1
|
Chen J, Meng A. Maternal control of embryonic dorsal organizer in vertebrates. Cells Dev 2025:204020. [PMID: 40058595 DOI: 10.1016/j.cdev.2025.204020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
The establishment of the body axis and developmental blueprint in embryos has remained to be a central question in developmental biology, captivating scientists for centuries. A milestone in this field was achieved in 1924 when Hans Spemann and Hilde Mangold discovered the dorsal organizer for embryonic body axis formation in amphibians. Since then, extensive studies have demonstrated that the dorsal organizer is evolutionarily conserved in vertebrates. This organizer functions as a signaling center, directing adjacent cells toward specific fates and orchestrating pattern formation to establish the embryonic axis. After 70 years since the discovery of the organizer, studies in different model animal species had revealed that locally activated β-catenin signaling during blastulation plays an indispensable role in organizer induction. Then, efforts have been made to identify initiators of β-catenin activation in blastulas. Now, it appears that maternal Huluwa, a transmembrane protein, is a bona fide organizer inducer at least in teleost fish and frog, which can activate downstream signaling pathways, including but probably not limited to β-catenin pathway. More studies are needed to decode the complete molecular network controlling organizer induction.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Azbazdar Y, De Robertis EM. Double assurance in the induction of axial development by egg dorsal determinants in Xenopus embryos. Proc Natl Acad Sci U S A 2025; 122:e2421772122. [PMID: 39928870 PMCID: PMC11848351 DOI: 10.1073/pnas.2421772122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/04/2025] [Indexed: 02/12/2025] Open
Abstract
We recently reported that microinjection of Xenopus nodal-related (xnr) mRNAs into β-catenin-depleted Xenopus embryos rescued a complete dorsal axis. Xnrs mediate the signal of the Nieuwkoop center that induces the Spemann-Mangold organizer in the overlying mesoderm, a process inhibited by the Nodal antagonist Cerberus-short (CerS). However, β-catenin also induces a second signaling center in the dorsal prospective ectoderm, designated the Blastula Chordin and Noggin Expression (BCNE) center, in which the homeobox gene siamois (sia) plays a major role. In this study, we asked whether the Xnrs and Sia depend on each other or function on parallel pathways. Expression of both genes induced β-catenin-depleted embryos to form complete axes with heads and eyes via the activation of similar sets of downstream organizer-specific genes. Xnrs did not activate siamois, and, conversely, Sia did not activate xnrs, although both were induced by β-catenin stabilization. Depletion with morpholinos revealed a robust role for the downstream target Chordin. Remarkably, Chordin depletion prevented all ectopic effects resulting from microinjection of the mRNA encoding the maternal cytoplasmic determinant Huluwa, including the radial expansion of brain tissue and the ectopic expression of the ventral gene sizzled. The main conclusion was that the BCNE and Nieuwkoop centers provide a double assurance mechanism for axial formation by independently activating similar downstream transcriptional target gene repertoires. We suggest that Siamois likely evolved from an ancestral Mix-type homeodomain protein called Sebox as a Xenopus-specific adaptation for the rapid differentiation of the anterior neural plate in the ectoderm.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| |
Collapse
|
3
|
Yan Y, Wang Q. BMP Signaling: Lighting up the Way for Embryonic Dorsoventral Patterning. Front Cell Dev Biol 2022; 9:799772. [PMID: 35036406 PMCID: PMC8753366 DOI: 10.3389/fcell.2021.799772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most significant events during early embryonic development is the establishment of a basic embryonic body plan, which is defined by anteroposterior, dorsoventral (DV), and left-right axes. It is well-known that the morphogen gradient created by BMP signaling activity is crucial for DV axis patterning across a diverse set of vertebrates. The regulation of BMP signaling during DV patterning has been strongly conserved across evolution. This is a remarkable regulatory and evolutionary feat, as the BMP gradient has been maintained despite the tremendous variation in embryonic size and shape across species. Interestingly, the embryonic DV axis exhibits robust stability, even in face of variations in BMP signaling. Multiple lines of genetic, molecular, and embryological evidence have suggested that numerous BMP signaling components and their attendant regulators act in concert to shape the developing DV axis. In this review, we summarize the current knowledge of the function and regulation of BMP signaling in DV patterning. Throughout, we focus specifically on popular model animals, such as Xenopus and zebrafish, highlighting the similarities and differences of the regulatory networks between species. We also review recent advances regarding the molecular nature of DV patterning, including the initiation of the DV axis, the formation of the BMP gradient, and the regulatory molecular mechanisms behind BMP signaling during the establishment of the DV axis. Collectively, this review will help clarify our current understanding of the molecular nature of DV axis formation.
Collapse
Affiliation(s)
- Yifang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
6
|
Vonica A, Bhat N, Phan K, Guo J, Iancu L, Weber JA, Karger A, Cain JW, Wang ECE, DeStefano GM, O'Donnell-Luria AH, Christiano AM, Riley B, Butler SJ, Luria V. Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Dev Biol 2020; 464:71-87. [PMID: 32320685 PMCID: PMC7307705 DOI: 10.1016/j.ydbio.2020.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
Abstract
Animal development and homeostasis depend on precise temporal and spatial intercellular signaling. Components shared between signaling pathways, generally thought to decrease specificity, paradoxically can also provide a solution to pathway coordination. Here we show that the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways share Apcdd1 as a common inhibitor and that Apcdd1 is a taxon-restricted gene with novel domains and signaling functions. Previously, we showed that Apcdd1 inhibits Wnt signaling (Shimomura et al., 2010), here we find that Apcdd1 potently inhibits BMP signaling in body axis formation and neural differentiation in chicken, frog, zebrafish. Furthermore, we find that Apcdd1 has an evolutionarily novel protein domain. Our results from experiments and modeling suggest that Apcdd1 may coordinate the outputs of two signaling pathways that are central to animal development and human disease.
Collapse
Affiliation(s)
- Alin Vonica
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Biology, The Nazareth College, Rochester, NY, 14618, USA
| | - Neha Bhat
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Keith Phan
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Jinbai Guo
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA
| | - Lăcrimioara Iancu
- Institut für Algebra und Zahlentheorie, Universität Stuttgart, D-70569, Stuttgart, Germany; Institute of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Jessica A Weber
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, 02115, USA
| | - John W Cain
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA
| | - Etienne C E Wang
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gina M DeStefano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Angela M Christiano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Bruce Riley
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA.
