1
|
Abuelafia AM, Santofimia-Castaño P, Estaras M, Grasso D, Chuluyan E, Lomberk G, Urrutia R, Dusetti N, Fraunhoffer N, Iovanna J. KRAS inhibition reverses chemotherapy resistance promoted by therapy-induced senescence-like in pancreatic ductal adenocarcinoma. Transl Oncol 2025; 57:102421. [PMID: 40382842 DOI: 10.1016/j.tranon.2025.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 05/01/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Emerging evidence suggests that chemotherapy can accumulate senescent-like cells within tumor tissues, a phenomenon linked to therapy resistance. The aim of this study is to analyze the senescence-like state of after-treatment persistent cells associated with KRAS mutational status to offer a therapeutic strategy to target these cells in pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN Three commercial cell lines and five patient-derived primary cell cultures with different KRAS statuses were studied following gemcitabine treatment. Senescence-like status was assessed using SA-β-gal, together with cell cycle regulators such as p21. Additionally, KRAS mutations were modulated using MRTX1133 and AMG-510, and the signaling pathways ERK and AKT were analyzed and modulated in vitro. Finally, p21 expression, associated with the senescence-like state, on patient outcomes and treatment response was analyzed in publicly available bulk RNA-seq and single-nucleus datasets. RESULTS We observed an overexpression of p21 alongside an increase in SA-β-gal signal in response to gemcitabine treatment, indicating the induction of a senescence-like state. Specific inhibition of KRAS G12D or G12C mutations reduced SA-β-gal signal and sensitized PDAC cells to gemcitabine. Moreover, ERK inhibition but not AKT inhibition decreased SA-β-gal signal. Additionally, we characterized p21 expression levels in relation to patient outcomes and found that they are modulated by treatment. CONCLUSIONS This dual-targeted therapeutic strategy holds promises for overcoming the challenges posed by KRAS-driven cancers, particularly in addressing the formidable obstacle of pancreatic cancer.
Collapse
Affiliation(s)
- Analia Meilerman Abuelafia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina
| | - Matias Estaras
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France
| | - Daniel Grasso
- Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina; Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Chuluyan
- Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina; Buenos Aires University, Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires C1121ABG, Argentina; Buenos Aires University, Faculty of Medicine, Department of Microbiology, Parasitology and Immunology, Buenos Aires C1121ABG, Argentina
| | - Gwen Lomberk
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina
| | - Nicolas Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina; Buenos Aires University, Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires C1121ABG, Argentina.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina; Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina; University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Greene G, Zonfa I, Ravasz Regan E. A Boolean network model of hypoxia, mechanosensing and TGF-β signaling captures the role of phenotypic plasticity and mutations in tumor metastasis. PLoS Comput Biol 2025; 21:e1012735. [PMID: 40238833 PMCID: PMC12061430 DOI: 10.1371/journal.pcbi.1012735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 05/08/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The tumor microenvironment aids cancer progression by promoting several cancer hallmarks, independent of cancer-related mutations. Biophysical properties of this environment, such as the stiffness of the matrix cells adhere to and local cell density, impact proliferation, apoptosis, and the epithelial to mesenchymal transition (EMT). The latter is a rate-limiting step for invasion and metastasis, enhanced in hypoxic tumor environments but hindered by soft matrices and/or high cell densities. As these influences are often studied in isolation, the crosstalk between hypoxia, biomechanical signals, and the classic EMT driver TGF-β is not well mapped, limiting our ability to predict and anticipate cancer cell behaviors in changing tumor environments. To address this, we built a Boolean regulatory network model that integrates hypoxic signaling with a mechanosensitive model of EMT, which includes the EMT-promoting crosstalk of mitogens and biomechanical signals, cell cycle control, and apoptosis. Our model reproduces the requirement of Hif-1α for proliferation, the anti-proliferative effects of strong Hif-1α stabilization during hypoxia, hypoxic protection from anoikis, and hypoxia-driven mechanosensitive EMT. We offer experimentally testable predictions about the effect of VHL loss on cancer hallmarks, with or without secondary oncogene activation. Taken together, our model serves as a predictive framework to synthesize the signaling responses associated with tumor progression and metastasis in healthy vs. mutant cells. Our single-cell model is a key step towards more extensive regulatory network models that cover damage-response and senescence, integrating most cell-autonomous cancer hallmarks into a single model that can, in turn, control the behavior of in silico cells within a tissue model of epithelial homeostasis and carcinoma.
