patients with dominant and autosomal recessive CMT2A, we present an in-depth genotype-phenotype study of the baseline characteristics of patients with CMT2A and longitudinal data (1–2 years) to describe the natural history. A childhood onset of autosomal dominant CMT2A is the most predictive marker of significant disease severity and is independent of the disease duration. When compared to adult onset autosomal dominant CMT2A, it is associated with significantly higher rates of use of ankle-foot orthoses, full-time use of wheelchair, dexterity difficulties and also has significantly higher CMT Examination Score (CMTESv2) and CMT Neuropathy Score (CMTNSv2) at initial assessment. Analysis of longitudinal data using the CMTESv2 and its Rasch-weighted counterpart, CMTESv2-R, show that over 1 year, the CMTESv2 increases significantly in autosomal dominant CMT2A (mean change 0.84 ± 2.42; two-tailed paired t-test P = 0.039). Furthermore, over 2 years both the CMTESv2 (mean change 0.97 ± 1.77; two-tailed paired t-test P = 0.003) and the CMTESv2-R (mean change 1.21 ± 2.52; two-tailed paired t-test P = 0.009) increase significantly with respective standardized response means of 0.55 and 0.48. In the paediatric CMT2A population (autosomal dominant and autosomal recessive CMT2A grouped together), the CMT Pediatric Scale increases significantly both over 1 year (mean change 2.24 ± 3.09; two-tailed paired t-test P = 0.009) and over 2 years (mean change 4.00 ± 3.79; two-tailed paired t-test P = 0.031) with respective standardized response means of 0.72 and 1.06. This cross-sectional and longitudinal study of the largest CMT2A cohort reported to date provides guidance for variant interpretation, informs prognosis and also provides natural history data that will guide clinical trial design.
Collapse
Affiliation(s)
- Menelaos Pipis
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James M Polke
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mariola Skorupinska
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Laura Perez
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rosemary R Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Matilde Laura
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jasper M Morrow
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Isabella Moroni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dragan Vujovic
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas E Lloyd
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gyula Acsadi
- Connecticut Children's Medical Center, Hartford, CT, USA
| | - Sabrina W Yum
- The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard S Finkel
- Center for Experimental Neurotherapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - John W Day
- Department of Neurology, Stanford Health Care, Stanford, CA, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mario Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Reza Sadjadi
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua Burns
- University of Sydney School of Health Sciences and Children's Hospital at Westmead, Sydney, Australia
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Biomedical Research Centre at UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | | | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander M Rossor
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | |
Collapse
|
27
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
28
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
29
|
Liu X, Duan X, Zhang Y, Sun A, Fan D. Cross-Sectional Study in a Large Cohort of Chinese Patients With GJB1 Gene Mutations. Front Neurol 2020; 11:690. [PMID: 32903794 PMCID: PMC7438869 DOI: 10.3389/fneur.2020.00690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited neuropathies. The GJB1 gene is the pathogenic gene of CMTX1. In this study, we screened a cohort of 465 unrelated Chinese CMT patients from years 2007 to 2019 and 650 controls by direct Sanger sequencing in GJB1 gene or targeted next-generation sequencing (NGS) or whole-exome sequencing (WES). A bidirectional Sanger sequencing would be performed on the 600 bases in the upstream promoter region and 30 bases in the 3′ untranslated region (UTR), if no mutation was found in the coding region of GJB1 of the patient. According to the results, 24 missense mutations, 4 nonsense mutation, 1 entire deletion, 1 intronic mutation, and 4 frameshift mutations in GJB1 were identified. Three of them were novel mutations (c.104 T>C, c.658-659 ins C, and c.811 del G). Moreover, central nervous system involvement was observed in five patients carrying mutations of R15W, V95M, R142W, R164W, and E186K. Our findings expand the mutational spectrum of the GJB1 gene in CMT patients. We also explored the genotype–phenotype correlation according to the collected information in this study. NGS panels for detecting inherited neuropathy should cover the non-coding region of GJB1.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Aping Sun
