1
|
O’Neil EV, Dupont SM, Capel B. The basic helix-loop-helix transcription factor TCF4 recruits the Mediator Complex to activate gonadal genes and drive ovarian development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640455. [PMID: 40093061 PMCID: PMC11908221 DOI: 10.1101/2025.02.28.640455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The bipotential gonad is the precursor organ to both the ovary and testis and develops as part of the embryonic urogenital system. In mice, gonadogenesis initiates around embryonic day 9.5 (E9.5), when coelomic epithelial (CE) cells overlaying the mesonephric ducts proliferate and acquire the competence to differentiate into the two main cell types of the embryonic gonad, the pre-supporting cells and interstitial cell lineages. While some transcription factors that drive gonadal cell fate are known, HLH factors have not been investigated in this capacity. In the present study, we found that HLH binding sites are highly represented upstream of gonadal genes. We investigated the HLH factor Transcription Factor 4 (TCF4) which is expressed in the CE and GATA4+ somatic cells in both sexes prior to sex determination. TCF4 is maintained in ovarian pre-supporting cells and interstitial cells of both sexes but is silenced specifically in male pre-supporting cells. To characterize TCF4's role in gonad differentiation in vivo, we acquired a mutant mouse model that lacks the TCF4 DNA-binding domain and assessed morphology of the gonads at E15.5. While mutants develop gonads, we observed sex-specific effects on the gonads. Relative to wildtype littermates, SOX9 expression was higher in the Sertoli cells of XY Tcf4 STOP/STOP mutant testes, while FOXL2 and NR2F2 were reduced in the supporting and interstitial cell lineages of XX Tcf4 STOP/STOP mutant ovaries, respectively. Furthermore, the supporting: interstitial cell ratio was altered in XX Tcf4 STOP/STOP ovaries. These effects may occur downstream of changes to epigenetic programming or gene expression in somatic gonadal cells in mutant mice, as TCF4 binds the Mediator complex, RNA polymerase holoenzyme, and chromatin remodelers in early somatic cells. We hypothesize that TCF4 drives a gonadal program that advances female fate but is specifically silenced in male supporting cells as these pathways diverge.
Collapse
Affiliation(s)
- EV O’Neil
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| | - SM Dupont
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| | - B Capel
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| |
Collapse
|
2
|
Pongkulapa T, Yum JH, McLoughlin CD, Conklin B, Kumagai T, Goldston LL, Sugiyama H, Park S, Lee KB. NIR-Induced Photoswitching Hybrid DNA Nanoconstruct-Based Drug Delivery System for Spatiotemporal Control of Stem Cell Fate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409530. [PMID: 40007062 DOI: 10.1002/smll.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Precise spatiotemporal control of drug delivery is extremely valuable for regulating stem cell fate, particularly in stem cell differentiation. A novel near-infrared (NIR)-mediated spatiotemporal delivery system is reported combining photo-switchable arylazopyrazole (AAP)-containing DNA strands and upconversion nanoparticles (UCNPs). This nano-drug delivery system (NDDS) enables precise modulation of DNA duplex structures in response to NIR stimuli, overcoming the limitations of traditional UV-responsive systems. AAP derivatives with enhanced photoswitching efficiency (≈98%) and significantly improved cis-form stability are engineered. The successful delivery of curcumin, a neurogenic compound with an affinity for the minor groove of DNA, to human neural stem cells (NSCs) is achieved using UCNP-DNA-AAP constructs. Upon 980 nm NIR light exposure, UCNPs efficiently up-converted NIR to UV light, triggering AAP photoisomerization and DNA dissociation, thus releasing curcumin. This approach enabled efficient spatiotemporal control over NSC differentiation while facilitating neuroprotection. Immunofluorescence and gene expression analyses demonstrated enhanced neuronal mRNA levels and neurite outgrowth in treated cells. In short, the NIR-mediated photo-switchable NDDS offers a precise and innovative approach to control stem cell fate, enabling spatiotemporal regulation of cellular processes. This technology has significant potential applications in nanomedicine and neuroscience, where precise drug delivery is crucial for targeted neural interventions.
Collapse
Affiliation(s)
- Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Callan D McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
3
|
Engel-Pizcueta C, Hevia CF, Voltes A, Livet J, Pujades C. Her9 controls the stemness properties of hindbrain boundary cells. Development 2025; 152:dev203164. [PMID: 39628452 PMCID: PMC11829766 DOI: 10.1242/dev.203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The different spatiotemporal distribution of progenitor and neurogenic capacities permits that brain regions engage asynchronously in neurogenesis. In the hindbrain, rhombomere progenitor cells contribute to neurons during the first neurogenic phase, whereas boundary cells participate later. To analyze what maintains boundary cells as non-neurogenic progenitors, we addressed the role of Her9, a zebrafish Hes1-related protein. her9 expression is temporarily sustained in boundary cells independently of Notch at early embryonic stages, while they are non-neurogenic progenitors. Complementary functional approaches show that Her9 inhibits the onset of Notch signaling and the neurogenic program, keeping boundary cells as progenitors. Multicolor clonal analysis combined with genetic perturbations reveal that Her9 expands boundary progenitors by promoting symmetric proliferative and preventing neurogenic cell divisions. Her9 also regulates the proliferation of boundary cells by inhibiting the cell cycle arrest gene cdkn1ca and interplaying with Cyclin D1. Moreover, her9 is enriched in hindbrain radial glial cells at late embryonic stages independently of Notch. Together these data demonstrate that Her9 maintains the stemness properties of hindbrain boundary progenitors and late radial glial cells, ensuring the different temporal distribution of neurogenic capacities within the hindbrain.
Collapse
Affiliation(s)
- Carolyn Engel-Pizcueta
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Adrià Voltes
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Cristina Pujades
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
4
|
Zhou Y, Rashad S, Ando D, Kobayashi Y, Tominaga T, Niizuma K. Dynamic mRNA Stability Buffer Transcriptional Activation During Neuronal Differentiation and Is Regulated by SAMD4A. J Cell Physiol 2025; 240:e31477. [PMID: 39513231 PMCID: PMC11747957 DOI: 10.1002/jcp.31477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Neurons are exceptionally sensitive to oxidative stress, which is the basis for many neurodegenerative disease pathophysiologies. The posttranscriptional basis for neuronal differentiation and behavior is not well characterized. The steady-state levels of mRNA are outcomes of an interplay between RNA transcription and decay. However, the correlation between mRNA transcription, translation, and stability remains elusive. We utilized a SH-SY5Y-based neural differentiation model that is widely used to study neurodegenerative diseases. After neuronal differentiation, we observed enhanced sensitivity of mature neurons to mitochondrial stresses and ferroptosis induction. We employed a newly developed simplified mRNA stability profiling technique to explore the role of mRNA stability in SH-SY5Y neuronal differentiation model. Transcriptome-wide mRNA stability analysis revealed neural-specific RNA stability kinetics. Our analysis revealed that mRNA stability could either exert the buffering effect on gene products or change in the same direction as transcription. Importantly, we observed that changes in mRNA stability corrected over or under transcription of mRNAs to maintain mRNA translation dynamics. Furthermore, we conducted integrative analysis of our mRNA stability data set, and a published CRISPR-i screen focused on neuronal oxidative stress responses. Our analysis unveiled novel neuronal stress response genes that were not evident at the transcriptional or translational levels. SEPHS2 emerged as an important neuronal stress regulator based on this integrative analysis. Motif analysis unveiled SAMD4A as a major regulator of the dynamic changes in mRNA stability observed during differentiation. Knockdown of SAMD4A impaired neuronal differentiation and influenced the response to oxidative stress. Mechanistically, SAMD4A was found to alter the stability of several mRNAs. The novel insights into the interplay between mRNA stability and cellular behaviors provide a foundation for understanding neurodevelopmental processes and neurodegenerative disorders and highlight dynamic mRNA stability as an important layer of gene expression.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Daisuke Ando
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yuki Kobayashi
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Teiji Tominaga
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
5
|
Nandagopal S, Terrio A, Vicente FZ, Megason SG, Jambhekar A, Lahav G. Activation-derepression synergy enables a bHLH network to coordinate a signal-specific fate response. Cell Rep 2024; 43:115077. [PMID: 39671287 PMCID: PMC11774475 DOI: 10.1016/j.celrep.2024.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024] Open
Abstract
Stem cells integrate multiple environmental signals to activate appropriate fate programs. To ensure coherent responses, alternative fates must be concomitantly inactivated. However, mechanisms that coordinate fates in a signal-specific manner are not fully understood. Here, we investigate the role of a network of basic-helix-loop-helix (bHLH) transcription factors in neural stem cells, which integrate leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP) signaling to synergistically induce glial fibrillary acidic protein (GFAP), a key astrocyte-fate determinant. Using quantitative RNA-fluorescence in situ hybridization (FISH) and ectopic expression, we find that multiple bHLHs that promote alternative fates also repress GFAP but are all suppressed by BMP and, to a lesser extent, LIF. Mathematical modeling shows that synergy arises from this coordinated derepression of GFAP combined with its activation by LIF signaling. Finally, we determine how coordinated and tunable derepression results from extensive cross-regulation among bHLHs. Activation-derepression synergy could be broadly utilized to couple signaling and fate, particularly across the numerous developmental systems regulated by bHLH factors.