Collapse
Affiliation(s)
- Grant Greene
- Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America
| | - Ian Zonfa
- Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America
| | - Erzsébet Ravasz Regan
- Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America
| |
Collapse
|
3
|
Li Y, Lin Y, Chen Z, Ji W, Liu H. Deficiency of ATF2 retards senescence induced by replication stress and pamidronate in mouse jaw bone marrow stem cells. Cell Signal 2025; 127:111579. [PMID: 39733927 DOI: 10.1016/j.cellsig.2024.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
The aging process is associated with a loss of bone mass and an accumulation of senescent cells, which is under epigenetic control. Morphological and molecular analysis revealed a notable reduction in bone mass and alveolar crest height in aged mice, accompanied by increased levels of senescent mouse jaw bone marrow stem cells (mJBMSCs). To investigate whether specific transcription factors are involved, assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed on mJBMSCs isolated from 2-, 4-, 8-, and 20-month-old mice. In 20-month-old mJBMSCs, increased chromatin accessibility was observed alongside elevated expression of activating transcription factor 2 (ATF2) in both cells and alveolar bone. Silencing Atf2 in mJBMSCs failed to reverse physiological aging, but delayed replication stress and pamidronate (PAM) induced senescence. The analysis of ATAC-seq and RNA sequencing indicated that the differentially expressed genes upregulated by PAM but downregulated by ATF2 deficiency were related to some key biological processes, including negative regulation of cell proliferation, inflammatory response, adipogenesis, and cellular senescence. The dual-luciferase assay was conducted to demonstrate that ATF2 enhances Cdkn2a transcription by binding to its promoter region. Our findings suggest significant chromatin alterations in aged mJBMSCs, positioning ATF2 as a potential target for combating externally induced senescence.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuxiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Chen Y, Jiang M, Li L, Yang S, Liu Z, Lin S, Wang W, Li J, Chen F, Hou Q, Ma X, Hou L. Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy. Cell Death Dis 2025; 16:49. [PMID: 39870644 PMCID: PMC11772762 DOI: 10.1038/s41419-025-07367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear. The present study demonstrated that AIM2 functions as a potent suppressor of RPE cell proliferation and EMT to maintain retinal homeostasis. Transcriptome analysis using RNA-sequencing (RNA-Seq) revealed that AIM2 was significantly downregulated in primary human RPE (phRPE) cells undergoing EMT and proliferation. Consequently, Aim2-deficient mice showed morphological changes and increased FN expression in RPE cells under physiological conditions, whereas AIM2 overexpression in phRPE cells inhibited EMT. In a retinal detachment-induced PVR mouse model, AIM2 deficiency promotes RPE-EMT, resulting in severe experimental PVR. Clinical samples further confirmed the downregulation of AIM2 in the PVR membranes from patients. Kyoto Encyclopedia of Genes and Genome analysis revealed that the PI3K-AKT signaling pathway was significantly related to RPE-EMT and that AIM2 inhibited AKT activation in RPE cells by reducing its phosphorylation. Moreover, treatment with eye drops containing an AKT inhibitor alleviated RPE-EMT and the severity of experimental PVR. These findings provide new insights into the complex mechanisms underlying RPE-EMT and PVR pathogenesis, with implications for rational strategies for potential therapeutic applications in PVR by targeting RPE-EMT.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingyuan Jiang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Liping Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhengzhou Aier Eye Hospital, Zhengzhou, China
| | - Shanshan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zuimeng Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shiwen Lin
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wanxiao Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinyang Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiang Hou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
5
|
Chen Y, Pan Y, Liu L, Guo Y, Jin L, Ren A, Wang L. The mediating role of abnormal ZEB1 methylation in the association between nickel exposure and non-syndromic orofacial cleft. Reprod Toxicol 2024; 130:108728. [PMID: 39326548 DOI: 10.1016/j.reprotox.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/31/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Our previous study found a positive relationship between fetal nickel exposure and the risk of OFCs. The teratogenic mechanism of nickel is not clear. In this study, we aim to examine the mediating effect of DNA methylation on the association of nickel(Ni) exposure with NSOFC in fetuses. 10 cases and 10 controls was used for screening target gene by Illumina Infinium Methylation EPIC(850k) BeadChip. 36 cases and 78 controls was conducted to determine DNA methylation level of selected gene in umbilical cord blood by Mass spectrometry assay. Mediation analysis was used to evaluate the potential mediating effect of selected gene methylation on the relation between concentrations of Ni and the risk for NSOFC. In the discovery stage, ZEB1 gene was identified to be hypermethylated in both nickel exposure and NSOFC group for validation. In the verification stage, the overall average methylation level of ZEB1 was significant higher in NSOFC cases(median = 8.70, interquartile range(IQR): 5.75-11.53) as compared to controls (median = 5.35, IQR: 4.30-7.78). The risk for NSOFC was increased by 1.43-fold with hypermethylation of ZEB1. Significant correlation was observed between concentrations of Ni in umbilical cord and methylation level of ZEB1. The hypermethylation of ZEB1 had a mediating effect by 20.47 % of total effect of Ni on NSOFC risk. Hypermethylation of ZEB1 is associated with the risk for NSOFC and may partially explain the association between Ni exposure and NSOFC risk. Our findings provide new insights into the epigenetic mechanisms underlying NSOFC and suggesting potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Yongyan Chen
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yaquan Pan
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lijun Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yingnan Guo
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China.
| |
Collapse
|
6
|
Deritei D, Anamika WJ, Zhou X, Silverman EK, Regan ER, Glass K. HHIP's Dynamic Role in Epithelial Wound Healing Reveals a Potential Mechanism of COPD Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611545. [PMID: 39416045 PMCID: PMC11482804 DOI: 10.1101/2024.09.05.611545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A genetic variant near HHIP has been consistently identified as associated with increased risk for Chronic Obstructive Pulmonary Disease (COPD), the third leading cause of death worldwide. However HHIP's role in COPD pathogenesis remains elusive. Canonically, HHIP is a negative regulator of the hedgehog pathway and downstream GLI1 and GLI2 activation. The hedgehog pathway plays an important role in wound healing, specifically in activating transcription factors that drive the epithelial mesenchymal transition (EMT), which in its intermediate state (partial EMT) is necessary for the collective movement of cells closing the wound. Herein, we propose a mechanism to explain HHIP's role in faulty epithelial wound healing, which could contribute to the development of emphysema, a key feature of COPD. Using two different Boolean models compiled from the literature, we show dysfunctional HHIP results in a lack of negative feedback on GLI, triggering a full EMT, where cells become mesenchymal and do not properly close the wound. We validate these Boolean models with experimental evidence gathered from published scientific literature. We also experimentally test if low HHIP expression is associated with EMT at the edge of wounds by using a scratch assay in a human lung epithelial cell line. Finally, we show evidence supporting our hypothesis in bulk and single cell RNA-Seq data from different COPD cohorts. Overall, our analyses suggest that aberrant wound healing due to dysfunctional HHIP, combined with chronic epithelial damage through cigarette smoke exposure, may be a primary cause of COPD-associated emphysema.
