1
|
Ulfig A, Jakob U. Redox heterogeneity in mouse embryonic stem cells individualizes cell fate decisions. Dev Cell 2024; 59:2118-2133.e8. [PMID: 39106861 PMCID: PMC11338707 DOI: 10.1016/j.devcel.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024]
Abstract
Pluripotent embryonic stem cells (ESCs) can develop into any cell type in the body. Yet, the regulatory mechanisms that govern cell fate decisions during embryogenesis remain largely unknown. We now demonstrate that mouse ESCs (mESCs) display large natural variations in mitochondrial reactive oxygen species (mitoROS) levels that individualize their nuclear redox state, H3K4me3 landscape, and cell fate. While mESCs with high mitoROS levels (mitoROSHIGH) differentiate toward mesendoderm and form the primitive streak during gastrulation, mESCs, which generate less ROS, choose the alternative neuroectodermal fate. Temporal studies demonstrated that mesendodermal (ME) specification of mitoROSHIGH mESCs is mediated by a Nrf2-controlled switch in the nuclear redox state, triggered by the accumulation of redox-sensitive H3K4me3 marks, and executed by a hitherto unknown ROS-dependent activation process of the Wnt signaling pathway. In summary, our study explains how ESC heterogeneity is generated and used by individual cells to decide between distinct cellular fates.
Collapse
Affiliation(s)
- Agnes Ulfig
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Gu J, Rollo B, Berecki G, Petrou S, Kwan P, Sumer H, Cromer B. Generation of a stably transfected mouse embryonic stem cell line for inducible differentiation to excitatory neurons. Exp Cell Res 2024; 435:113902. [PMID: 38145818 DOI: 10.1016/j.yexcr.2023.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
In vitro differentiation of stem cells into various cell lineages is valuable in developmental studies and an important source of cells for modelling physiology and pathology, particularly for complex tissues such as the brain. Conventional protocols for in vitro neuronal differentiation often suffer from complicated procedures, high variability and low reproducibility. Over the last decade, the identification of cell fate-determining transcription factors has provided new tools for cellular studies in neuroscience and enabled rapid differentiation driven by ectopic transcription factor expression. As a proneural transcription factor, Neurogenin 2 (Ngn2) expression alone is sufficient to trigger rapid and robust neurogenesis from pluripotent cells. Here, we established a stable cell line, by piggyBac (PB) transposition, that conditionally expresses Ngn2 for generation of excitatory neurons from mouse embryonic stem cells (ESCs) using an all-in-one PB construct. Our results indicate that Ngn2-induced excitatory neurons have mature and functional characteristics consistent with previous studies using conventional differentiation methods. This approach provides an all-in-one PB construct for rapid and high copy number gene delivery of dox-inducible transcription factors to induce differentiation. This approach is a valuable in vitro cell model for disease modeling, drug screening and cell therapy.
Collapse
Affiliation(s)
- Jinchao Gu
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Geza Berecki
- Ion Channels and Human Diseases Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Steven Petrou
- Ion Channels and Human Diseases Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
| | - Brett Cromer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
| |
Collapse
|
3
|
Dec K, Alsaqati M, Morgan J, Deshpande S, Wood J, Hall J, Harwood AJ. A high ratio of linoleic acid (n-6 PUFA) to alpha-linolenic acid (n-3 PUFA) adversely affects early stage of human neuronal differentiation and electrophysiological activity of glutamatergic neurons in vitro. Front Cell Dev Biol 2023; 11:1166808. [PMID: 37255597 PMCID: PMC10225581 DOI: 10.3389/fcell.2023.1166808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: There is a growing interest in the possibility of dietary supplementation with polyunsaturated fatty acids (PUFAs) for treatment and prevention of neurodevelopmental and neuropsychiatric disorders. Studies have suggested that of the two important classes of polyunsaturated fatty acids, omega-6 (n-6) and omega-3 (n-3), n-3 polyunsaturated fatty acids support brain development and function, and when used as a dietary supplement may have beneficial effects for maintenance of a healthy brain. However, to date epidemiological studies and clinical trials on children and adults have been inconclusive regarding treatment length, dosage and use of specific n-3 polyunsaturated fatty acids. The aim of this study is to generate a simplified in vitro cell-based model system to test how different n-6 to n-3 polyunsaturated fatty acids ratios affect human-derived neurons activity as a cellular correlate for brain function and to probe the mechanism of their action. Methods: All experiments were performed by use of human induced pluripotent stem cells (iPSCs). In this study, we examined the effect of different ratios of linoleic acid (n-6) to alpha-linolenic acid in cell growth medium on induced pluripotent stem cell proliferation, generation of neuronal precursors and electrophysiology of cortical glutamatergic neurons by multielectrode array (MEA) analysis. Results: This study shows that at a n-6:n-3 ratio of 5:1 polyunsaturated fatty acids induce stem cell proliferation, generating a large increase in number of cells after 72 h treatment; suppress generation of neuronal progenitor cells, as measured by decreased expression of FOXG1 and Nestin in neuronal precursor cells (NPC) after 20 days of development; and disrupt neuronal activity in vitro, increasing spontaneous neuronal firing, reducing synchronized bursting receptor subunits. We observed no significant differences for neuronal precursor cells treated with ratios 1:3 and 3:1, in comparison to 1:1 control ratio, but higher ratios of n-6 to n-3 polyunsaturated fatty acids adversely affect early stages of neuronal differentiation. Moreover, a 5:1 ratio in cortical glutamatergic neurons induce expression of GABA receptors which may explain the observed abnormal electrophysiological activity.
Collapse
Affiliation(s)
- Karolina Dec
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Mouhamed Alsaqati
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
- School of Pharmacy, Newcastle University, Newcastle Upon Tyne, England, United Kingdom
| | - Joanne Morgan
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Sumukh Deshpande
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jamie Wood
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Adrian J. Harwood
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
4
|
Abstract
POUV is a relatively newly emerged class of POU transcription factors present in jawed vertebrates (Gnathostomata). The function of POUV-class proteins is inextricably linked to zygotic genome activation (ZGA). A large body of evidence now extends the role of these proteins to subsequent developmental stages. While some functions resemble those of other POU-class proteins and are related to neuroectoderm development, others have emerged de novo. The most notable of the latter functions is pluripotency control by Oct4 in mammals. In this review, we focus on these de novo functions in the best-studied species harbouring POUV proteins-zebrafish, Xenopus (anamniotes) and mammals (amniotes). Despite the broad diversity of their biological functions in vertebrates, POUV proteins exert a common feature related to their role in safeguarding the undifferentiated state of cells. Here we summarize numerous pieces of evidence for these specific functions of the POUV-class proteins and recap available loss-of-function data.
Collapse
Affiliation(s)
- Evgeny I. Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexey N. Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
5
|
Oct4 facilitates chondrogenic differentiation of mesenchymal stem cells by mediating CIP2A expression. Cell Tissue Res 2022; 389:11-21. [PMID: 35435493 DOI: 10.1007/s00441-022-03619-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Bone development and cartilage formation require strict modulation of gene expression for mesenchymal stem cells (MSCs) to progress through their differentiation stages. Octamer-binding transcription factor 4 (Oct4) expression is generally restricted to developing embryonic pluripotent cells, but its role in chondrogenic differentiation (CD) of MSCs remains unclear. We therefore investigated the role of Oct4 in CD using a microarray, quantitative real-time polymerase chain reaction, and western blotting. The expression of Oct4 was elevated when the CD of cultured MSCs was induced. Silencing Oct4 damaged MSC growth and proliferation and decreased CD, indicated by decreased cartilage matrix formation and the expression of Col2a1, Col10a1, Acan, and Sox9. We found a positive correlation between the expression of CIP2A, a natural inhibitor of protein phosphatase 2A (PP2A) and that of Oct4. Cellular inhibitor of PP2A (CIP2A) expression gradually increased after CD. Overexpression of CIP2A in MSCs with Oct4 depletion promoted cartilage matrix deposition as well as Col2a1, Col10a1, Acan, and Sox9 expression. The chondrogenic induction triggered c-Myc, Akt, ERK, and MEK phosphorylation and upregulated c-Myc and mTOR expression, which was downregulated upon Oct4 knockdown and restored by CIP2A overexpression. These findings indicated that Oct4 functions as an essential chondrogenesis regulator, partly via the CIP2A/PP2A pathway.