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA.
| | - Victor Luria
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Gambini A, Stein P, Savy V, Grow EJ, Papas BN, Zhang Y, Kenan AC, Padilla-Banks E, Cairns BR, Williams CJ. Developmentally Programmed Tankyrase Activity Upregulates β-Catenin and Licenses Progression of Embryonic Genome Activation. Dev Cell 2020; 53:545-560.e7. [PMID: 32442396 DOI: 10.1016/j.devcel.2020.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Embryonic genome activation (EGA) is orchestrated by an intrinsic developmental program initiated during oocyte maturation with translation of stored maternal mRNAs. Here, we show that tankyrase, a poly(ADP-ribosyl) polymerase that regulates β-catenin levels, undergoes programmed translation during oocyte maturation and serves an essential role in mouse EGA. Newly translated TNKS triggers proteasomal degradation of axin, reducing targeted destruction of β-catenin and promoting β-catenin-mediated transcription of target genes, including Myc. MYC mediates ribosomal RNA transcription in 2-cell embryos, supporting global protein synthesis. Suppression of tankyrase activity using knockdown or chemical inhibition causes loss of nuclear β-catenin and global reductions in transcription and histone H3 acetylation. Chromatin and transcriptional profiling indicate that development arrests prior to the mid-2-cell stage, mediated in part by reductions in β-catenin and MYC. These findings indicate that post-transcriptional regulation of tankyrase serves as a ligand-independent developmental mechanism for post-translational β-catenin activation and is required to complete EGA.
Collapse
Affiliation(s)
- Andrés Gambini
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Edward J Grow
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Brian N Papas
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anna C Kenan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
|
9
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
10
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
11
|
Nodal and BMP dispersal during early zebrafish development. Dev Biol 2018; 447:14-23. [PMID: 29653088 DOI: 10.1016/j.ydbio.2018.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/30/2022]
Abstract
The secreted TGF-β superfamily signals Nodal and BMP coordinate the patterning of vertebrate embryos. Nodal specifies endoderm and mesoderm during germ layer formation, and BMP specifies ventral fates and patterns the dorsal/ventral axis. Five major models have been proposed to explain how the correct distributions of Nodal and BMP are achieved within tissues to orchestrate embryogenesis: source/sink, transcriptional determination, relay, self-regulation, and shuttling. Here, we discuss recent experiments probing these signal dispersal models, focusing on early zebrafish development.
Collapse
|
12
|
Hino H, Nakanishi A, Seki R, Aoki T, Yamaha E, Kawahara A, Shimizu T, Hibi M. Roles of maternal wnt8a transcripts in axis formation in zebrafish. Dev Biol 2017; 434:96-107. [PMID: 29208373 DOI: 10.1016/j.ydbio.2017.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/05/2023]
Abstract
In early zebrafish development, the program for dorsal axis formation begins soon after fertilization. Previous studies suggested that dorsal determinants (DDs) localize to the vegetal pole, and are transported to the dorsal blastomeres in a microtubule-dependent manner. The DDs activate the canonical Wnt pathway and induce dorsal-specific genes that are required for dorsal axis formation. Among wnt-family genes, only the wnt8a mRNA is reported to localize to the vegetal pole in oocytes and to induce the dorsal axis, suggesting that Wnt8a is a candidate DD. Here, to reveal the roles of maternal wnt8a, we generated wnt8a mutants by transcription activator-like effector nucleases (TALENs), and established zygotic, maternal, and maternal zygotic wnt8a mutants by germ-line replacement. Zebrafish wnt8a has two open reading frames (ORF1 and ORF2) that are tandemly located in the genome. Although the zygotic ORF1 or ORF2 wnt8a mutants showed little or no axis-formation defects, the ORF1/2 compound mutants showed antero-dorsalized phenotypes, indicating that ORF1 and ORF2 have redundant roles in ventrolateral and posterior tissue formation. Unexpectedly, the maternal wnt8a ORF1/2 mutants showed no axis-formation defects. The maternal-zygotic wnt8a ORF1/2 mutants showed more severe antero-dorsalized phenotypes than the zygotic mutants. These results indicated that maternal wnt8a is dispensable for the initial dorsal determination, but cooperates with zygotic wnt8a for ventrolateral and posterior tissue formation. Finally, we re-examined the maternal wnt genes and found that Wnt6a is an alternative candidate DD.
Collapse
Affiliation(s)
- Hiromu Hino
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiko Nakanishi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Ryoko Seki
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Tsubasa Aoki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Etsuro Yamaha
- Nanae Fresh Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Kameda, Hokkaido 041-1105, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
13
|
Shao M, Wang M, Liu YY, Ge YW, Zhang YJ, Shi DL. Vegetally localised Vrtn functions as a novel repressor to modulate bmp2b transcription during dorsoventral patterning in zebrafish. Development 2017; 144:3361-3374. [PMID: 28928283 DOI: 10.1242/dev.152553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/15/2017] [Indexed: 02/03/2023]
Abstract
The vegetal pole cytoplasm represents a crucial source of maternal dorsal determinants for patterning the dorsoventral axis of the early embryo. Removal of the vegetal yolk in the zebrafish fertilised egg before the completion of the first cleavage results in embryonic ventralisation, but removal of this part at the two-cell stage leads to embryonic dorsalisation. How this is achieved remains unknown. Here, we report a novel mode of maternal regulation of BMP signalling during dorsoventral patterning in zebrafish. We identify Vrtn as a novel vegetally localised maternal factor with dorsalising activity and rapid transport towards the animal pole region after fertilisation. Co-injection of vrtn mRNA with vegetal RNAs from different cleavage stages suggests the presence of putative vegetally localised Vrtn antagonists with slower animal pole transport. Thus, vegetal ablation at the two-cell stage could remove most of the Vrtn antagonists, and allows Vrtn to produce the dorsalising effect. Mechanistically, Vrtn binds a bmp2b regulatory sequence and acts as a repressor to inhibit its zygotic transcription. Analysis of maternal-zygotic vrtn mutants further shows that Vrtn is required to constrain excessive bmp2b expression in the margin. Our work unveils a novel maternal mechanism regulating zygotic BMP gradient in dorsoventral patterning.