Collapse
Affiliation(s)
- Dávid Deritei
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Wardatul Jannat Anamika
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Ohyama K, Shinohara HM, Takayama N, Ogawa R, Omura S, Hayashida M, Takahashi T. Differentiation stage-specific expression of transcriptional regulators for epithelial mesenchymal transition in dentate granule progenitors. Front Neurosci 2024; 18:1425849. [PMID: 39268037 PMCID: PMC11390541 DOI: 10.3389/fnins.2024.1425849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
During the development of the mouse dentate gyrus (DG), granule neuronal progenitors (GNPs) arise from glial fibrillary acidic protein (GFAP)-expressing neural stem cells in the dentate notch. However, the transcriptional regulators that control their stepwise differentiation remain poorly defined. Since neurogenesis involves epithelial-to-mesenchymal transition (EMT)-like processes, we investigated the spatio-temporal expression profiles of the EMT transcription factors Zeb1, Scratch2 (Scrt2) and Nkx6-2 in relation to known GNP markers. Our results show that Zeb1 and Scrt2 exhibit sequential, but partially overlapping expression across embryonic and postnatal stages of GNP differentiation. Zeb1 is highly enriched in gfap-GFP+/Sox2+ neural stem/progenitor pools and subsets of Tbr2+/Prox1+/NeuroD+ intermediate GNPs, whereas Scrt2 predominates in Tbr2+/Prox1+/NeuroD+ GNPs. Strikingly, the neuronal EMT regulator Nkx6-2 shows selective expression in postnatal Tbr2+/Prox1+ GNPs, but it is excluded from embryonic counterparts. This temporally coordinated yet distinct expression of Zeb1, Scrt2 and Nkx6-2 reveals discrete transcriptional programs orchestrating GNP differentiation and neurogenic progression at embryonic versus postnatal stages of DG neurogenesis.
Collapse
Affiliation(s)
- Kyoji Ohyama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi M Shinohara
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Natsumi Takayama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Rina Ogawa
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Shoichiro Omura
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Mio Hayashida
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Tokiharu Takahashi
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Zheng D, Elnegiry AA, Luo C, Bendahou MA, Xie L, Bell D, Takahashi Y, Hanna E, Mias GI, Tsoi MF, Gu B. Brd4::Nutm1 fusion gene initiates NUT carcinoma in vivo. Life Sci Alliance 2024; 7:e202402602. [PMID: 38724194 PMCID: PMC11082452 DOI: 10.26508/lsa.202402602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
NUT carcinoma (NC) is an aggressive cancer with no effective treatment. About 70% of NUT carcinoma is associated with chromosome translocation events that lead to the formation of a BRD4::NUTM1 fusion gene. Because the BRD4::NUTM1 gene is unequivocally cytotoxic when ectopically expressed in cell lines, questions remain on whether the fusion gene can initiate NC. Here, we report the first genetically engineered mouse model for NUT carcinoma that recapitulates the human t(15;19) chromosome translocation in mice. We demonstrated that the mouse t(2;17) syntenic chromosome translocation, forming the Brd4::Nutm1 fusion gene, could induce aggressive carcinomas in mice. The tumors present histopathological and molecular features similar to human NC, with enrichment of undifferentiated cells. Similar to the reports of human NC incidence, Brd4::Nutm1 can induce NC from a broad range of tissues with a strong phenotypical variability. The consistent induction of poorly differentiated carcinoma demonstrated a strong reprogramming activity of BRD4::NUTM1. The new mouse model provided a critical preclinical model for NC that will lead to better understanding and therapy development for NC.
Collapse
Affiliation(s)
- Dejin Zheng
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Ahmed A Elnegiry
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Home Institution: Department of Cytology and Histology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Chenxiang Luo
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Home Institution: Center for Reproductive Medicine and Department of Gynecology & Obstetrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Mohammed Amine Bendahou
- Infection Biology and Cancer Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Liangqi Xie
- Infection Biology and Cancer Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Diana Bell
- City of Hope Comprehensive Cancer Center, Pathology, Duarte, CA, USA
| | - Yoko Takahashi
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehab Hanna
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George I Mias
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, College of Nature Science, Michigan State University, East Lansing, MI, USA
| | - Mayra F Tsoi
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Jin L, Zhang L, Yan C, Liu M, Dean DC, Liu Y. Corneal injury repair and the potential involvement of ZEB1. EYE AND VISION (LONDON, ENGLAND) 2024; 11:20. [PMID: 38822380 PMCID: PMC11143703 DOI: 10.1186/s40662-024-00387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-β. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Mengxin Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Douglas C Dean
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Do KK, Wang F, Sun X, Zhang Y, Liang W, Liu JY, Jiang DY, Lu X, Wang W, Zhang L, Dean DC, Liu Y. Conditional deletion of Zeb1 in Csf1r + cells reduces inflammatory response of the cornea to alkali burn. iScience 2024; 27:109694. [PMID: 38660397 PMCID: PMC11039400 DOI: 10.1016/j.isci.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
ZEB1 is an essential factor in embryonic development. In adults, it is often highly expressed in malignant tumors with low expression in normal tissues. The major biological function of ZEB1 in developing embryos and progressing cancers is to transdifferentiate cells from an epithelial to mesenchymal phenotype; but what roles ZEB1 plays in normal adult tissues are largely unknown. We previously reported that the reduction of Zeb1 in monoallelic global knockout (Zeb1+/-) mice reduced corneal inflammation-associated neovascularization following alkali burn. To uncover the cellular mechanism underlying the Zeb1 regulation of corneal inflammation, we functionally deleted Zeb1 alleles in Csf1r+ myeloid cells using a conditional knockout (cKO) strategy and found that Zeb1 cKO reduced leukocytes in the cornea after alkali burn. The reduction of immune cells was due to their increased apoptotic rate and linked to a Zeb1-downregulated apoptotic pathway. We conclude that Zeb1 facilitates corneal inflammatory response by maintaining Csf1r+ cell viability.
Collapse
Affiliation(s)
- Khoi K. Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Xiaolei Sun
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX 78229, USA
| | - Wei Liang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - John Y. Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Daniel Y. Jiang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - Douglas C. Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Reimann M, Lee S, Schmitt CA. Cellular senescence: Neither irreversible nor reversible. J Exp Med 2024; 221:e20232136. [PMID: 38385946 PMCID: PMC10883852 DOI: 10.1084/jem.20232136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Cellular senescence is a critical stress response program implicated in embryonic development, wound healing, aging, and immunity, and it backs up apoptosis as an ultimate cell-cycle exit mechanism. In analogy to replicative exhaustion of telomere-eroded cells, premature types of senescence-referring to oncogene-, therapy-, or virus-induced senescence-are widely considered irreversible growth arrest states as well. We discuss here that entry into full-featured senescence is not necessarily a permanent endpoint, but dependent on essential maintenance components, potentially transient. Unlike a binary state switch, we view senescence with its extensive epigenomic reorganization, profound cytomorphological remodeling, and distinctive metabolic rewiring rather as a journey toward a full-featured arrest condition of variable strength and depth. Senescence-underlying maintenance-essential molecular mechanisms may allow cell-cycle reentry if not continuously provided. Importantly, senescent cells that resumed proliferation fundamentally differ from those that never entered senescence, and hence would not reflect a reversion but a dynamic progression to a post-senescent state that comes with distinct functional and clinically relevant ramifications.