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
30
|
Sargiannidou I, Kagiava A, Kleopa KA. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res 2020; 1728:146572. [PMID: 31790684 DOI: 10.1016/j.brainres.2019.146572] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses numerous genetically heterogeneous inherited neuropathies, which together are one of the commonest neurogenetic disorders. Axonal CMT types result from mutations in neuronally expressed genes, whereas demyelinating CMT forms mostly result from mutations in genes expressed by myelinating Schwann cells. The demyelinating forms are the most common, and may be caused by dominant mutations and gene dosage effects (as in CMT1), as well as by recessive mutations and loss of function mechanisms (as in CMT4). The discovery of causative genes and increasing insights into molecular mechanisms through the study of experimental disease models has provided the basis for the development of gene therapy approaches. For demyelinating CMT, gene silencing or gene replacement strategies need to be targeted to Schwann cells. Progress in gene replacement for two different CMT forms, including CMT1X caused by GJB1 gene mutations, and CMT4C, caused by SH3TC2 gene mutations, has been made through the use of a myelin-specific promoter to restrict expression in Schwann cells, and by lumbar intrathecal delivery of lentiviral viral vectors to achieve more widespread biodistribution in the peripheral nervous system. This review summarizes the molecular-genetic mechanisms of selected demyelinating CMT neuropathies and the progress made so far, as well as the remaining challenges in the path towards a gene therapy to treat these disorders through the use of optimal gene therapy tools including clinically translatable delivery methods and adeno-associated viral (AAV) vectors.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
31
|
Cortese A, Wilcox JE, Polke JM, Poh R, Skorupinska M, Rossor AM, Laura M, Tomaselli PJ, Houlden H, Shy ME, Reilly MM. Targeted next-generation sequencing panels in the diagnosis of Charcot-Marie-Tooth disease. Neurology 2020; 94:e51-e61. [PMID: 31827005 PMCID: PMC7011687 DOI: 10.1212/wnl.0000000000008672] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the effectiveness of targeted next-generation sequencing (NGS) panels in achieving a molecular diagnosis in Charcot-Marie-Tooth disease (CMT) and related disorders in a clinical setting. METHODS We prospectively enrolled 220 patients from 2 tertiary referral centers, one in London, United Kingdom (n = 120), and one in Iowa (n = 100), in whom a targeted CMT NGS panel had been requested as a diagnostic test. PMP22 duplication/deletion was previously excluded in demyelinating cases. We reviewed the genetic and clinical data upon completion of the diagnostic process. RESULTS After targeted NGS sequencing, a definite molecular diagnosis, defined as a pathogenic or likely pathogenic variant, was reached in 30% of cases (n = 67). The diagnostic rate was similar in London (32%) and Iowa (29%). Variants of unknown significance were found in an additional 33% of cases. Mutations in GJB1, MFN2, and MPZ accounted for 39% of cases that received genetic confirmation, while the remainder of positive cases had mutations in diverse genes, including SH3TC2, GDAP1, IGHMBP2, LRSAM1, FDG4, and GARS, and another 12 less common genes. Copy number changes in PMP22, MPZ, MFN2, SH3TC2, and FDG4 were also accurately detected. A definite genetic diagnosis was more likely in cases with an early onset, a positive family history of neuropathy or consanguinity, and a demyelinating neuropathy. CONCLUSIONS NGS panels are effective tools in the diagnosis of CMT, leading to genetic confirmation in one-third of cases negative for PMP22 duplication/deletion, thus highlighting how rarer and previously undiagnosed subtypes represent a relevant part of the genetic landscape of CMT.
Collapse
Affiliation(s)
- Andrea Cortese
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Janel E Wilcox
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - James M Polke
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Roy Poh
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Mariola Skorupinska
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Alexander M Rossor
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Matilde Laura
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Pedro J Tomaselli
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Henry Houlden
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Michael E Shy
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Mary M Reilly
- From the MRC Centre for Neuromuscular Diseases (A.C., J.M.P., R.P., M.S., A.M.R., M.L., P.J.T., H.H., M.M.R.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; and the Department of Neurology (J.E.W., M.E.S.), University of Iowa Carver College of Medicine, Iowa City.