Collapse
|
6
|
Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 2020; 39:100. [PMID: 32493501 PMCID: PMC7268627 DOI: 10.1186/s13046-020-01584-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
- Saito Laboratory of Cell Technology Institute, Yaita, Tochigi, 329-1571, Japan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
7
|
Pádua D, Barros R, Luísa Amaral A, Mesquita P, Filipa Freire A, Sousa M, Filipe Maia A, Caiado I, Fernandes H, Pombinho A, Filipe Pereira C, Almeida R. A SOX2 Reporter System Identifies Gastric Cancer Stem-Like Cells Sensitive to Monensin. Cancers (Basel) 2020; 12:E495. [PMID: 32093282 PMCID: PMC7072720 DOI: 10.3390/cancers12020495] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains a serious health burden with few therapeutic options. Therefore, the recognition of cancer stem cells (CSCs) as seeds of the tumorigenic process makes them a prime therapeutic target. Knowing that the transcription factors SOX2 and OCT4 promote stemness, our approach was to isolate stem-like cells in human gastric cancer cell lines using a traceable reporter system based on SOX2/OCT4 activity (SORE6-GFP). Cells transduced with the SORE6-GFP reporter system were sorted into SORE6+ and SORE6- cell populations, and their biological behavior characterized. SORE6+ cells were enriched for SOX2 and exhibited CSC features, including a greater ability to proliferate and form gastrospheres in non-adherent conditions, a larger in vivo tumor initiating capability, and increased resistance to 5-fluorouracil (5-FU) treatment. The overexpression and knockdown of SOX2 revealed a crucial role of SOX2 in cell proliferation and drug resistance. By combining the reporter system with a high-throughput screening of pharmacologically active small molecules we identified monensin, an ionophore antibiotic, displaying selective toxicity to SORE6+ cells. The ability of SORE6-GFP reporter system to recognize cancer stem-like cells facilitates our understanding of gastric CSC biology and serves as a platform for the identification of powerful therapeutics for targeting gastric CSCs.
Collapse
Affiliation(s)
- Diana Pádua
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (R.B.); (A.L.A.); (P.M.); (A.F.F.); (M.S.); (A.F.M.); (A.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Rita Barros
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (R.B.); (A.L.A.); (P.M.); (A.F.F.); (M.S.); (A.F.M.); (A.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Luísa Amaral
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (R.B.); (A.L.A.); (P.M.); (A.F.F.); (M.S.); (A.F.M.); (A.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Patrícia Mesquita
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (R.B.); (A.L.A.); (P.M.); (A.F.F.); (M.S.); (A.F.M.); (A.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Ana Filipa Freire
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (R.B.); (A.L.A.); (P.M.); (A.F.F.); (M.S.); (A.F.M.); (A.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Mafalda Sousa
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (R.B.); (A.L.A.); (P.M.); (A.F.F.); (M.S.); (A.F.M.); (A.P.)
- IBMC—Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - André Filipe Maia
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (R.B.); (A.L.A.); (P.M.); (A.F.F.); (M.S.); (A.F.M.); (A.P.)
- IBMC—Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Inês Caiado
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; (I.C.); (H.F.); (C.F.P.)
- Cell Reprogramming in Hematopoiesis and Immunity laboratory, Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Hugo Fernandes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; (I.C.); (H.F.); (C.F.P.)
- Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - António Pombinho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (R.B.); (A.L.A.); (P.M.); (A.F.F.); (M.S.); (A.F.M.); (A.P.)
- IBMC—Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Carlos Filipe Pereira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; (I.C.); (H.F.); (C.F.P.)
- Cell Reprogramming in Hematopoiesis and Immunity laboratory, Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Raquel Almeida
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (R.B.); (A.L.A.); (P.M.); (A.F.F.); (M.S.); (A.F.M.); (A.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Channakkar AS, Singh T, Pattnaik B, Gupta K, Seth P, Adlakha YK. MiRNA-137-mediated modulation of mitochondrial dynamics regulates human neural stem cell fate. Stem Cells 2020; 38:683-697. [PMID: 32012382 PMCID: PMC7217206 DOI: 10.1002/stem.3155] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The role of miRNAs in determining human neural stem cell (NSC) fate remains elusive despite their high expression in the developing nervous system. In this study, we investigate the role of miR‐137, a brain‐enriched miRNA, in determining the fate of human induced pluripotent stem cells‐derived NSCs (hiNSCs). We show that ectopic expression of miR‐137 in hiNSCs reduces proliferation and accelerates neuronal differentiation and migration. TargetScan and MicroT‐CDS predict myocyte enhancer factor‐2A (MEF2A), a transcription factor that regulates peroxisome proliferator‐activated receptor‐gamma coactivator (PGC1α) transcription, as a target of miR‐137. Using a reporter assay, we validate MEF2A as a downstream target of miR‐137. Our results indicate that reduced levels of MEF2A reduce the transcription of PGC1α, which in turn impacts mitochondrial dynamics. Notably, miR‐137 accelerates mitochondrial biogenesis in a PGC1α independent manner by upregulating nuclear factor erythroid 2 (NFE2)‐related factor 2 (NRF2) and transcription factor A of mitochondria (TFAM). In addition, miR‐137 modulates mitochondrial dynamics by inducing mitochondrial fusion and fission events, resulting in increased mitochondrial content and activation of oxidative phosphorylation (OXPHOS) and oxygen consumption rate. Pluripotency transcription factors OCT4 and SOX2 are known to have binding sites in the promoter region of miR‐137 gene. Ectopic expression of miR‐137 elevates the expression levels of OCT4 and SOX2 in hiNSCs which establishes a feed‐forward self‐regulatory loop between miR‐137 and OCT4/SOX2. Our study provides novel molecular insights into NSC fate determination by miR‐137.
Collapse
Affiliation(s)
- Asha S Channakkar
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Tanya Singh
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Bijay Pattnaik
- Centre of Excellence in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Karnika Gupta
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Yogita K Adlakha
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| |
Collapse
|
9
|
Serio RN, Gudas LJ. Modification of stem cell states by alcohol and acetaldehyde. Chem Biol Interact 2019; 316:108919. [PMID: 31846616 PMCID: PMC7036011 DOI: 10.1016/j.cbi.2019.108919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Ethanol (EtOH) is a recreationally ingested compound that is both teratogenic and carcinogenic in humans. Because of its abundant consumption worldwide and the vital role of stem cells in the formation of birth defects and cancers, delineating the effects of EtOH on stem cell function is currently an active and urgent pursuit of scientific investigation to explicate some of the mechanisms contributing to EtOH toxicity. Stem cells represent a primordial, undifferentiated phase of development; thus encroachment on normal physiologic processes of differentiation into terminal lineages by EtOH can greatly alter the function of progenitors and terminally differentiated cells, leading to pathological consequences that manifest as fetal alcohol spectrum disorders and cancers. In this review we explore the disruptive role of EtOH in differentiation of stem cells. Our primary objective is to elucidate the mechanisms by which EtOH alters differentiation-related gene expression and lineage specifications, thus modifying stem cells to promote pathological outcomes. We additionally review the effects of a reactive metabolite of EtOH, acetaldehyde (AcH), in causing both differentiation defects in stem cells as well as genomic damage that incites cellular aging and carcinogenesis.
Collapse
Affiliation(s)
- Ryan N Serio
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, USA.
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, USA; Department of Pharmacology, Weill Cornell Medical College of Cornell University, USA.
| |
Collapse
|
10
|
Serio RN, Lu C, Gross SS, Gudas LJ. Different Effects of Knockouts in ALDH2 and ACSS2 on Embryonic Stem Cell Differentiation. Alcohol Clin Exp Res 2019; 43:1859-1871. [PMID: 31283017 PMCID: PMC6722009 DOI: 10.1111/acer.14146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ethanol (EtOH) is a teratogen that causes severe birth defects, but the mechanisms by which EtOH affects stem cell differentiation are unclear. Our goal here is to examine the effects of EtOH and its metabolites, acetaldehyde (AcH) and acetate, on embryonic stem cell (ESC) differentiation. METHODS We designed ESC lines in which aldehyde dehydrogenase (ALDH2, NCBI#11669) and acyl-CoA synthetase short-chain family member 2 (ACSS2, NCBI#60525) were knocked out by CRISPR-Cas9 technology. We selected these genes because of their key roles in EtOH oxidation in order to dissect the effects of EtOH metabolism on differentiation. RESULTS By using kinetic assays, we confirmed that AcH is primarily oxidized by ALDH2 rather than ALDH1A2. We found increases in mRNAs of differentiation-associated genes (Hoxa1, Cyp26a1, and RARβ2) upon EtOH treatment of WT and Acss2-/- ESCs, but not Aldh2-/- ESCs. The absence of ALDH2 reduced mRNAs of some pluripotency factors (Nanog, Sox2, and Klf4). Treatment of WT ESCs with AcH or 4-hydroxynonenal (4-HNE), another substrate of ALDH2, increased differentiation-associated transcripts compared to levels in untreated cells. mRNAs of genes involved in retinoic acid (RA) synthesis (Stra6 and Rdh10) were also increased by EtOH, AcH, and 4-HNE treatment. Retinoic acid receptor-γ (RARγ) is required for both EtOH- and AcH-mediated increases in Hoxa1 and Stra6, demonstrating the critical role of RA:RARγ signaling in AcH-induced ESC differentiation. CONCLUSIONS ACSS2 knockouts showed no changes in differentiation phenotype, while pluripotency-related transcripts were decreased in ALDH2 knockout ESCs. We demonstrate that AcH increases differentiation-associated mRNAs in ESCs via RARγ.
