1
|
Grant B, Sundaram Buitrago PA, Mercado BC, Yajima M. Characterization of p53/p63/p73 and Myc expressions during embryogenesis of the sea urchin. Dev Dyn 2024; 253:333-350. [PMID: 37698352 DOI: 10.1002/dvdy.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.
Collapse
Affiliation(s)
- Blaine Grant
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Beatriz C Mercado
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Satou-Kobayashi Y, Kim JD, Fukamizu A, Asashima M. Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment. Sci Rep 2021; 11:14537. [PMID: 34267234 PMCID: PMC8282838 DOI: 10.1038/s41598-021-93524-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Activin, a member of the transforming growth factor-β (TGF-β) superfamily of proteins, induces various tissues from the amphibian presumptive ectoderm, called animal cap explants (ACs) in vitro. However, it remains unclear how and to what extent the resulting cells recapitulate in vivo development. To comprehensively understand whether the molecular dynamics during activin-induced ACs differentiation reflect the normal development, we performed time-course transcriptome profiling of Xenopus ACs treated with 50 ng/mL of activin A, which predominantly induced dorsal mesoderm. The number of differentially expressed genes (DEGs) in response to activin A increased over time, and totally 9857 upregulated and 6663 downregulated DEGs were detected. 1861 common upregulated DEGs among all Post_activin samples included several Spemann's organizer genes. In addition, the temporal transcriptomes were clearly classified into four distinct groups in correspondence with specific features, reflecting stepwise differentiation into mesoderm derivatives, and a decline in the regulation of nuclear envelop and golgi. From the set of early responsive genes, we also identified the suppressor of cytokine signaling 3 (socs3) as a novel activin A-inducible gene. Our transcriptome data provide a framework to elucidate the transcriptional dynamics of activin-driven AC differentiation, reflecting the molecular characteristics of early normal embryogenesis.
Collapse
Affiliation(s)
- Yumeko Satou-Kobayashi
- grid.264706.10000 0000 9239 9995Strategic Innovation and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| | - Jun-Dal Kim
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan ,grid.267346.20000 0001 2171 836XDivision of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Akiyoshi Fukamizu
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| | - Makoto Asashima
- grid.264706.10000 0000 9239 9995Strategic Innovation and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| |
Collapse
|
3
|
Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021; 9:678524. [PMID: 34277620 PMCID: PMC8284093 DOI: 10.3389/fcell.2021.678524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis is a common and diagnostic hallmark of a spectrum of chronic renal disorders. While the etiology varies as to the causative nature of the underlying pathology, persistent TGF-β1 signaling drives the relentless progression of renal fibrotic disease. TGF-β1 orchestrates the multifaceted program of kidney fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery or re-differentiation, capillary collapse and subsequent interstitial fibrosis eventually leading to chronic and ultimately end-stage disease. An increasing complement of non-canonical elements function as co-factors in TGF-β1 signaling. p53 is a particularly prominent transcriptional co-regulator of several TGF-β1 fibrotic-response genes by complexing with TGF-β1 receptor-activated SMADs. This cooperative p53/TGF-β1 genomic cluster includes genes involved in cellular proliferative control, survival, apoptosis, senescence, and ECM remodeling. While the molecular basis for this co-dependency remains to be determined, a subset of TGF-β1-regulated genes possess both p53- and SMAD-binding motifs. Increases in p53 expression and phosphorylation, moreover, are evident in various forms of renal injury as well as kidney allograft rejection. Targeted reduction of p53 levels by pharmacologic and genetic approaches attenuates expression of the involved genes and mitigates the fibrotic response confirming a key role for p53 in renal disorders. This review focuses on mechanisms underlying TGF-β1-induced renal fibrosis largely in the context of ureteral obstruction, which mimics the pathophysiology of pediatric unilateral ureteropelvic junction obstruction, and the role of p53 as a transcriptional regulator within the TGF-β1 repertoire of fibrosis-promoting genes.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - David M. Jones
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
4
|
Virgirinia RP, Nakamura M, Takebayashi-Suzuki K, Fatchiyah F, Suzuki A. The dual-specificity protein kinase Clk3 is essential for Xenopus neural development. Biochem Biophys Res Commun 2021; 567:99-105. [PMID: 34146908 DOI: 10.1016/j.bbrc.2021.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
During vertebrate development, the formation of the central nervous system (CNS) is initiated by neural induction and patterning of the embryonic ectoderm. We previously reported that Cdc2-like kinase 2 (Clk2) promotes neural development in Xenopus embryos by regulating morphogen signaling. However, the functions of other Clk family members and their roles in early embryonic development remain unknown. Here, we show that in addition to Clk2, Clk1 and Clk3 play a role in the formation of neural tissue in Xenopus. clk1 and clk3 are co-expressed in the developing neural tissue during early Xenopus embryogenesis. We found that overexpression of clk1 and clk3 increases the expression of neural marker genes in ectodermal explants. Furthermore, knockdown experiments showed that clk3 is required for the formation of neural tissues. These results suggest that Xenopus Clk3 plays an essential role in promoting neural development during early embryogenesis.
Collapse
Affiliation(s)
- Regina Putri Virgirinia
- Amphibian Research Center, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Makoto Nakamura
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Kimiko Takebayashi-Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Fatchiyah Fatchiyah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, 65145, Indonesia
| | - Atsushi Suzuki
- Amphibian Research Center, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan; Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
5
|
Combined Treatment of Heteronemin and Tetrac Induces Antiproliferation in Oral Cancer Cells. Mar Drugs 2020; 18:md18070348. [PMID: 32630719 PMCID: PMC7401260 DOI: 10.3390/md18070348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Heteronemin, a marine sesterterpenoid-type natural product, possesses an antiproliferative effect in cancer cells. In addition, heteronemin has been shown to inhibit p53 expression. Our laboratory has demonstrated that the thyroid hormone deaminated analogue, tetrac, activates p53 and induces antiproliferation in colorectal cancer. However, such drug mechanisms are still to be studied in oral cancer cells. Methods: We investigated the antiproliferative effects by Cell Counting Kit-8 and flow cytometry. The signal transduction pathway was measured by Western blotting analyses. Quantitative PCR was used to evaluate gene expression regulated by heteronemin, 3,3’,5,5’-tetraiodothyroacetic acid (tetrac), or their combined treatment in oral cancer cells. Results: Heteronemin inhibited not only expression of proliferative genes and Homo Sapiens Thrombospondin 1 (THBS-1) but also cell proliferation in both OEC-M1 and SCC-25 cells. Remarkably, heteronemin increased TGF-β1 expression in SCC-25 cells. Tetrac suppressed expression of THBS-1 but not p53 expression in both cancer cell lines. Furthermore, the synergistic effect of tetrac and heteronemin inhibited ERK1/2 activation and heteronemin also blocked STAT3 signaling. Combined treatment increased p53 protein and p53 activation accumulation although heteronemin inhibited p53 expression in both cancer cell lines. The combined treatment induced antiproliferation synergistically more than a single agent. Conclusions: Both heteronemin and tetrac inhibited ERK1/2 activation and increased p53 phosphorylation. They also inhibited THBS-1 expression. Moreover, tetrac suppressed TGF-β expression combined with heteronemin to further enhance antiproliferation and anti-metastasis in oral cancer cells.
Collapse
|
6
|
Reich S, Weinstein DC. Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Genes (Basel) 2019; 10:E895. [PMID: 31698780 PMCID: PMC6895975 DOI: 10.3390/genes10110895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
During vertebrate embryogenesis, precise regulation of gene expression is crucial for proper cell fate determination. Much of what we know about vertebrate development has been gleaned from experiments performed on embryos of the amphibian Xenopus laevis; this review will focus primarily on studies of this model organism. An early critical step during vertebrate development is the formation of the three primary germ layers-ectoderm, mesoderm, and endoderm-which emerge during the process of gastrulation. While much attention has been focused on the induction of mesoderm and endoderm, it has become clear that differentiation of the ectoderm involves more than the simple absence of inductive cues; rather, it additionally requires the inhibition of mesendoderm-promoting genes. This review aims to summarize our current understanding of the various inhibitors of inappropriate gene expression in the presumptive ectoderm.