Collapse
Affiliation(s)
- Sandy Nandagopal
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| | - Alexsandra Terrio
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Fernando Z Vicente
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Sean G Megason
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Tian Y, Wu X, Luo S, Xiong D, Liu R, Hu L, Yuan Y, Shi G, Yao J, Huang Z, Fu F, Yang X, Tang Z, Zhang J, Hu K. A multi-omic single-cell landscape of cellular diversification in the developing human cerebral cortex. Comput Struct Biotechnol J 2024; 23:2173-2189. [PMID: 38827229 PMCID: PMC11141146 DOI: 10.1016/j.csbj.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The vast neuronal diversity in the human neocortex is vital for high-order brain functions, necessitating elucidation of the regulatory mechanisms underlying such unparalleled diversity. However, recent studies have yet to comprehensively reveal the diversity of neurons and the molecular logic of neocortical origin in humans at single-cell resolution through profiling transcriptomic or epigenomic landscapes, owing to the application of unimodal data alone to depict exceedingly heterogeneous populations of neurons. In this study, we generated a comprehensive compendium of the developing human neocortex by simultaneously profiling gene expression and open chromatin from the same cell. We computationally reconstructed the differentiation trajectories of excitatory projection neurons of cortical origin and inferred the regulatory logic governing lineage bifurcation decisions for neuronal diversification. We demonstrated that neuronal diversity arises from progenitor cell lineage specificity and postmitotic differentiation at distinct stages. Our data paves the way for understanding the primarily coordinated regulatory logic for neuronal diversification in the neocortex.
Collapse
Affiliation(s)
- Yuhan Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Xia Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Songhao Luo
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Dan Xiong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Rong Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Lanqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuchen Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjie Yao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiwei Huang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Yang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Public Platform Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
7
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development of dorsal fan-shaped body neurons and sleep homeostasis. Curr Biol 2024; 34:4951-4967.e5. [PMID: 39383867 PMCID: PMC11537841 DOI: 10.1016/j.cub.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Complex behaviors arise from neural circuits that assemble from diverse cell types. Sleep is a conserved behavior essential for survival, yet little is known about how the nervous system generates neuron types of a sleep-wake circuit. Here, we focus on the specification of Drosophila 23E10-labeled dorsal fan-shaped body (dFB) long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex. We use lineage analysis and genetic birth dating to identify two bilateral type II neural stem cells (NSCs) that generate 23E10 dFB neurons. We show that adult 23E10 dFB neurons express ecdysone-induced protein 93 (E93) and that loss of ecdysone signaling or E93 in type II NSCs results in their misspecification. Finally, we show that E93 knockdown in type II NSCs impairs adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate the neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | | | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA.
| |
Collapse
|
8
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. Dev Biol 2024; 515:67-78. [PMID: 38968988 PMCID: PMC11361279 DOI: 10.1016/j.ydbio.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in anterior regeneration and mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. We also show that SSDP2 and LDB1 function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we find new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions are likely LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
9
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Lozano Casasbuenas D, Kortebi I, Gora C, Scott EY, Gomes C, Oliveira MS, Sharma T, Daniele E, Olfat A, Gibbs R, Yuzwa SA, Gilbert EA, Küry P, Wheeler AR, Lévesque M, Faiz M. The laminar position, morphology, and gene expression profiles of cortical astrocytes are influenced by time of birth from ventricular/subventricular progenitors. Glia 2024; 72:1693-1706. [PMID: 38852127 DOI: 10.1002/glia.24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Astrocytes that reside in superficial (SL) and deep cortical layers have distinct molecular profiles and morphologies, which may underlie specific functions. Here, we demonstrate that the production of SL and deep layer (DL) astrocyte populations from neural progenitor cells in the mouse is temporally regulated. Lineage tracking following in utero and postnatal electroporation with PiggyBac (PB) EGFP and birth dating with EdU and FlashTag, showed that apical progenitors produce astrocytes during late embryogenesis (E16.5) that are biased to the SL, while postnatally labeled (P0) astrocytes are biased to the DL. In contrast, astrocytes born during the predominantly neurogenic window (E14.5) showed a random distribution in the SL and DL. Of interest, E13.5 astrocytes birth dated at E13.5 with EdU showed a lower layer bias, while FT labeling of apical progenitors showed no bias. Finally, examination of the morphologies of "biased" E16.5- and P0-labeled astrocytes demonstrated that E16.5-labeled astrocytes exhibit different morphologies in different layers, while P0-labeled astrocytes do not. Differences based on time of birth are also observed in the molecular profiles of E16.5 versus P0-labeled astrocytes. Altogether, these results suggest that the morphological, molecular, and positional diversity of cortical astrocytes is related to their time of birth from ventricular/subventricular zone progenitors.
Collapse
Affiliation(s)
- Daniela Lozano Casasbuenas
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ines Kortebi
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Charles Gora
- Department of Psychiatry and Neurosciences, Université Laval, Québec, Canada; CERVO Brain Research Center, Québec, Canada
| | - Erica Y Scott
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Celeste Gomes
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Markley Silva Oliveira
- Neuroregeneration Laboratory, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Tanvi Sharma
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Emerson Daniele
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Arman Olfat
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Gibbs
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Emily A Gilbert
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Küry
- Neuroregeneration Laboratory, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Université Laval, Québec, Canada; CERVO Brain Research Center, Québec, Canada
| | - Maryam Faiz
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Saraswathy VM, Zhou L, Mokalled MH. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. Nat Commun 2024; 15:6808. [PMID: 39147780 PMCID: PMC11327264 DOI: 10.1038/s41467-024-50628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Adult zebrafish have an innate ability to recover from severe spinal cord injury. Here, we report a comprehensive single nuclear RNA sequencing atlas that spans 6 weeks of regeneration. We identify cooperative roles for adult neurogenesis and neuronal plasticity during spinal cord repair. Neurogenesis of glutamatergic and GABAergic neurons restores the excitatory/inhibitory balance after injury. In addition, a transient population of injury-responsive neurons (iNeurons) show elevated plasticity 1 week post-injury. We found iNeurons are injury-surviving neurons that acquire a neuroblast-like gene expression signature after injury. CRISPR/Cas9 mutagenesis showed iNeurons are required for functional recovery and employ vesicular trafficking as an essential mechanism that underlies neuronal plasticity. This study provides a comprehensive resource of the cells and mechanisms that direct spinal cord regeneration and establishes zebrafish as a model of plasticity-driven neural repair.
Collapse
Affiliation(s)
- Vishnu Muraleedharan Saraswathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Lili Zhou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Elagoz AM, Van Dijck M, Lassnig M, Seuntjens E. Embryonic development of a centralised brain in coleoid cephalopods. Neural Dev 2024; 19:8. [PMID: 38907272 PMCID: PMC11191162 DOI: 10.1186/s13064-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
The last common ancestor of cephalopods and vertebrates lived about 580 million years ago, yet coleoid cephalopods, comprising squid, cuttlefish and octopus, have evolved an extraordinary behavioural repertoire that includes learned behaviour and tool utilization. These animals also developed innovative advanced defence mechanisms such as camouflage and ink release. They have evolved unique life cycles and possess the largest invertebrate nervous systems. Thus, studying coleoid cephalopods provides a unique opportunity to gain insights into the evolution and development of large centralised nervous systems. As non-model species, molecular and genetic tools are still limited. However, significant insights have already been gained to deconvolve embryonic brain development. Even though coleoid cephalopods possess a typical molluscan circumesophageal bauplan for their central nervous system, aspects of its development are reminiscent of processes observed in vertebrates as well, such as long-distance neuronal migration. This review provides an overview of embryonic coleoid cephalopod research focusing on the cellular and molecular aspects of neurogenesis, migration and patterning. Additionally, we summarize recent work on neural cell type diversity in embryonic and hatchling cephalopod brains. We conclude by highlighting gaps in our knowledge and routes for future research.
Collapse
Affiliation(s)
- Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Marie Van Dijck
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mark Lassnig
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Shaw DK, Saraswathy VM, McAdow AR, Zhou L, Park D, Mote R, Johnson AN, Mokalled MH. Elevated phagocytic capacity directs innate spinal cord repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598515. [PMID: 38915507 PMCID: PMC11195157 DOI: 10.1101/2024.06.11.598515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Immune cells elicit a continuum of transcriptional and functional states after spinal cord injury (SCI). In mammals, inefficient debris clearance and chronic inflammation impede recovery and overshadow pro-regenerative immune functions. We found that, unlike mammals, zebrafish SCI elicits transient immune activation and efficient debris clearance, without causing chronic inflammation. Single-cell transcriptomics and inducible genetic ablation showed zebrafish macrophages are highly phagocytic and required for regeneration. Cross-species comparisons between zebrafish and mammalian macrophages identified transcription and immune response regulator ( tcim ) as a macrophage-enriched zebrafish gene. Genetic deletion of zebrafish tcim impairs phagocytosis and regeneration, causes aberrant and chronic immune activation, and can be rescued by transplanting wild-type immune precursors into tcim mutants. Conversely, genetic expression of human TCIM accelerates debris clearance and regeneration by reprogramming myeloid precursors into activated phagocytes. This study establishes a central requirement for elevated phagocytic capacity to achieve innate spinal cord repair.
Collapse
|
14
|
Ang CE, Olmos VH, Vodehnal K, Zhou B, Lee QY, Sinha R, Narayanaswamy A, Mall M, Chesnov K, Dominicus CS, Südhof T, Wernig M. Generation of human excitatory forebrain neurons by cooperative binding of proneural NGN2 and homeobox factor EMX1. Proc Natl Acad Sci U S A 2024; 121:e2308401121. [PMID: 38446849 PMCID: PMC10945857 DOI: 10.1073/pnas.2308401121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
Generation of defined neuronal subtypes from human pluripotent stem cells remains a challenge. The proneural factor NGN2 has been shown to overcome experimental variability observed by morphogen-guided differentiation and directly converts pluripotent stem cells into neurons, but their cellular heterogeneity has not been investigated yet. Here, we found that NGN2 reproducibly produces three different kinds of excitatory neurons characterized by partial coactivation of other neurotransmitter programs. We explored two principle approaches to achieve more precise specification: prepatterning the chromatin landscape that NGN2 is exposed to and combining NGN2 with region-specific transcription factors. Unexpectedly, the chromatin context of regionalized neural progenitors only mildly altered genomic NGN2 binding and its transcriptional response and did not affect neurotransmitter specification. In contrast, coexpression of region-specific homeobox factors such as EMX1 resulted in drastic redistribution of NGN2 including recruitment to homeobox targets and resulted in glutamatergic neurons with silenced nonglutamatergic programs. These results provide the molecular basis for a blueprint for improved strategies for generating a plethora of defined neuronal subpopulations from pluripotent stem cells for therapeutic or disease-modeling purposes.