Collapse
Affiliation(s)
- Maurice Reimann
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
| | - Soyoung Lee
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
| | - Clemens A Schmitt
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Linz, Austria
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| |
Collapse
|
12
|
Yao L, Xu Z, Davies DE, Jones MG, Wang Y. Dysregulated bidirectional epithelial-mesenchymal crosstalk: a core determinant of lung fibrosis progression. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:27-33. [PMID: 38558961 PMCID: PMC7615773 DOI: 10.1016/j.pccm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progressive lung fibrosis is characterised by dysregulated extracellular matrix (ECM) homeostasis. Understanding of disease pathogenesis remains limited and has prevented the development of effective treatments. While an abnormal wound healing response is strongly implicated in lung fibrosis initiation, factors that determine why fibrosis progresses rather than regular tissue repair occurs are not fully explained. Within human lung fibrosis there is evidence of altered epithelial and mesenchymal lung populations as well as cells undergoing epithelial-mesenchymal transition (EMT), a dynamic and reversible biological process by which epithelial cells lose their cell polarity and down-regulate cadherin-mediated cell-cell adhesion to gain migratory properties. This review will focus upon the role of EMT and dysregulated epithelial-mesenchymal crosstalk in progressive lung fibrosis.
Collapse
Affiliation(s)
- Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Zijian Xu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Donna E. Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
13
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
14
|
Deschênes-Simard X, Malleshaiah M, Ferbeyre G. Extracellular Signal-Regulated Kinases: One Pathway, Multiple Fates. Cancers (Basel) 2023; 16:95. [PMID: 38201521 PMCID: PMC10778234 DOI: 10.3390/cancers16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This comprehensive review delves into the multifaceted aspects of ERK signaling and the intricate mechanisms underlying distinct cellular fates. ERK1 and ERK2 (ERK) govern proliferation, transformation, epithelial-mesenchymal transition, differentiation, senescence, or cell death, contingent upon activation strength, duration, and context. The biochemical mechanisms underlying these outcomes are inadequately understood, shaped by signaling feedback and the spatial localization of ERK activation. Generally, ERK activation aligns with the Goldilocks principle in cell fate determination. Inadequate or excessive ERK activity hinders cell proliferation, while balanced activation promotes both cell proliferation and survival. Unraveling the intricacies of how the degree of ERK activation dictates cell fate requires deciphering mechanisms encompassing protein stability, transcription factors downstream of ERK, and the chromatin landscape.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Montreal University Hospital Center (CHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Mohan Malleshaiah
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Gerardo Ferbeyre
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
15
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
16
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
17
|
Lee S, Song SG, Chung DH. Comprehensive Transcriptomic Analysis for Thymic Epithelial Cells of Aged Mice and Humans. Immune Netw 2023; 23:e36. [PMID: 37970235 PMCID: PMC10643332 DOI: 10.4110/in.2023.23.e36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
Thymic epithelial cells (TECs) play a critical role in thymic development and thymopoiesis. As individuals age, TECs undergo various changes that impact their functions, leading to a reduction in cell numbers and impaired thymic selection. These age-related alterations have been observed in both mice and humans. However, the precise mechanisms underlying age-related TEC dysfunction remain unclear. Furthermore, there is a lack of a comprehensive study that connects mouse and human biological processes in this area. To address this gap, we conducted an extensive transcriptome analysis of young and old TECs in mice, complemented by further analysis of publicly available human TEC single-cell RNA sequencing data. Our analysis revealed alterations in both known and unknown pathways that potentially contribute to age-related TEC dysfunction. Specifically, we observed downregulation of pathways related to cell proliferation, T cell development, metabolism, and cytokine signaling in old age TECs. Conversely, TGF-β, BMP, and Wnt signaling pathways were upregulated, which have been known to be associated with age-related TEC dysfunctions or newly discovered in this study. Importantly, we found that these age-related changes in mouse TECs were consistently present in human TECs as well. This cross-species validation further strengthens the significance of our findings. In conclusion, our comprehensive analysis provides valuable insight into the biological and immunological characteristics of aged TECs in both mice and humans. These findings contribute to a better understanding of thymic involution and age-induced immune dysfunction.
Collapse
Affiliation(s)
- Sangsin Lee
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
18
|
Xiong X, James BT, Boix CA, Park YP, Galani K, Victor MB, Sun N, Hou L, Ho LL, Mantero J, Scannail AN, Dileep V, Dong W, Mathys H, Bennett DA, Tsai LH, Kellis M. Epigenomic dissection of Alzheimer's disease pinpoints causal variants and reveals epigenome erosion. Cell 2023; 186:4422-4437.e21. [PMID: 37774680 PMCID: PMC10782612 DOI: 10.1016/j.cell.2023.08.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/04/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.
Collapse
Affiliation(s)
- Xushen Xiong
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Benjamin T James
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Carles A Boix
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Yongjin P Park
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Pathology and Laboratory Medicine, Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kyriaki Galani
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Na Sun
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Lei Hou
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Li-Lun Ho
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Julio Mantero
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Aine Ni Scannail
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weixiu Dong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Li-Huei Tsai
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Chrysanthopoulos I, Mavrogianni D, Drakaki E, Potiris A, Zikopoulos A, Zachariou A, Domali E, Drakakis P, Stavros S. Detection of zeb1 Gene in Granulosa Cells in Women Undergoing IVF Treatment. J Clin Med 2023; 12:5652. [PMID: 37685721 PMCID: PMC10488692 DOI: 10.3390/jcm12175652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND ZEB1 plays a role in epithelial-to-mesenchymal transition and acts as a repressor of E-cadherin, TGF-β, and Wnt/β-catenin. Since ZEB1 protein is expressed in estrogen-responsive tissues, and expression of the gene in the normal ovary and endometrium is positively correlated with high estrogen levels, we performed a direct analysis of granulosa cell samples to determine whether there are any significant changes in zeb1 expression during folliculogenesis. METHODS ZEB1 expression levels were measured in the granulosa cells of 56 infertile women undergoing IVF treatment. RNA extraction from granulosa cells was performed along with reverse transcription quantitative polymerase chain reaction (RT-qPCR) with SYBR Green I to determine zeb1 gene expression levels. Statistical analysis was performed by using t-test, while possible correlations of the expression of ZEB1 protein with body mass index (BMI), age, number of oocytes, and oocyte maturation were investigated. RESULTS Zeb1 gene expression levels correlate significantly with body mass index (BMI) and age, but not with oocyte number and oocyte maturation stage. Obese women demonstrate a higher expression level of zeb1 gene compared to normal and overweight women. Moreover, zeb1 gene is overexpressed in women aged 35-40 years old and is under-expressed in women >40 years old. CONCLUSIONS ZEB1 expression should be further investigated as it may unveil new potential findings of the zeb1 gene's role in female fertility and its use as a biomarker in fertility workups.