Collapse
Affiliation(s)
- Ryan N Serio
- Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY
| | - Changyuan Lu
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Steven S Gross
- Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Lorraine J Gudas
- Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
11
|
Headley KM, Kedziora KM, Alejo A, Lai EZX, Purvis JE, Hathaway NA. Chemical screen for epigenetic barriers to single allele activation of Oct4. Stem Cell Res 2019; 38:101470. [PMID: 31170660 PMCID: PMC6886240 DOI: 10.1016/j.scr.2019.101470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Here we utilized the chromatin in vivo assay (CiA) mouse platform to directly examine the epigenetic barriers impeding the activation of the CiA:Oct4 allele in mouse embryonic fibroblasts (MEF)s when stimulated with a transcription factor. The CiA:Oct4 allele contains an engineered EGFP reporter replacing one copy of the Oct4 gene, with an upstream Gal4 array in the promoter that allows recruitment of chromatin modifying machinery. We stimulated gene activation of the CiA:Oct4 allele by binding a transcriptional activator to the Gal4 array. As with cellular reprograming, this process is inefficient with only a small percentage of the cells re-activating CiA:Oct4 after weeks. Epigenetic barriers to gene activation potentially come from heavy DNA methylation, histone deacetylation, chromatin compaction, and other posttranslational marks (PTM) at the differentiated CiA:Oct4 allele in MEFs. Using this platform, we performed a high-throughput chemical screen for compounds that increased the efficiency of activation. We found that Azacytidine and newer generation histone deacetylase (HDAC) inhibitors were the most efficient at facilitating directed transcriptional activation of this allele. We found one hit form our screen, Mocetinostat, improved iPSC generation under transcription factor reprogramming conditions. These results separate individual allele activation from whole cell reprograming and give new insights that will advance tissue engineering.
Collapse
Affiliation(s)
- Kathryn M Headley
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America; Curriculum for Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Katarzyna M Kedziora
- Department of Genetics, Curriculum for Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Aidin Alejo
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America
| | - Elianna Zhi-Xiang Lai
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America
| | - Jeremy E Purvis
- Curriculum for Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America; Department of Genetics, Curriculum for Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, United States of America
| | - Nathaniel A Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America; Curriculum for Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
12
|
Rhee YH, Puspita L, Sulistio YA, Kim SW, Vidyawan V, Elvira R, Chang MY, Shim JW, Lee SH. Efficient Neural Differentiation of hPSCs by Extrinsic Signals Derived from Co-cultured Neural Stem or Precursor Cells. Mol Ther 2019; 27:1299-1312. [PMID: 31043343 DOI: 10.1016/j.ymthe.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, we found that undifferentiated human pluripotent stem cells (hPSCs; up to 30% of total cells) present in the cultures of neural stem or precursor cells (NPCs) completely disappeared within several days when cultured under neural differentiation culture conditions. Intriguingly, the disappearance of undifferentiated cells was not due to cell death but was instead mediated by neural conversion of hPSCs. Based on these findings, we propose pre-conditioning of donor NPC cultures under terminal differentiation culture conditions as a simple but efficient method of eliminating undifferentiated cells to treat neurologic disorders. In addition, we could establish a new neural differentiation protocol, in which undifferentiated hPSCs co-cultured with NPCs become differentiated neurons or NPCs in an extremely efficient, fast, and reproducible manner across the hESC and human-induced pluripotent stem cell (hiPSC) lines.
Collapse
Affiliation(s)
- Yong-Hee Rhee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Yanuar Alan Sulistio
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Seung Won Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Vincencius Vidyawan
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Mi-Yoon Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea.
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
13
|
Akberdin IR, Omelyanchuk NA, Fadeev SI, Leskova NE, Oschepkova EA, Kazantsev FV, Matushkin YG, Afonnikov DA, Kolchanov NA. Pluripotency gene network dynamics: System views from parametric analysis. PLoS One 2018; 13:e0194464. [PMID: 29596533 PMCID: PMC5875786 DOI: 10.1371/journal.pone.0194464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
Abstract
Multiple experimental data demonstrated that the core gene network orchestrating self-renewal and differentiation of mouse embryonic stem cells involves activity of Oct4, Sox2 and Nanog genes by means of a number of positive feedback loops among them. However, recent studies indicated that the architecture of the core gene network should also incorporate negative Nanog autoregulation and might not include positive feedbacks from Nanog to Oct4 and Sox2. Thorough parametric analysis of the mathematical model based on this revisited core regulatory circuit identified that there are substantial changes in model dynamics occurred depending on the strength of Oct4 and Sox2 activation and molecular complexity of Nanog autorepression. The analysis showed the existence of four dynamical domains with different numbers of stable and unstable steady states. We hypothesize that these domains can constitute the checkpoints in a developmental progression from naïve to primed pluripotency and vice versa. During this transition, parametric conditions exist, which generate an oscillatory behavior of the system explaining heterogeneity in expression of pluripotent and differentiation factors in serum ESC cultures. Eventually, simulations showed that addition of positive feedbacks from Nanog to Oct4 and Sox2 leads mainly to increase of the parametric space for the naïve ESC state, in which pluripotency factors are strongly expressed while differentiation ones are repressed.
Collapse
Affiliation(s)
- Ilya R. Akberdin
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- San Diego State University, San Diego, CA, United States of America
| | - Nadezda A. Omelyanchuk
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Stanislav I. Fadeev
- Novosibirsk State University, Novosibirsk, Russia
- Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
| | - Natalya E. Leskova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniya A. Oschepkova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Fedor V. Kazantsev
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Yury G. Matushkin
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Dmitry A. Afonnikov
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Nikolay A. Kolchanov
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
14
|
Regulation and/or Repression of Cholinergic Differentiation of Murine Embryonic Stem Cells Using RNAi Directed Against Transcription Factor L3/Lhx8. Methods Mol Biol 2017. [PMID: 28674804 DOI: 10.1007/978-1-4939-7108-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Techniques for controlling the expression of a specific gene in embryonic stem cells are effective and important for clarifying the functions of the gene. Regarding differentiation of cells into nervous system components, these techniques would play key roles in elucidating, not only the differentiation mechanisms of neuronal and glial cells but also how neuronal phenotypes are determined. In this chapter, we describe a RNA interference method for suppressing cholinergic differentiation in murine embryonic stem cells by knockdown of expression of the transcription factor L3/Lhx8, a Lim homeobox gene family protein. This method will greatly facilitate functional analyses of the factors involved in neuronal differentiation and regeneration and will contribute to cell transplantation studies.
Collapse
|
15
|
Lanctôt C. Single Cell Analysis Reveals Concomitant Transcription of Pluripotent and Lineage Markers During the Early Steps of Differentiation of Embryonic Stem Cells. Stem Cells 2016; 33:2949-60. [PMID: 26184691 DOI: 10.1002/stem.2108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/04/2015] [Accepted: 06/10/2015] [Indexed: 01/07/2023]
Abstract
The differentiation of embryonic stem cells is associated with extensive changes in gene expression. It is not yet clear whether these changes are the result of binary switch-like mechanisms or that of continuous and progressive variation. Here, I have used immunostaining and single molecule RNA fluorescence in situ hybridization (FISH) to assess changes in the expression of the well-known pluripotency-associated gene Pou5f1 (also known as Oct4) and early differentiation markers Sox1 and T-brachyury in single cells during the early steps of differentiation of mouse embryonic stem cells. I found extensive overlap between the expression of Pou5f1/Sox1 or Pou5f1/T-brachyury shortly after the initiation of differentiation towards either the neuronal or the mesendodermal lineage, but no evidence of correlation between their respective expression levels. Quantitative analysis of transcriptional output at the sites of nascent transcription revealed that Pou5f1 and Sox1 were transcribed in pulses and that embryonic stem cell differentiation was accompanied by changes in pulsing frequencies. The progressive induction of Sox1 was further associated with an increase in the average size of individual transcriptional bursts. Surprisingly, single cells that actively and simultaneously transcribe both the pluripotency- and the lineage-associated genes could easily be found in the differentiating population. The results presented here show for the first time that lineage priming can occur in cells that are actively transcribing a pluripotent marker. Furthermore, they suggest that this process is associated with changes in transcriptional dynamics.
Collapse
Affiliation(s)
- Christian Lanctôt
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
16
|
Evolution and functions of Oct4 homologs in non-mammalian vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:770-9. [PMID: 27058398 DOI: 10.1016/j.bbagrm.2016.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
Abstract
PouV class transcription factor Oct4/Pou5f1 is a central regulator of indefinite pluripotency in mammalian embryonic stem cells (ESCs) but also participates in cell lineage specification in mouse embryos and in differentiating cell cultures. The molecular basis for this versatility, which is shared between Oct4 and its non-mammalian homologs Pou5f1 and Pou5f3, is not yet completely understood. Here, I review the current understanding of the evolution of PouV class transcription factors and discuss equivalent and diverse roles of Oct4 homologs in pluripotency, differentiation, and cell behavior in different vertebrate embryos. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
17
|
Nishitani E, Li C, Lee J, Hotta H, Katayama Y, Yamaguchi M, Kinoshita T. Pou5f3.2-induced proliferative state of embryonic cells during gastrulation ofXenopus laevisembryo. Dev Growth Differ 2015; 57:591-600. [DOI: 10.1111/dgd.12246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Eriko Nishitani
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; Hyogo 669-1337 Japan
| | - Chong Li
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; Hyogo 669-1337 Japan
| | - Jaehoon Lee
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| | - Hiroyo Hotta
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| | - Yuta Katayama
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| | - Masahiro Yamaguchi
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; Hyogo 669-1337 Japan
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| | - Tsutomu Kinoshita
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; Hyogo 669-1337 Japan
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| |
Collapse
|
18
|
Hui SP, Nag TC, Ghosh S. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish. PLoS One 2015; 10:e0143595. [PMID: 26630262 PMCID: PMC4667880 DOI: 10.1371/journal.pone.0143595] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022] Open
Abstract
Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.