Collapse
Affiliation(s)
- Cheen Euong Ang
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Victor Hipolito Olmos
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Kayla Vodehnal
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Bo Zhou
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
| | - Qian Yi Lee
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Rahul Sinha
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Aadit Narayanaswamy
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Moritz Mall
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Kirill Chesnov
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Caia S. Dominicus
- Wellcome Sanger Institute, Hinxton, CambridgeshireCB10 1SA, United Kingdom
- OpenTargets, Hinxton, CambridgeshireCB10 1SA, United Kingdom
| | - Thomas Südhof
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA94305
- Institute of Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA94305
| |
Collapse
|
15
|
Altbürger C, Rath M, Wehrle J, Driever W. The proneural factors Ascl1a and Ascl1b contribute to the terminal differentiation of dopaminergic GABAergic dual transmitter neurons in zebrafish. Dev Biol 2024; 505:58-74. [PMID: 37931393 DOI: 10.1016/j.ydbio.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The proneural factor Ascl1 is involved in several steps of neurogenesis, from neural progenitor maintenance to initiation of terminal differentiation and neuronal subtype specification. In neural progenitor cells, Ascl1 initiates the cell-cycle exit of progenitors, and contributes to their differentiation into mainly GABAergic neurons. Several catecholaminergic neuron groups in the forebrain of zebrafish use GABA as co-transmitter, but a potential role of the two paralogues Ascl1a and Ascl1b in their neurogenesis is not understood. Here, we show that ascl1a, ascl1b double mutant embryos develop a significantly reduced number of neurons in all GABAergic and catecholaminergic dual transmitter neuron anatomical clusters in the fore- and hindbrain, while glutamatergic catecholaminergic clusters develop normally. However, none of the affected catecholaminergic cell clusters are lost completely, suggesting an impairment in progenitor pools, or a requirement of Ascl1a/b for differentiation of a subset of neurons in each cluster. Early progenitors which are dlx2a+, fezf2 + or emx2 + are not reduced whereas late progenitors and differentiating neurons marked by the expression of dlx5a, isl1 and arxa are severely reduced in ascl1a, ascl1b double mutant embryos. This suggests that Ascl1a and Ascl1b play only a minor or no role in the maintenance of their progenitor pools, but rather contribute to the initiation of terminal differentiation of GABAergic catecholaminergic neurons.
Collapse
Affiliation(s)
- Christian Altbürger
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Meta Rath
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
| | - Johanna Wehrle
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; MeInBio Research Training Group, University of Freiburg, 79104, Freiburg, Germany
| | - Wolfgang Driever
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
16
|
Muraleedharan Saraswathy V, Zhou L, Mokalled MH. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541505. [PMID: 37292638 PMCID: PMC10245778 DOI: 10.1101/2023.05.19.541505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adult zebrafish have an innate ability to recover from severe spinal cord injury. Here, we report a comprehensive single nuclear RNA sequencing atlas that spans 6 weeks of regeneration. We identify cooperative roles for adult neurogenesis and neuronal plasticity during spinal cord repair. Neurogenesis of glutamatergic and GABAergic neurons restores the excitatory/inhibitory balance after injury. In addition, transient populations of injury-responsive neurons (iNeurons) show elevated plasticity between 1 and 3 weeks post-injury. Using cross-species transcriptomics and CRISPR/Cas9 mutagenesis, we found iNeurons are injury-surviving neurons that share transcriptional similarities with a rare population of spontaneously plastic mouse neurons. iNeurons are required for functional recovery and employ vesicular trafficking as an essential mechanism that underlies neuronal plasticity. This study provides a comprehensive resource of the cells and mechanisms that direct spinal cord regeneration and establishes zebrafish as a model of plasticity-driven neural repair.
Collapse
|
17
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
18
|
Tran LN, Loew SK, Franco SJ. Notch Signaling Plays a Dual Role in Regulating the Neuron-to-Oligodendrocyte Switch in the Developing Dorsal Forebrain. J Neurosci 2023; 43:6854-6871. [PMID: 37640551 PMCID: PMC10573779 DOI: 10.1523/jneurosci.0144-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Neural progenitor cells in the developing dorsal forebrain generate excitatory neurons followed by oligodendrocytes (OLs) and astrocytes. However, the specific mechanisms that regulate the timing of this neuron-glia switch are not fully understood. In this study, we show that the proper balance of Notch signaling in dorsal forebrain progenitors is required to generate oligodendrocytes during late stages of embryonic development. Using ex vivo and in utero approaches in mouse embryos of both sexes, we found that Notch inhibition reduced the number of oligodendrocyte lineage cells in the dorsal pallium. However, Notch overactivation also prevented oligodendrogenesis and maintained a progenitor state. These results point toward a dual role for Notch signaling in both promoting and inhibiting oligodendrogenesis, which must be fine-tuned to generate oligodendrocyte lineage cells at the right time and in the right numbers. We further identified the canonical Notch downstream factors HES1 and HES5 as negative regulators in this process. CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9-mediated knockdown of Hes1 and Hes5 caused increased expression of the pro-oligodendrocyte factor ASCL1 and led to precocious oligodendrogenesis. Conversely, combining Notch overactivation with ASCL1 overexpression robustly promoted oligodendrogenesis, indicating a separate mechanism of Notch that operates synergistically with ASCL1 to specify an oligodendrocyte fate. We propose a model in which Notch signaling works together with ASCL1 to specify progenitors toward the oligodendrocyte lineage but also maintains a progenitor state through Hes-dependent repression of Ascl1 so that oligodendrocytes are not made too early, thus contributing to the precise timing of the neuron-glia switch.SIGNIFICANCE STATEMENT Neural progenitors make oligodendrocytes after neurogenesis starts to wind down, but the mechanisms that control the timing of this switch are poorly understood. In this study, we identify Notch signaling as a critical pathway that regulates the balance between progenitor maintenance and oligodendrogenesis. Notch signaling is required for the oligodendrocyte fate, but elevated Notch signaling prevents oligodendrogenesis and maintains a progenitor state. We provide evidence that these opposing functions are controlled by different mechanisms. Before the switch, Notch signaling through Hes factors represses oligodendrogenesis. Later, Notch signaling through an unknown mechanism promotes oligodendrogenesis synergistically with the transcription factor ASCL1. Our study underscores the complexity of Notch and reveals its importance in regulating the timing and numbers of oligodendrocyte production.
Collapse
Affiliation(s)
- Luuli N Tran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Sarah K Loew
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Santos J Franco
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Program in Pediatric Stem Cell Biology, Children's Hospital Colorado, Aurora, Colorado 80045
| |
Collapse
|
19
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Shafer O, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development and function of a Drosophila sleep homeostat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560022. [PMID: 37873323 PMCID: PMC10592846 DOI: 10.1101/2023.09.29.560022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Complex behaviors arise from neural circuits that are assembled from diverse cell types. Sleep is a conserved and essential behavior, yet little is known regarding how the nervous system generates neuron types of the sleep-wake circuit. Here, we focus on the specification of Drosophila sleep-promoting neurons-long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex (CX). We use lineage analysis and genetic birth dating to identify two bilateral Type II neural stem cells that generate these dorsal fan-shaped body (dFB) neurons. We show that adult dFB neurons express Ecdysone-induced protein E93, and loss of Ecdysone signaling or E93 in Type II NSCs results in the misspecification of the adult dFB neurons. Finally, we show that E93 knockdown in Type II NSCs affects adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | | | - Orie Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| |
Collapse
|
20
|
Martin M, Gutierrez-Avino F, Shaikh MN, Tejedor FJ. A novel proneural function of Asense is integrated with the sequential actions of Delta-Notch, L'sc and Su(H) to promote the neuroepithelial to neuroblast transition. PLoS Genet 2023; 19:e1010991. [PMID: 37871020 PMCID: PMC10621995 DOI: 10.1371/journal.pgen.1010991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/02/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
In order for neural progenitors (NPs) to generate distinct populations of neurons at the right time and place during CNS development, they must switch from undergoing purely proliferative, self-renewing divisions to neurogenic, asymmetric divisions in a tightly regulated manner. In the developing Drosophila optic lobe, neuroepithelial (NE) cells of the outer proliferation center (OPC) are progressively transformed into neurogenic NPs called neuroblasts (NBs) in a medial to lateral proneural wave. The cells undergoing this transition express Lethal of Scute (L'sc), a proneural transcription factor (TF) of the Acheate Scute Complex (AS-C). Here we show that there is also a peak of expression of Asense (Ase), another AS-C TF, in the cells neighboring those with transient L'sc expression. These peak of Ase cells help to identify a new transitional stage as they have lost NE markers and L'sc, they receive a strong Notch signal and barely exhibit NB markers. This expression of Ase is necessary and sufficient to promote the NE to NB transition in a more robust and rapid manner than that of l'sc gain of function or Notch loss of function. Thus, to our knowledge, these data provide the first direct evidence of a proneural role for Ase in CNS neurogenesis. Strikingly, we found that strong Delta-Notch signaling at the lateral border of the NE triggers l'sc expression, which in turn induces ase expression in the adjacent cells through the activation of Delta-Notch signaling. These results reveal two novel non-conventional actions of Notch signaling in driving the expression of proneural factors, in contrast to the repression that Notch signaling exerts on them during classical lateral inhibition. Finally, Suppressor of Hairless (Su(H)), which seems to be upregulated late in the transitioning cells and in NBs, represses l'sc and ase, ensuring their expression is transient. Thus, our data identify a key proneural role of Ase that is integrated with the sequential activities of Delta-Notch signaling, L'sc, and Su(H), driving the progressive transformation of NE cells into NBs.