Collapse
Affiliation(s)
- Ming Shao
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Min Wang
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Yuan-Yuan Liu
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Yi-Wen Ge
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Yan-Jun Zhang
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - De-Li Shi
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China .,Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France
| |
Collapse
|
14
|
Pomreinke AP, Soh GH, Rogers KW, Bergmann JK, Bläßle AJ, Müller P. Dynamics of BMP signaling and distribution during zebrafish dorsal-ventral patterning. eLife 2017; 6:25861. [PMID: 28857744 PMCID: PMC5658070 DOI: 10.7554/elife.25861] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022] Open
Abstract
During vertebrate embryogenesis, dorsal-ventral patterning is controlled by the BMP/Chordin activator/inhibitor system. BMP induces ventral fates, whereas Chordin inhibits BMP signaling on the dorsal side. Several theories can explain how the distributions of BMP and Chordin are regulated to achieve patterning, but the assumptions regarding activator/inhibitor diffusion and stability differ between models. Notably, ‘shuttling’ models in which the BMP distribution is modulated by a Chordin-mediated increase in BMP diffusivity have gained recent prominence. Here, we directly test five major models by measuring the biophysical properties of fluorescently tagged BMP2b and Chordin in zebrafish embryos. We found that BMP2b and Chordin diffuse and rapidly form extracellular protein gradients, Chordin does not modulate the diffusivity or distribution of BMP2b, and Chordin is not required to establish peak levels of BMP signaling. Our findings challenge current self-regulating reaction-diffusion and shuttling models and provide support for a graded source-sink mechanism underlying zebrafish dorsal-ventral patterning. Animals start life as clumps of cells that ultimately give rise to complex structures and organs. Over a century of research has revealed a small number of proteins that are crucial for complex structures to form from these clumps, including one protein called BMP. Different levels of BMP instruct cells to give rise to different tissues. In zebrafish, BMP is more abundant on one side of the embryo than the other. This gradient in BMP levels causes different tissues to form at distinct positions and helps coordinate embryo development. Several theories have been proposed to explain how the BMP gradient is established. They all suggest that a second protein – Chordin – plays an important role in influencing how cells sense the BMP gradient by blocking BMP’s activity. However, the exact role of Chordin in the formation of the BMP gradient is disputed. To address this, Pomreinke, Soh, Rogers et al. directly tested five theories of how BMP and Chordin molecules spread through embryos. The experiments used microscopy to track the movements of fluorescent versions of both molecules in zebrafish embryos. The measurements contradict one theory stating that BMP does not move, and another in which Chordin increases the mobility of BMP. Pomreinke, Soh, Rogers et al. also found that embryos that lack Chordin have increased BMP signaling levels only on the side where Chordin is normally made but not on the opposite side where BMP is made, ruling out several of the theories. The findings are most consistent with the idea that the BMP gradient forms mainly as a result of higher production of BMP on one side of the embryo combined with movement of BMP away from where it is made. Chordin produced at the opposite end of the embryo helps to ensure that only the correct cells receive instructions from BMP. In the future, two approaches could further clarify how the BMP gradient is formed. First, better techniques to directly observe the BMP gradient in normally developing embryos would be useful. Second, new theories that take into account additional players other than BMP and Chordin might help explain some features of development that current theories cannot address. Uncovering the mechanisms that control the formation of BMP gradients will improve our understanding of how clumps of cells can develop into animals.
Collapse
Affiliation(s)
- Autumn P Pomreinke
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Gary H Soh
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Jennifer K Bergmann
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Alexander J Bläßle
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| |
Collapse
|
15
|
Zinski J, Bu Y, Wang X, Dou W, Umulis D, Mullins MC. Systems biology derived source-sink mechanism of BMP gradient formation. eLife 2017; 6:22199. [PMID: 28826472 PMCID: PMC5590806 DOI: 10.7554/elife.22199] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. Before an animal is born, a protein called BMP plays a key role in establishing the difference between the front and the back of the animal. Cells nearer the front of the embryo contain higher amounts of the BMP protein, whilst cells nearer the back have progressively lower levels of BMP. This gradient of BMP ‘concentration’ affects the identity of the cells, with the level of BMP in each cell dictating what parts of the body are made where. The prevailing view among scientists is that the BMP gradient is created by an opposing gradient of another protein called Chordin, which is found at high levels at the back of the embryo and lower levels near the front. Chordin inhibits BMP and the interaction between the two proteins establishes the gradients that create order across the embryo. Zinski et al. used computer models to investigate how the BMP gradient is created. Several possibilities were considered, including the effect of Chordin. Comparing the models to precise experimental measurements of BMP activity in zebrafish embryos suggested that a different mechanism known as a source-sink model, rather than the opposing Chordin gradient, may be responsible for the pattern of BMP found in the embryo. In this model, the BMP is produced at the front of the embryo and moves towards the back end by diffusion. At the back of the embryo, BMP is mopped up by Chordin, resulting in a constant gradient of BMP along the embryo. Many other processes that control how animals grow and develop rely on the formation of similar protein gradients, so these findings may also apply to other aspects of animal development. Understanding how animals grow and develop may help researchers to develop strategies to regrow tissues and organs in human patients.
Collapse
Affiliation(s)
- Joseph Zinski
- Department of Cell and DevelopmentalBiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Ye Bu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - Xu Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - Wei Dou
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - David Umulis
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, United States
| | - Mary C Mullins
- Department of Cell and DevelopmentalBiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| |
Collapse
|
16
|
Meyers EA, Kessler JA. TGF-β Family Signaling in Neural and Neuronal Differentiation, Development, and Function. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022244. [PMID: 28130363 DOI: 10.1101/cshperspect.a022244] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signaling by the transforming growth factor β (TGF-β) family is necessary for proper neural development and function throughout life. Sequential waves of activation, inhibition, and reactivation of TGF-β family members regulate numerous elements of the nervous system from the earliest stages of embryogenesis through adulthood. This review discusses the expression, regulation, and function of TGF-β family members in the central nervous system at various developmental stages, beginning with induction and patterning of the nervous system to their importance in the adult as modulators of inflammatory response and involvement in degenerative diseases.
Collapse
Affiliation(s)
- Emily A Meyers
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
17
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
19
|
Langdon YG, Fuentes R, Zhang H, Abrams EW, Marlow FL, Mullins MC. Split top: a maternal cathepsin B that regulates dorsoventral patterning and morphogenesis. Development 2016; 143:1016-28. [PMID: 26893345 PMCID: PMC4813285 DOI: 10.1242/dev.128900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022]
Abstract
The vertebrate embryonic dorsoventral axis is established and patterned by Wnt and bone morphogenetic protein (BMP) signaling pathways, respectively. Whereas Wnt signaling establishes the dorsal side of the embryo and induces the dorsal organizer, a BMP signaling gradient patterns tissues along the dorsoventral axis. Early Wnt signaling is provided maternally, whereas BMP ligand expression in the zebrafish is zygotic, but regulated by maternal factors. Concomitant with BMP activity patterning dorsoventral axial tissues, the embryo also undergoes dramatic morphogenetic processes, including the cell movements of gastrulation, epiboly and dorsal convergence. Although the zygotic regulation of these cell migration processes is increasingly understood, far less is known of the maternal regulators of these processes. Similarly, the maternal regulation of dorsoventral patterning, and in particular the maternal control of ventral tissue specification, is poorly understood. We identified split top, a recessive maternal-effect zebrafish mutant that disrupts embryonic patterning upstream of endogenous BMP signaling. Embryos from split top mutant females exhibit a dorsalized embryonic axis, which can be rescued by BMP misexpression or by derepressing endogenous BMP signaling. In addition to dorsoventral patterning defects, split top mutants display morphogenesis defects that are both BMP dependent and independent. These morphogenesis defects include incomplete dorsal convergence, delayed epiboly progression and an early lysis phenotype during gastrula stages. The latter two morphogenesis defects are associated with disruption of the actin and microtubule cytoskeleton within the yolk cell and defects in the outer enveloping cell layer, which are both known mediators of epiboly movements. Through chromosomal mapping and RNA sequencing analysis, we identified the lysosomal endopeptidase cathepsin Ba (ctsba) as the gene deficient in split top embryos. Our results identify a novel role for Ctsba in morphogenesis and expand our understanding of the maternal regulation of dorsoventral patterning.