Collapse
Affiliation(s)
- Subhra Prakash Hui
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P. C. Road, Kolkata—700009, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Sukla Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P. C. Road, Kolkata—700009, India
- * E-mail:
| |
Collapse
|
19
|
Kalkan T, Smith A. Mapping the route from naive pluripotency to lineage specification. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0540. [PMID: 25349449 PMCID: PMC4216463 DOI: 10.1098/rstb.2013.0540] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the mouse blastocyst, epiblast cells are newly formed shortly before implantation. They possess a unique developmental plasticity, termed naive pluripotency. For development to proceed, this naive state must be subsumed by multi-lineage differentiation within 72 h following implantation. In vitro differentiation of naive embryonic stem cells (ESCs) cultured in controlled conditions provides a tractable system to dissect and understand the process of exit from naive pluripotency and entry into lineage specification. Exploitation of this system in recent large-scale RNAi and mutagenesis screens has uncovered multiple new factors and modules that drive or facilitate progression out of the naive state. Notably, these studies show that the transcription factor network that governs the naive state is rapidly dismantled prior to upregulation of lineage specification markers, creating an intermediate state that we term formative pluripotency. Here, we summarize these findings and propose a road map for state transitions in ESC differentiation that reflects the orderly dynamics of epiblast progression in the embryo.
Collapse
Affiliation(s)
- Tüzer Kalkan
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
20
|
Abstract
Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells. In vivo, pluripotent cells exist transiently and become expended within a few days of their establishment. Yet, when explanted into artificial culture conditions, they can be indefinitely propagated in vitro as pluripotent stem cell lines. A host of transcription factors and regulatory genes are now known to underpin the pluripotent state. Nonetheless, how pluripotent cells are equipped with their vast multilineage differentiation potential remains elusive. Consensus holds that pluripotency transcription factors prevent differentiation by inhibiting the expression of differentiation genes. However, this does not explain the developmental potential of pluripotent cells. We have presented another emergent perspective, namely, that pluripotency factors function as lineage specifiers that enable pluripotent cells to differentiate into specific lineages, therefore endowing pluripotent cells with their multilineage potential. Here we provide a comprehensive overview of the developmental biology, transcription factors, and extrinsic signaling associated with pluripotent cells, and their accompanying subtypes, in vitro heterogeneity and chromatin states. Although much has been learned since the appreciation of mammalian pluripotency in the 1950s and the derivation of embryonic stem cell lines in 1981, we will specifically emphasize what currently remains unclear. However, the view that pluripotency factors capacitate differentiation, recently corroborated by experimental evidence, might perhaps address the long-standing question of how pluripotent cells are endowed with their multilineage differentiation potential.
Collapse
Affiliation(s)
- Kyle M. Loh
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Bing Lim
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Lay Teng Ang
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Huang HS, Redmond TM, Kubish GM, Gupta S, Thompson RC, Turner DL, Uhler MD. Transcriptional regulatory events initiated by Ascl1 and Neurog2 during neuronal differentiation of P19 embryonic carcinoma cells. J Mol Neurosci 2014; 55:684-705. [PMID: 25189318 DOI: 10.1007/s12031-014-0408-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022]
Abstract
As members of the proneural basic-helix-loop-helix (bHLH) family of transcription factors, Ascl1 and Neurog2 direct the differentiation of specific populations of neurons at various times and locations within the developing nervous system. In order to characterize the mechanisms employed by these two bHLH factors, we generated stable, doxycycline-inducible lines of P19 embryonic carcinoma cells that express comparable levels of Ascl1 and Neurog2. Upon induction, both Ascl1 and Neurog2 directed morphological and immunocytochemical changes consistent with initiation of neuronal differentiation. Comparison of Ascl1- and Neurog2-regulated genes by microarray analyses showed both shared and distinct transcriptional changes for each bHLH protein. In both Ascl1- and Neurog2-differentiating cells, repression of Oct4 mRNA levels was accompanied by increased Oct4 promoter methylation. However, DNA demethylation was not detected for genes induced by either bHLH protein. Neurog2-induced genes included glutamatergic marker genes while Ascl1-induced genes included GABAergic marker genes. The Neurog2-specific induction of a gene encoding a protein phosphatase inhibitor, Ppp1r14a, was dependent on distinct, canonical E-box sequences within the Ppp1r14a promoter and the nucleotide sequences within these E-boxes were partially responsible for Neurog2-specific regulation. Our results illustrate multiple novel mechanisms by which Ascl1 and Neurog2 regulate gene repression during neuronal differentiation in P19 cells.
Collapse
Affiliation(s)
- Holly S Huang
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI, 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Guseva D, Rizvanov AA, Salafutdinov II, Kudryashova NV, Palotás A, Islamov RR. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo. Biochem Biophys Res Commun 2014; 451:503-9. [PMID: 25124662 DOI: 10.1016/j.bbrc.2014.07.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/11/2022]
Abstract
Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.
Collapse
Affiliation(s)
- Daria Guseva
- Kazan State Medical University, Kazan, Republic of Tatarstan, Russian Federation; Hannover Medical School, Hannover, Germany
| | - Albert A Rizvanov
- Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | | | | | - András Palotás
- Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation; Asklepios-Med (Private Medical Practice and Research Center), Szeged, Hungary.
| | - Rustem R Islamov
- Kazan State Medical University, Kazan, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
23
|
|
24
|
Radzisheuskaya A, Silva JCR. Do all roads lead to Oct4? the emerging concepts of induced pluripotency. Trends Cell Biol 2013; 24:275-84. [PMID: 24370212 PMCID: PMC3976965 DOI: 10.1016/j.tcb.2013.11.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/18/2022]
Abstract
Oct4 has unique and diverse functions in reprogramming. Oct4 is essential for lineage specification. Oct4 regulates multiple contrasting processes of cell identity change. Oct4 function may be regulated by cellular context and environment.
Pluripotent cells have the potential to differentiate into all of the cell types of an animal. This unique cell state is governed by an interconnected network of transcription factors. Among these, Oct4 plays an essential role both in the development of pluripotent cells in the embryo and in the self-renewal of its in vitro counterpart, embryonic stem (ES) cells. Furthermore, Oct4 is one of the four Yamanaka factors and its overexpression alone can generate induced pluripotent stem (iPS) cells. Recent reports underscore Oct4 as an essential regulator of opposing cell state transitions, such as pluripotency establishment and differentiation into embryonic germ lineages. Here we discuss these recent studies and the potential mechanisms underlying these contrasting functions of Oct4.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - José C R Silva
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
25
|
Chen SM, Lee MS, Chang CY, Lin SZ, Cheng EH, Liu YH, Pan HC, Lee HC, Su HL. Prerequisite OCT4 Maintenance Potentiates the Neural Induction of Differentiating Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Cell Transplant 2013; 24:829-44. [PMID: 24256943 DOI: 10.3727/096368913x675179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Establishing an efficient differentiation procedure is prerequisite for the cell transplantation of pluripotent stem cells. Activating fibroblast growth factor (FGF) signals and inhibiting the activin/nodal pathway are both conserved principles to direct the neural induction (NI) of developing embryos and human embryonic stem cells (hESCs). Wnt signal and OCT4 expression are critical for the hESC pluripotency; however, their roles in cell differentiation are largely unclear. We demonstrate that in the presence of FGF2 and activin inhibitor SB431542, applying a small-molecule Wnt agonist, BIO, efficiently and rapidly steers the NI of all our tested hESCs. A human induced pluripotent stem cell (iPSC), which is refractory for efficient neural conversion by FGF2, effectively differentiated to SOX1(+) cells after the BIO/SB431542/FGF2 treatment. In addition, BIO promoted cell survival and transiently sustained OCT4 expression at the early NI stage with FGF2 and SB431542. Interestingly, at the late NI stage, the OCT4 level rapidly declined in the treated hESCs and consequently initiated the formation of neural rosettes with forebrain neuron characteristics. This study illustrates the distinct effects of Wnt activation on maintaining pluripotency and committing neural lineages at the early and late NI stages of hESCs and iPSCs, respectively.