Collapse
Affiliation(s)
- Mercedes Martin
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| | - Francisco Gutierrez-Avino
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| | - Mirja N. Shaikh
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| | - Francisco J. Tejedor
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| |
Collapse
|
21
|
Xie J, Zou W, Tugizova M, Shen K, Wang X. MBL-1 and EEL-1 affect the splicing and protein levels of MEC-3 to control dendrite complexity. PLoS Genet 2023; 19:e1010941. [PMID: 37729192 PMCID: PMC10511122 DOI: 10.1371/journal.pgen.1010941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Transcription factors (TFs) play critical roles in specifying many aspects of neuronal cell fate including dendritic morphology. How TFs are accurately regulated during neuronal morphogenesis is not fully understood. Here, we show that LIM homeodomain protein MEC-3, the key TF for C. elegans PVD dendrite morphogenesis, is regulated by both alternative splicing and an E3 ubiquitin ligase. The mec-3 gene generates several transcripts by alternative splicing. We find that mbl-1, the orthologue of the muscular dystrophy disease gene muscleblind-like (MBNL), is required for PVD dendrite arbor formation. Our data suggest mbl-1 regulates the alternative splicing of mec-3 to produce its long isoform. Deleting the long isoform of mec-3(deExon2) causes reduction of dendrite complexity. Through a genetic modifier screen, we find that mutation in the E3 ubiquitin ligase EEL-1 suppresses mbl-1 phenotype. eel-1 mutants also suppress mec-3(deExon2) mutant but not the mec-3 null phenotype. Loss of EEL-1 alone leads to excessive dendrite branches. Together, these results indicate that MEC-3 is fine-tuned by alternative splicing and the ubiquitin system to produce the optimal level of dendrite branches.
Collapse
Affiliation(s)
- Jianxin Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, United States of America
| | - Madina Tugizova
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, United States of America
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, United States of America
| | - Xiangming Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Kiltschewskij DJ, Harrison PF, Fitzsimmons C, Beilharz T, Cairns M. Extension of mRNA poly(A) tails and 3'UTRs during neuronal differentiation exhibits variable association with post-transcriptional dynamics. Nucleic Acids Res 2023; 51:8181-8198. [PMID: 37293985 PMCID: PMC10450200 DOI: 10.1093/nar/gkad499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Differentiation of neural progenitor cells into mature neuronal phenotypes relies on extensive temporospatial coordination of mRNA expression to support the development of functional brain circuitry. Cleavage and polyadenylation of mRNA has tremendous regulatory capacity through the alteration of mRNA stability and modulation of microRNA (miRNA) function, however the extent of utilization in neuronal development is currently unclear. Here, we employed poly(A) tail sequencing, mRNA sequencing, ribosome profiling and small RNA sequencing to explore the functional relationship between mRNA abundance, translation, poly(A) tail length, alternative polyadenylation (APA) and miRNA expression in an in vitro model of neuronal differentiation. Differential analysis revealed a strong bias towards poly(A) tail and 3'UTR lengthening during differentiation, both of which were positively correlated with changes in mRNA abundance, but not translation. Globally, changes in miRNA expression were predominantly associated with mRNA abundance and translation, however several miRNA-mRNA pairings with potential to regulate poly(A) tail length were identified. Furthermore, 3'UTR lengthening was observed to significantly increase the inclusion of non-conserved miRNA binding sites, potentially enhancing the regulatory capacity of these molecules in mature neuronal cells. Together, our findings suggest poly(A) tail length and APA function as part of a rich post-transcriptional regulatory matrix during neuronal differentiation.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Paul F Harrison
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Chantel Fitzsimmons
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
23
|
Sen SQ. Generating neural diversity through spatial and temporal patterning. Semin Cell Dev Biol 2023; 142:54-66. [PMID: 35738966 DOI: 10.1016/j.semcdb.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
The nervous system consists of a vast diversity of neurons and glia that are accurately assembled into functional circuits. What are the mechanisms that generate these diverse cell types? During development, an epithelial sheet with neurogenic potential is initially regionalised into spatially restricted domains of gene expression. From this, pools of neural stem cells (NSCs) with distinct molecular profiles and the potential to generate different neuron types, are specified. These NSCs then divide asymmetrically to self-renew and generate post-mitotic neurons or glia. As NSCs age, they experience transitions in gene expression, which further allows them to generate different neurons or glia over time. Versions of this general template of spatial and temporal patterning operate during the development of different parts of different nervous systems. Here, I cover our current knowledge of Drosophila brain and optic lobe development as well as the development of the vertebrate cortex and spinal cord within the framework of this above template. I highlight where our knowledge is lacking, where mechanisms beyond these might operate, and how the emergence of new technologies might help address unanswered questions.
Collapse
Affiliation(s)
- Sonia Q Sen
- Tata Institute for Genetics and Society, UAS-GKVK Campus, Bellary Road, Bangalore, India.
| |
Collapse
|
24
|
Wan Y, Ding Y. Strategies and mechanisms of neuronal reprogramming. Brain Res Bull 2023; 199:110661. [PMID: 37149266 DOI: 10.1016/j.brainresbull.2023.110661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Traumatic injury and neurodegenerative diseases of the central nervous system (CNS) are difficult to treat due to the poorly regenerative nature of neurons. Engrafting neural stem cells into the CNS is a classic approach for neuroregeneration. Despite great advances, stem cell therapy still faces the challenges of overcoming immunorejection and achieving functional integration. Neuronal reprogramming, a recent innovation, converts endogenous non-neuronal cells (e.g., glial cells) into mature neurons in the adult mammalian CNS. In this review, we summarize the progress of neuronal reprogramming research, mainly focusing on strategies and mechanisms of reprogramming. Furthermore, we highlight the advantages of neuronal reprogramming and outline related challenges. Although the significant development has been made in this field, several findings are controversial. Even so, neuronal reprogramming, especially in vivo reprogramming, is expected to become an effective treatment for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue Wan
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Ding
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Coltogirone RA, Sherfinski EI, Dobler ZA, Peterson SN, Andlinger AR, Fadel LC, Patrick RL, Bergeron SA. Gsx2, but not Gsx1, is necessary for early forebrain patterning and long-term survival in zebrafish. Dev Dyn 2023; 252:377-399. [PMID: 36184733 PMCID: PMC9992111 DOI: 10.1002/dvdy.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Homeobox transcription factor encoding genes, genomic screen homeobox 1 and 2 (gsx1 and gsx2), are expressed during neurodevelopment in multiple vertebrates. However, we have limited knowledge of the dynamic expression of these genes through developmental time and the gene networks that they regulate in zebrafish. RESULTS We confirmed that gsx1 is expressed initially in the hindbrain and diencephalon and later in the optic tectum, pretectum, and cerebellar plate. gsx2 is expressed in the early telencephalon and later in the pallium and olfactory bulb. gsx1 and gsx2 are co-expressed in the hypothalamus, preoptic area, and hindbrain, however, rarely co-localize in the same cells. gsx1 and gsx2 mutant zebrafish were made with TALENs. gsx1 mutants exhibit stunted growth, however, they survive to adulthood and are fertile. gsx2 mutants experience swim bladder inflation failure that prevents survival. We also observed significantly reduced expression of multiple forebrain patterning distal-less homeobox genes in mutants, and expression of foxp2 was not significantly affected. CONCLUSIONS This work provides novel tools with which other target genes and functions of Gsx1 and Gsx2 can be characterized across the central nervous system to better understand the unique and overlapping roles of these highly conserved transcription factors.
Collapse
Affiliation(s)
| | - Emma I. Sherfinski
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | - Zoë A. Dobler
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | - Sarah N. Peterson
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | | | - Lindsay C. Fadel
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | - Regina L. Patrick
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
- Department of Neuroscience, West Virginia University, Morgantown, West, Virginia, USA
| |
Collapse
|
26
|
Zhang Y, Lowe S, Ding AZ, Li X. Notch-dependent binary fate choice regulates the Netrin pathway to control axon guidance of Drosophila visual projection neurons. Cell Rep 2023; 42:112143. [PMID: 36821442 PMCID: PMC10124989 DOI: 10.1016/j.celrep.2023.112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Notch-dependent binary fate choice between sister neurons is one of the mechanisms to generate neural diversity. How these upstream neural fate specification programs regulate downstream effector genes to control axon targeting and neuropil assembly remains less well understood. Here, we report that Notch-dependent binary fate choice in Drosophila medulla neurons is required to regulate the Netrin axon guidance pathway, which controls targeting of transmedullary (Tm) neurons to lobula. In medulla neurons of Notch-on hemilineage composed of mostly lobula-targeting neurons, Notch signaling is required to activate the expression of Netrin-B and repress the expression of its repulsive receptor Unc-5. Turning off Unc-5 is necessary for Tm neurons to target lobula. Furthermore, Netrin-B provided by Notch-on medulla neurons is required for correct targeting of Tm axons from later-generated medulla columns. Thus, the coordinate regulation of Netrin pathway components by Notch signaling ensures correct targeting of Tm axons and contributes to the neuropil assembly.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Scott Lowe
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew Z Ding
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
27
|
Sato M, Suzuki T. Cutting edge technologies expose the temporal regulation of neurogenesis in the Drosophila nervous system. Fly (Austin) 2022; 16:222-232. [PMID: 35549651 PMCID: PMC9116403 DOI: 10.1080/19336934.2022.2073158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
During the development of the central nervous system (CNS), extremely large numbers of neurons are produced in a regular fashion to form precise neural circuits. During this process, neural progenitor cells produce different neurons over time due to their intrinsic gene regulatory mechanisms as well as extrinsic mechanisms. The Drosophila CNS has played an important role in elucidating the temporal mechanisms that control neurogenesis over time. It has been shown that a series of temporal transcription factors are sequentially expressed in neural progenitor cells and regulate the temporal specification of neurons in the embryonic CNS. Additionally, similar mechanisms are found in the developing optic lobe and central brain in the larval CNS. However, it is difficult to elucidate the function of numerous molecules in many different cell types solely by molecular genetic approaches. Recently, omics analysis using single-cell RNA-seq and other methods has been used to study the Drosophila nervous system on a large scale and is making a significant contribution to the understanding of the temporal mechanisms of neurogenesis. In this article, recent findings on the temporal patterning of neurogenesis and the contributions of cutting-edge technologies will be reviewed.