Collapse
Affiliation(s)
- Shoshana Reich
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Daniel C. Weinstein
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Department of Biology, Queens College, The City University of New York, Queens, NY 11367, USA
| |
Collapse
|
7
|
Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, Meldrum KK, Samarakoon R, Higgins PJ. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB J 2019; 33:10596-10606. [PMID: 31284746 PMCID: PMC6766640 DOI: 10.1096/fj.201900943r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease affects >15% of the U.S. population and >850 million individuals worldwide. Fibrosis is the common outcome of many chronic renal disorders and, although the etiology varies (i.e., diabetes, hypertension, ischemia, acute injury, and urologic obstructive disorders), persistently elevated renal TGF-β1 levels result in the relentless progression of fibrotic disease. TGF-β1 orchestrates the multifaceted program of renal fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery and redifferentiation, and subsequent tubulointerstitial fibrosis, eventually leading to chronic renal disease. Recent findings implicate p53 as a cofactor in the TGF-β1-induced signaling pathway and a transcriptional coregulator of several TGF-β1 profibrotic response genes by complexing with receptor-activated SMADs, which are homologous to the small worms (SMA) and Drosophilia mothers against decapentaplegic (MAD) gene families. The cooperative p53-TGF-β1 genomic cluster includes genes involved in cell growth control and extracellular matrix remodeling [e.g., plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor, clade E, member 1), connective tissue growth factor, and collagen I]. Although the molecular basis for this codependency is unclear, many TGF-β1-responsive genes possess p53 binding motifs. p53 up-regulation and increased p53 phosphorylation; moreover, they are evident in nephrotoxin- and ischemia/reperfusion-induced injury, diabetic nephropathy, ureteral obstructive disease, and kidney allograft rejection. Pharmacologic and genetic approaches that target p53 attenuate expression of the involved genes and mitigate the fibrotic response, confirming a key role for p53 in renal disorders. This review focuses on mechanisms whereby p53 functions as a transcriptional regulator within the TGF-β1 cluster with an emphasis on the potent fibrosis-promoting PAI-1 gene.-Higgins, C. E., Tang, J., Mian, B. M., Higgins, S. P., Gifford, C. C., Conti, D. J., Meldrum, K. K., Samarakoon, R., Higgins, P. J. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Kirstan K. Meldrum
- Division of Pediatric Urology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| |
Collapse
|
8
|
Han D, Schomacher L, Schüle KM, Mallick M, Musheev MU, Karaulanov E, Krebs L, von Seggern A, Niehrs C. NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress. eLife 2019; 8:49044. [PMID: 31566562 PMCID: PMC6768664 DOI: 10.7554/elife.49044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Base excision repair (BER) functions not only in the maintenance of genomic integrity but also in active DNA demethylation and epigenetic gene regulation. This dual role raises the question if phenotypic abnormalities resulting from deficiency of BER factors are due to DNA damage or impaired DNA demethylation. Here we investigate the bifunctional DNA glycosylases/lyases NEIL1 and NEIL2, which act in repair of oxidative lesions and in epigenetic demethylation. Neil-deficiency in Xenopus embryos and differentiating mouse embryonic stem cells (mESCs) leads to a surprisingly restricted defect in cranial neural crest cell (cNCC) development. Neil-deficiency elicits an oxidative stress-induced TP53-dependent DNA damage response, which impairs early cNCC specification. Epistasis experiments with Tdg-deficient mESCs show no involvement of epigenetic DNA demethylation. Instead, Neil-deficiency results in oxidative damage specific to mitochondrial DNA, which triggers a TP53-mediated intrinsic apoptosis. Thus, NEIL1 and NEIL2 DNA glycosylases protect mitochondrial DNA against oxidative damage during neural crest differentiation. The face of animals with a backbone is formed in great part by a group of cells called cranial neural crest cells. When too few of these cells are made, the skull and the face can become deformed. For example, the jaw- or cheekbones can be underdeveloped or there may be defects in the eyes or ears. These types of abnormalities are among the most common birth defects known in humans. NEIL1 and NEIL2 are mouse proteins with two roles. On the one hand, they help protect DNA from damage by acting as so-called ‘base excision repair enzymes’, meaning they remove damaged building blocks of DNA. On the other hand, they help remove a chemical group known as a methyl from DNA building blocks in a process called demethylation, which is involved both in development and disease. Previous research by Schomacher et al. in 2016 showed that, in frogs, the absence of a similar protein called Neil2, leads to deformities of the face and skull. Han et al. – who include some of the researchers involved in the 2016 study – have now used frog embryos and mouse embryonic stem cells to examine the role of the NEIL proteins in cranial neural crest cells. Stem cells can become any type of cell in the body, but when NEIL1 and NEIL2 are missing, these cells lose the ability to become cranial neural crest cells. To determine whether the effects of removing NEIL1 and NEIL2 were due to their role in DNA damage repair or demethylation, Han et al. removed two proteins, each involved in one of the two processes. Removing APEX1, which is involved in DNA damage repair, had similar effects to the removal of NEIL1 and NEIL2, while removing TDG, which only works in demethylation, did not. This indicates that NEIL1 and NEIL2’s role in DNA damage repair is likely necessary for stem cells to become cranial neural crest cells. Although NEIL1 and NEIL2 are part of the DNA repair machinery, Han et al. showed that when stem cells turn into cranial neural crest cells, these proteins are not protecting the cell’s genomic DNA. Instead, they are active in the mitochondria, the compartments of the cell responsible for producing energy, which have their own DNA. Mitochondria use oxygen to produce energy, but by-products of these reactions damage mitochondrial DNA, explaining why mitochondria need NEIL1 and NEIL2. These results suggest that antioxidants, which are molecules that protect the cells from the damaging oxygen derivatives, may help prevent deformities in the face and skull. This theory could be tested using mice that do not produce proteins involved in base excision repair, which could be derived from the cells lacking NEIL1 and NEIL2.
Collapse
Affiliation(s)
- Dandan Han
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | | | | | | | - Laura Krebs
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany.,Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
9
|
Virgirinia RP, Jahan N, Okada M, Takebayashi‐Suzuki K, Yoshida H, Nakamura M, Akao H, Yoshimoto Y, Fatchiyah F, Ueno N, Suzuki A. Cdc2‐like kinase 2 (Clk2) promotes early neural development inXenopusembryos. Dev Growth Differ 2019; 61:365-377. [DOI: 10.1111/dgd.12619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Regina Putri Virgirinia
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Nusrat Jahan
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Maya Okada
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | | | - Hitoshi Yoshida
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Makoto Nakamura
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Hajime Akao
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Yuta Yoshimoto
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Fatchiyah Fatchiyah
- Department of Biology Faculty of Mathematics and Natural Sciences Brawijaya University Malang Indonesia
| | - Naoto Ueno
- Division of Morphogenesis National Institute for Basic Biology Okazaki Japan
| | - Atsushi Suzuki
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| |
Collapse
|
10
|
Cabrié A, Guittet O, Tomasini R, Vincendeau P, Lepoivre M. Crosstalk between TAp73 and TGF-β in fibroblast regulates iNOS expression and Nrf2-dependent gene transcription. Free Radic Biol Med 2019; 134:617-629. [PMID: 30753884 DOI: 10.1016/j.freeradbiomed.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022]
Abstract
Inducible nitric oxide synthase (iNOS) activity produces anti-tumor and anti-microbial effects but also promotes carcinogenesis through mutagenic, immunosuppressive and pro-angiogenic mechanisms. The tumor suppressor p53 contributes to iNOS downregulation by repressing induction of the NOS2 gene encoding iNOS, thereby limiting NO-mediated DNA damages. This study focuses on the role of the p53 homologue TAp73 in the regulation of iNOS expression. Induction of iNOS by immunological stimuli was upregulated in immortalized MEFs from TAp73-/- mice, compared to TAp73+/+ fibroblasts. This overexpression resulted both from increased levels of NOS2 transcripts, and from an increased stability of the protein. Limitation of iNOS expression by TAp73 in wild-type cells is alleviated by TGF-β receptor I inhibitors, suggesting a cooperation between TAp73 and TGF-β in suppression of iNOS expression. Accordingly, downregulation of iNOS expression by exogenous TGF-β1 was impaired in TAp73-/- fibroblasts. Increased NO production in these cells resulted in a stronger, NO-dependent induction of Nrf2 target genes, indicating that the Nrf2-dependent adaptive response to nitrosative stress in fibroblasts is proportional to iNOS activity. NO-dependent induction of two HIF-1 target genes was also stronger in TAp73-deficient cells. Finally, the antimicrobial action of NO against Trypanosoma musculi parasites was enhanced in TAp73-/- fibroblasts. Our data indicate that tumor suppressive TAp73 isoforms cooperate with TGF-β to control iNOS expression, NO-dependent adaptive responses to stress, and pathogen proliferation.