Collapse
Affiliation(s)
- Sheng-Mei Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
DeVeale B, Brokhman I, Mohseni P, Babak T, Yoon C, Lin A, Onishi K, Tomilin A, Pevny L, Zandstra PW, Nagy A, van der Kooy D. Oct4 is required ~E7.5 for proliferation in the primitive streak. PLoS Genet 2013; 9:e1003957. [PMID: 24244203 PMCID: PMC3828132 DOI: 10.1371/journal.pgen.1003957] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/01/2013] [Indexed: 12/14/2022] Open
Abstract
Oct4 is a widely recognized pluripotency factor as it maintains Embryonic Stem (ES) cells in a pluripotent state, and, in vivo, prevents the inner cell mass (ICM) in murine embryos from differentiating into trophectoderm. However, its function in somatic tissue after this developmental stage is not well characterized. Using a tamoxifen-inducible Cre recombinase and floxed alleles of Oct4, we investigated the effect of depleting Oct4 in mouse embryos between the pre-streak and headfold stages, ∼E6.0–E8.0, when Oct4 is found in dynamic patterns throughout the embryonic compartment of the mouse egg cylinder. We found that depletion of Oct4 ∼E7.5 resulted in a severe phenotype, comprised of craniorachischisis, random heart tube orientation, failed turning, defective somitogenesis and posterior truncation. Unlike in ES cells, depletion of the pluripotency factors Sox2 and Oct4 after E7.0 does not phenocopy, suggesting that ∼E7.5 Oct4 is required within a network that is altered relative to the pluripotency network. Oct4 is not required in extraembryonic tissue for these processes, but is required to maintain cell viability in the embryo and normal proliferation within the primitive streak. Impaired expansion of the primitive streak occurs coincident with Oct4 depletion ∼E7.5 and precedes deficient convergent extension which contributes to several aspects of the phenotype. Embryogenesis is an intricate process requiring that division, differentiation and position of cells are coordinated. During mammalian development early pluripotent populations are canalized or restricted in potency during embryogenesis. Due to considerable interest in how this fundamental state of pluripotency is maintained, and the requirement of the transcription factor Oct4 to maintain pluripotency, Oct4 has been intensively studied in culture. However, it is not clear what role Oct4 has during lineage specification of pluripotent cells. Oct4 removal during lineage specification indicates that it is required in the primitive streak of mouse embryos to maintain proliferation. The consequences of Oct4 removal diverge from the consequences of removing another factor required for pluripotency between preimplantation development and early cell fate specification suggesting that the network Oct4 acts within is altered between these stages.
Collapse
Affiliation(s)
- Brian DeVeale
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (BD); (DvdK)
| | - Irina Brokhman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Paria Mohseni
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tomas Babak
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Charles Yoon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Lin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Tomilin
- Institute of Cytology, Russian Academy of Science, St-Petersburg, Russia
| | - Larysa Pevny
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Andras Nagy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (BD); (DvdK)
| |
Collapse
|
27
|
Guan Y, Zou H, Chen X, Zhao C, Wang J, Cai Y, Chan P, Chen L, Zhang YA. Ischemia, immunosuppression, and SSEA-1-negative cells all contribute to tumors resulting from mouse embryonic stem cell-derived neural progenitor transplantation. J Neurosci Res 2013; 92:74-85. [PMID: 24123213 DOI: 10.1002/jnr.23292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/16/2023]
Abstract
Neural progenitor cells (NPCs) derived from mouse embryonic stem (mES) cells can lead to tumors after transplantation. The cellular source of such tumors remains under debate. We investigated the tumor formation resulting from mES cell-derived NPCs in a rat stroke model and in nude mice. After 2 hr of ischemia and 48 hr of reperfusion, the NPCs were transplanted into the ischemic core of the xenogeneic rats. Four weeks after transplantation, the grafted cells were found to be viable at the border of the necrosis and had differentiated into neurons. Transplanted rats did not exhibit any behavioral improvement, because tumor formed in 90% of the animals. Immunosuppression facilitated tumor formation. Tumors were observed in 40% of normal rats after NPC transplantation when cyclosporin A was administered. Meanwhile, no tumor formation was observed without cyclosporin A. Ischemic damage also facilitated tumor formation, because NPCs gave rise to tumors in 90% of ischemic rats, a percentage significantly higher than that in intact rats, which was 40%. The SSEA-1-positive cells isolated from stage 4 are not exactly undifferentiated ES cells. They exhibited a marker gene transcription profile different from that of ES cells and did not form tumors in transplanted nude mice. The undifferentiated ES cells remaining after differentiation did not contribute to tumors either. First, the tumor formation rate resulting from undifferentiated ES cells in the brains of normal rats is 0%, significantly lower than that of NPCs. Second, transplanted NPCs that led to 100% tumors in nude mice contained approximately 1.5 × 10(3) Oct-4-positive cells; however, even 5 × 10(5) undifferentiated ES cells formed neoplasm only in 40% nude mice.
Collapse
Affiliation(s)
- Yunqian Guan
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hu W, Guan FX, Li Y, Tang YJ, Yang F, Yang B. New methods for inducing the differentiation of amniotic-derived mesenchymal stem cells into motor neuron precursor cells. Tissue Cell 2013; 45:295-305. [DOI: 10.1016/j.tice.2013.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/23/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
|
29
|
Oka M, Moriyama T, Asally M, Kawakami K, Yoneda Y. Differential role for transcription factor Oct4 nucleocytoplasmic dynamics in somatic cell reprogramming and self-renewal of embryonic stem cells. J Biol Chem 2013; 288:15085-97. [PMID: 23580657 DOI: 10.1074/jbc.m112.448837] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oct4 is a member of the POU family of transcription factors and plays a critical role in both maintenance of the undifferentiated state of embryonic stem (ES) cells and in the reprogramming of somatic cells to induced pluripotent stem cells. Oct4 is imported into the nucleus where it functions as a transcription factor; however, the spatiotemporal dynamic behavior of Oct4 remains largely unknown. In the present study we show that Oct4 is a nucleocytoplasmic shuttling protein. Furthermore, although Oct4 mutants with altered nuclear import/export activity were able to maintain the self-renewal of ES cells, they displayed limited potential for cellular reprogramming. These results indicate that the intracellular localization of Oct4, which is dependent on nucleocytoplasmic shuttling, must be more strictly regulated for cellular reprogramming, suggesting that Oct4 plays differential roles in the self-renewal of ES cells and in somatic cell reprogramming.
Collapse
Affiliation(s)
- Masahiro Oka
- Biomolecular Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka, 565-0871 Japan
| | | | | | | | | |
Collapse
|
30
|
Bradley E, Bieberich E, Mivechi NF, Tangpisuthipongsa D, Wang G. Regulation of embryonic stem cell pluripotency by heat shock protein 90. Stem Cells 2013; 30:1624-33. [PMID: 22696450 DOI: 10.1002/stem.1143] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deciphering the molecular basis of stem cell pluripotency is fundamental to the understanding of stem cell biology, early embryonic development, and to the clinical application of regenerative medicine. We report here that the molecular chaperone heat shock protein 90 (Hsp90) is essential for mouse embryonic stem cell (ESC) pluripotency through regulating multiple pluripotency factors, including Oct4, Nanog, and signal transducer and activator of transcription 3. Inhibition of Hsp90 by either 17-N-Allylamino-17-demethoxygeldanamycin or miRNA led to ESC differentiation. Overexpression of Hsp90β partially rescued the phenotype; in particular, the levels of Oct4 and Nanog were restored. Notably, Hsp90 associated with Oct4 and Nanog in the same cellular complex and protected them from degradation by the ubiquitin proteasome pathway, suggesting that Oct4 and Nanog are potential novel Hsp90 client proteins. In addition, Hsp90 inhibition reduced the mRNA level of Oct4, but not that of Nanog, indicating that Hsp90 participates in Oct4 mRNA processing or maturation. Hsp90 inhibition also increased expression of some protein markers for mesodermal lineages, implying that Hsp90 suppresses mesodermal differentiation from ESCs. These findings support a new role for Hsp90 in maintaining ESC pluripotency by sustaining the level of multiple pluripotency factors, particularly Oct4 and Nanog.
Collapse
Affiliation(s)
- Eric Bradley
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
31
|
Yamada T, Urano-Tashiro Y, Tanaka S, Akiyama H, Tashiro F. Involvement of crosstalk between Oct4 and Meis1a in neural cell fate decision. PLoS One 2013; 8:e56997. [PMID: 23451132 PMCID: PMC3581578 DOI: 10.1371/journal.pone.0056997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022] Open
Abstract
Oct4 plays a critical role both in maintaining pluripotency and the cell fate decision of embryonic stem (ES) cells. Nonetheless, in the determination of the neuroectoderm (NE) from ES cells, the detailed regulation mechanism of the Oct4 gene expression is poorly understood. Here, we report that crosstalk between Oct4 and Meis1a, a Pbx-related homeobox protein, is required for neural differentiation of mouse P19 embryonic carcinoma (EC) cells induced by retinoic acid (RA). During neural differentiation, Oct4 expression was transiently enhanced during 6–12 h of RA addition and subsequently disappeared within 48 h. Coinciding with up-regulation of Oct4 expression, the induction of Meis1a expression was initiated and reached a plateau at 48 h, suggesting that transiently induced Oct4 activates Meis1a expression and the up-regulated Meis1a then suppresses Oct4 expression. Chromatin immunoprecipitation (ChIP) and luciferase reporter analysis showed that Oct4 enhanced Meis1a expression via direct binding to the Meis1 promoter accompanying histone H3 acetylation and appearance of 5-hydoxymethylcytosine (5hmC), while Meis1a suppressed Oct4 expression via direct association with the Oct4 promoter together with histone deacetylase 1 (HDAC1). Furthermore, ectopic Meis1a expression promoted neural differentiation via formation of large neurospheres that expressed Nestin, GLAST, BLBP and Sox1 as neural stem cell (NSC)/neural progenitor markers, whereas its down-regulation generated small neurospheres and repressed neural differentiation. Thus, these results imply that crosstalk between Oct4 and Meis1a on mutual gene expressions is essential for the determination of NE from EC cells.