Collapse
Affiliation(s)
- Yvette G Langdon
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA Millsaps College, Department of Biology, Jackson, MS 39210, USA
| | - Ricardo Fuentes
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Hong Zhang
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Elliott W Abrams
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Florence L Marlow
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
21
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
22
|
Ro H, Hur TL, Rhee M. Ubiquitin conjugation system for body axes specification in vertebrates. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1026399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
23
|
Organizer-derived Bmp2 is required for the formation of a correct Bmp activity gradient during embryonic development. Nat Commun 2014; 5:3766. [PMID: 24777107 PMCID: PMC4071459 DOI: 10.1038/ncomms4766] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 03/31/2014] [Indexed: 01/21/2023] Open
Abstract
Bone morphogenetic proteins (Bmps) control dorsoventral patterning of vertebrate embryos through the establishment of a ventrodorsal gradient of the activated downstream cytoplasmic effectors Smad1/5/8. Some Bmp ligands are expressed in the ventral and lateral regions and in the organizer during gastrulation of the embryo, but it remains unclear how organizer-derived Bmps contribute to total Bmp ligand levels and to the establishment of the correct phospho-Smad1/5/8 gradient along the ventrodorsal axis. Here we demonstrate that interference with organizer-specific Bmp2b signalling in zebrafish embryos alters the phospho-Smad1/5/8 gradient throughout the ventrodorsal axis, elevates the levels of the Bmp antagonist Chordin and dorsalizes the embryos. Moreover, we show that organizer-derived Bmp2b represses chordin transcription in the organizer and contributes to the control of the Chordin gradient. Combining these experimental results with simulations of Bmp’s reaction-diffusion dynamics, our data indicate that organizer-produced Bmp2b is required for the establishment and maintenance of a Bmp activity gradient and for appropriate embryonic dorsoventral patterning during gastrulation. The morphogen, Bmp, regulates differentiation of cell fates along the ventral to dorsal axis during vertebrate embryonic development. Here, Xue et al. show that Bmp2b produced by the organizer during early gastrulation in zebrafish embryos has a role in the establishment of an appropriate Bmp morphogen activity gradient and the correct dorsoventral patterning of the embryos.
Collapse
|
24
|
Kotkamp K, Kur E, Wendik B, Polok BK, Ben-Dor S, Onichtchouk D, Driever W. Pou5f1/Oct4 promotes cell survival via direct activation of mych expression during zebrafish gastrulation. PLoS One 2014; 9:e92356. [PMID: 24643012 PMCID: PMC3958507 DOI: 10.1371/journal.pone.0092356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 01/29/2023] Open
Abstract
Myc proteins control cell proliferation, cell cycle progression, and apoptosis, and play important roles in cancer as well in establishment of pluripotency. Here we investigated the control of myc gene expression by the Pou5f1/Oct4 pluripotency factor in the early zebrafish embryo. We analyzed the expression of all known zebrafish Myc family members, myca, mycb, mych, mycl1a, mycl1b, and mycn, by whole mount in situ hybridization during blastula and gastrula stages in wildtype and maternal plus zygotic pou5f1 mutant (MZspg) embryos, as well as by quantitative PCR and in time series microarray data. We found that the broad blastula and gastrula stage mych expression, as well as late gastrula stage mycl1b expression, both depend on Pou5f1 activity. We analyzed ChIP-Seq data and found that both Pou5f1 and Sox2 bind to mych and mycl1b control regions. The regulation of mych by Pou5f1 appears to be direct transcriptional activation, as overexpression of a Pou5f1 activator fusion protein in MZspg embryos induced strong mych expression even when translation of zygotically expressed mRNAs was suppressed. We further showed that MZspg embryos develop enhanced apoptosis already during early gastrula stages, when apoptosis was not be detected in wildtype embryos. However, Mych knockdown alone did not induce early apoptosis, suggesting potentially redundant action of several early expressed myc genes, or combination of several pathways affected in MZspg. Experimental mych overexpression in MZspg embryos did significantly, but not completely suppress the apoptosis phenotype. Similarly, p53 knockdown only partially suppressed apoptosis in MZspg gastrula embryos. However, combined knockdown of p53 and overexpression of Mych completely rescued the MZspg apoptosis phenotype. These results reveal that Mych has anti-apoptotic activity in the early zebrafish embryo, and that p53-dependent and Myc pathways are likely to act in parallel to control apoptosis at these stages.
Collapse
Affiliation(s)
- Kay Kotkamp
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Esther Kur
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Björn Wendik
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Bożena K. Polok
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Shifra Ben-Dor
- Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
- * E-mail:
| |
Collapse
|
25
|
A Pou5f1/Oct4 dependent Klf2a, Klf2b, and Klf17 regulatory sub-network contributes to EVL and ectoderm development during zebrafish embryogenesis. Dev Biol 2014; 385:433-47. [DOI: 10.1016/j.ydbio.2013.10.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/08/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
|
26
|
Amano H, Mochida K, Onduka T, Fujii K. Molecular Cloning and Gene Expression of Mummichog (Fundulus heteroclitus) Runx2 During Embryogenesis. Zoolog Sci 2013; 30:1050-5. [DOI: 10.2108/zsj.30.1050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Kapp LD, Abrams EW, Marlow FL, Mullins MC. The integrator complex subunit 6 (Ints6) confines the dorsal organizer in vertebrate embryogenesis. PLoS Genet 2013; 9:e1003822. [PMID: 24204286 PMCID: PMC3814294 DOI: 10.1371/journal.pgen.1003822] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.
Collapse
Affiliation(s)
- Lee D. Kapp
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Elliott W. Abrams
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ramel MC, Hill CS. The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Dev Biol 2013; 378:170-82. [PMID: 23499658 PMCID: PMC3899928 DOI: 10.1016/j.ydbio.2013.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/26/2022]
Abstract
In the early zebrafish embryo, a ventral to dorsal gradient of bone morphogenetic protein (BMP) activity is established, which is essential for the specification of cell fates along this axis. To visualise and mechanistically determine how this BMP activity gradient forms, we have used a transgenic zebrafish line that expresses monomeric red fluorescent protein (mRFP) under the control of well-characterised BMP responsive elements. We demonstrate that mRFP expression in this line faithfully reports BMP and GDF signalling at both early and late stages of development. Taking advantage of the unstable nature of mRFP transcripts, we use in situ hybridisation to reveal the dynamic spatio-temporal pattern of BMP activity and establish the timing and sequence of events that lead to the formation of the BMP activity gradient. We show that the BMP transcriptional activity gradient is established between 30% and 40% epiboly stages and that it is preceded by graded mRNA expression of the BMP ligands. Both Dharma and FGF signalling contribute to graded bmp transcription during these early stages and it is subsequently maintained through autocrine BMP signalling. We show that BMP2B protein is also expressed in a gradient as early as blastula stages, but do not find any evidence of diffusion of this BMP to generate the BMP transcriptional activity gradient. Thus, in contrast to diffusion/transport-based models of BMP gradient formation in Drosophila, our results indicate that the establishment of the BMP activity gradient in early zebrafish embryos is determined by graded expression of the BMP ligands.