Collapse
Affiliation(s)
- Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative,Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Takumi Suzuki
- College of Science, Department of Science, Ibaraki University, Ibaraki, Japan
| |
Collapse
|
28
|
Ortiz M, Loidl F, Vázquez‐Borsetti P. Transition to extrauterine life and the modeling of perinatal asphyxia in rats. WIREs Mech Dis 2022; 14:e1568. [DOI: 10.1002/wsbm.1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Mauro Ortiz
- Universidad de Buenos Aires Buenos Aires Argentina
| | - Fabián Loidl
- Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | | |
Collapse
|
29
|
Abed S, Reilly A, Arnold SJ, Feldheim DA. Adult Expression of Tbr2 Is Required for the Maintenance but Not Survival of Intrinsically Photosensitive Retinal Ganglion Cells. Front Cell Neurosci 2022; 16:826590. [PMID: 35401124 PMCID: PMC8983909 DOI: 10.3389/fncel.2022.826590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). ipRGCs regulate subconscious non-image-forming behaviors such as circadian rhythms, pupil dilation, and light-mediated mood. Previously, we and others showed that the transcription factor Tbr2 (EOMES) is required during retinal development for the formation of ipRGCs. Tbr2 is also expressed in the adult retina leading to the hypothesis that it plays a role in adult ipRGC function. To test this, we removed Tbr2 in adult mice. We found that this results in the loss of melanopsin expression in ipRGCs but does not lead to cell death or morphological changes to their dendritic or axonal termination patterns. Additionally, we found ectopic expression of Tbr2 in conventional RGCs does not induce melanopsin expression but can increase melanopsin expression in existing ipRGCs. An interesting feature of ipRGCs is their superior survival relative to conventional RGCs after an optic nerve injury. We find that loss of Tbr2 decreases the survival rate of ipRGCs after optic nerve damage suggesting that Tbr2 plays a role in ipRGC survival after injury. Lastly, we show that the GABAergic amacrine cell marker Meis2, is expressed in the majority of Tbr2-expressing displaced amacrine cells as well as in a subset of Tbr2-expressing RGCs. These findings demonstrate that Tbr2 is necessary but not sufficient for melanopsin expression, that Tbr2 is involved in ipRGC survival after optic nerve injury, and identify a marker for Tbr2-expressing displaced amacrine cells.
Collapse
Affiliation(s)
- Sadaf Abed
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andreea Reilly
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sebastian J. Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
- *Correspondence: David A. Feldheim,
| |
Collapse
|
30
|
Belmonte-Mateos C, Pujades C. From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Front Neurosci 2022; 15:781160. [PMID: 35046768 PMCID: PMC8761814 DOI: 10.3389/fnins.2021.781160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) exhibits an extraordinary diversity of neurons, with the right cell types and proportions at the appropriate sites. Thus, to produce brains with specific size and cell composition, the rates of proliferation and differentiation must be tightly coordinated and balanced during development. Early on, proliferation dominates; later on, the growth rate almost ceases as more cells differentiate and exit the cell cycle. Generation of cell diversity and morphogenesis takes place concomitantly. In the vertebrate brain, this results in dramatic changes in the position of progenitor cells and their neuronal derivatives, whereas in the spinal cord morphogenetic changes are not so important because the structure mainly grows by increasing its volume. Morphogenesis is under control of specific genetic programs that coordinately unfold over time; however, little is known about how they operate and impact in the pools of progenitor cells in the CNS. Thus, the spatiotemporal coordination of these processes is fundamental for generating functional neuronal networks. Some key aims in developmental neurobiology are to determine how cell diversity arises from pluripotent progenitor cells, and how the progenitor potential changes upon time. In this review, we will share our view on how the advance of new technologies provides novel data that challenge some of the current hypothesis. We will cover some of the latest studies on cell lineage tracing and clonal analyses addressing the role of distinct progenitor cell division modes in balancing the rate of proliferation and differentiation during brain morphogenesis. We will discuss different hypothesis proposed to explain how progenitor cell diversity is generated and how they challenged prevailing concepts and raised new questions.
Collapse
Affiliation(s)
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
31
|
Abstract
The human brain is characterized by the large size and intricate folding of its cerebral cortex, which are fundamental for our higher cognitive function and frequently altered in pathological dysfunction. Cortex folding is not unique to humans, nor even to primates, but is common across mammals. Cortical growth and folding are the result of complex developmental processes that involve neural stem and progenitor cells and their cellular lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. All these factors combined generate mechanical stress and strain on the developing neural tissue, which ultimately drives orderly cortical deformation and folding. In this review we examine and summarize the current knowledge on the molecular, cellular, histogenic and mechanical mechanisms that are involved in and influence folding of the cerebral cortex, and how they emerged and changed during mammalian evolution. We discuss the main types of pathological malformations of human cortex folding, their specific developmental origin, and how investigating their genetic causes has illuminated our understanding of key events involved. We close our review by presenting the state-of-the-art animal and in vitro models of cortex folding that are currently used to study these devastating developmental brain disorders in children, and what are the main challenges that remain ahead of us to fully understand brain folding.
Collapse
Affiliation(s)
- Lucia Del Valle Anton
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| | - Victor Borrell
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
32
|
Miller DS, Wright KM. Neuronal Dystroglycan regulates postnatal development of CCK/cannabinoid receptor-1 interneurons. Neural Dev 2021; 16:4. [PMID: 34362433 PMCID: PMC8349015 DOI: 10.1186/s13064-021-00153-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background The development of functional neural circuits requires the precise formation of synaptic connections between diverse neuronal populations. The molecular pathways that allow GABAergic interneuron subtypes in the mammalian brain to initially recognize their postsynaptic partners remain largely unknown. The transmembrane glycoprotein Dystroglycan is localized to inhibitory synapses in pyramidal neurons, where it is required for the proper function of CCK+ interneurons. However, the precise temporal requirement for Dystroglycan during inhibitory synapse development has not been examined. Methods In this study, we use NEXCre or Camk2aCreERT2 to conditionally delete Dystroglycan from newly-born or adult pyramidal neurons, respectively. We then analyze forebrain development from postnatal day 3 through adulthood, with a particular focus on CCK+ interneurons. Results In the absence of postsynaptic Dystroglycan in developing pyramidal neurons, presynaptic CCK+ interneurons fail to elaborate their axons and largely disappear from the cortex, hippocampus, amygdala, and olfactory bulb during the first two postnatal weeks. Other interneuron subtypes are unaffected, indicating that CCK+ interneurons are unique in their requirement for postsynaptic Dystroglycan. Dystroglycan does not appear to be required in adult pyramidal neurons to maintain CCK+ interneurons. Bax deletion did not rescue CCK+ interneurons in Dystroglycan mutants during development, suggesting that they are not eliminated by canonical apoptosis. Rather, we observed increased innervation of the striatum, suggesting that the few remaining CCK+ interneurons re-directed their axons to neighboring areas where Dystroglycan expression remained intact. Conclusion Together these findings show that Dystroglycan functions as part of a synaptic partner recognition complex that is required early for CCK+ interneuron development in the forebrain. Supplementary Information The online version contains supplementary material available at 10.1186/s13064-021-00153-1.
Collapse
Affiliation(s)
- Daniel S Miller
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, VIB 3435A, 3181 SW Sam Jackson Park Road, L474, Portland, OR, 97239-3098, USA.
| |
Collapse
|
33
|
Katsuyama T, Kadoya M, Shirai M, Sasai N. Sox14 is essential for initiation of neuronal differentiation in the chick spinal cord. Dev Dyn 2021; 251:350-361. [PMID: 34181293 DOI: 10.1002/dvdy.392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The neural tube comprises several different types of progenitors and postmitotic neurons that co-ordinately act with each other to play integrated functions. Its development consists of two phases: proliferation of progenitor cells and differentiation into postmitotic neurons. How progenitor cells differentiate into each corresponding neuron is an important question for understanding the mechanisms of neuronal development. RESULTS Here we introduce one of the Sox transcription factors, Sox14, which plays an essential role in the promotion of neuronal differentiation. Sox14 belongs to the SoxB2 subclass and its expression starts in the progenitor regions before neuronal differentiation is initiated at the trunk level of the neural tube. After neuronal differentiation is initiated, Sox14 expression gradually becomes confined to the V2a region of the neural tube, where Chx10 is co-expressed. Overexpression of Sox14 restricts progenitor cell proliferation. Conversely, the blockade of Sox14 expression by the RNAi strategy inhibits V2a neuron differentiation and causes expansion of the progenitor domain. We further found that Sox14 acted as a transcriptional activator. CONCLUSIONS Sox14 acts as a modulator of cell proliferation and is essential for initiation of neuronal differentiation in the chick neural tube.
Collapse
Affiliation(s)
- Taiki Katsuyama
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Minori Kadoya
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
34
|
Crane-Smith Z, Schoenebeck J, Graham KA, Devenney PS, Rose L, Ditzell M, Anderson E, Thomson JI, Klenin N, Kurrasch DM, Lettice LA, Hill RE. A Highly Conserved Shh Enhancer Coordinates Hypothalamic and Craniofacial Development. Front Cell Dev Biol 2021; 9:595744. [PMID: 33869166 PMCID: PMC8047142 DOI: 10.3389/fcell.2021.595744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/28/2021] [Indexed: 11/24/2022] Open
Abstract
Enhancers that are conserved deep in evolutionary time regulate characteristics held in common across taxonomic classes. Here, deletion of the highly conserved Shh enhancer SBE2 (Shh brain enhancer 2) in mouse markedly reduced Shh expression within the embryonic brain specifically in the rostral diencephalon; however, no abnormal anatomical phenotype was observed. Secondary enhancer activity was subsequently identified which likely mediates low levels of expression. In contrast, when crossing the SBE2 deletion with the Shh null allele, brain and craniofacial development were disrupted; thus, linking SBE2 regulated Shh expression to multiple defects and further enabling the study of the effects of differing levels of Shh on embryogenesis. Development of the hypothalamus, derived from the rostral diencephalon, was disrupted along both the anterior-posterior (AP) and the dorsal-ventral (DV) axes. Expression of DV patterning genes and subsequent neuronal population induction were particularly sensitive to Shh expression levels, demonstrating a novel morphogenic context for Shh. The role of SBE2, which is highlighted by DV gene expression, is to step-up expression of Shh above the minimal activity of the second enhancer, ensuring the necessary levels of Shh in a regional-specific manner. We also show that low Shh levels in the diencephalon disrupted neighbouring craniofacial development, including mediolateral patterning of the bones along the cranial floor and viscerocranium. Thus, SBE2 contributes to hypothalamic morphogenesis and ensures there is coordination with the formation of the adjacent midline cranial bones that subsequently protect the neural tissue.