Collapse
Affiliation(s)
- Aimeric Cabrié
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Olivier Guittet
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Richard Tomasini
- CRCM, INSERM, U1068, F-13288, Marseille Cedex 9, France; Paoli-Calmettes Institute, F-13288, Marseille Cedex 9, France; Aix-Marseille University, UM 105, F-13288, Marseille Cedex 9, France; CNRS, UMR7258, F-13288, Marseille Cedex 9, France
| | - Philippe Vincendeau
- Laboratoire de Parasitologie, UMR177 IRD/CIRAD "INTERTRYP", Université Bordeaux, F-33000, Bordeaux, France
| | - Michel Lepoivre
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
11
|
Yasuoka Y, Taira M. Microinjection of DNA Constructs into Xenopus Embryos for Gene Misexpression and cis-Regulatory Module Analysis. Cold Spring Harb Protoc 2019; 2019:pdb.prot097279. [PMID: 30131366 DOI: 10.1101/pdb.prot097279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introducing exogenous DNA into an embryo can promote misexpression of a gene of interest via transcription regulated by an attached enhancer-promoter. This protocol describes plasmid DNA microinjection into Xenopus embryos for misexpression of genes after zygotic gene expression begins. It also describes a method for coinjecting a reporter plasmid with mRNA or antisense morpholinos to perform luciferase reporter assays, which are useful for quantitative analysis of cis-regulatory sequences responding to endogenous or exogenous stimuli in embryos.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Lin HY, Tey SL, Ho Y, Chin YT, Wang K, Whang-Peng J, Shih YJ, Chen YR, Yang YN, Chen YC, Liu YC, Tang HY, Yang YCS. Heteronemin Induces Anti-Proliferation in Cholangiocarcinoma Cells via Inhibiting TGF-β Pathway. Mar Drugs 2018; 16:md16120489. [PMID: 30563284 PMCID: PMC6316595 DOI: 10.3390/md16120489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
A marine sesterterpenoid-type natural product, heteronemin, retains anticancer effects. In the current study, we investigate the antitumor mechanism of heteronemin in cholangiocarcinoma cells and further explore its molecular targets. Initially, heteronemin exhibited potent cytotoxic effects against cholangiocarcinoma HuccT1 and SSP-25 cells. In vitro, heteronemin altered the abilities of cell adhesion and cell migration in HuccT1 and SSP-25 cell lines. It repressed messenger ribonucleic acid (mRNA) expression levels of transforming growth factor (TGF)-β, mothers against decapentaplegic homolog (SMAD) and Myc, whose protein products play important roles in regulating cell growth, angiogenesis, and metastasis. In addition, heteronemin altered several signaling pathways. The results indicate that heteronemin was able to modulate cell adhesion, the expression of extracellular matrix (ECM) receptors, the TGF-β pathway, cell motility, the membrane integration, metastasis response, matrix metalloproteinase (MMP) remodeling, the regulation of metabolism, sprouting angiogenesis, transcription factors, and vasculogenesis in cholangiocarcinoma cell lines. The results also suggest that it activated multiple signal transduction pathways to induce an anti-proliferation effect and anti-metastasis in cholangiocarcinoma. In conclusion, heteronemin may be used as a potential medicine for anticancer therapy.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan.
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| | - Shu-Leei Tey
- Department of Pediatrics, E-DA Hospital, Kaohsiung 824, Taiwan.
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan.
| | - Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yung-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Kuan Wang
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jacqueline Whang-Peng
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yung-Ning Yang
- Department of Pediatrics, E-DA Hospital, Kaohsiung 824, Taiwan.
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan.
| | - Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan.
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| | - Yu-Chen Sh Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
13
|
Takebayashi-Suzuki K, Konishi H, Miyamoto T, Nagata T, Uchida M, Suzuki A. Coordinated regulation of the dorsal-ventral and anterior-posterior patterning ofXenopusembryos by the BTB/POZ zinc finger protein Zbtb14. Dev Growth Differ 2018; 60:158-173. [DOI: 10.1111/dgd.12431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Hidenori Konishi
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tatsuo Miyamoto
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tomoko Nagata
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Misa Uchida
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Atsushi Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| |
Collapse
|
14
|
Shah K, Patel S, Mirza S, Rawal RM. Unravelling the link between embryogenesis and cancer metastasis. Gene 2017; 642:447-452. [PMID: 29162510 DOI: 10.1016/j.gene.2017.11.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE Cancer as opposed to embryonic development is characterized by dysregulated, uncontrolled and clonal growth of cells. Inspite of that they share certain commonality in gene expression patterns and a number of cellular & molecular features. Consequently, in the present study we aimed to evaluate the role of a definite set of genes in fetal liver, primary liver cancers and metastatic liver tissue. METHODS The relative expression of fourteen candidate genes obtained by data mining and manual curation of published data (CXCL12, CXCR4, CK7, CDH1, CTNNB1, CLDN4, VEGFA, HIF1A, MMP9, p53, OPN, CDKN2A, TGFBR2, MUC16, β-actin) were performed on 62 tissues (32 liver metastasis tissues and 30 primary Liver cancer tissues), Fetal liver tissues (below and above 20weeks of gestation) and 2 sets of control samples by real-time quantitative reverse transcription PCR (qRT-PCR). RESULTS Results showed significant down-regulation of MMP9 and TP53 in Fetal liver above 20weeks of gestation whereas it was up-regulated in fetal liver below 20weeks of gestation, primary liver cancers and liver metastasis. Contradictory to that OPN and CDKN2A were significantly up-regulated in primary liver cancer, liver metastasis; down-regulated in fetal liver above 20weeks of gestation but were not expressed during early embryo development (below 20weeks of gestation). Moreover, MMP9 and TP53 demonstrated a strong correlation with MUC16 whereas CDKN2A and OPN showed correlation with CXCL12/CXCR4 signifying that MUC16, CXCL12/CXCR4 might be involved in the complex process of cancer metastasis. CONCLUSION MMP9, OPN, TP53 and CDKN2A were the identified markers that were expressed in a similar pattern in early embryonic development and cancer development & invasion suggesting that these genes are activated during embryogenesis and might be re-expressed in cancer metastasis. Moreover, these genes govern a pathway that might be activated during cancer metastasis. Thus, targeting these molecules may provide better treatment for metastatic liver cancers.
Collapse
Affiliation(s)
- Kanisha Shah
- Division of Medicinal Chemistry & Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Shanaya Patel
- Division of Medicinal Chemistry & Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Sheefa Mirza
- Division of Medicinal Chemistry & Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India; Department of Life Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat, India.
| |
Collapse
|
15
|
TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene 2016; 36:2715-2723. [PMID: 27893708 PMCID: PMC5442427 DOI: 10.1038/onc.2016.424] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
Crosstalk between transforming growth factor beta (TGF-β) signaling and p53 has a critical role in cancer progression. TGF-β signals via Smad and non-Smad pathways. Under normal conditions, wild-type p53 forms a complex with Smad2/3 and co-activates transcription of a variety of tumor suppressor genes, resulting in tumor suppressive effects. Thus, p53 stability is essential in progression of tumor suppressive responses mediated by TGF-β signaling. However, it remains unknown whether p53 stability is regulated by TGF-β. In the current study, we identify that USP15 binds to and stabilizes p53 through deubiquitination in U2OS and HEK293 cells. TGF-β promotes the translation of USP15 through activation of mammalian target of rapamycin by the phosphoinositide 3-kinase/AKT pathway. Upregulation of USP15 translation links the crosstalk between TGF-β signaling and p53 stability, allowing this cytokine to have a critical role in cancer progression.
Collapse
|
16
|
Kawarada Y, Inoue Y, Kawasaki F, Fukuura K, Sato K, Tanaka T, Itoh Y, Hayashi H. TGF-β induces p53/Smads complex formation in the PAI-1 promoter to activate transcription. Sci Rep 2016; 6:35483. [PMID: 27759037 PMCID: PMC5069723 DOI: 10.1038/srep35483] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor β (TGF-β) signaling facilitates tumor development during the advanced stages of tumorigenesis, but induces cell-cycle arrest for tumor suppression during the early stages. However, the mechanism of functional switching of TGF-β is still unknown, and it is unclear whether inhibition of TGF-β signaling results amelioration or exacerbation of cancers. Here we show that the tumor suppressor p53 cooperates with Smad proteins, which are TGF-β signal transducers, to selectively activate plasminogen activator inhibitor type-1 (PAI-1) transcription. p53 forms a complex with Smad2/3 in the PAI-1 promoter to recruit histone acetyltransferase CREB-binding protein (CBP) and enhance histone H3 acetylation, resulting in transcriptional activation of the PAI-1 gene. Importantly, p53 is required for TGF-β-induced cytostasis and PAI-1 is involved in the cytostatic activity of TGF-β in several cell lines. Our results suggest that p53 enhances TGF-β-induced cytostatic effects by activating PAI-1 transcription, and the functional switching of TGF-β is partially caused by p53 mutation or p53 inactivation during cancer progression. It is expected that these findings will contribute to optimization of TGF-β-targeting therapies for cancer.