Collapse
Affiliation(s)
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| |
Collapse
|
29
|
Pou2, a class V POU-type transcription factor in zebrafish, regulates dorsoventral patterning and convergent extension movement at different blastula stages. Mech Dev 2012; 129:219-35. [DOI: 10.1016/j.mod.2012.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 01/30/2023]
|
30
|
Ramel MC, Hill CS. Spatial regulation of BMP activity. FEBS Lett 2012; 586:1929-41. [PMID: 22710177 DOI: 10.1016/j.febslet.2012.02.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/14/2022]
Abstract
The bone morphogenetic protein (BMP) signalling pathway is critical for embryonic development and tissue homeostasis, and impaired BMP signalling has been implicated in multiple diseases. Molecular tools have been developed to visualise BMP activity in vivo and these have allowed a better understanding of the intricate ways in which BMP activity is regulated spatially. In particular, generation and interpretation of BMP activity gradients during development result from the complex interplay between core BMP signalling components and specific regulators. In this essay we discuss the mechanisms by which spatial regulation of BMP activity is achieved and its functional consequences.
Collapse
Affiliation(s)
- Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | | |
Collapse
|
31
|
Ferri-Lagneau KF, Moshal KS, Grimes M, Zahora B, Lv L, Sang S, Leung T. Ginger stimulates hematopoiesis via Bmp pathway in zebrafish. PLoS One 2012; 7:e39327. [PMID: 22761764 PMCID: PMC3382625 DOI: 10.1371/journal.pone.0039327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 05/18/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Anemia is a hematologic disorder with decreased number of erythrocytes. Erythropoiesis, the process by which red blood cells differentiate, are conserved in humans, mice and zebrafish. The only known agents available to treat pathological anemia are erythropoietin and its biologic derivatives. However, erythropoietin therapy elicits unwanted side-effects, high cost and intravenous or subcutaneous injection, warranting the development of a more cost effective and non-peptide alternative. Ginger (Zingiber officinale) has been widely used in traditional medicine; however, to date there is no scientific research documenting the potential of ginger to stimulate hematopoiesis. METHODOLOGY/PRINCIPAL FINDINGS Here, we utilized gata1:dsRed transgenic zebrafish embryos to investigate the effect of ginger extract on hematopoiesis in vivo and we identified its bioactive component, 10-gingerol. We confirmed that ginger and 10-gingerol promote the expression of gata1 in erythroid cells and increase the expression of hematopoietic progenitor markers cmyb and scl. We also demonstrated that ginger and 10-gingerol can promote the hematopoietic recovery from acute hemolytic anemia in zebrafish, by quantifying the number of circulating erythroid cells in the dorsal aorta using video microscopy. We found that ginger and 10-gingerol treatment during gastrulation results in an increase of bmp2b and bmp7a expression, and their downstream effectors, gata2 and eve1. At later stages ginger and 10-gingerol can induce bmp2b/7a, cmyb, scl and lmo2 expression in the caudal hematopoietic tissue area. We further confirmed that Bmp/Smad pathway mediates this hematopoiesis promoting effect of ginger by using the Bmp-activated Bmp type I receptor kinase inhibitors dorsomorphin, LND193189 and DMH1. CONCLUSIONS/SIGNIFICANCE Our study provides a strong foundation to further evaluate the molecular mechanism of ginger and its bioactive components during hematopoiesis and to investigate their effects in adults. Our results will provide the basis for future research into the effect of ginger during mammalian hematopoiesis to develop novel erythropoiesis promoting agents.
Collapse
Affiliation(s)
- Karine F. Ferri-Lagneau
- The Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Karni S. Moshal
- The Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Matthew Grimes
- The Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Braden Zahora
- The Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Lishuang Lv
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Shengmin Sang
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - TinChung Leung
- The Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
- Department of Biology, North Carolina Central University, Durham, North Carolina, United States of America
| |
Collapse
|
32
|
Reis AH, Almeida-Coburn KL, Louza MP, Cerqueira DM, Aguiar DP, Silva-Cardoso L, Mendes FA, Andrade LR, Einicker-Lamas M, Atella GC, Brito JM, Abreu JG. Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. Dev Biol 2012; 365:350-62. [PMID: 22426006 DOI: 10.1016/j.ydbio.2012.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 02/29/2012] [Accepted: 03/04/2012] [Indexed: 02/05/2023]
Abstract
Cholesterol-rich membrane microdomains (CRMMs) are specialized structures that have recently gained much attention in cell biology because of their involvement in cell signaling and trafficking. However, few investigations, particularly those addressing embryonic development, have succeeded in manipulating and observing CRMMs in living cells. In this study, we performed a detailed characterization of the CRMMs lipid composition during early frog development. Our data showed that disruption of CRMMs through methyl-β-cyclodextrin (MβCD) cholesterol depletion at the blastula stage did not affect Spemann's organizer gene expression and inductive properties, but impaired correct head development in frog and chick embryos by affecting the prechordal plate gene expression and cellular morphology. The MβCD anterior defect phenotype was recapitulated in head anlagen (HA) explant cultures. Culture of animal cap expressing Dkk1 combined with MβCD-HA generated a head containing eyes and cement gland. Together, these data show that during Xenopus blastula and gastrula stages, CRMMs have a very dynamic lipid composition and provide evidence that the secreted Wnt antagonist Dkk1 can partially rescue anterior structures in cholesterol-depleted head anlagen.
Collapse
Affiliation(s)
- Alice H Reis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Van Otterloo E, Li W, Garnett A, Cattell M, Medeiros DM, Cornell RA. Novel Tfap2-mediated control of soxE expression facilitated the evolutionary emergence of the neural crest. Development 2012; 139:720-30. [PMID: 22241841 DOI: 10.1242/dev.071308] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene duplication has been proposed to drive the evolution of novel morphologies. After gene duplication, it is unclear whether changes in the resulting paralogs' coding-regions, or in their cis-regulatory elements, contribute most significantly to the assembly of novel gene regulatory networks. The Transcription Factor Activator Protein 2 (Tfap2) was duplicated in the chordate lineage and is essential for development of the neural crest, a tissue that emerged with vertebrates. Using a tfap2-depleted zebrafish background, we test the ability of available gnathostome, agnathan, cephalochordate and insect tfap2 paralogs to drive neural crest development. With the exception of tfap2d (lamprey and zebrafish), all are able to do so. Together with expression analyses, these results indicate that sub-functionalization has occurred among Tfap2 paralogs, but that neo-functionalization of the Tfap2 protein did not drive the emergence of the neural crest. We investigate whether acquisition of novel target genes for Tfap2 might have done so. We show that in neural crest cells Tfap2 directly activates expression of sox10, which encodes a transcription factor essential for neural crest development. The appearance of this regulatory interaction is likely to have coincided with that of the neural crest, because AP2 and SoxE are not co-expressed in amphioxus, and because neural crest enhancers are not detected proximal to amphioxus soxE. We find that sox10 has limited ability to restore the neural crest in Tfap2-deficient embryos. Together, these results show that mutations resulting in novel Tfap2-mediated regulation of sox10 and other targets contributed to the evolution of the neural crest.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
34
|
Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS. An essential role for transcription before the MBT in Xenopus laevis. Dev Biol 2011; 357:478-91. [PMID: 21741375 PMCID: PMC3164747 DOI: 10.1016/j.ydbio.2011.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 05/10/2011] [Accepted: 06/07/2011] [Indexed: 12/12/2022]
Abstract
Most zygotic genes remain transcriptionally silent in Drosophila, Xenopus, and zebrafish embryos through multiple mitotic divisions until the midblastula transition (MBT). Several genes have been identified in each of these organisms that are transcribed before the MBT, but whether precocious expression of specific mRNAs is important for later development has not been examined in detail. Here, we identify a class of protein coding transcripts activated before the MBT by the maternal T-box factor VegT that are components of an established transcriptional regulatory network required for mesendoderm induction in Xenopus laevis, including the Nodal related ligands xnr5, xnr6, and derrière and the transcription factors bix4, and sox17α. Accumulation of phospho-Smad2, a hallmark of active Nodal signaling, at the onset of the MBT requires preMBT transcription and activity of xnr5 and xnr6. Furthermore, preMBT activation of the Nodal pathway is essential for mesendodermal gene expression and patterning of the embryo. Finally, xnr5 and xnr6 can also activate their own expression during cleavage stages, indicating that preMBT transcription contributes to a feed-forward system that allows robust activation of Nodal signaling at the MBT.