| |
Collapse
|
32
|
Kagiava A, Richter J, Tryfonos C, Karaiskos C, Heslegrave AJ, Sargiannidou I, Rossor AM, Zetterberg H, Reilly MM, Christodoulou C, Kleopa KA. Gene replacement therapy after neuropathy onset provides therapeutic benefit in a model of CMT1X. Hum Mol Genet 2019; 28:3528-3542. [PMID: 31411673 DOI: 10.1093/hmg/ddz199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X), one of the commonest forms of inherited demyelinating neuropathy, results from GJB1 gene mutations causing loss of function of the gap junction protein connexin32 (Cx32). The aim of this study was to examine whether delayed gene replacement therapy after the onset of peripheral neuropathy can provide a therapeutic benefit in the Gjb1-null/Cx32 knockout model of CMT1X. After delivery of the LV-Mpz.GJB1 lentiviral vector by a single lumbar intrathecal injection into 6-month-old Gjb1-null mice, we confirmed expression of Cx32 in lumbar roots and sciatic nerves correctly localized at the paranodal myelin areas. Gjb1-null mice treated with LV-Mpz.GJB1 compared with LV-Mpz.Egfp (mock) vector at the age of 6 months showed improved motor performance at 8 and 10 months. Furthermore, treated mice showed increased sciatic nerve conduction velocities, improvement of myelination and reduced inflammation in lumbar roots and peripheral nerves at 10 months of age, along with enhanced quadriceps muscle innervation. Plasma neurofilament light (NEFL) levels, a clinically relevant biomarker, were also ameliorated in fully treated mice. Intrathecal gene delivery after the onset of peripheral neuropathy offers a significant therapeutic benefit in this disease model, providing a proof of principle for treating patients with CMT1X at different ages.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A J Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - H Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - M M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
33
|
Bogdanova‐Mihaylova P, Alexander MD, Murphy RP, Chen H, Healy DG, Walsh RA, Murphy SM. Clinical spectrum of
AIFM1
‐associated disease in an Irish family, from mild neuropathy to severe cerebellar ataxia with colour blindness. J Peripher Nerv Syst 2019; 24:348-353. [DOI: 10.1111/jns.12348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/25/2022]
Affiliation(s)
| | - Michael D. Alexander
- Department of NeurophysiologyTallaght University Hospital Dublin Ireland
- Academic Unit of NeurologyTrinity College Dublin Dublin Ireland
| | - Raymond P. Murphy
- Department of NeurologyTallaght University Hospital Dublin Ireland
- Academic Unit of NeurologyTrinity College Dublin Dublin Ireland
| | - Hongying Chen
- School of MedicineTrinity College Dublin Dublin Ireland
| | | | - Richard A. Walsh
- Department of NeurologyTallaght University Hospital Dublin Ireland
- Academic Unit of NeurologyTrinity College Dublin Dublin Ireland
| | - Sinéad M. Murphy
- Department of NeurologyTallaght University Hospital Dublin Ireland
- Academic Unit of NeurologyTrinity College Dublin Dublin Ireland
| |
Collapse
|
34
|
Next-generation sequencing in Charcot-Marie-Tooth disease: opportunities and challenges. Nat Rev Neurol 2019; 15:644-656. [PMID: 31582811 DOI: 10.1038/s41582-019-0254-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
Abstract
Charcot-Marie-Tooth disease and the related disorders hereditary motor neuropathy and hereditary sensory neuropathy, collectively termed CMT, are the commonest group of inherited neuromuscular diseases, and they exhibit wide phenotypic and genetic heterogeneity. CMT is usually characterized by distal muscle atrophy, often with foot deformity, weakness and sensory loss. In the past decade, next-generation sequencing (NGS) technologies have revolutionized genomic medicine and, as these technologies are being applied to clinical practice, they are changing our diagnostic approach to CMT. In this Review, we discuss the application of NGS technologies, including disease-specific gene panels, whole-exome sequencing, whole-genome sequencing (WGS), mitochondrial sequencing and high-throughput transcriptome sequencing, to the diagnosis of CMT. We discuss the growing challenge of variant interpretation and consider how the clinical phenotype can be combined with genetic, bioinformatic and functional evidence to assess the pathogenicity of genetic variants in patients with CMT. WGS has several advantages over the other techniques that we discuss, which include unparalleled coverage of coding, non-coding and intergenic areas of both nuclear and mitochondrial genomes, the ability to identify structural variants and the opportunity to perform genome-wide dense homozygosity mapping. We propose an algorithm for incorporating WGS into the CMT diagnostic pathway.