Collapse
Affiliation(s)
- Yuki Kawarada
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
- Department of Innovative Therapeutics Sciences, Cooperative major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
| | - Fumihiro Kawasaki
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
| | - Keishi Fukuura
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
| | - Koichi Sato
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
| | - Takahito Tanaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
| | - Yuka Itoh
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
- Department of Innovative Therapeutics Sciences, Cooperative major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
- Department of Innovative Therapeutics Sciences, Cooperative major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 467-8603 Nagoya, Japan
| |
Collapse
|
17
|
Rice LM, Mantero JC, Stifano G, Ziemek J, Simms RW, Gordon J, Domsic R, Lafyatis R. A Proteome-Derived Longitudinal Pharmacodynamic Biomarker for Diffuse Systemic Sclerosis Skin. J Invest Dermatol 2016; 137:62-70. [PMID: 27640094 DOI: 10.1016/j.jid.2016.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/20/2016] [Accepted: 08/17/2016] [Indexed: 11/16/2022]
Abstract
In this study we systematically investigated alterations in the serum proteome of patients with diffuse cutaneous systemic sclerosis and identified differentially expressed proteins that correlated with disease severity. Our goal was to identify a combination of serum proteins that would provide a biological measure for the extent of skin disease and that could be combined into a longitudinal pharmacodynamic biomarker. We found that 16% of the sera proteins analyzed by SOMAscan aptamer technology, from two cohorts of patients with diffuse cutaneous systemic sclerosis, were identified as differentially regulated between diffuse cutaneous systemic sclerosis and controls and correlated with modified Rodnan skin score. This dataset showed tumor necrosis factor-α, IFN-γ, transforming growth factor-β, and IL-13 as potential upstream regulators of the serum protein patterns in the sera of patients with diffuse cutaneous systemic sclerosis. By ELISA, two analytes (ST2 and Spondin-1) best described longitudinal change in modified Rodnan skin score, using linear mixed models. This model was then validated in three independent cohorts. In this study we discovered a large array of proteins not previously associated with systemic sclerosis that provide insight into pathogenesis and potential targets for therapeutic intervention. Furthermore, we show that two of these proteins can be combined to form a robust longitudinal biomarker that might be used in clinical trials to assess changes in diffuse cutaneous systemic sclerosis skin disease over time.
Collapse
Affiliation(s)
- Lisa M Rice
- Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Julio C Mantero
- Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Jessica Ziemek
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Robert W Simms
- Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Robyn Domsic
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert Lafyatis
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Womble M, Pickett M, Nascone-Yoder N. Frogs as integrative models for understanding digestive organ development and evolution. Semin Cell Dev Biol 2016; 51:92-105. [PMID: 26851628 PMCID: PMC4798877 DOI: 10.1016/j.semcdb.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laevis and Eleutherodactylous coqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Melissa Pickett
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States.
| |
Collapse
|
19
|
Mallak AJ, Abbaszadegan MR, Khorasanizadeh PN, Forghanifard MM. Contribution of EVX1 in Aggressiveness of Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2015; 22:341-7. [PMID: 26552663 DOI: 10.1007/s12253-015-0005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
Homeobox genes play an overruling role in the regional cell fate determination during development. EVX1 is known as a new target gene of BMP signaling pathway, a group of morphogens which are making the largest subset within the transformation growth factor beta (TGF-β) superfamily. In this study, we aimed to enlighten the expression level of EVX1 in esophageal squamous cell carcinoma (ESCC) and to disclose its apparent roles in maintenance and progression of the disease. The expression level of EVX1 was analyzed in fresh tumoral tissues in comparison with distant tumor-free tissues of 50 ESCC patients using relative comparative real-time PCR. The importance of EVX1 in development and cancer was also reviewed. EVX1 was underexpressed in 70% of tumor samples. There was a significant correlation between down-regulation of EVX1 and lymph node metastasis of tumor cells (p = 0.027). Furthermore, EVX1 underexpression was significantly correlated with depth of tumor cell invasion (P = 0.037). To the best of our knowledge, this is the first report highlighting EVX1 expression in ESCC to date. The clinicopathological relevance of EVX1 mRNA expression in ESCC targeted this gene as a new independent molecular marker for advanced tumor, which determine the characteristics and behavior of aggressive ESCC.
Collapse
Affiliation(s)
- Afsaneh Javdani Mallak
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Naeemi Khorasanizadeh
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan Branch, Islamic Azad University, Cheshmeh-Ali Boulevard, Sa'dei Square, P.O. Box: 3671639998, Damghan, Iran.
| |
Collapse
|
20
|
The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. PLoS Genet 2015; 11:e1005018. [PMID: 25756904 PMCID: PMC4354908 DOI: 10.1371/journal.pgen.1005018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/22/2015] [Indexed: 01/30/2023] Open
Abstract
The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC) of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival.
Collapse
|
21
|
Ohata Y, Matsukawa S, Moriyama Y, Michiue T, Morimoto K, Sato Y, Kuroda H. Sirtuin inhibitor Ex-527 causes neural tube defects, ventral edema formations, and gastrointestinal malformations in Xenopus laevis embryos. Dev Growth Differ 2014; 56:460-8. [PMID: 25131500 DOI: 10.1111/dgd.12145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 01/05/2023]
Abstract
Chemical reagent Ex-527 is widely used as a major inhibitor of Sirtuin enzymes, which are a family of highly conserved protein deacetylases and have been linked with caloric restriction and aging by modulating energy metabolism, genomic stability, and stress resistance. However, the extent to which Ex-527 controls early developmental events of vertebrate embryos remains to be understood. Here, we report an examination of Ex-527 effects during Xenopus early development, followed by a confirmation of expressions of xSirt1 and xSirt2 in embryonic stages and enhancement of acetylation by Ex-527. First, we found that reductions in size of neural plate at neurula stages were induced by Ex-527 treatment. Second, tadpoles with short body length and large edematous swellings in the ventral side were frequently observed. Moreover, Ex-527-treated embryos showed severe gastrointestinal malformations in late tadpole stages. Taken together with these results, we conclude that the Sirtuin family start functioning at early embryonic stages and is required for various developmental events.
Collapse
Affiliation(s)
- Yoshihisa Ohata
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Shin MH, He Y, Huang J. Embryonic stem cells shed new light on the developmental roles of p53. Cell Biosci 2013; 3:42. [PMID: 24171803 PMCID: PMC3852614 DOI: 10.1186/2045-3701-3-42] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022] Open
Abstract
The viability and subtle developmental defects of p53 knockout mice suggest that p53 does not play major role in development. However, contradictory evidence also exists. This discrepancy mainly results from the lack of molecular and cellular mechanisms and the general fact that p53 activation requires stresses. Recent studies of p53 in mouse and human ES cells and induced pluripotent stem (iPS) cells shed new light on the mechanisms of the developmental roles of p53. This review summarizes these new studies that support the developmental roles of p53, highlights the possible underlying molecular mechanisms, and discusses the potential relationship between the developmental roles and the tumor suppressive function of p53. In summary, the molecular mechanisms underlying the developmental roles of p53 are emerging, and the developmental roles and tumor suppressive function of p53 may be closely related.
Collapse
|
23
|
Abstract
The p53 homolog p73 is frequently overexpressed in cancers. Especially the transactivation domain truncated isoform ΔNp73 has oncogenic properties and its upregulation is associated with poor patient survival. It has been shown that ΔNp73 has an inhibitory effect on the transactivation capacity of p53 and other p73 isoforms. Here, we confirm this finding but surprisingly find that ΔNp73 may also stimulate the expression of TGF-β signaling targets. Promoter-reporter analysis indicated that the presence of Smad Binding Elements (SBE) in the promoter is sufficient for stimulation of gene expression by ΔNp73. TGF-β signaling was less efficient in ΔNp73 downregulated cells, whereas tetracycline induced ΔNp73 increased expression of endogenous TGF-β regulated genes PAI-1 and Col1a1. Pull-down assays with SBE DNA suggest that ΔNp73 enhances smad3/4 binding to SBEs, thereby stimulating TGF-β signaling. Chromatin immunoprecipitation assays confirmed a direct interaction between ΔNp73 and SBE. Given the role of TGF-β signaling in carcinogenesis, tumor invasion and metastasis via targets like PAI-1 and Col1a1, our data suggest a model on how this effect of ΔNp73 could be a contributing factor in cancer progression.
Collapse
|
24
|
Sorrentino GM, Gillis WQ, Oomen-Hajagos J, Thomsen GH. Conservation and evolutionary divergence in the activity of receptor-regulated smads. EvoDevo 2012; 3:22. [PMID: 23020873 PMCID: PMC3500652 DOI: 10.1186/2041-9139-3-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/09/2012] [Indexed: 01/20/2023] Open
Abstract
Background Activity of the Transforming growth factor-β (TGFβ) pathway is essential to the establishment of body axes and tissue differentiation in bilaterians. Orthologs for core pathway members have been found in all metazoans, but uncertain homology of the body axes and tissues patterned by these signals raises questions about the activities of these molecules across the metazoan tree. We focus on the principal canonical transduction proteins (R-Smads) of the TGFβ pathway, which instruct both axial patterning and tissue differentiation in the developing embryo. We compare the activity of R-Smads from a cnidarian (Nematostella vectensis), an arthropod (Drosophila melanogaster), and a vertebrate (Xenopus laevis) in Xenopus embryonic assays. Results Overexpressing NvSmad1/5 ventralized Xenopus embryos when expressed in dorsal blastomeres, similar to the effects of Xenopus Smad1. However, NvSmad1/5 was less potent than XSmad1 in its ability to activate downstream target genes in Xenopus animal cap assays. NvSmad2/3 strongly induced general mesendodermal marker genes, but weakly induced ones involved in specifying the Spemann organizer. NvSmad2/3 was unable to induce a secondary trunk axis in Xenopus embryos, whereas the orthologs from Xenopus (XSmad2 and XSmad3) and Drosophila (dSmad2) were capable of doing so. Replacement of the NvSmad2/3 MH2 domain with the Xenopus XSmad2 MH2 slightly increased its inductive capability, but did not confer an ability to generate a secondary body axis. Conclusions Vertebrate and cnidarian Smad1/5 have similar axial patterning and induction activities, although NvSmad1/5 is less efficient than the vertebrate gene. We conclude that the activities of Smad1/5 orthologs have been largely conserved across Metazoa. NvSmad2/3 efficiently activates general mesendoderm markers, but is unable to induce vertebrate organizer-specific genes or to produce a secondary body axis in Xenopus. Orthologs dSmad2 and XSmad3 generate a secondary body axis, but activate only low expression of organizer-specific genes that are strongly induced by XSmad2. We suggest that in the vertebrate lineage, Smad2 has evolved a specialized role in the induction of the embryonic organizer. Given the high level of sequence identity between Smad orthologs, this work underscores the functional importance of the emergence and fixation of a few divergent amino acids among orthologs during evolution.