Collapse
Affiliation(s)
- Zoe Crane-Smith
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Katy A Graham
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul S Devenney
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorraine Rose
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Ditzell
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Eve Anderson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph I Thomson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Natasha Klenin
- Department of Medical Genetics, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Laura A Lettice
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert E Hill
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Molecular Mechanisms Underlying Ascl1-Mediated Astrocyte-to-Neuron Conversion. Stem Cell Reports 2021; 16:534-547. [PMID: 33577795 PMCID: PMC7940254 DOI: 10.1016/j.stemcr.2021.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Direct neuronal reprogramming potentially provides valuable sources for cell-based therapies. Proneural gene Ascl1 converts astrocytes into induced neuronal (iN) cells efficiently both in vitro and in vivo. However, the underlying mechanisms are largely unknown. By combining RNA sequencing and chromatin immunoprecipitation followed by high-throughput sequencing, we found that the expression of 1,501 genes was markedly changed during the early stages of Ascl1-induced astrocyte-to-neuron conversion and that the regulatory regions of 107 differentially expressed genes were directly bound by ASCL1. Among Ascl1's direct targets, Klf10 regulates the neuritogenesis of iN cells at the early stage, Myt1 and Myt1l are critical for the electrophysiological maturation of iN cells, and Neurod4 and Chd7 are required for the efficient conversion of astrocytes into neurons. Together, this study provides more insights into understanding the molecular mechanisms underlying Ascl1-mediated astrocyte-to-neuron conversion and will be of value for the application of direct neuronal reprogramming. RNA-seq and ChIP-seq were used to study Ascl1-induced astrocyte-to-neuron conversion Early Klf10 regulates neuritogenesis and electrophysiological properties of iN cells Myt1 and Myt1l are critical for the electrophysiological maturation of iN cells Neurod4 and Chd7 are required for efficient conversion of astrocytes to neurons
Collapse
|
36
|
Tian K, Wang A, Wang J, Li W, Shen W, Li Y, Luo Z, Liu Y, Zhou Y. Transcriptome Analysis Identifies SenZfp536, a Sense LncRNA that Suppresses Self-renewal of Cortical Neural Progenitors. Neurosci Bull 2020; 37:183-200. [PMID: 33196962 DOI: 10.1007/s12264-020-00607-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/12/2020] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate transcription to control development and homeostasis in a variety of tissues and organs. However, their roles in the development of the cerebral cortex have not been well elucidated. Here, a bioinformatics pipeline was applied to delineate the dynamic expression and potential cis-regulating effects of mouse lncRNAs using transcriptome data from 8 embryonic time points and sub-regions of the developing cerebral cortex. We further characterized a sense lncRNA, SenZfp536, which is transcribed downstream of and partially overlaps with the protein-coding gene Zfp536. Both SenZfp536 and Zfp536 were predominantly expressed in the proliferative zone of the developing cortex. Zfp536 was cis-regulated by SenZfp536, which facilitates looping between the promoter of Zfp536 and the genomic region that transcribes SenZfp536. Surprisingly, knocking down or activating the expression of SenZfp536 increased or compromised the proliferation of cortical neural progenitor cells (NPCs), respectively. Finally, overexpressing Zfp536 in cortical NPCs reversed the enhanced proliferation of cortical NPCs caused by SenZfp536 knockdown. The study deepens our understanding of how lncRNAs regulate the propagation of cortical NPCs through cis-regulatory mechanisms.
Collapse
Affiliation(s)
- Kuan Tian
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Andi Wang
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Junbao Wang
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Wei Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Wenchen Shen
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yamu Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhiyuan Luo
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Ying Liu
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| | - Yan Zhou
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China. .,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
37
|
Yang J, Cao H, Guo S, Zhu H, Tao H, Zhang L, Chen Z, Sun T, Chi S, Hu Q. Small molecular compounds efficiently convert human fibroblasts directly into neurons. Mol Med Rep 2020; 22:4763-4771. [PMID: 33174059 PMCID: PMC7646904 DOI: 10.3892/mmr.2020.11559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/14/2020] [Indexed: 01/26/2023] Open
Abstract
No effective treatment is currently available for neurodegenerative diseases, and existing pharmacotherapy is inconsistent with severe side effects. Cell replacement therapy is promising for neurodegenerative disease treatment, and the induction of neurons is an unmet need for such therapy. The present study investigated the potential of a combined medium composed of conditioned medium and eight small molecular compounds in reprogramming human foreskin fibroblasts (HFFs) into neurons. HFFs were cultured from foreskin and then induced by small molecules to generate neurons. The results demonstrated that the conditioned medium containing forskolin, RepSox, SP600125, CHIR99021, Go6983, Y-27632, IXS9 and I-BET151 effectively induced human fibroblasts to change into neurons in vitro. Following a 30-day induction, the cells exhibited neuronal properties as determined by morphological and phenotypical alterations. The induced cells exhibited expression of neuronal markers, including class III β-tubulin, microtubule-associated protein 2, vesicular glutamate transporter 1 and γ-aminobutyric acid, accompanied by increased expression of neuronal transcription factors, including neuronal differentiation 1 and achaete-scute family bHLH transcription factor 1, and decreased expression levels of fibroblast-specific genes. Furthermore, these cells also exhibited electrophysiological properties of neurons. Notably, the course of cell morphological alterations demonstrated the differentiation of fibroblasts into neurons. The present study provided a novel combination of existing small molecular compounds that efficiently reprogramed human fibroblasts into neurons.
Collapse
Affiliation(s)
- Jijuan Yang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Huimei Cao
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shengnan Guo
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hong Zhu
- Department of Rheumatology, The General Hospital of Ningxia Medical University
| | - Hong Tao
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Linna Zhang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhangping Chen
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shuhong Chi
- Department of Rheumatology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qikuan Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
38
|
Wu C, Boisclair Lachance JF, Ludwig MZ, Rebay I. A context-dependent bifurcation in the Pointed transcriptional effector network contributes specificity and robustness to retinal cell fate acquisition. PLoS Genet 2020; 16:e1009216. [PMID: 33253156 PMCID: PMC7728396 DOI: 10.1371/journal.pgen.1009216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/10/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Spatiotemporally precise and robust cell fate transitions, which depend on specific signaling cues, are fundamental to the development of appropriately patterned tissues. The fidelity and precision with which photoreceptor fates are recruited in the Drosophila eye exemplifies these principles. The fly eye consists of a highly ordered array of ~750 ommatidia, each of which contains eight distinct photoreceptors, R1-R8, specified sequentially in a precise spatial pattern. Recruitment of R1-R7 fates requires reiterative receptor tyrosine kinase / mitogen activated protein kinase (MAPK) signaling mediated by the transcriptional effector Pointed (Pnt). However the overall signaling levels experienced by R2-R5 cells are distinct from those experienced by R1, R6 and R7. A relay mechanism between two Pnt isoforms initiated by MAPK activation directs the universal transcriptional response. Here we ask how the generic Pnt response is tailored to these two rounds of photoreceptor fate transitions. We find that during R2-R5 specification PntP2 is coexpressed with a closely related but previously uncharacterized isoform, PntP3. Using CRISPR/Cas9-generated isoform specific null alleles we show that under otherwise wild type conditions, R2-R5 fate specification is robust to loss of either PntP2 or PntP3, and that the two activate pntP1 redundantly; however under conditions of reduced MAPK activity, both are required. Mechanistically, our data suggest that intrinsic activity differences between PntP2 and PntP3, combined with positive and unexpected negative transcriptional auto- and cross-regulation, buffer first-round fates against conditions of compromised RTK signaling. In contrast, in a mechanism that may be adaptive to the stronger signaling environment used to specify R1, R6 and R7 fates, the Pnt network resets to a simpler topology in which PntP2 uniquely activates pntP1 and auto-activates its own transcription. We propose that differences in expression patterns, transcriptional activities and regulatory interactions between Pnt isoforms together facilitate context-appropriate cell fate specification in different signaling environments.
Collapse
Affiliation(s)
- Chudong Wu
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Michael Z. Ludwig
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Ilaria Rebay
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
39
|
Sirp A, Leite K, Tuvikene J, Nurm K, Sepp M, Timmusk T. The Fuchs corneal dystrophy-associated CTG repeat expansion in the TCF4 gene affects transcription from its alternative promoters. Sci Rep 2020; 10:18424. [PMID: 33116252 PMCID: PMC7595208 DOI: 10.1038/s41598-020-75437-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The CTG trinucleotide repeat (TNR) expansion in Transcription factor 4 (TCF4) intron 3 is the main cause of Fuchs’ endothelial corneal dystrophy (FECD) and may confer an increased risk of developing bipolar disorder (BD). Usage of alternative 5′ exons for transcribing the human TCF4 gene results in numerous TCF4 transcripts which encode for at least 18 N-terminally different protein isoforms that vary in their function and transactivation capability. Here we studied the TCF4 region containing the CTG TNR and characterized the transcription initiation sites of the nearby downstream 5′ exons 4a, 4b and 4c. We demonstrate that these exons are linked to alternative promoters and show that the CTG TNR expansion decreases the activity of the nearby downstream TCF4 promoters in primary cultured neurons. We confirm this finding using two RNA sequencing (RNA-seq) datasets of corneal endothelium from FECD patients with expanded CTG TNR in the TCF4 gene. Furthermore, we report an increase in the expression of various other TCF4 transcripts in FECD, possibly indicating a compensatory mechanism. We conclude that the CTG TNR affects TCF4 expression in a transcript-specific manner both in neurons and in the cornea.