Collapse
|
35
|
Chen B, Niu S, Wang X, Yu X, Tang H, Pan H, Zhang Z. Three novel mutations in a group of Chinese patients with X-linked Charcot-Marie-Tooth disease. Clin Neurol Neurosurg 2019; 184:105430. [PMID: 31323543 DOI: 10.1016/j.clineuro.2019.105430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
The X-linked form of Charcot-Marie-Tooth disease type1 (CMTX1) is the second most common hereditary motor and sensory neuropathy caused by mutations in the gap junction beta 1 (GJB1) gene. Here, we report the clinical and genetic features of six unrelated Chinese patients with CMTX1, which were identified by genetic analysis. Among the 6 identified mutations, 3 were previously unknown (c.31A > T, c.42 C > G and c.423 del C). The six patients showed typical signs of CMT with a median age of onset of 16.5 years (range: 13-30). Sensorineural hearing loss was confirmed in the patient with the c.423 del C mutation. White matter lesions on brain magnetic resonance imaging (MRI) were observed in two patients. The three newly identified GJB1 mutations expand the clinical and mutational spectrum of CMTX1.
Collapse
Affiliation(s)
- Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Xueying Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hefei Tang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| |
Collapse
|
36
|
Giuliani N, Holte L, Shy M, Grider T. The audiologic profile of patients with Charcot-Marie Tooth neuropathy can be characterised by both cochlear and neural deficits. Int J Audiol 2019; 58:902-912. [PMID: 31318300 DOI: 10.1080/14992027.2019.1633022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: The primary goal of this study was to characterise the cochlear and neural components of hearing loss in a large cohort of people with Charcot-Marie Tooth neuropathy who reported hearing difficulties.Design: A full complement of audiologic measures including behavioral, physiologic and subjective assessments were administered.Study sample: Seventy-nine participants completed the study. Forty-four people had CMT1, 27 had CMT2 and four had CMT-INT.Results: Pure tone average was related to age and the absence of high-frequency DPOAE energy, suggesting a strong cochlear component. Acoustic reflexes were often elevated or absent and many participants exhibited abnormal ABR waveforms, suggesting additional neural hearing loss components. Participants with an abnormal or absent ABR wave V exhibited poorer speech perception abilities. There was an association between a prolonged ABR wave I latency and an abnormal or absent ABR wave V with a higher Charcot-Marie Tooth Neuropathy Score (indicating greater disability).Conclusions: The hearing abilities of people with CMT are highly variable. While there were strong neural hearing loss components, speech perception abilities were not disproportionately affected in most participants. Therefore, a hearing aid trial is recommended. ABR responses may be a useful tool for monitoring the progression of CMT over time.
Collapse
Affiliation(s)
- Nicholas Giuliani
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Lenore Holte
- Department of Communications Sciences and Disorders, University of Iowa, Iowa City, IA, USA.,Center for Disabilities and Development, University Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Michael Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Tiffany Grider
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
37
|
Zhao ZH, Chen ZT, Zhou RL, Wang YZ. A Chinese pedigree with a novel mutation in GJB1 gene and a rare variation in DHTKD1 gene for diverse Charcot‑Marie‑Tooth diseases. Mol Med Rep 2019; 19:4484-4490. [PMID: 30896807 DOI: 10.3892/mmr.2019.10058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/07/2019] [Indexed: 11/05/2022] Open
Abstract
Charcot‑Marie‑Tooth (CMT) disease is a group of motor and sensory neuropathies with a high degree of pathological and genetic heterogenicity. The present study described 2 patients with CMT in a Chinese Han pedigree. The proband exhibited the classic manifestation of CMT with slowly progressing muscular atrophy and weakness. Electrophysiological examination highlighted axonal and demyelinating features. His mother did not have any symptoms, but did exhibit abnormal electrophysiological results. Next‑generation sequencing technology was employed to screen mutations in the genes associated with inherited motor never diseases. A novel mutation, c.528_530delAGT, in the gap junction protein beta 1 (GJB1) gene for CMTX, and a rare variation, c.2369C>T, in the dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) gene for CMT disease type 2Q (CMT2Q), were identified in the proband and his mother. The results were verified by Sanger sequencing. Although the in silico analysis predicted no change in the 3‑dimensional structure, the clinical and electrophysiological presentation in the pedigree and the high evolutionary conservation of the affected amino acid supported the hypothesis that the c.528_530delAGT mutation in the GJB1 gene may be pathogenic in this pedigree. In silico analysis and high evolutionary conservation suggested the pathogenicity of the c.2369C>T mutation in the DHTKD1 gene; however, the clinical and electrophysiological performances of the proband and his mother did not conform to those of CMT2Q caused by the DHTKD1 gene. The present study provided additional information concerning the range of mutations of the GJB1 gene, which facilitated the understanding of the genotype‑phenotype association of CMT.