Collapse
Affiliation(s)
- Gina M Sorrentino
- Department of Biochemistry and Cell Biology, Stony Brook University, Life Sciences Building room 450, Stony Brook, NY, 11794-5215, USA.
| | | | | | | |
Collapse
|
25
|
Saifudeen Z, Liu J, Dipp S, Yao X, Li Y, McLaughlin N, Aboudehen K, El-Dahr SS. A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One 2012; 7:e44869. [PMID: 22984579 PMCID: PMC3440354 DOI: 10.1371/journal.pone.0044869] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 08/15/2012] [Indexed: 01/11/2023] Open
Abstract
Congenital reduction in nephron number (renal hypoplasia) is a predisposing factor for chronic kidney disease and hypertension. Despite identification of specific genes and pathways in nephrogenesis, determinants of final nephron endowment are poorly understood. Here, we report that mice with germ-line p53 deletion (p53(-/-)) manifest renal hypoplasia; the phenotype can be recapitulated by conditional deletion of p53 from renal progenitors in the cap mesenchyme (CM(p53-/-)). Mice or humans with germ-line heterozygous mutations in Pax2 exhibit renal hypoplasia. Since both transcription factors are developmentally expressed in the metanephros, we tested the hypothesis that p53 and Pax2 cooperate in nephrogenesis. In this study, we provide evidence for the presence of genetic epistasis between p53 and Pax2: a) p53(-/-) and CM(p53-/-)embryos express lower Pax2 mRNA and protein in nephron progenitors than their wild-type littermates; b) ChIP-Seq identified peaks of p53 occupancy in chromatin regions of the Pax2 promoter and gene in embryonic kidneys; c) p53 binding to Pax2 gene is significantly more enriched in Pax2 -expressing than non-expressing metanephric mesenchyme cells; d) in transient transfection assays, Pax2 promoter activity is stimulated by wild-type p53 and inhibited by a dominant negative mutant p53; e) p53 knockdown in cultured metanephric mesenchyme cells down-regulates endogenous Pax2 expression; f) reduction of p53 gene dosage worsens the renal hypoplasia in Pax2(+/-) mice. Bioinformatics identified a set of developmental renal genes likely to be co-regulated by p53 and Pax2. We propose that the cross-talk between p53 and Pax2 provides a transcriptional platform that promotes nephrogenesis, thus contributing to nephron endowment.
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gold E, Risbridger G. Activins and activin antagonists in the prostate and prostate cancer. Mol Cell Endocrinol 2012; 359:107-12. [PMID: 21787836 DOI: 10.1016/j.mce.2011.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 10/17/2022]
Abstract
Activins are members of the TGF-β super-family. There are 4 mammalian activin subunits (β(A), β(B), β(C) and β(E)) that combine to form functional proteins. The role of activin A (β(A)β(A)) is well characterized and known to be a potent growth and differentiation factor. Two of the activin subunits (β(C) and β(E)) were discovered more recently and little is known about their biological functions. In this review the evidence that activin-β(C) is a significant regulator of activin A bioactivity is presented and discussed. It is concluded that activin-β(C), like other antagonists of activin A, is an important growth regulator in prostate health and disease.
Collapse
Affiliation(s)
- Elspeth Gold
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
27
|
Crosstalk between p53 and TGF-β Signalling. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:294097. [PMID: 22545213 PMCID: PMC3321553 DOI: 10.1155/2012/294097] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/11/2011] [Indexed: 12/15/2022]
Abstract
Wild-type p53 and TGF-β are key tumour suppressors which regulate an array of cellular responses. TGF-β signals in part via the Smad signal transduction pathway. Wild-type p53 and Smads physically interact and coordinately induce transcription of a number of key tumour suppressive genes. Conversely mutant p53 generally subverts tumour suppressive TGF-β responses, diminishing transcriptional activation of key TGF-β target genes. Mutant p53 can also interact with Smads and this enables complex formation with the p53 family member p63 and blocks p63-mediated activation of metastasis suppressing genes to promote tumour progression. p53 and Smad function may also overlap during miRNA biogenesis as they can interact with the same components of the Drosha miRNA processing complex to promote maturation of specific subsets of miRNAs. This paper investigates the crosstalk between p53 and TGF-β signalling and the potential roles this plays in cancer biology.
Collapse
|
28
|
Lin S, Yang J, Elkahloun AG, Bandyopadhyay A, Wang L, Cornell JE, Yeh IT, Agyin J, Tomlinson G, Sun LZ. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells. Mol Biol Cell 2012; 23:1569-81. [PMID: 22357622 PMCID: PMC3327327 DOI: 10.1091/mbc.e11-10-0849] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A series of isogenic, basal-like human mammary epithelial cells (HMECs) with altered TGF-β sensitivity and different malignancy is used to elucidate molecular mechanisms that evade oncogenic Ras-induced growth arrest and promote transformation. Attenuation of TGF-β signaling is found to cause metastatic progression of Ras-transformed HMECs. The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectrum of basal-like breast carcinogenesis, and determined the molecular mechanisms that contribute to oncogene-induced transformation of basal-like HMECs when TGF-β signaling is attenuated. We found that expression of a dominant-negative type II receptor (DNRII) of TGF-β abrogated autocrine TGF-β signaling in telomerase-immortalized HMECs and suppressed H-Ras-V12–induced senescence-like growth arrest (SLGA). Furthermore, coexpression of DNRII and H-Ras-V12 rendered HMECs highly tumorigenic and metastatic in vivo in comparison with H-Ras-V12–transformed HMECs that spontaneously escaped H-Ras-V12–induced SLGA. Microarray analysis revealed that p21 was the major player mediating Ras-induced SLGA, and attenuated or loss of p21 expression contributed to the escape from SLGA when autocrine TGF-β signaling was blocked in HMECs. Furthermore, knockdown of p21 also suppressed H-Ras-V12–induced SLGA. Our results identify that autocrine TGF-β signaling is an integral part of the cellular anti-transformation network by suppressing the expression of a host of genes, including p21-regulated genes, that mediate oncogene-induced transformation in basal-like breast cancer.
Collapse
Affiliation(s)
- Shu Lin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Aboudehen K, Hilliard S, Saifudeen Z, El-Dahr SS. Mechanisms of p53 activation and physiological relevance in the developing kidney. Am J Physiol Renal Physiol 2012; 302:F928-40. [PMID: 22237799 DOI: 10.1152/ajprenal.00642.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor protein p53 is a short-lived transcription factor due to Mdm2-mediated proteosomal degradation. In response to genotoxic stress, p53 is stabilized via posttranslational modifications which prevent Mdm2 binding. p53 activation results in cell cycle arrest and apoptosis. We previously reported that tight regulation of p53 activity is an absolute requirement for normal nephron differentiation (Hilliard S, Aboudehen K, Yao X, El-Dahr SS Dev Biol 353: 354-366, 2011). However, the mechanisms of p53 activation in the developing kidney are unknown. We show here that metanephric p53 is phosphorylated and acetylated on key serine and lysine residues, respectively, in a temporal profile which correlates with the maturational changes in total p53 levels and DNA-binding activity. Site-directed mutagenesis revealed a differential role for these posttranslational modifications in mediating p53 stability and transcriptional regulation of renal function genes (RFGs). Section immunofluorescence also revealed that p53 modifications confer the protein with specific spatiotemporal expression patterns. For example, phos-p53(S392) is enriched in maturing proximal tubular epithelial cells, whereas acetyl-p53(K373/K382/K386) are expressed in nephron progenitors. Functionally, p53 occupancy of RFG promoters is enhanced at the onset of tubular differentiation, and p53 loss or gain of function indicates that p53 is necessary but not sufficient for RFG expression. We conclude that posttranslational modifications are important determinants of p53 stability and physiological functions in the developing kidney. We speculate that the stress/hypoxia of the embryonic microenvironment may provide the stimulus for p53 activation in the developing kidney.