Collapse
Affiliation(s)
- Ioannis Chrysanthopoulos
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
| | - Despoina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
| | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Athanasios Zikopoulos
- Department of Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LQ, UK;
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece;
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
| | - Peter Drakakis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
20
|
Singh N, Siebzehnrubl FA, Martinez-Garay I. Transcriptional control of embryonic and adult neural progenitor activity. Front Neurosci 2023; 17:1217596. [PMID: 37588515 PMCID: PMC10426504 DOI: 10.3389/fnins.2023.1217596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Neural precursors generate neurons in the embryonic brain and in restricted niches of the adult brain in a process called neurogenesis. The precise control of cell proliferation and differentiation in time and space required for neurogenesis depends on sophisticated orchestration of gene transcription in neural precursor cells. Much progress has been made in understanding the transcriptional regulation of neurogenesis, which relies on dose- and context-dependent expression of specific transcription factors that regulate the maintenance and proliferation of neural progenitors, followed by their differentiation into lineage-specified cells. Here, we review some of the most widely studied neurogenic transcription factors in the embryonic cortex and neurogenic niches in the adult brain. We compare functions of these transcription factors in embryonic and adult neurogenesis, highlighting biochemical, developmental, and cell biological properties. Our goal is to present an overview of transcriptional regulation underlying neurogenesis in the developing cerebral cortex and in the adult brain.
Collapse
Affiliation(s)
- Niharika Singh
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Florian A. Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Lee HW, Adachi T, Pak B, Park S, Hu X, Choi W, Kowalski PS, Chang CH, Clapham KR, Lee A, Papangeli I, Kim J, Han O, Park J, Anderson DG, Simons M, Jin SW, Chun HJ. BMPR1A promotes ID2-ZEB1 interaction to suppress excessive endothelial to mesenchymal transition. Cardiovasc Res 2023; 119:813-825. [PMID: 36166408 PMCID: PMC10409893 DOI: 10.1093/cvr/cvac159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/25/2022] [Accepted: 09/14/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Components of bone morphogenetic protein (BMP) signalling have been implicated in both pathogenesis of pulmonary arterial hypertension (PAH) and endothelial-mesenchymal transition (EndoMT). In particular, the importance of BMP type 2 receptor in these processes has been extensively analysed. However, the contribution of BMP type 1 receptors (BMPR1s) to the onset of PAH and EndoMT remains poorly understood. BMPR1A, one of BMPR1s, was recently implicated in the pathogenesis of PAH, and was found to be down-regulated in the lungs of PAH patients, neither the downstream mechanism nor its contribution to EndoMT has been described. Therefore, we aim to delineate the role of endothelial BMPR1A in modulating EndoMT and pathogenesis of PAH. METHODS AND RESULTS We find that BMPR1A knockdown in endothelial cells (ECs) induces hallmarks of EndoMT, and deletion of endothelial Bmpr1a in adult mice (Bmpr1aiECKO) leads to development of PAH-like symptoms due to excessive EndoMT. By lineage tracing, we show that endothelial-derived smooth muscle cells are increased in endothelial Bmpr1a-deleted mice. Mechanistically, we identify ZEB1 as a primary target for BMPR1A in this setting; upon BMPR1A activation, ID2 physically interacts and sequesters ZEB1 to attenuate transcription of Tgfbr2, which in turn lowers the responses of ECs towards transforming growth factor beta (TGFβ) stimulation and prevents excessive EndoMT. In Bmpr1aiECKO mice, administering endothelial targeting lipid nanoparticles containing siRNA against Tgfbr2 effectively ameliorate PAH, reiterating the importance of BMPR1A-ID2/ZEB1-TGFBR2 axis in modulating progression of EndoMT and pathogenesis of PAH. CONCLUSIONS We demonstrate that BMPR1A is key to maintain endothelial identity and to prevent excessive EndoMT. We identify BMPR1A-induced interaction between ID2 and ZEB1 is the key regulatory step for onset of EndoMT and pathogenesis of PAH. Our findings indicate that BMPR1A-ID2/ZEB1-TGFBR2 signalling axis could serve as a potential novel therapeutic target for PAH and other EndoMT-related vascular disorders.
Collapse
Affiliation(s)
- Heon-Woo Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Takaomi Adachi
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Boryeong Pak
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Saejeong Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - C Hong Chang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Katharine R Clapham
- Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA 02127, USA
| | - Aram Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Orjin Han
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jihwan Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suk-Won Jin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- VA Connecticut Healthcare System, 950 Campbell Ave, 111B, West Haven, CT 06516, USA
| |
Collapse
|
22
|
Derk J, Como CN, Jones HE, Joyce LR, Kim S, Spencer BL, Bonney S, O'Rourke R, Pawlikowski B, Doran KS, Siegenthaler JA. Formation and function of the meningeal arachnoid barrier around the developing mouse brain. Dev Cell 2023; 58:635-644.e4. [PMID: 36996816 PMCID: PMC10231667 DOI: 10.1016/j.devcel.2023.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 03/31/2023]
Abstract
The arachnoid barrier, a component of the blood-cerebrospinal fluid barrier (B-CSFB) in the meninges, is composed of epithelial-like, tight-junction-expressing cells. Unlike other central nervous system (CNS) barriers, its' developmental mechanisms and timing are largely unknown. Here, we show that mouse arachnoid barrier cell specification requires the repression of Wnt-β-catenin signaling and that constitutively active β-catenin can prevent its formation. We also show that the arachnoid barrier is functional prenatally and, in its absence, a small molecular weight tracer and the bacterium group B Streptococcus can cross into the CNS following peripheral injection. Acquisition of barrier properties prenatally coincides with the junctional localization of Claudin 11, and increased E-cadherin and maturation continues after birth, where postnatal expansion is marked by proliferation and re-organization of junctional domains. This work identifies fundamental mechanisms that drive arachnoid barrier formation, highlights arachnoid barrier fetal functions, and provides novel tools for future studies on CNS barrier development.