Collapse
Affiliation(s)
- Zhen-Hua Zhao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhi-Ting Chen
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Rui-Ling Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yin-Zhou Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
38
|
Hu G, Zhang L, Zhang M, Yang C, Nie X, Xiang F, Chen L, Dong Z, Yu S. Novel gap junction protein beta-1 gene mutation associated with a stroke-like syndrome and central nervous system involvement in patients with X-linked Charcot-Marie-Tooth Type 1: A case report and literature review. Clin Neurol Neurosurg 2019; 180:68-73. [PMID: 30952033 DOI: 10.1016/j.clineuro.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 03/27/2019] [Indexed: 12/28/2022]
Abstract
Gap junction protein beta-1 (GJB1) gene mutations lead to X-linked Charcot-Marie-Tooth Type 1 (CMTX1). We studied a Chinese family with CMTX1 and identified a novel GJB1 point mutation. Our patient had a transient stroke-like clinical manifestations and magnetic resonance imaging (MRI) changes. An analysis of the genomic DNA of the proband showed a T to C hemizygous mutation in the GJB1 gene at nucleotide position 380, causing a predicted amino acid change from isoleucine to threonine at codon 127, which predicted structural alterations disrupting the function of the GJB1 protein. This novel point mutation expanded the spectrum of GJB1 mutations known to be associated with CMTX1. We performed a PubMed review of CMTX cases with central nervous system involvement in the English-language literature from the past 20 years, and summarized the demographic data, nucleotide and amino acid changes, clinical characteristics, clinical manifestations, and neuroimaging features.
Collapse
Affiliation(s)
- Guanqun Hu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lvming Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China; Department of Neurology, Aerospace Center Hospital, Beijing, 100049, China
| | - Mingjie Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chunxiao Yang
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiting Nie
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Feng Xiang
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Li Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
39
|
Koutsis G, Breza M, Velonakis G, Tzartos J, Kasselimis D, Kartanou C, Karavasilis E, Tzanetakos D, Anagnostouli M, Andreadou E, Evangelopoulos ME, Kilidireas C, Potagas C, Panas M, Karadima G. X linked Charcot-Marie-Tooth disease and multiple sclerosis: emerging evidence for an association. J Neurol Neurosurg Psychiatry 2019; 90:187-194. [PMID: 30196252 DOI: 10.1136/jnnp-2018-319014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/31/2018] [Accepted: 08/11/2018] [Indexed: 11/03/2022]
Abstract
OBJECTIVE X linked Charcot-Marie-Tooth disease (CMTX) is a hereditary neuropathy caused by mutations in GJB1 coding for connexin-32, a gap junction protein expressed in Schwann cells, but also found in oligodendrocytes. Four patients with CMTX developing central nervous system (CNS) demyelination compatible with multiple sclerosis (MS) have been individually published. We presently sought to systematically investigate the relationship between CMTX and MS. METHODS Over 20 years, 70 consecutive patients (36 men) with GJB1 mutations were identified at our Neurogenetics Unit, Athens, Greece, and assessed for clinical features suggestive of MS. Additionally, 18 patients with CMTX without CNS symptoms and 18 matched controls underwent brain MRI to investigate incidental findings. Serum from patients with CMTX and MS was tested for CNS immunoreactivity. RESULTS We identified three patients with CMTX who developed clinical features suggestive of inflammatory CNS demyelination fulfilling MS diagnostic criteria. The resulting 20-year MS incidence (4.3%) differed significantly from the highest background 20-year MS incidence ever reported from Greece (p=0.00039). The search for incidental brain MRI findings identified two CMTX cases (11%) with lesions suggestive of focal demyelination compared with 0 control. Moreover, 10 cases in the CMTX cohort had hyperintensity in the splenium of the corpus callosum compared with 0 control (p=0.0002). No specific CNS-reactive humoral factors were identified in patients with CMTX and MS. CONCLUSIONS We have demonstrated a higher than expected frequency of MS in patients with CMTX and identified incidental focal demyelinating lesions on brain MRI in patients with CMTX without CNS symptoms. This provides circumstantial evidence for GJB1 mutations acting as a possible MS risk factor.