Collapse
Affiliation(s)
- Takeyuki Yamada
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Yumiko Urano-Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Saori Tanaka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Hirotada Akiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Fumio Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
32
|
Divya MS, Roshin GE, Divya TS, Rasheed VA, Santhoshkumar TR, Elizabeth KE, James J, Pillai RM. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther 2012; 3:57. [PMID: 23253356 PMCID: PMC3580487 DOI: 10.1186/scrt148] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are self-renewing multipotent progenitors with the potential to differentiate into multiple lineages of mesoderm, in addition to generating ectodermal and endodermal lineages by crossing the germline barrier. In the present study we have investigated the ability of UCB-MSCs to generate neurons, since we were able to observe varying degrees of neuronal differentiation from a few batches of UCB-MSCs with very simple neuronal induction protocols whereas other batches required extensive exposure to combination of growth factors in a stepwise protocol. Our hypothesis was therefore that the human UCB-MSCs would contain multiple types of progenitors with varying neurogenic potential and that the ratio of the progenitors with high and low neurogenic potentials varies in different batches of UCB. METHODS In total we collected 45 UCB samples, nine of which generated MSCs that were further expanded and characterized using immunofluorescence, fluorescence-activated cell sorting and RT-PCR analysis. The neuronal differentiation potential of the UCB-MSCs was analyzed with exposure to combination of growth factors. RESULTS We could identify two different populations of progenitors within the UCB-MSCs. One population represented progenitors with innate neurogenic potential that initially express pluripotent stem cell markers such as Oct4, Nanog, Sox2, ABCG2 and neuro-ectodermal marker nestin and are capable of expanding and differentiating into neurons with exposure to simple neuronal induction conditions. The remaining population of cells, typically expressing MSC markers, requires extensive exposure to a combination of growth factors to transdifferentiate into neurons. Interesting to note was that both of these cell populations were positive for CD29 and CD105, indicating their MSC lineage, but showed prominent difference in their neurogenic potential. CONCLUSION Our results suggest that the expanded UCB-derived MSCs harbor a small unique population of cells that express pluripotent stem cell markers along with MSC markers and possess an inherent neurogenic potential. These pluripotent progenitors later generate cells expressing neural progenitor markers and are responsible for the instantaneous neuronal differentiation; the ratio of these pluripotent marker expressing cells in a batch determines the innate neurogenic potential.
Collapse
|
33
|
Iwafuchi-Doi M, Matsuda K, Murakami K, Niwa H, Tesar PJ, Aruga J, Matsuo I, Kondoh H. Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development 2012; 139:3926-37. [DOI: 10.1242/dev.085936] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Somatic development initiates from the epiblast in post-implantation mammalian embryos. Recent establishment of epiblast stem cell (EpiSC) lines has opened up new avenues of investigation of the mechanisms that regulate the epiblast state and initiate lineage-specific somatic development. Here, we investigated the role of cell-intrinsic core transcriptional regulation in the epiblast and during derivation of the anterior neural plate (ANP) using a mouse EpiSC model. Cells that developed from EpiSCs in one day in the absence of extrinsic signals were found to represent the ANP of ~E7.5 embryos. We focused on transcription factors that are uniformly expressed in the E6.5 epiblast but in a localized fashion within or external to the ANP at E7.5, as these are likely to regulate the epiblast state and ANP development depending on their balance. Analyses of the effects of knockdown and overexpression of these factors in EpiSCs on the levels of downstream transcription factors identified the following regulatory functions: cross-regulation among Zic, Otx2, Sox2 and Pou factors stabilizes the epiblastic state; Zic, Otx2 and Pou factors in combination repress mesodermal development; Zic and Sox2 factors repress endodermal development; and Otx2 represses posterior neural plate development. All of these factors variably activate genes responsible for neural plate development. The direct interaction of these factors with enhancers of Otx2, Hesx1 and Sox2 genes was demonstrated. Thus, a combination of regulatory processes that suppresses non-ANP lineages and promotes neural plate development determines the ANP.
Collapse
Affiliation(s)
- Makiko Iwafuchi-Doi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazunari Matsuda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Murakami
- RIKEN Center for Developmental Biology (CDB), Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hitoshi Niwa
- RIKEN Center for Developmental Biology (CDB), Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Paul J. Tesar
- Department of Genetics and Center for Stem Cell and Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jun Aruga
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Isao Matsuo
- Osaka Medical Center and Research Institute for Maternal and Child Health, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Soldati C, Bithell A, Johnston C, Wong KY, Teng SW, Beglopoulos V, Stanton LW, Buckley NJ. Repressor Element 1 Silencing Transcription Factor Couples Loss of Pluripotency with Neural Induction and Neural Differentiation. Stem Cells 2012; 30:425-34. [DOI: 10.1002/stem.1004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Cheng X, Li J, Deng J, Li Z, Meng S, Wang H. Translationally controlled tumor protein (TCTP) downregulates Oct4 expression in mouse pluripotent cells. BMB Rep 2012; 45:20-5. [DOI: 10.5483/bmbrep.2012.45.1.20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
36
|
Bártová E, Šustáčková G, Stixová L, Kozubek S, Legartová S, Foltánková V. Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells. PLoS One 2011; 6:e27281. [PMID: 22164208 PMCID: PMC3229488 DOI: 10.1371/journal.pone.0027281] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 10/13/2011] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Oct4 is a specific marker of embryonic stem cell (ESC) pluripotency. However, little is known regarding how Oct4 responds to DNA damage. Here, we investigated whether Oct4 recognizes damaged chromatin in mouse ESCs stably expressing GFP-Oct4. These experiments should contribute to the knowledge of how ESC genomic integrity is maintained, which is crucial for potential application of human ESCs in regenerative medicine. METHODOLOGY/PRINCIPAL FINDINGS We used time-lapse confocal microscopy, microirradiation by UV laser (355 nm), induction of DNA lesions by specific agents, and GFP technology to study the Oct4 response to DNA damage. We found that Oct4 accumulates in UV-damaged regions immediately after irradiation in an adenosine triphosphate-dependent manner. Intriguingly, this event was not accompanied by pronounced Nanog and c-MYC recruitment to the UV-damaged sites. The accumulation of Oct4 to UV-damaged chromatin occurred simultaneously with H3K9 deacetylation and H2AX phosphorylation (γH2AX). Moreover, we observed an ESC-specific nuclear distribution of γH2AX after interference to cellular processes, including histone acetylation, transcription, and cell metabolism. Inhibition of histone deacetylases mostly prevented pronounced Oct4 accumulation at UV-irradiated chromatin. CONCLUSIONS/SIGNIFICANCE Our studies demonstrate pluripotency-specific events that accompany DNA damage responses. Here, we discuss how ESCs might respond to DNA damage caused by genotoxic injury that might lead to unwanted genomic instability.
Collapse
Affiliation(s)
- Eva Bártová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
37
|
Cheng X, Meng S, Deng J, Lai W, Wang H. Identification and characterization of the Oct4 extended transcriptional regulatory region in Guanzhong dairy goat. Genome 2011; 54:812-8. [PMID: 21929360 DOI: 10.1139/g11-047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The octamer-binding transcription factor 4 gene (Oct4) plays a critical role in maintaining pluripotency during early mammalian embryonic development and self-renewal of embryonic stem (ES) cells. In this study, we cloned the Oct4 cDNA and 2.8-kb regulatory region upstream of the start codon in Guanzhong dairy goat ( Capra hircus ). The comparative sequence analysis of Oct4 cDNA showed that it was highly conserved among six mammalian species. The goat Oct4 5' regulatory regions were homologous to the corresponding regions of Oct4 in other species and were functional in directing the expression of luciferase in mouse P19 embryonic carcinoma cells and mouse J1 ES cells. Furthermore, the methylation levels in the goat Oct4 minimal promoter and proximal enhancer in the fetal genital ridge were lower than those in the heart. Additionally, two processed pseudogenes that shared high homology with goat Oct4 cDNA were identified and characterized.