Collapse
Affiliation(s)
- Julia Derk
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christina N Como
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO 80045, USA
| | - Hannah E Jones
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Cell Biology Stem Cells and Development Graduate Program, Aurora, CO 80045, USA
| | - Luke R Joyce
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sol Kim
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Cell Biology Stem Cells and Development Graduate Program, Aurora, CO 80045, USA
| | - Brady L Spencer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie Bonney
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Rebecca O'Rourke
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Brad Pawlikowski
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Siegenthaler
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Cell Biology Stem Cells and Development Graduate Program, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Zhang Y, Do KK, Wang F, Lu X, Liu JY, Li C, Ceresa BP, Zhang L, Dean DC, Liu Y. Zeb1 facilitates corneal epithelial wound healing by maintaining corneal epithelial cell viability and mobility. Commun Biol 2023; 6:434. [PMID: 37081200 PMCID: PMC10119281 DOI: 10.1038/s42003-023-04831-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
The cornea is the outmost ocular tissue and plays an important role in protecting the eye from environmental insults. Corneal epithelial wounding provokes pain and fear and contributes to the most ocular trauma emergency assessments worldwide. ZEB1 is an essential transcription factor in development; but its roles in adult tissues are not clear. We identify Zeb1 is an intrinsic factor that facilitates corneal epithelial wound healing. In this study, we demonstrate that monoallelic deletion of Zeb1 significantly expedites corneal cell death and inhibits corneal epithelial EMT-related cell migration upon an epithelial debridement. We provide evidence that Zeb1-regulation of corneal epithelial wound healing is through the repression of genes required for Tnfa-induced epithelial cell death and the induction of genes beneficial for epithelial cell migration. We suggest utilizing TNF-α antagonists would reduce TNF/TNFR1-induced cell death in the corneal epithelium and inflammation in the corneal stroma to help corneal wound healing.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, 78229, USA
| | - Khoi K Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, 250021, Jinan, China
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John Y Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Chi Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, China
| | - Douglas C Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
24
|
Friend C, Parajuli P, Razzaque MS, Atfi A. Deciphering epithelial-to-mesenchymal transition in pancreatic cancer. Adv Cancer Res 2023; 159:37-73. [PMID: 37268401 DOI: 10.1016/bs.acr.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex cellular program that alters epithelial cells and induces their transformation into mesenchymal cells. While essential to normal developmental processes such as embryogenesis and wound healing, EMT has also been linked to the development and progression of various diseases, including fibrogenesis and tumorigenesis. Under homeostatic conditions, initiation of EMT is mediated by key signaling pathways and pro-EMT-transcription factors (EMT-TFs); however, in certain contexts, these pro-EMT regulators and programs also drive cell plasticity and cell stemness to promote oncogenesis as well as metastasis. In this review, we will explain how EMT and EMT-TFs mediate the initiation of pro-cancer states and how they influence late-stage progression and metastasis in pancreatic ductal adenocarcinoma (PDAC), the most severe form of pancreatic cancer.
Collapse
Affiliation(s)
- Creighton Friend
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Parash Parajuli
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
25
|
Swahn H, Li K, Duffy T, Olmer M, D'Lima DD, Mondala TS, Natarajan P, Head SR, Lotz MK. Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus. Ann Rheum Dis 2023; 82:403-415. [PMID: 36564153 PMCID: PMC10076001 DOI: 10.1136/ard-2022-223227] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/08/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Single-cell level analysis of articular cartilage and meniscus tissues from human healthy and osteoarthritis (OA) knees. METHODS Single-cell RNA sequencing (scRNA-seq) analyses were performed on articular cartilage and meniscus tissues from healthy (n=6, n=7) and OA (n=6, n=6) knees. Expression of genes of interest was validated using immunohistochemistry and RNA-seq and function was analysed by gene overexpression and depletion. RESULTS scRNA-seq analyses of human knee articular cartilage (70 972 cells) and meniscus (78 017 cells) identified a pathogenic subset that is shared between both tissues. This cell population is expanded in OA and has strong OA and senescence gene signatures. Further, this subset has critical roles in extracellular matrix (ECM) and tenascin signalling and is the dominant sender of signals to all other cartilage and meniscus clusters and a receiver of TGFβ signalling. Fibroblast activating protein (FAP) is also a dysregulated gene in this cluster and promotes ECM degradation. Regulons that are controlled by transcription factor ZEB1 are shared between the pathogenic subset in articular cartilage and meniscus. In meniscus and cartilage cells, FAP and ZEB1 promote expression of genes that contribute to OA pathogenesis, including senescence. CONCLUSIONS These single-cell studies identified a senescent pathogenic cell cluster that is present in cartilage and meniscus and has FAP and ZEB1 as main regulators which are novel and promising therapeutic targets for OA-associated pathways in both tissues.