Collapse
Affiliation(s)
- Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kristian Leite
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Protobios LLC, 12618, Tallinn, Estonia
| | - Kaja Nurm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Protobios LLC, 12618, Tallinn, Estonia.
| |
Collapse
|
40
|
Zhang Y, Wiesholler LM, Rabie H, Jiang P, Lai J, Hirsch T, Lee KB. Remote Control of Neural Stem Cell Fate Using NIR-Responsive Photoswitching Upconversion Nanoparticle Constructs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40031-40041. [PMID: 32805826 DOI: 10.1021/acsami.0c10145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-mediated remote control of stem cell fate, such as proliferation, differentiation, and migration, can bring a significant impact on stem cell biology and regenerative medicine. Current UV/vis-mediated control approaches are limited in terms of nonspecific absorption, poor tissue penetration, and phototoxicity. Upconversion nanoparticle (UCNP)-based near-infrared (NIR)-mediated control systems have gained increasing attention for vast applications with minimal nonspecific absorption, good penetration depth, and minimal phototoxicity from NIR excitations. Specifically, 808 nm NIR-responsive upconversion nanomaterials have shown clear advantages for biomedical applications owing to diminished heating effects and better tissue penetration. Herein, a novel 808 nm NIR-mediated control method for stem cell differentiation has been developed using multishell UCNPs, which are optimized for upconverting 808 nm NIR light to UV emission. The locally generated UV emissions further toggle photoswitching polymer capping ligands to achieve spatiotemporally controlled small-molecule release. More specifically, with 808 nm NIR excitation, stem cell differentiation factors can be released to guide neural stem cell (NSC) differentiation in a highly controlled manner. Given the challenges in stem cell behavior control, the developed 808 nm NIR-responsive UCNP-based approach to control stem cell differentiation can represent a new tool for studying single-molecule roles in stem cell and developmental biology.
Collapse
Affiliation(s)
- Yixiao Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Lisa M Wiesholler
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Hudifah Rabie
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Pengfei Jiang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jinping Lai
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
41
|
Coré N, Erni A, Hoffmann HM, Mellon PL, Saurin AJ, Beclin C, Cremer H. Stem cell regionalization during olfactory bulb neurogenesis depends on regulatory interactions between Vax1 and Pax6. eLife 2020; 9:58215. [PMID: 32762844 PMCID: PMC7440913 DOI: 10.7554/elife.58215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023] Open
Abstract
Different subtypes of interneurons, destined for the olfactory bulb, are continuously generated by neural stem cells located in the ventricular and subventricular zones along the lateral forebrain ventricles of mice. Neuronal identity in the olfactory bulb depends on the existence of defined microdomains of pre-determined neural stem cells along the ventricle walls. The molecular mechanisms underlying positional identity of these neural stem cells are poorly understood. Here, we show that the transcription factor Vax1 controls the production of two specific neuronal subtypes. First, it is directly necessary to generate Calbindin expressing interneurons from ventro-lateral progenitors. Second, it represses the generation of dopaminergic neurons by dorsolateral progenitors through inhibition of Pax6 expression. We present data indicating that this repression occurs, at least in part, via activation of microRNA miR-7.
Collapse
Affiliation(s)
- Nathalie Coré
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| | - Andrea Erni
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| | - Hanne M Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, United States
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, United States
| | - Andrew J Saurin
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| | | | - Harold Cremer
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| |
Collapse
|
42
|
Naidu VG, Zhang Y, Lowe S, Ray A, Zhu H, Li X. Temporal progression of Drosophila medulla neuroblasts generates the transcription factor combination to control T1 neuron morphogenesis. Dev Biol 2020; 464:35-44. [PMID: 32442418 PMCID: PMC7377279 DOI: 10.1016/j.ydbio.2020.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Proper neural function depends on the correct specification of individual neural fates, controlled by combinations of neuronal transcription factors. Different neural types are sequentially generated by neural progenitors in a defined order, and this temporal patterning process can be controlled by Temporal Transcription Factors (TTFs) that form temporal cascades in neural progenitors. The Drosophila medulla, part of the visual processing center of the brain, contains more than 70 neural types generated by medulla neuroblasts which sequentially express several TTFs, including Homothorax (Hth), eyeless (Ey), Sloppy paired 1 and 2 (Slp), Dichaete (D) and Tailless (Tll). However, it is not clear how such a small number of TTFs could give rise to diverse combinations of neuronal transcription factors that specify a large number of medulla neuron types. Here we report how temporal patterning specifies one neural type, the T1 neuron. We show that the T1 neuron is the only medulla neuron type that expresses the combination of three transcription factors Ocelliless (Oc or Otd), Sox102F and Ets65A. Using CRISPR-Cas9 system, we show that each transcription factor is required for the correct morphogenesis of T1 neurons. Interestingly, Oc, Sox102F and Ets65A initiate expression in neurons beginning at different temporal stages and last in a few subsequent temporal stages. Oc expressing neurons are generated in the Ey, Slp and D stages; Sox102F expressing neurons are produced in the Slp and D stages; while Ets65A is expressed in subsets of medulla neurons born in the D and later stages. The TTF Ey, Slp or D is required to initiate the expression of Oc, Sox102F or Ets65A in neurons, respectively. Thus, the neurons expressing all three transcription factors are born in the D stage and become T1 neurons. In neurons where the three transcription factors do not overlap, each of the three transcription factors can act in combination with other neuronal transcription factors to specify different neural fates. We show that this way of expression regulation of neuronal transcription factors by temporal patterning can generate more possible combinations of transcription factors in neural progeny to diversify neural fates.
Collapse
Affiliation(s)
- Vamsikrishna G Naidu
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Scott Lowe
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Alokananda Ray
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Hailun Zhu
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
43
|
24-Epibrassinolide protects against ethanol-induced behavioural teratogenesis in zebrafish embryo. Chem Biol Interact 2020; 328:109193. [PMID: 32668205 DOI: 10.1016/j.cbi.2020.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Embryonic studies have demonstrated the neurotoxic, teratogenic, and neurobehavioral toxicity of ethanol (EtOH). Although multiple mechanisms may contribute to these effects, oxidative stress has been described as the major damage pathway. In this regard, natural antioxidants have the potential to counteract oxidative stress-induced cellular damage. Therefore, the present study aimed to investigate the potential protective role of 24-epibrassinolide (24-EPI), a natural brassinosteroid with proved antioxidant properties, in EtOH-induced teratogenic effects during early zebrafish development. Embryos (~2 h post-fertilization - hpf) were exposed to 1 % EtOH, co-exposed to 24-EPI (0.01, 0.1 and 1 μM) and to 24-EPI alone (1 μM) for 24 h. Following exposure, biochemical evaluations were made at 26 hpf, developmental analysis was made throughout the embryo-larval period, and behavioural responses were evaluated at 120 hpf. Exposure to 1 % EtOH caused an increase in the number of malformations, which were diminished by 24-EPI. In addition, EtOH induced an accumulation of GSSG and consequent reduction of GSH:GSSG ratio, indicating the involvement of oxidative mechanisms in the EtOH-induced effects. These were reverted by 24-EPI as proved by the GSSG levels and GSH:GSSG ratio that returned to control values. Furthermore, exposure to EtOH resulted in behavioural deficits at 120 hpf as observed by the disrupted response to an aversive stimulus, suggesting the involvement of neurotoxic mechanisms. 24-EPI restored the behavioural deficits observed in a dose-dependent manner. The absence of effects in the embryos exposed solely to 24-EPI showed its safety during the exposure period. In conclusion, EtOH caused developmental teratogenicity and behavioural toxicity by inducing glutathione changes, which were prevented by 24-EPI.
Collapse
|
44
|
Soares J, Araujo GRDS, Santana C, Matias D, Moura-Neto V, Farina M, Frases S, Viana NB, Romão L, Nussenzveig HM, Pontes B. Membrane Elastic Properties During Neural Precursor Cell Differentiation. Cells 2020; 9:E1323. [PMID: 32466390 PMCID: PMC7349228 DOI: 10.3390/cells9061323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023] Open
Abstract
Neural precursor cells differentiate into several cell types that display distinct functions. However, little is known about how cell surface mechanics vary during the differentiation process. Here, by precisely measuring membrane tension and bending modulus, we map their variations and correlate them with changes in neural precursor cell morphology along their distinct differentiation fates. Both cells maintained in culture as neural precursors as well as those plated in neurobasal medium reveal a decrease in membrane tension over the first hours of culture followed by stabilization, with no change in bending modulus. During astrocyte differentiation, membrane tension initially decreases and then increases after 72 h, accompanied by consolidation of glial fibrillary acidic protein expression and striking actin reorganization, while bending modulus increases following observed alterations. For oligodendrocytes, the changes in membrane tension are less abrupt over the first hours, but their values subsequently decrease, correlating with a shift from oligodendrocyte marker O4 to myelin basic protein expressions and a remarkable actin reorganization, while bending modulus remains constant. Oligodendrocytes at later differentiation stages show membrane vesicles with similar membrane tension but higher bending modulus as compared to the cell surface. Altogether, our results display an entire spectrum of how membrane elastic properties are varying, thus contributing to a better understanding of neural differentiation from a mechanobiological perspective.