Collapse
Affiliation(s)
- Xiang Cheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | |
Collapse
|
38
|
Cheong CY, Lon Ng PM, Ponnampalam R, Tsai HH, Bourque G, Lufkin T. In silico tandem affinity purification refines an Oct4 interaction list. Stem Cell Res Ther 2011; 2:26. [PMID: 21569470 PMCID: PMC3218817 DOI: 10.1186/scrt67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/05/2011] [Accepted: 05/13/2011] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Octamer-binding transcription factor 4 (Oct4) is a master regulator of early mammalian development. Its expression begins from the oocyte stage, becomes restricted to the inner cell mass of the blastocyst and eventually remains only in primordial germ cells. Unearthing the interactions of Oct4 would provide insight into how this transcription factor is central to cell fate and stem cell pluripotency. METHODS In the present study, affinity-tagged endogenous Oct4 cell lines were established via homologous recombination gene targeting in embryonic stem (ES) cells to express tagged Oct4. This allows tagged Oct4 to be expressed without altering the total Oct4 levels from their physiological levels. RESULTS Modified ES cells remained pluripotent. However, when modified ES cells were tested for their functionality, cells with a large tag failed to produce viable homozygous mice. Use of a smaller tag resulted in mice with normal development, viability and fertility. This indicated that the choice of tags can affect the performance of Oct4. Also, different tags produce a different repertoire of Oct4 interactors. CONCLUSIONS Using a total of four different tags, we found 33 potential Oct4 interactors, of which 30 are novel. In addition to transcriptional regulation, the molecular function associated with these Oct4-associated proteins includes various other catalytic activities, suggesting that, aside from chromosome remodeling and transcriptional regulation, Oct4 function extends more widely to other essential cellular mechanisms. Our findings show that multiple purification approaches are needed to uncover a comprehensive Oct4 protein interaction network.
Collapse
Affiliation(s)
- Clara Yujing Cheong
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | | | | | | | | | | |
Collapse
|
39
|
Kuboyama A, Tanaka S, Kawai K, Kasai H, Morii H, Tamae K, Nakashima T, Hirano T. 8-Hydroxyguanine levels and repair capacity during mouse embryonic stem cell differentiation. Free Radic Res 2011; 45:527-33. [PMID: 21291352 DOI: 10.3109/10715762.2011.555481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To evaluate the defence capacities of embryonic stem (ES) cells against gene impairment, this study measured the levels of 8-hydroxyguanine (8-OH-Gua), a well-known marker of oxidative stress in DNA, and its repair capacity during differentiation. Undifferentiated ES cells (EB3) were cultured without leukaemia inhibitory factor (LIF) for 0, 4 and 7 days and are referred to as ES-D0, ES-D4 and ES-D7, respectively. These three cell lines were treated with 300 μM hydrogen peroxide (H(2)O(2)) for 48 and 72 h. After treatment, the amounts of 8-OH-Gua in the cells were determined by the high-performance liquid chromatography (HPLC)-electrochemical detector (ECD) method. The levels of 8-OH-Gua in ES-D7 treated with H(2)O(2) were higher than those in ES-D0 and ES-D4, suggesting that the DNA in the undifferentiated cells was protected against gene impairment, as compared to that in the differentiated cells. To examine the repair capacity for 8-OH-Gua, this study analysed the expression of 8-OH-Gua repair-associated genes, 8-oxoguanine DNA glycosylase 1 (OGG1), MutY homolog (MUTYH) and Mut T homolog 1 (MTH1), in ES-D0, ES-D4 and ES-D7. The mRNA levels of MUTYH and MTH1 showed no significant change, whereas OGG1 mRNA was significantly decreased in ES-D7 treated with H(2)O(2). Moreover, it was observed that ES-D7 treated with H(2)O(2) readily underwent apoptosis, in comparison to its undifferentiated counterparts, ES-D0 and ES-D4. Taken together, ES cells are more resistant to DNA oxidative stresses than differentiated cells.
Collapse
Affiliation(s)
- Ayumi Kuboyama
- Department of Chemical Processes and Environments, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, 808-0135, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ye W, Lin W, Tartakoff AM, Tao T. Karyopherins in nuclear transport of homeodomain proteins during development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1654-62. [PMID: 21256166 DOI: 10.1016/j.bbamcr.2011.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 12/08/2010] [Accepted: 01/09/2011] [Indexed: 01/12/2023]
Abstract
Homeodomain proteins are crucial transcription factors for cell differentiation, cell proliferation and organ development. Interestingly, their homeodomain signature structure is important for both their DNA-binding and their nucleocytoplasmic trafficking. The accurate nucleocytoplasmic distribution of these proteins is essential for their functions. We summarize information on (a) the roles of karyopherins for import and export of homeoproteins, (b) the regulation of their nuclear transport during development, and (c) the corresponding complexity of homeoprotein nucleocytoplasmic transport signals. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Wenduo Ye
- Xiamen University School of Life Sciences, Xiamen, Fujian 361005, China
| | | | | | | |
Collapse
|
41
|
Lu R, Yang A, Jin Y. Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J Biol Chem 2010; 286:8425-8436. [PMID: 21189255 DOI: 10.1074/jbc.m110.202150] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cells (ESCs) possess the capacity to proliferate indefinitely in an undifferentiated state and to differentiate into various cell types in an organism. However, the critical question of how self-renewal and differentiation are precisely regulated in ESCs is not entirely understood at present. Here, we report the essential role of Tbx3, a pluripotency-related transcription factor of the T-box gene family, for both the maintenance of self-renewal of mouse ESCs and for their differentiation into extraembryonic endoderm (ExEn). We show that Tbx3 is highly expressed in ExEn cells in addition to undifferentiated ESCs. Knockdown of Tbx3 expression using tetracycline-regulated Tbx3 siRNA resulted in the attenuation of ESC self-renewal ability and aberrant differentiation processes, including reduced ExEn differentiation but enhanced ectoderm and trophectoderm differentiation. Conversely, inducible forced expression of Tbx3 triggered ExEn lineage commitment. Mechanistically, Tbx3 directly activated the expression of Gata6, an essential regulator of ExEn. Interestingly, Tbx3 modulated H3K27me3 modification and the association of the PRC2 complex with the promoter region of Gata6. Taken together, the results of this study revealed a previously unappreciated role of a pluripotency factor in ExEn differentiation. Additionally, our data reveal that Tbx3 may function through direct binding and epigenetic modification of histones on the Gata6 promoter to maintain the ExEn differentiation potential of ESCs.
Collapse
Affiliation(s)
- Rui Lu
- From the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, CAS/Shanghai Jiao Tong University School of Medicine and
| | - Acong Yang
- From the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, CAS/Shanghai Jiao Tong University School of Medicine and; the Shanghai Stem Cell Institute, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Jin
- From the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, CAS/Shanghai Jiao Tong University School of Medicine and; the Shanghai Stem Cell Institute, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
42
|
Chavali PL, Saini RKR, Matsumoto Y, Ågren H, Funa K. Nuclear orphan receptor TLX induces Oct-3/4 for the survival and maintenance of adult hippocampal progenitors upon hypoxia. J Biol Chem 2010; 286:9393-404. [PMID: 21135096 DOI: 10.1074/jbc.m110.167445] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia.
Collapse
Affiliation(s)
- Pavithra Lakshminarasimhan Chavali
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | | | | | | | | |
Collapse
|
43
|
Kim EY, Jeon K, Park HY, Han YJ, Yang BC, Park SB, Chung HM, Park SP. Differences between cellular and molecular profiles of induced pluripotent stem cells generated from mouse embryonic fibroblasts. Cell Reprogram 2010; 12:627-39. [PMID: 20958217 DOI: 10.1089/cell.2010.0013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are a new alternative for the development of patient-specific stem cells, and the aim of this study was to determine whether differences exist between the cellular and molecular profiles of iPS cells, generated using lentiviral vectors, compared to ES cells. The lentiviral infection efficiency differed according to the method of cell culture (adherent cells: 0.085%; suspended cells: 0.785%). Six iPS cell lines exhibited typical ES cell morphology and marker expression, but varied in their in vitro/in vivo differentiation ability. Global gene transcription analysis revealed that core pluripotency genes were expressed at lower levels in iPS cell lines compared to D3-ES cells (Pou5f1: x1.6~2.2-fold, Sox2: x2.58~10.0-fold, Eras: x1.08~2.54-fold, Dppa5a: x1.04~1.41-fold), while other genes showed higher expression in iPS cells (Lin28: x1.43~2.33-fold; Dnmt3b: x1.33~2.64-fold). This pattern was repeated in a survey of specific functional groups of genes (surface markers, cell death, JAK-STAT and P13K-AKT signaling pathways, endothelial, cardiovascular, and neurogenesis genes). Among the iPS cell lines examined, only two showed similar characteristics to ES cells. These results demonstrated that, in addition to cellular characterization, the numerical evaluation of gene expression using DNA microarrays might help to identify the stem cell stability and pluripotency of iPS cells.