Collapse
Affiliation(s)
- Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianthi Breza
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- 2nd Department of Radiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - John Tzartos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Speech Pathology Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Crete, Greece
| | - Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- 2nd Department of Radiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Anagnostouli
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisavet Andreadou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantin Potagas
- Neuropsychology and Speech Pathology Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
40
|
Yuan JH, Sakiyama Y, Hashiguchi A, Ando M, Okamoto Y, Yoshimura A, Higuchi Y, Takashima H. Genetic and phenotypic profile of 112 patients with X-linked Charcot-Marie-Tooth disease type 1. Eur J Neurol 2018; 25:1454-1461. [PMID: 29998508 DOI: 10.1111/ene.13750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE X-linked Charcot-Marie-Tooth disease type 1 (CMTX1), caused by mutations in gap junction protein beta 1 (GJB1), is characterized by various central nervous system symptoms and gender differences of clinical severity. The aim of this study was to identify the frequency and mutation spectrum of CMTX1 patients in Japan and to demonstrate their phenotypic diversities. METHODS Using three high-throughput sequencing systems, targeted gene panel sequencing on 1483 unrelated index patients with suspected Charcot-Marie-Tooth (CMT) disease was performed. The peripheral and central nervous system involvements of all patients with GJB1 variants were assessed retrospectively and a detailed gender comparison was conducted with the CMT examination score. RESULTS Twenty-three novel and 36 described GJB1 variants were identified from 88 pedigrees, in which 34 female and 78 male patients were enrolled. Mean age at onset of the male patients was much younger than the females, 21.56 ± 17.63 years vs. 35.53 ± 23.72 years (P = 0.007). Male patients presented with more severe phenotypes in every examination item, but statistical differences were observed only in motor dysfunctions of the lower extremities and vibration sensation. No significant sensory difference was identified between genders, either clinically or electrophysiologically. Central nervous system dysfunctions were found in 15 patients from 12 pedigrees. Therein, six patients developed stroke-like phenotypes, with dysarthria as the leading symptom. CONCLUSIONS A relatively lower frequency of CMTX1 (5.9%) was demonstrated and a broad mutation spectrum of GJB1 was described. Detailed clinical differences between genders and various central nervous system symptoms were also illustrated, even in the same pedigree.
Collapse
Affiliation(s)
- J-H Yuan
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Y Sakiyama
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - A Hashiguchi
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - M Ando
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Y Okamoto
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - A Yoshimura
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Y Higuchi
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - H Takashima
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
41
|
Ambrosini A, Calabrese D, Avato FM, Catania F, Cavaletti G, Pera MC, Toscano A, Vita G, Monaco L, Pareyson D. The Italian neuromuscular registry: a coordinated platform where patient organizations and clinicians collaborate for data collection and multiple usage. Orphanet J Rare Dis 2018; 13:176. [PMID: 30286784 PMCID: PMC6172847 DOI: 10.1186/s13023-018-0918-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The worldwide landscape of patient registries in the neuromuscular disease (NMD) field has significantly changed in the last 10 years, with the international TREAT-NMD network acting as strong driver. At the same time, the European Medicines Agency and the large federations of rare disease patient organizations (POs), such as EURORDIS, contributed to a great cultural change, by promoting a paradigm shift from product-registries to patient-centred registries. In Italy, several NMD POs and Fondazione Telethon undertook the development of a TREAT-NMD linked patient registry in 2009, with the referring clinical network providing input and support to this initiative through the years. This article describes the outcome of this joint effort and shares the experience gained. METHODS The Italian NMD registry is based on an informatics technology platform, structured according to the most rigorous legal national and European requirements for management of patient sensitive data. A user-friendly web interface allows both direct patients and clinicians' participation. The platform's design permits expansion to incorporate new modules and new registries, and is suitable of interoperability with other international efforts. RESULTS When the Italian NMD Registry was initiated, an ad hoc legal entity (NMD Registry Association) was devised to manage registries' data. Currently, several disease-specific databases are hosted on the platform. They collect molecular and clinical details of individuals affected by Duchenne or Becker muscular dystrophy, Charcot-Marie-Tooth disease, transthyretin type-familial amyloidotic polyneuropathy, muscle glycogen storage disorders, spinal and bulbar muscular atrophy, and spinal muscular atrophy. These disease-specific registries are at different stage of development, and the NMD Registry itself has gone through several implementation steps to fulfil different technical and governance needs. The new governance model is based on the agreement between the NMD Registry Association and the professional societies representing the Italian NMD clinical network. Overall, up to now the NMD registry has collected data on more than 2000 individuals living with a NMD condition. CONCLUSIONS The Italian NMD Registry is a flexible platform that manages several condition-specific databases and is suitable to upgrade. All stakeholders participate in its management, with clear roles and responsibilities. This governance model has been key to its success. In fact, it favored patient empowerment and their direct participation in research, while also engaging the expert clinicians of the Italian network in the collection of accurate clinical data according to the best clinical practices.