Collapse
Affiliation(s)
- Karam Aboudehen
- Department of Pediatrics,, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
30
|
Katsu K, Tokumori D, Tatsumi N, Suzuki A, Yokouchi Y. BMP inhibition by DAN in Hensen's node is a critical step for the establishment of left-right asymmetry in the chick embryo. Dev Biol 2011; 363:15-26. [PMID: 22202776 DOI: 10.1016/j.ydbio.2011.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/28/2022]
Abstract
During left-right (L-R) axis formation, Nodal is expressed in the node and has a central role in the transfer of L-R information in the vertebrate embryo. Bone morphogenetic protein (BMP) signaling also has an important role for maintenance of gene expression around the node. Several members of the Cerberus/Dan family act on L-R patterning by regulating activity of the transforming growth factor-β (TGF-β) family. We demonstrate here that chicken Dan plays a critical role in L-R axis formation. Chicken Dan is expressed in the left side of the node shortly after left-handed Shh expression and before the appearance of asymmetrically expressed genes in the lateral plate mesoderm (LPM). In vitro experiments revealed that DAN inhibited BMP signaling but not NODAL signaling. SHH had a positive regulatory effect on Dan expression while BMP4 had a negative effect. Using overexpression and RNA interference-mediated knockdown strategies, we demonstrate that Dan is indispensable for Nodal expression in the LPM and for Lefty-1 expression in the notochord. In the perinodal region, expression of Dan and Nodal was independent of each other. Nodal up-regulation by DAN required NODAL signaling, suggesting that DAN might act synergistically with NODAL. Our data indicate that Dan plays an essential role in the establishment of the L-R axis by inhibiting BMP signaling around the node.
Collapse
Affiliation(s)
- Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
31
|
Takebayashi-Suzuki K, Kitayama A, Terasaka-Iioka C, Ueno N, Suzuki A. The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis. Dev Biol 2011; 360:11-29. [PMID: 21958745 DOI: 10.1016/j.ydbio.2011.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 12/18/2022]
Abstract
The formation of the dorsal-ventral (DV) and anterior-posterior (AP) axes, fundamental to the body plan of animals, is regulated by several groups of polypeptide growth factors including the TGF-β, FGF, and Wnt families. In order to ensure the establishment of the body plan, the processes of DV and AP axis formation must be linked and coordinately regulated. However, the molecular mechanisms responsible for these interactions remain unclear. Here, we demonstrate that the forkhead box transcription factor FoxB1, which is upregulated by the neuralizing factor Oct-25, plays an important role in the formation of the DV and AP axes. Overexpression of FoxB1 promoted neural induction and inhibited BMP-dependent epidermal differentiation in ectodermal explants, thereby regulating the DV patterning of the ectoderm. In addition, FoxB1 was also found to promote the formation of posterior neural tissue in both ectodermal explants and whole embryos, suggesting its involvement in embryonic AP patterning. Using knockdown analysis, we found that FoxB1 is required for the formation of posterior neural tissues, acting in concert with the Wnt and FGF pathways. Consistent with this, FoxB1 suppressed the formation of anterior structures via a process requiring the function of XWnt-8 and eFGF. Interestingly, while downregulation of FoxB1 had little effect on neural induction, we found that it functionally interacted with its upstream factor Oct-25 and plays a supportive role in the induction and/or maintenance of neural tissue. Our results suggest that FoxB1 is part of a mechanism that fine-tunes, and leads to the coordinated formation of, the DV and AP axes during early development.
Collapse
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Institute for Amphibian Biology, Hiroshima University Graduate School of Science, Kagamiyama 1-3-1, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
32
|
Klymkowsky M. Mitochondrial activity, embryogenesis, and the dialogue between the big and little brains of the cell. Mitochondrion 2011; 11:814-9. [DOI: 10.1016/j.mito.2010.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 11/02/2010] [Accepted: 11/18/2010] [Indexed: 12/31/2022]
|
33
|
Rana AA, Roper SJ, Palmer EA, Smith JC. Loss of Xenopus tropicalis EMSY causes impairment of gastrulation and upregulation of p53. N Biotechnol 2011; 28:334-41. [PMID: 21056705 PMCID: PMC3122151 DOI: 10.1016/j.nbt.2010.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 10/29/2010] [Accepted: 10/30/2010] [Indexed: 01/06/2023]
Abstract
EMSY interacts directly with BRCA2 and links the BRCA2 pathway to sporadic breast and ovarian cancer. It also interacts with BS69 and HP1b, both of which are involved in chromatin remodelling, and with NIF-1 and DBC-1 in the regulation of nuclear receptor-mediated transcription. Here we investigate the function of EMSY during amphibian development, and in doing so provide the first loss-of-function analysis of this protein. Injection of Xenopus tropicalis embryos with antisense morpholino oligonucleotides targeting XtEMSY impairs gastrulation movements, disrupts dorsal structures, and kills embryos by tailbud stages. Consistent with these observations, regional markers such as Xbra, Chd, Gsc, Shh, Sox3 and Sox17 are downregulated. In contrast to these regional markers, expression of p53 is upregulated in such embryos, and at later stages Bax expression is elevated and apoptotic cells can be detected. Our results demonstrate that EMSY has an essential role in development and they provide an in vivo loss-of-function model that might be used to explore the biochemical functions of this protein in more detail.
Collapse
Affiliation(s)
- Amer A. Rana
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
- Division of Respiratory Medicine, Department of Medicine, Box 157, 5th Floor, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Stephen J. Roper
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
- The Babraham Institute, Cambridge CB22 3AT, UK
| | - Elizabeth A. Palmer
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
- Protein Technology Group, Babraham Bioscience Technologies, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - James C. Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
34
|
Shi J, Severson C, Yang J, Wedlich D, Klymkowsky MW. Snail2 controls mesodermal BMP/Wnt induction of neural crest. Development 2011; 138:3135-45. [PMID: 21715424 DOI: 10.1242/dev.064394] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neural crest is an induced tissue that is unique to vertebrates. In the clawed frog Xenopus laevis, neural crest induction depends on signals secreted from the prospective dorsolateral mesodermal zone during gastrulation. The transcription factors Snail2 (Slug), Snail1 and Twist1 are expressed in this region. It is known that Snail2 and Twist1 are required for both mesoderm formation and neural crest induction. Using targeted blastomere injection, morpholino-based loss of function and explant studies, we show that: (1) Snail1 is also required for mesoderm and neural crest formation; (2) loss of snail1, snail2 or twist1 function in the C2/C3 lineage of 32-cell embryos blocks mesoderm formation, but neural crest is lost only in the case of snail2 loss of function; (3) snail2 mutant loss of neural crest involves mesoderm-derived secreted factors and can be rescued synergistically by bmp4 and wnt8 RNAs; and (4) loss of snail2 activity leads to changes in the RNA levels of a number of BMP and Wnt agonists and antagonists. Taken together, these results identify Snail2 as a key regulator of the signals involved in mesodermal induction of neural crest.
Collapse
Affiliation(s)
- Jianli Shi
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Nodal signals belong to the TGF-beta superfamily and are essential for the induction of mesoderm and endoderm and the determination of the left-right axis. Nodal signals can act as morphogens-they have concentration-dependent effects and can act at a distance from their source of production. Nodal and its feedback inhibitor Lefty form an activator/inhibitor pair that behaves similarly to postulated reaction-diffusion models of tissue patterning. Nodal morphogen activity is also regulated by microRNAs, convertases, TGF-beta signals, coreceptors, and trafficking factors. This article describes how Nodal morphogens pattern embryonic fields and discusses how Nodal morphogen signaling is modulated.
Collapse
|
36
|
Terada K, Furukawa T. Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis. Dev Biol 2010; 347:180-94. [PMID: 20801111 DOI: 10.1016/j.ydbio.2010.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/07/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Precisely controlled progenitor proliferation is essential for normal development. However, molecular mechanisms, which control the correct timing of cell cycle withdrawal during development, have been poorly understood. We show here that ubc9, a sumo-conjugating enzyme, controls the cell cycle exit of retinal progenitors. We found that ubc9 is highly expressed in retinal progenitors and stem cells in Xenopus embryos. Ubc9 physically and functionally associates with Xenopus hmgb3, which is required for retinal cell proliferation, and prolonged expression of ubc9 and hmgb3 results in suppression of the cell cycle exit of retinal progenitors in a sumoylation-dependent manner. Overexpression of ubc9 and hmgb3 decreased expression of the cell-cycle inhibitor p27(Xic1). Furthermore, progenitor proliferation is regulated, at least in part, by sumoylation of transcription factor Sp1. These results suggest a significant role of sumoylation for cell cycle regulation in retinal progenitors.