Collapse
|
44
|
Kusakawa S, Nakamura K, Miyamoto Y, Sanbe A, Torii T, Yamauchi J, Tanoue A. Fluoxetine promotes gliogenesis during neural differentiation in mouse embryonic stem cells. J Neurosci Res 2010; 88:3479-87. [PMID: 20857517 DOI: 10.1002/jnr.22509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/27/2010] [Accepted: 08/07/2010] [Indexed: 12/19/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed for treatment of mood disorders and depression, even during pregnancy and lactation. SSRIs are thought to be much safer than tricyclic antidepressants, with a low risk of embryonic toxicity. Several recent studies, however, have reported that fetal exposure to SSRIs increases the risk of adverse effects during fetal and neonatal development. This is consistent with our previous finding that fluoxetine, a prototypical SSRI, profoundly affected the viability of cultured embryonic stem (ES) cells as well as their ability to differentiate into cardiomyocytes. Furthermore, we found that fluoxetine induced fluctuations in ectodermal marker gene expression during ES cell differentiation, which suggests that fluoxetine may affect neural development. In the present study, we investigated the effects of fluoxetine on the process of differentiation from ES cells into neural cells using the stromal cell-derived inducing activity (SDIA) method. Fluoxetine treatment was found to enhance the expression of glial marker genes following neural differentiation, as observed by immunocytochemical analysis or quantitative RT-PCR. The promoter activity of glial marker genes was also significantly enhanced when cells were treated with fluoxetine, as observed by luciferase reporter assay. The expression of neuronal markers during ES cell differentiation into neural cells, on the other hand, was inhibited by fluoxetine treatment. In addition, FACS analysis revealed an increased population of glial cells in the differentiating ES cells treated with fluoxetine. These results suggest that fluoxetine could facilitate the differentiation of mouse ES cells into glial cell lineage, which may affect fetal neural development.
Collapse
Affiliation(s)
- Shinji Kusakawa
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions. Proc Natl Acad Sci U S A 2010; 107:16685-90. [PMID: 20823235 DOI: 10.1073/pnas.0906917107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) silences neuronal genes in neural stem cells (NSCs) and nonneuronal cells through its role as a dynamic modular platform for recruitment of transcriptional and epigenetic regulatory cofactors to RE1-containing promoters. In embryonic stem cells, the REST regulatory network is highly integrated with the transcriptional circuitry governing self-renewal and pluripotency, although its exact functional role is unclear. The C-terminal cofactor for REST, CoREST, also acts as a modular scaffold, but its cell type-specific roles have not been elucidated. We used chromatin immunoprecipitation-on-chip to examine CoREST and REST binding sites in NSCs and their proximate progenitor species. In NSCs, we identified a larger number of CoREST (1,820) compared with REST (322) target genes. The majority of these CoREST targets do not contain known RE1 motifs. Notably, these CoREST target genes do play important roles in pluripotency networks, in modulating NSC identity and fate decisions and in epigenetic processes previously associated with both REST and CoREST. Moreover, we found that NSC-mediated developmental transitions were associated primarily with liberation of CoREST from promoters with transcriptional repression favored in less lineage-restricted radial glia and transcriptional activation favored in more lineage-restricted neuronal-oligodendrocyte precursors. Clonal NSC REST and CoREST gene manipulation paradigms further revealed that CoREST has largely independent and previously uncharacterized roles in promoting NSC multilineage potential and modulating early neural fate decisions.
Collapse
|
46
|
Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 2010; 6:382-95. [PMID: 20362542 PMCID: PMC2860244 DOI: 10.1016/j.stem.2010.03.004] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 12/03/2022]
Abstract
The transcription factor Oct4 is key in embryonic stem cell identity and reprogramming. Insight into its partners should illuminate how the pluripotent state is established and regulated. Here, we identify a considerably expanded set of Oct4-binding proteins in mouse embryonic stem cells. We find that Oct4 associates with a varied set of proteins including regulators of gene expression and modulators of Oct4 function. Half of its partners are transcriptionally regulated by Oct4 itself or other stem cell transcription factors, whereas one-third display a significant change in expression upon cell differentiation. The majority of Oct4-associated proteins studied to date show an early lethal phenotype when mutated. A fraction of the human orthologs is associated with inherited developmental disorders or causative of cancer. The Oct4 interactome provides a resource for dissecting mechanisms of Oct4 function, enlightening the basis of pluripotency and development, and identifying potential additional reprogramming factors.
Collapse
Affiliation(s)
- Mercedes Pardo
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
- Corresponding author
| | - Benjamin Lang
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Haydn Prosser
- Mouse Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Allan Bradley
- Mouse Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jyoti Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
- Corresponding author
| |
Collapse
|
47
|
Early progenitor cell marker expression distinguishes type II from type I focal cortical dysplasias. J Neuropathol Exp Neurol 2010; 69:850-63. [PMID: 20613634 DOI: 10.1097/nen.0b013e3181eac1f5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Type I and type II focal cortical dysplasias (FCDs) exhibit distinct histopathologic features that suggest different pathogenic mechanisms. Type I FCDs are characterized by mild laminar disorganization and hypertrophic neurons, whereas type II FCDs exhibit dramatic laminar disorganization and cytomegalic cells (balloon cells). Both FCD types are associated with intractable epilepsy; therefore, identifying cellular or molecular differences between these lesion types that explains the histologic differences could provide new diagnostic and therapeutic insights. Type II FCDs express nestin, a neuroglial progenitor protein that is modulated in vitro by the stem cell proteins c-Myc, sex-determining region Y-box 2 (SOX2), and Octamer-4 (Oct-4) after activation of mammalian target of rapamycin complex 1 (mTORC1). Because mTORC1 activation has been demonstrated in type II FCDs, we hypothesized that c-Myc, SOX2, and Oct-4 expression would distinguish type II from type I FCDs. In addition, we assayed the expression of progenitor cell proteins forkhead box G1 (FOXG1), Kruppel-like factor 4 (KLF4), Nanog, and SOX3. Differential expression of 7 stem cellproteins and aberrant phosphorylation of2mTORC1 substrates, S6 andS6 kinase 1 proteins, clearly distinguished type II from type I FCDs(n = 10 each). Our results demonstrate new potential pathogenic pathways in type II FCDs and suggest biomarkers for diagnostic pathology in resected epilepsy specimens.
Collapse
|
48
|
Regulation and/or repression of cholinergic differentiation of murine embryonic stem cells using RNAi directed against transcription factor L3/Lhx8. Methods Mol Biol 2010. [PMID: 20686946 DOI: 10.1007/978-1-60761-769-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Techniques for controlling the expression of a specific gene in embryonic stem cells are effective and important for clarifying the functions of the gene. Regarding differentiation of cells into nervous system components, these techniques would play key roles in elucidating, not only the differentiation mechanisms of neuronal and glial cells, but also how neuronal phenotypes are determined. In this chapter, we describe an RNA interference method for suppressing cholinergic differentiation in murine embryonic stem cells by knockdown of expression of the transcription factor L3/Lhx8, a Lim homeobox gene family protein. This method will greatly facilitate functional analyses of the factors involved in neuronal differentiation and regeneration and contribute to cell transplantation studies.
Collapse
|
49
|
Huang HS, Kubish GM, Redmond TM, Turner DL, Thompson RC, Murphy GG, Uhler MD. Direct transcriptional induction of Gadd45gamma by Ascl1 during neuronal differentiation. Mol Cell Neurosci 2010; 44:282-96. [PMID: 20382226 PMCID: PMC2905796 DOI: 10.1016/j.mcn.2010.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022] Open
Abstract
The basic helix-loop-helix transcription factor Ascl1 plays a critical role in the intrinsic genetic program responsible for neuronal differentiation. Here, we describe a novel model system of P19 embryonic carcinoma cells with doxycycline-inducible expression of Ascl1. Microarray hybridization and real-time PCR showed that these cells demonstrated increased expression of many neuronal proteins in a time- and concentration-dependent manner. Interestingly, the gene encoding the cell cycle regulator Gadd45gamma was increased earliest and to the greatest extent following Ascl1 induction. Here, we provide the first evidence identifying Gadd45gamma as a direct transcriptional target of Ascl1. Transactivation and chromatin immunoprecipitation assays identified two E-box consensus sites within the Gadd45gamma promoter necessary for Ascl1 regulation, and demonstrated that Ascl1 is bound to this region within the Gadd45gamma promoter. Furthermore, we found that overexpression of Gadd45gamma itself is sufficient to initiate some aspects of neuronal differentiation independent of Ascl1.
Collapse
Affiliation(s)
- Holly S. Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48105
| | - Ginger M. Kubish
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
| | - Tanya M. Redmond
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
| | - David L. Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48105
| | - Robert C. Thompson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48105
| | - Geoffrey G. Murphy
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
| | - Michael D. Uhler
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48105
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48105
| |
Collapse
|
50
|
Abstract
OCT4 encoded by pou5f1 is one of the most ancient and early transcription factors identified in the embryo. It has been longwise recognized as a gatekeeper for pluripotency of embryonic stem (ES) cell. Uncovered twenty years ago, its fame was built up from its key role in maintaining embryonic stem cell pluripotency in 1998. Since, OCT4 was reported to also instruct stem cell fate through a gene dosage effect. It reached recently a novel glorious hit with its master role in reprogramming somatic cells.
Collapse
Affiliation(s)
- Sonia Stefanovic
- Inserm UMR 633, Université Paris Descartes, programme Avenir, Equipe Cellules souches et cardogenése, Evry, France.
| | | |
Collapse
|