Collapse
Affiliation(s)
| | - Daniela Calabrese
- UOC Malattie neurodegenerative e neurometaboliche rare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | - Guido Cavaletti
- School of Medicine and Surgery and Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Maria Carmela Pera
- Paediatric Neurology and Centro Clinico Nemo, Catholic University and Policlinico Gemelli, Rome, Italy
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Vita
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Lucia Monaco
- Fondazione Telethon, Via Poerio 14, 20129 Milan, Italy
| | - Davide Pareyson
- UOC Malattie neurodegenerative e neurometaboliche rare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
42
|
Nerve ultrasound findings differentiate Charcot-Marie-Tooth disease (CMT) 1A from other demyelinating CMTs. Clin Neurophysiol 2018; 129:2259-2267. [PMID: 30216910 DOI: 10.1016/j.clinph.2018.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/04/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Ulnar/median motor nerve conduction velocity (MNCV) is ≤38 m/s in demyelinating Charcot-Marie-Tooth disease (CMT). Previous nerve high resolution ultrasound (HRUS) studies explored demyelinating CMT assuming it as a homogeneous genetic/pathological entity or focused on CMT1A. METHODS To explore the spectrum of nerve HRUS findings in demyelinating CMTs, we recruited patients with CMT1A (N = 44), CMT1B (N = 9), CMTX (N = 8) and CMT4C (N = 4). They underwent nerve conduction study (NCS) and HRUS of the median, ulnar, peroneal nerve, and the brachial plexus. RESULTS Median, ulnar and peroneal MNCV significantly differed across CMT subtypes. Cross sectional area (CSA) was markedly and diffusely enlarged at all sites, except entrapment ones, in CMT1A, while it was slightly enlarged or within normal range in the other CMTs. No significant right-to-left difference was found. Age had limited effect on CSA. CSAs of some CMT1A patients largely overlapped with those of other demyelinating CMTs. A combination of three median CSA measures could separate CMT1A from other demyelinating CMTs. CONCLUSIONS Nerve HRUS findings are heterogeneous in demyelinating CMTs. SIGNIFICANCE Nerve HRUS may separate CMT1A from other demyelinating CMTs. The large demyelinating CMTs HRUS spectrum may be related to its pathophysiological variability.
Collapse
|
43
|
Takemaru M, Shimoe Y, Sato K, Hashiguchi A, Takashima H, Kuriyama M. [Transient, recurrent, white matter lesions in X-linked Charcot-Marie-Tooth disease with heterozygote mutation of GJB1 gene: case report of a female patient]. Rinsho Shinkeigaku 2018; 58:302-307. [PMID: 29710024 DOI: 10.5692/clinicalneurol.cn-001138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 32-year-old woman showed transient central type facial nerve palsy and bulbar symptoms. Brain MRI revealed high intensity signals in the cerebral white matter, splenium of corpus callosum, and posterior limb of internal capsule. Two elder brothers of the patient had distal dominant peripheral neuropathies in four limbs. In this family, the point mutation of GJB1 gene, encoding connexin 32, was revealed and X-linked Charcot-Marie-Tooth disease (CMTX1) was diagnosed. The presented case was a heterozygote of this mutation. She showed severe transient central nervous system (CNS) symptoms and subclinical demyelinating peripheral neuropathy. The CNS symptoms and alterations of brain images were very similar among three siblings. There are many reports on male patients with CMTX1 who show associated CN symptoms, but female patients are very rare. There has been no previous report of a CMTX1 patient similar to the patient presented here. The trigger factors have been recognized at the onset of transient CN symptoms in these cases. The prevention of these factors is important for the management of such patients.
Collapse
Affiliation(s)
- Makoto Takemaru
- Department of Neurology, Brain Attack Center, Ota Memorial Hospital
| | - Yutaka Shimoe
- Department of Neurology, Brain Attack Center, Ota Memorial Hospital
| | - Kota Sato
- Department of Neurology, Brain Attack Center, Ota Memorial Hospital
- Present address: Department of Neurology, Okayama University Hospital
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences
| | - Masaru Kuriyama
- Department of Neurology, Brain Attack Center, Ota Memorial Hospital
| |
Collapse
|
44
|
|