Collapse
Affiliation(s)
- Koji Terada
- Department of Developmental Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
37
|
Fordyce C, Fessenden T, Pickering C, Jung J, Singla V, Berman H, Tlsty T. DNA damage drives an activin a-dependent induction of cyclooxygenase-2 in premalignant cells and lesions. Cancer Prev Res (Phila) 2009; 3:190-201. [PMID: 20028875 DOI: 10.1158/1940-6207.capr-09-0229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in the synthesis of prostaglandins. Its overexpression induces numerous tumor-promoting phenotypes and is associated with cancer metastasis and poor clinical outcome. Although COX-2 inhibitors are promising chemotherapeutic and chemopreventative agents for cancer, the risk of significant cardiovascular and gastrointestinal complications currently outweighs their potential benefits. Systemic complications of COX-2 inhibition could be avoided by specifically decreasing COX-2 expression in epithelial cells. To that end, we have investigated the signal transduction pathway regulating the COX-2 expression in response to DNA damage in breast epithelial cells. In variant human mammary epithelial cells that have silenced p16 (vHMEC), double-strand DNA damage or telomere malfunction results in a p53- and activin A-dependent induction of COX-2 and continued proliferation. In contrast, telomere malfunction in HMEC with an intact p16/Rb pathway induces cell cycle arrest. Importantly, in ductal carcinoma in situ lesions, high COX-2 expression is associated with high gammaH2AX, TRF2, activin A, and telomere malfunction. These data show that DNA damage and telomere malfunction can have both cell-autonomous and cell-nonautonomous consequences and can provide a novel mechanism for the propagation of tumorigenesis.
Collapse
Affiliation(s)
- Colleen Fordyce
- Department of Pathology, University of California, San Francisco, 94143, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Transforming growth factor beta (TGFbeta) pathways are implicated in metazoan development, adult homeostasis and disease. TGFbeta ligands signal via receptor serine/threonine kinases that phosphorylate, and activate, intracellular Smad effectors as well as other signaling proteins. Oligomeric Smad complexes associate with chromatin and regulate transcription, defining the biological response of a cell to TGFbeta family members. Signaling is modulated by negative-feedback regulation via inhibitory Smads. We review here the mechanisms of TGFbeta signal transduction in metazoans and emphasize events crucial for embryonic development.
Collapse
|
39
|
Zhu D, Deng X, Xu J, Hinton DR. What determines the switch between atrophic and neovascular forms of age related macular degeneration? - the role of BMP4 induced senescence. Aging (Albany NY) 2009; 1:740-5. [PMID: 20157553 PMCID: PMC2806048 DOI: 10.18632/aging.100078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/10/2009] [Indexed: 01/11/2023]
Abstract
Age-related macular degeneration (AMD), the leading cause of blindness in the elderly, targets the retinal pigment epithelium (RPE), a monolayer of cells at the back of the eye. As AMD progresses, it can develop into two distinct forms of late AMD: "dry," atrophic AMD, characterized by RPE senescence and geographic RPE loss, and "wet," neovascular AMD, characterized by RPE activation with abnormal growth of choroidal vessels. The genetic and molecular pathways that lead to these diverse phenotypes are currently under investigation. We have found that bone morphogenetic protein-4 (BMP4) is differentially expressed in atrophic and neovascular AMD. In atrophic AMD, BMP4 is highly expressed in RPE, and mediates oxidative stress induced RPE senescencein vitro via Smad and p38 pathways. In contrast, in neovascular AMD lesions, BMP4 expression in RPE is low, possibly a result of local expression of pro-inflammatory mediators. Thus, BMP4 may be involved in the molecular switch determining which phenotypic pathway is taken in the progression of AMD.
Collapse
Affiliation(s)
- DanHong Zhu
- Arnold and Mabel Beckman Macular
Research Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Departments of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles CA 90089, USA
| | - Xuemei Deng
- Arnold and Mabel Beckman Macular
Research Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Departments of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles CA 90089, USA
| | - Jing Xu
- Departments of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles CA 90089, USA
| | - David R Hinton
- Arnold and Mabel Beckman Macular
Research Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Departments of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles CA 90089, USA
- Departments
of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles CA 90089, USA
| |
Collapse
|
40
|
Ruzov A, Shorning B, Mortusewicz O, Dunican DS, Leonhardt H, Meehan RR. MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos. Development 2009; 136:2277-86. [PMID: 19502488 PMCID: PMC2729342 DOI: 10.1242/dev.032227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2009] [Indexed: 01/24/2023]
Abstract
Loss of the of the maintenance methyltransferase xDNMT1 during Xenopus development results in premature transcription and activation of a p53-dependent apoptotic program that accounts for embryo lethality. Here, we show that activation of the apoptotic response is signalled through the methyl-CpG binding protein xMBD4 and the mismatch repair pathway protein xMLH1. Depletion of xMBD4 or xMLH1 increases the survival rate of xDNMT1-depleted embryos, whereas overexpression of these proteins in embryos induces programmed cell death at the onset of gastrulation. MBD4 interacts directly with both DNMT1 and MLH1, leading to recruitment of the latter to heterochromatic sites that are coincident with DNMT1 localisation. Time-lapse microscopy of micro-irradiated mammalian cells shows that MLH1/MBD4 (like DNMT1) can accumulate at DNA damage sites. We propose that xMBD4/xMLH1 participates in a novel G2 checkpoint that is responsive to xDNMT1p levels in developing embryos and cells.
Collapse
Affiliation(s)
- Alexey Ruzov
- Human Genetics Unit, MRC, IGMM, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
41
|
Chang JS, Gu MB, Kim KW. Effect of arsenic on p53 mutation and occurrence of teratogenic salamanders: their potential as ecological indicators for arsenic contamination. CHEMOSPHERE 2009; 75:948-954. [PMID: 19203779 DOI: 10.1016/j.chemosphere.2009.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/27/2008] [Accepted: 01/02/2009] [Indexed: 05/27/2023]
Abstract
The p53 mutation in salamanders can be used as an indicator of arsenic contamination. The influence of arsenic exposure was studied on mutation of tumor suppressor gene in salamanders collected from several As-contaminated mine areas in Korea. Salamander eggs and larvae were exposed to arsenic in a toxicity test, and teratogenic salamanders found in heavy metal- and As-contaminated water from As-Bi mines were evaluated using PCR-SSCP to determine if they would be useful as an ecological indicator species. Changes in amino acids were shown to have occurred as a result of an arsenic-accumulating event that occurred after the DNA damage. In addition, both of the Hynobius leechii exposed groups were primarily affected by forms of skin damage, changes in the lateral tail/dorsal flexure and/or abnormality teratogenesis. Single-base sense mutation in codons 346 (AAG: Lys to ATG: Met), 224 (TTT: Phe to TTA: Leu), 211 (ATG: Met to AAG: Lys), 244 (TTT: Phe to TTTG: insertion), 245 (Glu GAG to Gln CAG) and 249 (TGT Cys to TGA stop) of the p53 gene were simultaneously found in mutated salamanders. Based on the results of our data illustrating the effect of arsenic exposure on the p53 mutation of salamanders in arsenic-contaminated mine areas, these mutated salamanders can be used as potential ecological indicators in the arsenic-contaminated ecosystems.
Collapse
Affiliation(s)
- Jin-Soo Chang
- Arsenic Geoenvironment Laboratory (National Research Laboratory), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, Republic of Korea
| | | | | |
Collapse
|
42
|
Barton CE, Tahinci E, Barbieri CE, Johnson KN, Hanson AJ, Jernigan KK, Chen TW, Lee E, Pietenpol JA. DeltaNp63 antagonizes p53 to regulate mesoderm induction in Xenopus laevis. Dev Biol 2009; 329:130-9. [PMID: 19272371 PMCID: PMC2690611 DOI: 10.1016/j.ydbio.2009.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 01/20/2023]
Abstract
p63, a homolog of the tumor suppressor p53, is critical for the development and maintenance of complex epithelia. The developmentally regulated p63 isoform, DeltaNp63, can act as a transcriptional repressor, but the link between the transcriptional functions of p63 and its biological roles is unclear. Based on our initial finding that the mesoderm-inducing factor activin A is suppressed by DeltaNp63 in human keratinocytes, we investigated the role of DeltaNp63 in regulating mesoderm induction during early Xenopus laevis development. We find that down-regulation of DeltaNp63 by morpholino injection in the early Xenopus embryo potentiates mesoderm formation whereas ectopic expression of DeltaNp63 inhibits mesoderm formation. Furthermore, we show that mesodermal induction after down-regulation of DeltaNp63 is dependent on p53. We propose that a key function for p63 in defining a squamous epithelial phenotype is to actively suppress mesodermal cell fates during early development. Collectively, we show that there is a distinct requirement for different p53 family members during the development of both mesodermal and ectodermal tissues. These findings have implications for the role of p63 and p53 in both development and tumorigenesis of human epithelia.