Collapse
Affiliation(s)
- Juliana Soares
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
| | - Glauber R. de S. Araujo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (G.R.d.S.A.); (S.F.)
| | - Cintia Santana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
| | - Diana Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, RJ 20231-092, Brazil
| | - Vivaldo Moura-Neto
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, RJ 20231-092, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
| | - Susana Frases
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (G.R.d.S.A.); (S.F.)
| | - Nathan B. Viana
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-942, Brazil
| | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
| | - H. Moysés Nussenzveig
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-942, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
| |
Collapse
|
45
|
Desai D, Pethe P. Polycomb repressive complex 1: Regulators of neurogenesis from embryonic to adult stage. J Cell Physiol 2020; 235:4031-4045. [PMID: 31608994 DOI: 10.1002/jcp.29299] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
Development of vertebrate nervous system is a complex process which involves differential gene expression and disruptions in this process or in the mature brain, may lead to neurological disorders and diseases. Extensive work that spanned several decades using rodent models and recent work on stem cells have helped uncover the intricate process of neuronal differentiation and maturation. There are various morphological changes, genetic and epigenetic modifications which occur during normal mammalian neural development, one of the chromatin modifications that controls vital gene expression are the posttranslational modifications on histone proteins, that controls accessibility of translational machinery. Among the histone modifiers, polycomb group proteins (PcGs), such as Ezh2, Eed and Suz12 form large protein complexes-polycomb repressive complex 2 (PRC2); while Ring1b and Bmi1 proteins form core of PRC1 along with accessory proteins such as Cbx, Hph, Rybp and Pcgfs catalyse histone modifications such as H3K27me3 and H2AK119ub1. PRC1 proteins are known to play critical role in X chromosome inactivation in females but they also repress the expression of key developmental genes and tightly regulate the mammalian neuronal development. In this review we have discussed the signalling pathways, morphogens and nuclear factors that initiate, regulate and maintain cells of the nervous system. Further, we have extensively reviewed the recent literature on the role of Ring1b and Bmi1 in mammalian neuronal development and differentiation; as well as highlighted questions that are still unanswered.
Collapse
Affiliation(s)
- Divya Desai
- Department of Biological Sciences, Sunandan Divatia School of Science (SDSOS), Narsee Monjee Institute of Management Studies (NMIMS) deemed-to-be University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India
| |
Collapse
|
46
|
Tambalo M, Mitter R, Wilkinson DG. A single cell transcriptome atlas of the developing zebrafish hindbrain. Development 2020; 147:dev184143. [PMID: 32094115 PMCID: PMC7097387 DOI: 10.1242/dev.184143] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Segmentation of the vertebrate hindbrain leads to the formation of rhombomeres, each with a distinct anteroposterior identity. Specialised boundary cells form at segment borders that act as a source or regulator of neuronal differentiation. In zebrafish, there is spatial patterning of neurogenesis in which non-neurogenic zones form at boundaries and segment centres, in part mediated by Fgf20 signalling. To further understand the control of neurogenesis, we have carried out single cell RNA sequencing of the zebrafish hindbrain at three different stages of patterning. Analyses of the data reveal known and novel markers of distinct hindbrain segments, of cell types along the dorsoventral axis, and of the transition of progenitors to neuronal differentiation. We find major shifts in the transcriptome of progenitors and of differentiating cells between the different stages analysed. Supervised clustering with markers of boundary cells and segment centres, together with RNA-seq analysis of Fgf-regulated genes, has revealed new candidate regulators of cell differentiation in the hindbrain. These data provide a valuable resource for functional investigations of the patterning of neurogenesis and the transition of progenitors to neuronal differentiation.
Collapse
Affiliation(s)
- Monica Tambalo
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
47
|
Medwig-Kinney TN, Smith JJ, Palmisano NJ, Tank S, Zhang W, Matus DQ. A developmental gene regulatory network for C. elegans anchor cell invasion. Development 2020; 147:dev185850. [PMID: 31806663 PMCID: PMC6983719 DOI: 10.1242/dev.185850] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023]
Abstract
Cellular invasion is a key part of development, immunity and disease. Using an in vivo model of Caenorhabditis elegans anchor cell invasion, we characterize the gene regulatory network that promotes cell invasion. The anchor cell is initially specified in a stochastic cell fate decision mediated by Notch signaling. Previous research has identified four conserved transcription factors, fos-1 (Fos), egl-43 (EVI1/MEL), hlh-2 (E/Daughterless) and nhr-67 (NR2E1/TLX), that mediate anchor cell specification and/or invasive behavior. Connections between these transcription factors and the underlying cell biology that they regulate are poorly understood. Here, using genome editing and RNA interference, we examine transcription factor interactions before and after anchor cell specification. Initially, these transcription factors function independently of one another to regulate LIN-12 (Notch) activity. Following anchor cell specification, egl-43, hlh-2 and nhr-67 function largely parallel to fos-1 in a type I coherent feed-forward loop with positive feedback to promote invasion. Together, these results demonstrate that the same transcription factors can function in cell fate specification and differentiated cell behavior, and that a gene regulatory network can be rapidly assembled to reinforce a post-mitotic, pro-invasive state.
Collapse
Affiliation(s)
- Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Jayson J Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sujata Tank
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Science and Technology Research Program, Smithtown High School East, St. James, NY 11780-1833, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
48
|
Waddell EA, Viveiros JM, Robinson EL, Sharoni MA, Latcheva NK, Marenda DR. Extramacrochaetae promotes branch and bouton number via the sequestration of daughterless in the cytoplasm of neurons. Dev Neurobiol 2019; 79:805-818. [PMID: 31581354 DOI: 10.1002/dneu.22720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/18/2019] [Accepted: 09/28/2019] [Indexed: 11/09/2022]
Abstract
The Class I basic helix-loop-helix (bHLH) proteins are highly conserved transcription factors that are ubiquitously expressed. A wealth of literature on Class I bHLH proteins has shown that these proteins must homodimerize or heterodimerize with tissue-specific HLH proteins in order to bind DNA at E-box consensus sequences to control tissue-specific transcription. Due to its ubiquitous expression, Class I bHLH proteins are also extensively regulated posttranslationally, mostly through dimerization. Previously, we reported that in addition to its role in promoting neurogenesis, the Class I bHLH protein daughterless also functions in mature neurons to restrict axon branching and synapse number. Here, we show that part of the molecular logic that specifies how daughterless functions in neurogenesis is also conserved in neurons. We show that the Type V HLH protein extramacrochaetae (Emc) binds to and represses daughterless function by sequestering daughterless to the cytoplasm. This work provides initial insights into the mechanisms underlying the function of daughterless and Emc in neurons while providing a novel understanding of how Emc functions to restrict daughterless activity within the cell.
Collapse
Affiliation(s)
- Edward A Waddell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | | | - Erin L Robinson
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Michal A Sharoni
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Nina K Latcheva
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Daniel R Marenda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Han X, Wei Y, Wu X, Gao J, Yang Z, Zhao C. PDK1 Regulates Transition Period of Apical Progenitors to Basal Progenitors by Controlling Asymmetric Cell Division. Cereb Cortex 2019; 30:406-420. [DOI: 10.1093/cercor/bhz146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/09/2019] [Accepted: 06/09/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
The six-layered neocortex consists of diverse neuron subtypes. Deeper-layer neurons originate from apical progenitors (APs), while upper-layer neurons are mainly produced by basal progenitors (BPs), which are derivatives of APs. As development proceeds, an AP generates two daughter cells that comprise an AP and a deeper-layer neuron or a BP. How the transition of APs to BPs is spatiotemporally regulated is a fundamental question. Here, we report that conditional deletion of phoshpoinositide-dependent protein kinase 1 (PDK1) in mouse developing cortex achieved by crossing Emx1Cre line with Pdk1fl/fl leads to a delayed transition of APs to BPs and subsequently causes an increased output of deeper-layer neurons. We demonstrate that PDK1 is involved in the modulation of the aPKC-Par3 complex and further regulates the asymmetric cell division (ACD). We also find Hes1, a downstream effecter of Notch signal pathway is obviously upregulated. Knockdown of Hes1 or treatment with Notch signal inhibitor DAPT recovers the ACD defect in the Pdk1 cKO. Thus, we have identified a novel function of PDK1 in controlling the transition of APs to BPs.
Collapse
Affiliation(s)
- Xiaoning Han
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yongjie Wei
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jun Gao
- Department of Neurobiology
- Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing 211166, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
50
|
Donovan LJ, Spencer WC, Kitt MM, Eastman BA, Lobur KJ, Jiao K, Silver J, Deneris ES. Lmx1b is required at multiple stages to build expansive serotonergic axon architectures. eLife 2019; 8:e48788. [PMID: 31355748 PMCID: PMC6685705 DOI: 10.7554/elife.48788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/27/2019] [Indexed: 01/18/2023] Open
Abstract
Formation of long-range axons occurs over multiple stages of morphological maturation. However, the intrinsic transcriptional mechanisms that temporally control different stages of axon projection development are unknown. Here, we addressed this question by studying the formation of mouse serotonin (5-HT) axons, the exemplar of long-range profusely arborized axon architectures. We report that LIM homeodomain factor 1b (Lmx1b)-deficient 5-HT neurons fail to generate axonal projections to the forebrain and spinal cord. Stage-specific targeting demonstrates that Lmx1b is required at successive stages to control 5-HT axon primary outgrowth, selective routing, and terminal arborization. We show a Lmx1b→Pet1 regulatory cascade is temporally required for 5-HT arborization and upregulation of the 5-HT axon arborization gene, Protocadherin-alphac2, during postnatal development of forebrain 5-HT axons. Our findings identify a temporal regulatory mechanism in which a single continuously expressed transcription factor functions at successive stages to orchestrate the progressive development of long-range axon architectures enabling expansive neuromodulation.
Collapse
Affiliation(s)
- Lauren J Donovan
- Department of NeurosciencesSchool of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - William C Spencer
- Department of NeurosciencesSchool of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Meagan M Kitt
- Department of NeurosciencesSchool of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Brent A Eastman
- Department of NeurosciencesSchool of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Katherine J Lobur
- Department of NeurosciencesSchool of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Kexin Jiao
- Department of NeurosciencesSchool of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Jerry Silver
- Department of NeurosciencesSchool of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Evan S Deneris
- Department of NeurosciencesSchool of Medicine, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|