Collapse
Affiliation(s)
| | - Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, CNRS-Université de la Méditerranée, Marseille, France
| | - Jing Yang
- Nationwide Children’s Hospital, Columbus, OH, USA
| | - Laurent Kodjabachian
- Institut de Biologie du Développement de Marseille Luminy, CNRS-Université de la Méditerranée, Marseille, France
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Abstract
Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.
Collapse
Affiliation(s)
- Yvette G Langdon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
36
|
Belting HG, Wendik B, Lunde K, Leichsenring M, Mössner R, Driever W, Onichtchouk D. Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol 2011; 356:323-36. [PMID: 21621531 DOI: 10.1016/j.ydbio.2011.05.660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/18/2022]
Abstract
Pou5f1/Oct-4 in mice is required for maintenance of embryonic pluripotent cell populations. Zebrafish pou5f1 maternal-zygotic mutant embryos (spiel ohne grenzen; MZspg) lack endoderm and have gastrulation and dorsoventral patterning defects. A contribution of Pou5f1 to the control of bmp2b, bmp4 and vox expression has been suggested, however the mechanisms remained unclear and are investigated in detail here. Low-level overexpression of a Pou5f1-VP16 activator fusion protein can rescue dorsalization in MZspg mutants, indicating that Pou5f1 acts as a transcriptional activator during dorsoventral patterning. Overexpression of larger quantities of Pou5f1-VP16 can ventralize wild-type embryos, while overexpression of a Pou5f1-En repressor fusion protein can dorsalize embryos. Lack of Pou5f1 causes a transient upregulation of fgf8a expression after mid-blastula transition, providing a mechanism for delayed activation of bmp2b in MZspg embryos. Overexpression of the Pou5f1-En repressor induces fgf8, suggesting an indirect mechanism of Pou5f1 control of fgf8a expression. Transcription of vox is strongly activated by Pou5f1-VP16 even when translation of zygotically expressed transcripts is experimentally inhibited by cycloheximide. In contrast, bmp2b and bmp4 are not activated under these conditions. We show that Pou5f1 binds to phylogenetically conserved Oct/Pou5f1 sites in the vox promoter, both in vivo (ChIP) and in vitro. Our data reveals a set of direct and indirect interactions of Pou5f1 with the BMP dorsoventral patterning network that serve to fine-tune dorsoventral patterning mechanisms and coordinate patterning with developmental timing.
Collapse
Affiliation(s)
- Heinz-Georg Belting
- Developmental Biology, Faculty of Biology, University of Freiburg, Hauptstrasse 1, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Ro H, Dawid IB. Lnx-2b restricts gsc expression to the dorsal mesoderm by limiting Nodal and Bozozok activity. Biochem Biophys Res Commun 2010; 402:626-30. [PMID: 20971071 PMCID: PMC2993813 DOI: 10.1016/j.bbrc.2010.10.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/17/2010] [Indexed: 11/18/2022]
Abstract
Coordinated Nodal-related signals and Bozozok (Boz) activity are critical for the initial specification of dorsal mesoderm and anterior neuroectoderm during zebrafish embryogenesis. Overexpression of Boz expands gsc expression into the ventro-lateral marginal blastomeres where Nodal signaling is active, but is insufficient to induce ectopic gsc expression in the animal region. We found that overexpression of Boz together with depletion of Lnx-2b (previously named Lnx-like, Lnx-l), but not each manipulation alone, causes robust gsc expression in all blastomeres. Furthermore, nodal-related signals are required for gsc expression in embryos with elevated Boz activity. Through targeted injection into single cells at the 128-cell stage we illustrate the role of maternally deposited Lnx-2b to restrict the expansion of gsc expression into the presumptive ectodermal region. This report provides a novel mechanism for limiting dorsal organizer specification to a defined region of the early zebrafish embryo.
Collapse
Affiliation(s)
- Hyunju Ro
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
38
|
Caveolin-1 regulates dorsoventral patterning through direct interaction with β-catenin in zebrafish. Dev Biol 2010; 344:210-23. [DOI: 10.1016/j.ydbio.2010.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 01/22/2023]
|
39
|
Shih YH, Kuo CL, Hirst CS, Dee CT, Liu YR, Laghari ZA, Scotting PJ. SoxB1 transcription factors restrict organizer gene expression by repressing multiple events downstream of Wnt signalling. Development 2010; 137:2671-81. [PMID: 20610482 DOI: 10.1242/dev.054130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Formation of the organizer is one of the most central patterning events in vertebrate development. Organizer-derived signals are responsible for establishing the CNS and patterning the dorsal ventral axis. The mechanisms promoting organizer formation are known to involve cooperation between Nodal and Wnt signalling. However, the organizer forms in a very restricted region, suggesting the presence of mechanisms that repress its formation. Here, we show in zebrafish that the transcription factor Sox3 represses multiple steps in the signalling events that lead to organizer formation. Although beta-catenin, Bozozok and Squint are known to play major roles in establishing the dorsal organizer in vertebrate embryos, overexpression of any of these is insufficient to induce robust expression of markers of the organizer in ectopic positions in the animal pole, where Sox3 is strongly expressed. We show that a dominant-negative nuclear localisation mutant of Sox3 can cause ectopic expression of organizer genes via a mechanism that activates all of these earlier factors, resulting in later axis duplication including major bifurcations of the CNS. We also find that the related SoxB1 factor, Sox19b, can act redundantly with Sox3 in these effects. It therefore seems that the broad expression of these SoxB1 genes throughout the early epiblast and their subsequent restriction to the ectoderm is a primary regulator of when and where the organizer forms.