Collapse
Affiliation(s)
- Christopher E Barton
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maxwell CA, Fleisch MC, Costes SV, Erickson AC, Boissière A, Gupta R, Ravani SA, Parvin B, Barcellos-Hoff MH. Targeted and nontargeted effects of ionizing radiation that impact genomic instability. Cancer Res 2008; 68:8304-11. [PMID: 18922902 DOI: 10.1158/0008-5472.can-08-1212] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation-induced genomic instability, in which the progeny of irradiated cells display a high frequency of nonclonal genomic damage, occurs at a frequency inconsistent with mutation. We investigated the mechanism of this nontargeted effect in human mammary epithelial cells (HMEC) exposed to low doses of radiation. We identified a centrosome-associated expression signature in irradiated HMEC and show here that centrosome deregulation occurs in the first cell cycle after irradiation, is dose dependent, and that viable daughters of these cells are genomically unstable as evidenced by spontaneous DNA damage, tetraploidy, and aneuploidy. Clonal analysis of genomic instability showed a threshold of >10 cGy. Treatment with transforming growth factor beta1 (TGFbeta), which is implicated in regulation of genomic stability and is activated by radiation, reduced both the centrosome expression signature and centrosome aberrations in irradiated HMEC. Furthermore, TGFbeta inhibition significantly increased centrosome aberration frequency, tetraploidy, and aneuploidy in nonirradiated HMEC. Rather than preventing radiation-induced or spontaneous centrosome aberrations, TGFbeta selectively deleted unstable cells via p53-dependent apoptosis. Together, these studies show that radiation deregulates centrosome stability, which underlies genomic instability in normal human epithelial cells, and that this can be opposed by radiation-induced TGFbeta signaling.
Collapse
Affiliation(s)
- Christopher A Maxwell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Danilova N, Sakamoto KM, Lin S. p53 family in development. Mech Dev 2008; 125:919-31. [PMID: 18835440 DOI: 10.1016/j.mod.2008.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 09/04/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022]
Abstract
The p53 family network is a unique cellular processor that integrates information from various pathways and determines cellular choices between proliferation, replication arrest/repair, differentiation, senescence, or apoptosis. The most studied role of the p53 family is the regulation of stress response and tumor suppression. By removing damaged cells from the proliferating pool, p53 family members preserve the integrity of the genome. In addition to this well recognized role, recent data implicate the p53 protein family in a broader role of controlling cell proliferation, differentiation and death. Members of the p53 protein family with opposing activity perform coordination of these processes. Imbalance of p53 protein family may contribute to a significant proportion of congenital developmental abnormalities in humans.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, 615 Charles E. Young Drive South, BSRB 454, Los Angeles, CA 90095-1606, USA.
| | | | | |
Collapse
|
45
|
El-Dahr SS, Aboudehen K, Saifudeen Z. Transcriptional control of terminal nephron differentiation. Am J Physiol Renal Physiol 2008; 294:F1273-8. [PMID: 18287399 PMCID: PMC2606293 DOI: 10.1152/ajprenal.00562.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Terminal differentiation of epithelial cells into more specialized cell types is a critical step in organogenesis. Throughout the process of terminal differentiation, epithelial progenitors acquire or upregulate expression of renal function genes and cease to proliferate, while expression of embryonic genes is repressed. This exquisite coordination of gene expression is accomplished by signaling networks and transcription factors which couple the external environment with the new functional demands of the cell. While there has been much progress in understanding the early steps involved in renal epithelial cell differentiation, a major gap remains in our knowledge of the factors that control the steps of terminal differentiation. A number of signaling molecules and transcription factors have been recently implicated in determining segmental nephron identity and functional differentiation. While some of these factors (the p53 gene family, hepatocyte nuclear factor-1beta) promote the terminal epithelial differentiation fate, others (Notch, Brn-1, IRX, KLF4, and Foxi1) tend to regulate differentiation of specific nephron segments and individual cell types. This review summarizes current knowledge related to these transcription factors and discusses how diverse cellular signals are integrated to generate a transcriptional output during the process of terminal differentiation. Since these transcriptional processes are accompanied by profound changes in nuclear chromatin structure involving the genes responsible for creating and maintaining the differentiated cell phenotype, future studies should focus on identifying the nature of these epigenetic events and factors, how they are regulated temporally and spatially, and the chromatin environment they eventually reside in.
Collapse
Affiliation(s)
- Samir S El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, SL-37, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
46
|
Ectodermal Factor Restricts Mesoderm Differentiation by Inhibiting p53. Cell 2008; 133:878-90. [DOI: 10.1016/j.cell.2008.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/31/2008] [Accepted: 03/24/2008] [Indexed: 11/18/2022]
|
47
|
Lu Z, Liu W, Huang H, He Y, Han Y, Rui Y, Wang Y, Li Q, Ruan K, Ye Z, Low BC, Meng A, Lin SC. Protein encoded by the Axin(Fu) allele effectively down-regulates Wnt signaling but exerts a dominant negative effect on c-Jun N-terminal kinase signaling. J Biol Chem 2008; 283:13132-9. [PMID: 18316368 DOI: 10.1074/jbc.m710595200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin plays an architectural role in many important signaling pathways that control various aspects of development and tumorigenesis, including the Wnt, transforming growth factor-beta, MAP kinase pathways, as well as p53 activation cascades. It is encoded by the mouse Fused (Fu) locus; the Axin(Fu) allele is caused by insertion of an IAP transposon. Axin(Fu/Fu) mice display varying phenotypes ranging from embryonic lethality to relatively normal adulthood with kinky tails. However, the protein product(s) has not been identified or characterized. In the present study, we conducted immunoprecipitation using brain extracts from the Axin(Fu) mice with specific antibodies against different regions of Axin and found that a truncated Axin containing amino acids 1-596 (designated as Axin(Fu-NT)) and the full-length complement of Axin (Axin(WT)) can both be generated from the Axin(Fu) allele. When tested for functionality changes, Axin(Fu-NT) was found to abolish Axin-mediated activation of JNK, which plays a critical role in dorsoventral patterning. Together with a proteomics approach, we found that Axin(Fu-NT) contains a previously uncharacterized dimerization domain and can form a heterodimeric interaction with Axin(WT). The Axin(Fu-NT)/Axin(WT) is not conducive to JNK activation, providing a molecular explanation for the dominant negative effect of Axin(Fu-NT) on JNK activation by wild-type Axin. Importantly, Axin(Fu-NT) exhibits no difference in the inhibition of Wnt signaling compared with Axin(WT) as determined by reporter gene assays, interaction with key Wnt regulators, and expression of Wnt marker genes in zebrafish embryos, suggesting that altered JNK signaling contributes, at least in part, to the developmental defects seen in Axin(Fu) mice.
Collapse
Affiliation(s)
- Zailian Lu
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wilkinson DS, Tsai WW, Schumacher MA, Barton MC. Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming-growth-factor-beta-mediated transcription repression. Mol Cell Biol 2008; 28:1988-98. [PMID: 18212064 PMCID: PMC2268392 DOI: 10.1128/mcb.01442-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/24/2007] [Accepted: 01/07/2008] [Indexed: 12/27/2022] Open
Abstract
In hepatic cells, Smad and SnoN proteins converge with p53 to repress transcription of AFP, an oncodevelopmental tumor marker aberrantly reactivated in hepatoma cells. Using p53- and SnoN-depleted hepatoma cell clones, we define a mechanism for repression mediated by this novel transcriptional partnership. We find that p53 anchors activated Smads and the corepressor mSin3A to the AFP distal promoter. Sequential chromatin immunoprecipitation analyses and molecular modeling indicate that p53 and Smad proteins simultaneously occupy overlapping p53 and Smad regulatory elements to establish repression of AFP transcription. In addition to its well-known function in antagonizing transforming growth factor beta (TGF-beta) responses, we find that SnoN actively participates in AFP repression by positively regulating mSin3A protein levels. We propose that activation of TGF-beta signaling restores a dynamic interplay between p53 and TGF-beta effectors that cooperate to effectively target mSin3A to tumor marker AFP and reestablish transcription repression.
Collapse
Affiliation(s)
- Deepti Srinivas Wilkinson
- Department of Biochemistry and Molecular Biology, Unit 1000, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | |
Collapse
|
49
|
Takebayashi-Suzuki K, Arita N, Murasaki E, Suzuki A. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction. Mech Dev 2007; 124:840-55. [DOI: 10.1016/j.mod.2007.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 01/14/2023]
|
50
|
Gessert S, Maurus D, Rössner A, Kühl M. Pescadillo is required for Xenopus laevis eye development and neural crest migration. Dev Biol 2007; 310:99-112. [PMID: 17727835 DOI: 10.1016/j.ydbio.2007.07.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/08/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
Pescadillo is a multifunctional, nuclear protein involved in rRNA precursor processing, ribosomal assembly, and transcriptional regulation. Pescadillo has been assigned important functions in embryonic development and tumor formation. We previously identified pescadillo as a potential downstream target of non-canonical Wnt-4 signaling. Here we have investigated for the first time the function of the Xenopus laevis homolog of pescadillo during early embryogenesis on a molecular level. Loss of function analysis indicates that pescadillo is required for eye development and neural crest migration. BrdU incorporation and TUNEL assays indicate that a loss of pescadillo function affects proliferation and triggers apoptosis through a p53-mediated mechanism. Furthermore, pescadillo affects the expression of early eye-specific marker genes, likely independent of its function in regulating proliferation and apoptosis, and in addition migration of cranial neural crest cells. Our data indicate that pescadillo has multiple important functions during X. laevis development and that its function is highly conserved among different species.
Collapse
Affiliation(s)
- Susanne Gessert
- Department of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|