Collapse
Affiliation(s)
- Hannah Swahn
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Kun Li
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Tomas Duffy
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Darryl D D'Lima
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, Scripps Health, La Jolla, California, USA
| | - Tony S Mondala
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jola, California, USA
| | - Padmaja Natarajan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jola, California, USA
| | - Steven R Head
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jola, California, USA
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
26
|
Epithelial-to-Mesenchymal Transition and Phenotypic Marker Evaluation in Human, Canine, and Feline Mammary Gland Tumors. Animals (Basel) 2023; 13:ani13050878. [PMID: 36899736 PMCID: PMC10000046 DOI: 10.3390/ani13050878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal properties. EMT has been closely associated with cancer cell aggressiveness. The aim of this study was to evaluate the mRNA and protein expression of EMT-associated markers in mammary tumors of humans (HBC), dogs (CMT), and cats (FMT). Real-time qPCR for SNAIL, TWIST, and ZEB, and immunohistochemistry for E-cadherin, vimentin, CD44, estrogen receptor (ER), progesterone receptor (PR), ERBB2, Ki-67, cytokeratin (CK) 8/18, CK5/6, and CK14 were performed. Overall, SNAIL, TWIST, and ZEB mRNA was lower in tumors than in healthy tissues. Vimentin was higher in triple-negative HBC (TNBC) and FMTs than in ER+ HBC and CMTs (p < 0.001). Membranous E-cadherin was higher in ER+ than in TNBCs (p < 0.001), whereas cytoplasmic E-cadherin was higher in TNBCs when compared with ER+ HBC (p < 0.001). A negative correlation between membranous and cytoplasmic E-cadherin was found in all three species. Ki-67 was higher in FMTs than in CMTs (p < 0.001), whereas CD44 was higher in CMTs than in FMTs (p < 0.001). These results confirmed a potential role of some markers as indicators of EMT, and suggested similarities between ER+ HBC and CMTs, and between TNBC and FMTs.
Collapse
|
27
|
Zhu L, Tang Y, Li XY, Kerk SA, Lyssiotis CA, Feng W, Sun X, Hespe GE, Wang Z, Stemmler MP, Brabletz S, Brabletz T, Keller ET, Ma J, Cho JS, Yang J, Weiss SJ. A Zeb1/MtCK1 metabolic axis controls osteoclast activation and skeletal remodeling. EMBO J 2023; 42:e111148. [PMID: 36843552 PMCID: PMC10068323 DOI: 10.15252/embj.2022111148] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/28/2023] Open
Abstract
Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Samuel A Kerk
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Wenqing Feng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Geoffrey E Hespe
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Zijun Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Evan T Keller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology and the Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ma
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jingwen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Collin G, Foy JP, Aznar N, Rama N, Wierinckx A, Saintigny P, Puisieux A, Ansieau S. Intestinal Epithelial Cells Adapt to Chronic Inflammation through Partial Genetic Reprogramming. Cancers (Basel) 2023; 15:cancers15030973. [PMID: 36765930 PMCID: PMC9913703 DOI: 10.3390/cancers15030973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are considered to be the main drivers of inflammatory bowel disease. We investigated whether this permanent insult compels intestinal stem cells to develop strategies to dampen the deleterious effects of ROS. As an adverse effect, this adaptation process may increase their tolerance to oncogenic insults and facilitate their neoplastic transformation. We submitted immortalized human colonic epithelial cells to either a mimic of chronic inflammation or to a chemical peroxide, analyzed how they adapted to stress, and addressed the biological relevance of these observations in databases. We demonstrated that cells adapt to chronic-inflammation-associated oxidative stress in vitro through a partial genetic reprogramming. Through a gene set enrichment analysis, we showed that this program is recurrently active in the intestinal mucosae of Crohn's and ulcerative colitis disease patients and evolves alongside disease progression. Based on a previously reported characterization of intestinal stem and precursor cells using tracing experiments, we lastly confirmed the activation of the program in intestinal precursor cells during murine colorectal cancer development. This adaptive process is thus likely to play a role in the progression of Crohn's and ulcerative disease, and potentially in the initiation of colorectal cancer.
Collapse
Affiliation(s)
- Guillaume Collin
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | - Jean-Philippe Foy
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | | | - Pierre Saintigny
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | - Stéphane Ansieau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
- Correspondence: ; Tel.: +33-(0)469-166-680
| |
Collapse
|
29
|
Schuhwerk H, Kleemann J, Gupta P, van Roey R, Armstark I, Kreileder M, Feldker N, Ramesh V, Hajjaj Y, Fuchs K, Mahapatro M, Hribersek M, Volante M, Groenewoud A, Engel FB, Ceppi P, Eckstein M, Hartmann A, Müller F, Kroll T, Stemmler MP, Brabletz S, Brabletz T. The EMT transcription factor ZEB1 governs a fitness-promoting but vulnerable DNA replication stress response. Cell Rep 2022; 41:111819. [PMID: 36516781 DOI: 10.1016/j.celrep.2022.111819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell-cycle progression, DNA repair, and cell death, EMT promotes invasiveness, cellular plasticity, and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities. Using multi-omics, inhibitors, and high-content microscopy, we discover a chemoresistant ZEB1-high-expressing sub-population (ZEB1hi) with co-rewired cell-cycle progression and proficient DDR across tumor entities. ZEB1 stimulates accelerated S-phase entry via CDK6, inflicting endogenous DNA replication stress. However, DDR buildups involving constitutive MRE11-dependent fork resection allow homeostatic cycling and enrichment of ZEB1hi cells during transforming growth factor β (TGF-β)-induced EMT and chemotherapy. Thus, ZEB1 promotes G1/S transition to launch a progressive DDR benefitting stress tolerance, which concurrently manifests a targetable vulnerability in chemoresistant ZEB1hi cells. Our study thus highlights the translationally relevant intercept of the DDR and EMT.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Julia Kleemann
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, Erlangen Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Kreileder
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nora Feldker
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vignesh Ramesh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Yussuf Hajjaj
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Fuchs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mojca Hribersek
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marco Volante
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Arwin Groenewoud
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paolo Ceppi
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Müller
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital Erlangen, Erlangen Germany
| | - Torsten Kroll
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
30
|
Post-Translational Modification of ZEB Family Members in Cancer Progression. Int J Mol Sci 2022; 23:ijms232315127. [PMID: 36499447 PMCID: PMC9737314 DOI: 10.3390/ijms232315127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Post-translational modification (PTM), the essential regulatory mechanisms of proteins, play essential roles in physiological and pathological processes. In addition, PTM functions in tumour development and progression. Zinc finger E-box binding homeobox (ZEB) family homeodomain transcription factors, such as ZEB1 and ZEB2, play a pivotal role in tumour progression and metastasis by induction epithelial-mesenchymal transition (EMT), with activation of stem cell traits, immune evasion and epigenetic reprogramming. However, the relationship between ZEB family members' post-translational modification (PTM) and tumourigenesis remains largely unknown. Therefore, we focussed on the PTM of ZEBs and potential therapeutic approaches in cancer progression. This review provides an overview of the diverse functions of ZEBs in cancer and the mechanisms and therapeutic implications that target ZEB family members' PTMs.