Collapse
Affiliation(s)
- Yu-Huan Shih
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Q, Zheng K, Ma S, Tong Y, Luo C. Goldfish β-catenin cell-autonomously inhibits the expression of early neural development regulating gene vsx1. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-009-0714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE. Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol 2009; 7:e1000247. [PMID: 19956802 PMCID: PMC2774506 DOI: 10.1371/journal.pbio.1000247] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 10/13/2009] [Indexed: 11/18/2022] Open
Abstract
A novel method for quantifying the similarity between phenotypes by the use of ontologies can be used to search for candidate genes, pathway members, and human disease models on the basis of phenotypes alone. Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ) methodology, wherein the affected entity (E) and how it is affected (Q) are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM). These human annotations were loaded into our Ontology-Based Database (OBD) along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify gene candidates and animal models of human disease, which may shorten the lengthy path to identification and understanding of the genetic basis of human disease. Model organisms such as fruit flies, mice, and zebrafish are useful for investigating gene function because they are easy to grow, dissect, and genetically manipulate in the laboratory. By examining mutations in these organisms, one can identify candidate genes that cause disease in humans, and develop models to better understand human disease and gene function. A fundamental roadblock for analysis is, however, the lack of a computational method for describing and comparing phenotypes of mutant animals and of human diseases when the genetic basis is unknown. We describe here a novel method using ontologies to record and quantify the similarity between phenotypes. We tested our method by using the annotated mutant phenotype of one member of the Hedgehog signaling pathway in zebrafish to identify other pathway members with similar recorded phenotypes. We also compared human disease phenotypes to those produced by mutation in model organisms, and show that orthologous and biologically relevant genes can be identified by this method. Given that the genetic basis of human disease is often unknown, this method provides a means for identifying candidate genes, pathway members, and disease models by computationally identifying similar phenotypes within and across species.
Collapse
Affiliation(s)
- Nicole L Washington
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ro H, Dawid IB. Organizer restriction through modulation of Bozozok stability by the E3 ubiquitin ligase Lnx-like. Nat Cell Biol 2009; 11:1121-7. [PMID: 19668196 PMCID: PMC2759713 DOI: 10.1038/ncb1926] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 05/20/2009] [Indexed: 12/18/2022]
Abstract
The organizer anchors the primary embryonic axis, and balance between dorsal (organizer) and ventral domains is fundamental to body patterning. LNX (ligand of Numb protein-X) is a RING finger and four PDZ domain-containing E3 ubiquitin ligase. LNX serves as a binding platform and may have a role in cell fate determination, but its in vivo functions are unknown. Here we show that Lnx-l (Lnx-like) functions as a critical regulator of dorso-ventral axis formation in zebrafish. Depletion of Lnx-l using specific antisense morpholinos (MOs) caused strong embryonic dorsalization. We identified Bozozok (Boz, also known as Dharma or Nieuwkoid) as a binding partner and substrate of Lnx-l. Boz is a homeodomain-containing transcriptional repressor induced by canonical Wnt signalling that is critical for dorsal organizer formation. Lnx-l induced K48-linked polyubiquitylation of Boz, leading to its proteasomal degradation in human 293T cells and in zebrafish embryos. Dorsalization induced by Boz overexpression was suppressed by raising the level of Lnx-l, but Lnx-l failed to counteract dorsalization caused by mutant Boz lacking a critical motif for Lnx-l binding. Furthermore, dorsalization induced by depletion of Lnx-l was alleviated by attenuation of Boz expression. We conclude that Lnx-l modulates Boz activity to prevent the invasion of ventral regions of the embryo by organizer tissue. These studies introduce a ubiquitin ligase, Lnx-l, as a balancing modulator of axial patterning in the zebrafish embryo.
Collapse
Affiliation(s)
- Hyunju Ro
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
43
|
Dixon Fox M, Bruce AEE. Short- and long-range functions of Goosecoid in zebrafish axis formation are independent of Chordin, Noggin 1 and Follistatin-like 1b. Development 2009; 136:1675-85. [PMID: 19369398 DOI: 10.1242/dev.031161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The organizer is essential for dorsal-ventral (DV) patterning in vertebrates. Goosecoid (Gsc), a transcriptional repressor found in the organizer, elicits partial secondary axes when expressed ventrally in Xenopus, similar to an organizer transplant. Although gsc is expressed in all vertebrate organizers examined, knockout studies in mouse suggested that it is not required for DV patterning. Moreover, experiments in Xenopus and zebrafish suggest a role in head formation, although a function in axial mesoderm formation is less clear. To clarify the role of Gsc in vertebrate development, we used gain- and loss-of-function approaches in zebrafish. Ventral injection of low doses of gsc produced incomplete secondary axes, which we propose results from short-range repression of BMP signaling. Higher gsc doses resulted in complete secondary axes and long-range signaling, correlating with repression of BMP and Wnt signals. In striking contrast to Xenopus, the BMP inhibitor Chordin (Chd) is not required for Gsc function. Gsc produced complete secondary axes in chd null mutant embryos and gsc-morpholino knockdown in chd mutants enhanced the mutant phenotype, suggesting that Gsc has Chd-independent functions in DV patterning. Even more striking was that Gsc elicited complete secondary axes in the absence of three secreted BMP antagonists, Chd, Follistatin-like 1b and Noggin 1, suggesting that Gsc functions in parallel with secreted BMP inhibitors. Our findings suggest that Gsc has dose dependent effects on axis induction and provide new insights into molecularly distinct short- and long-range signaling activities of the organizer.
Collapse
Affiliation(s)
- Monica Dixon Fox
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | | |
Collapse
|
44
|
Martin ED, Moriarty MA, Byrnes L, Grealy M. Plakoglobin has both structural and signalling roles in zebrafish development. Dev Biol 2008; 327:83-96. [PMID: 19101534 DOI: 10.1016/j.ydbio.2008.11.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 11/21/2008] [Accepted: 11/25/2008] [Indexed: 11/18/2022]
Abstract
Plakoglobin, or gamma-catenin, is found in both desmosomes and adherens junctions and participates in Wnt signalling. Mutations in the human gene are implicated in the congenital heart disorder, arrhythmogenic right ventricular cardiomyopathy (ARVC), but the signalling effects of plakoglobin loss in ARVC have not been established. Here we report that knockdown of plakoglobin in zebrafish results in decreased heart size, reduced heartbeat, cardiac oedema, reflux of blood between heart chambers and a twisted tail. Wholemount in situ hybridisation shows reduced expression of the heart markers nkx2.5 at 24 hours post fertilisation (hpf), and cmlc2 and vmhc at 48 hpf, while there is lack of restriction of the valve markers notch1b and bmp4 at 48 hpf. Wnt target gene expression was examined by semi-quantitative RT-PCR and found to be increased in morphant embryos indicating that plakoglobin is antagonistic to Wnt signalling. Co-expression of the Wnt inhibitor, Dkk1, rescues the cardiac phenotype of the plakoglobin morphant. beta-catenin protein expression is increased in morphant embryos as is its colocalisation with E-cadherin in adherens junctions. Endothelial cells at the atrioventricular boundary of morphant hearts have an aberrant morphology, indicating problems with valvulogenesis. Morphants also have decreased numbers of desmosomes and adherens junctions in the intercalated discs. These results establish the zebrafish as a model for ARVC caused by loss of plakoglobin function and indicate that there are signalling as well as structural consequences of this loss.
Collapse
Affiliation(s)
- Eva D Martin
- Department of Pharmacology and Therapeutics and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| | | | | | | |
Collapse
|
45
|
Chan TM, Longabaugh W, Bolouri H, Chen HL, Tseng WF, Chao CH, Jang TH, Lin YI, Hung SC, Wang HD, Yuh CH. Developmental gene regulatory networks in the zebrafish embryo. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:279-98. [PMID: 18992377 DOI: 10.1016/j.bbagrm.2008.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 08/21/2008] [Accepted: 09/22/2008] [Indexed: 01/12/2023]
Abstract
The genomic developmental program operates mainly through the regulated expression of genes encoding transcription factors and signaling pathways. Complex networks of regulatory genetic interactions control developmental cell specification and fates. Development in the zebrafish, Danio rerio, has been studied extensively and large amounts of experimental data, including information on spatial and temporal gene expression patterns, are available. A wide variety of maternal and zygotic regulatory factors and signaling pathways have been discovered in zebrafish, and these provide a useful starting point for reconstructing the gene regulatory networks (GRNs) underlying development. In this review, we describe in detail the genetic regulatory subcircuits responsible for dorsoanterior-ventroposterior patterning and endoderm formation. We describe a number of regulatory motifs, which appear to act as the functional building blocks of the GRNs. Different positive feedback loops drive the ventral and dorsal specification processes. Mutual exclusivity in dorsal-ventral polarity in zebrafish is governed by intra-cellular cross-inhibiting GRN motifs, including vent/dharma and tll1/chordin. The dorsal-ventral axis seems to be determined by competition between two maternally driven positive-feedback loops (one operating on Dharma, the other on Bmp). This is the first systematic approach aimed at developing an integrated model of the GRNs underlying zebrafish development. Comparison of GRNs' organizational motifs between different species will provide insights into developmental specification and its evolution. The online version of the zebrafish GRNs can be found at http://www.zebrafishGRNs.org.
Collapse
Affiliation(s)
- Tzu-Min Chan
- Division of Molecular and Genomic Medicine, National Health Research Institute, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hashiguchi M, Shinya M, Tokumoto M, Sakai N. Nodal/Bozozok-independent induction of the dorsal organizer by zebrafish cell lines. Dev Biol 2008; 321:387-96. [DOI: 10.1016/j.ydbio.2008.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 11/25/2022]
|
47
|
Surgucheva I, Surguchov A. Gamma-synuclein: cell-type-specific promoter activity and binding to transcription factors. J Mol Neurosci 2008; 35:267-71. [PMID: 18498014 DOI: 10.1007/s12031-008-9074-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
Gamma-synuclein, also referred to as breast-cancer-specific gene 1, is the third member of the neuronal protein family synuclein. Synucleins attracted the attention of many investigators because of their role in human diseases. Gamma-synuclein participates in the pathogenesis of several types of cancer and some neurodegenerative diseases. Its role in tumorigenesis is due to the upregulation of transcription and the effect on downstream targets, including signaling pathways and transcription factors. Gamma-synuclein is also expressed in neurons and glial cells, but the regulation of its expression, as well as the mechanism of transition from normal functions to pathology in these cell types, is not studied. Here, we examined how gamma-synuclein promoter is regulated in neuronal and glial cells. We also show that gamma-synuclein is able to bind directly to several transcription factors. These results are discussed in connection with the implication of gamma-synuclein in diseases.
Collapse
Affiliation(s)
- Irina Surgucheva
- Retinal Biology Research Laboratory, Veterans Administration Medical Center, 4801 East Linwood Boulevard, Kansas City, MO 64128, USA
| | | |
Collapse
|
48
|
Flores MVC, Lam EYN, Crosier KE, Crosier PS. Osteogenic transcription factor Runx2 is a maternal determinant of dorsoventral patterning in zebrafish. Nat Cell Biol 2008; 10:346-52. [DOI: 10.1038/ncb1697] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/04/2008] [Indexed: 12/12/2022]
|
49
|
Ishibashi H, Matsumura N, Hanafusa H, Matsumoto K, De Robertis E, Kuroda H. Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos. Mech Dev 2008; 125:58-66. [PMID: 18036787 PMCID: PMC2292103 DOI: 10.1016/j.mod.2007.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 10/04/2007] [Accepted: 10/09/2007] [Indexed: 11/17/2022]
Abstract
The blastula Chordin- and Noggin-expressing (BCNE) center located in the dorsal animal region of the Xenopus blastula embryo contains both prospective anterior neuroectoderm and Spemann organizer precursor cells. Here we show that, contrary to previous reports, the canonical Wnt target homeobox genes, Double knockdown of these genes using antisense morpholinos in Xenopus laevis blocked head formation, reduced the expression of the other BCNE center genes, upregulated Bmp4 expression, and nullified hyperdorsalization by lithium chloride. Moreover, gain- and loss-of-function experiments showed that Siamois and Twin expression is repressed by the vegetal transcription factor VegT. We propose that VegT expression causes maternal beta-Catenin signals to restrict Siamois and Twin expression to the BCNE region. A two-step inhibition of BMP signals by Siamois and Twin-- first by transcriptional repression of Bmp4 and then by activation of the expression of the BMP inhibitors Chordin and Noggin--in the BCNE center is required for head formation.
Collapse
Affiliation(s)
- Hideyuki Ishibashi
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Noriko Matsumura
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hiroshi Hanafusa
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan
| | - E.M. De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Hiroki Kuroda
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
50
|
Maegawa S, Varga M, Weinberg ES. FGF signaling is required for {beta}-catenin-mediated induction of the zebrafish organizer. Development 2006; 133:3265-76. [PMID: 16873584 DOI: 10.1242/dev.02483] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used the maternal effect mutant ichabod, which is deficient in maternal beta-catenin signaling, to test for the epistatic relationship between beta-catenin activation, FGF signaling and bozozok, squint and chordin expression. Injection of beta-catenin RNA into ichabod embryos can completely rescue normal development. By contrast, when FGF signaling is inhibited, beta-catenin did not induce goosecoid and chordin, repress bmp4 expression or induce a dorsal axis. These results demonstrate that FGF signaling is necessary for beta-catenin induction of the zebrafish organizer. We show that FGFs function downstream of squint and bozozok to turn on chordin expression. Full rescue of ichabod by Squint is dependent on FGF signaling, and partial rescue by FGFs is completely dependent on chordin. By contrast, Bozozok can rescue the complete anteroposterior axis, but not notochord, in embryos blocked in FGF signaling. Surprisingly, accumulation of bozozok transcript in beta-catenin RNA-injected ichabod embryos is also dependent on FGF signaling, indicating a role of FGFs in maintenance of bozozok RNA. These experiments show that FGF-dependent organizer function operates through both bozozok RNA accumulation and a pathway consisting of beta-catenin-->Squint-->FGF-->Chordin, in which each component is sufficient for expression of the downstream factors of the pathway, and in which Nodal signaling is required for FGF gene expression and FGF signaling is required for Squint induction of chordin.
Collapse
Affiliation(s)
- Shingo Maegawa
- Department of Biology, University of Pennsylvania, Goddard Labs 316, Philadelphia, PA 19104-6017, USA
| | | | | |
Collapse
|