Collapse
|
31
|
Poonaki E, Kahlert UD, Meuth SG, Gorji A. The role of the ZEB1–neuroinflammation axis in CNS disorders. J Neuroinflammation 2022; 19:275. [PMCID: PMC9675144 DOI: 10.1186/s12974-022-02636-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a master modulator of the epithelial–mesenchymal transition (EMT), a process whereby epithelial cells undergo a series of molecular changes and express certain characteristics of mesenchymal cells. ZEB1, in association with other EMT transcription factors, promotes neuroinflammation through changes in the production of inflammatory mediators, the morphology and function of immune cells, and multiple signaling pathways that mediate the inflammatory response. The ZEB1–neuroinflammation axis plays a pivotal role in the pathogenesis of different CNS disorders, such as brain tumors, multiple sclerosis, cerebrovascular diseases, and neuropathic pain, by promoting tumor cell proliferation and invasiveness, formation of the hostile inflammatory micromilieu surrounding neuronal tissues, dysfunction of microglia and astrocytes, impairment of angiogenesis, and dysfunction of the blood–brain barrier. Future studies are needed to elucidate whether the ZEB1–neuroinflammation axis could serve as a diagnostic, prognostic, and/or therapeutic target for CNS disorders.
Collapse
Affiliation(s)
- Elham Poonaki
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany ,grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany
| | - Ulf Dietrich Kahlert
- grid.5807.a0000 0001 1018 4307Molecular and Experimental Surgery, Faculty of Medicine, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Gorji
- grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany ,grid.512981.60000 0004 0612 1380Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran ,grid.411583.a0000 0001 2198 6209Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Regorafenib Induces Senescence and Epithelial-Mesenchymal Transition in Colorectal Cancer to Promote Drug Resistance. Cells 2022; 11:cells11223663. [PMID: 36429091 PMCID: PMC9688587 DOI: 10.3390/cells11223663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Potential intrinsic resistance mechanisms to regorafenib were explored after short exposure (3 days) on five CRC cell lines (HCT-116, SW1116, LS-1034, SW480, Caco-2). The observation of senescence-like features led to the investigation of a drug-initiated phenotype switch. Following long-term exposure (12 months) of HCT-116 and SW480 cell lines to regorafenib, we developed resistant models to explore acquired resistance. SW480 cells demonstrated senescent-like properties, including a cell arrest in the late G2/prophase cell cycle stage and a statistically significant decrease in the expression of G1 Cyclin-Dependent Kinase inhibitors and key cell cycle regulators. A specific senescence-associated secretome was also observed. In contrast, HCT-116 treated cells presented early senescent features and developed acquired resistance triggering EMT and a more aggressive phenotype over time. The gained migration and invasion ability by long-exposed cells was associated with the increased expression level of key cellular and extracellular EMT-related factors. The PI3K/AKT pathway was a significant player in the acquired resistance of HCT-116 cells, possibly related to a PI3KCA mutation in this cell line. Our findings provide new insights into the phenotypic plasticity of CRC cells able, under treatment pressure, to acquire a stable TIS or to use an early senescence state to undergo EMT.
Collapse
|
33
|
Wang M, Wu Y, He Y, Liu J, Chen Y, Huang J, Qi G, Li P. SIRT1 upregulation promotes epithelial-mesenchymal transition by inducing senescence escape in endometriosis. Sci Rep 2022; 12:12302. [PMID: 35853978 PMCID: PMC9296487 DOI: 10.1038/s41598-022-16629-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Endometrial epithelial cells carry distinct cancer-associated alterations that may be more susceptible to endometriosis. Mouse models have shown that overexpression of SIRT1 associated with oncogene activation contributes to the pathogenesis of endometriosis, but the underlying reason remains elusive. Here, we used integrated systems biology analysis and found that enrichment of endometrial stromal fibroblasts in endometriosis and their cellular abundance correlated negatively with epithelial cells in clinical specimens. Furthermore, endometrial epithelial cells were characterized by significant overexpression of SIRT1, which is involved in triggering the EMT switch by escaping damage or oncogene-induced induced senescence in clinical specimens and in vitro human cell line models. This observation supports that genetic and epigenetic incident favors endometrial epithelia cells escape from senescence and fuel EMT process in endometriosis, what could be overcome by downregulation of SIRT1.
Collapse
Affiliation(s)
- Minghua Wang
- Department of Pathology, Longgang District People's Hospital, Shenzhen, 518172, China.,Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yongqi Wu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yunbiao He
- Department of Medical Statistics, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Jing Liu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yingxing Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jieqiong Huang
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Guolong Qi
- Department of Medical Statistics, Jinan University School of Medicine, Guangzhou, 510632, China.
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Shen J, Ma X. miR‑374a‑5p alleviates sepsis‑induced acute lung injury by targeting ZEB1 via the p38 MAPK pathway. Exp Ther Med 2022; 24:564. [PMID: 35978929 PMCID: PMC9366279 DOI: 10.3892/etm.2022.11501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-374a-5p on sepsis-induced acute lung injury (ALI) and the associated mechanism. Lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMVECs) were used to construct the cellular model of sepsis. A luciferase reporter assay was performed to confirm the association between miR-374a-5p and zinc finger E-box binding homeobox 1 (ZEB1). Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to assess the relative expression of miR-374a-5p, ZEB1 and apoptosis-related proteins. Cell viability and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry, respectively. Enzyme-linked immunosorbent assays were used to evaluate inflammatory cytokines. The results revealed that miR-374a-5p was downregulated in sepsis patients and LPS-treated HPMVECs. Upregulation of miR-374a-5p alleviated LPS-triggered cell injury in HPMVECs, as evidenced by restoration of cell viability, and inhibition of apoptosis and the production of proinflammatory cytokines. In addition, ZEB1 was revealed to be a downstream target of miR-374a-5p, and overexpression of ZEB1 could reverse the anti-apoptotic and anti-inflammatory effects of miR-374a-5p on an LPS-induced sepsis cell model. Moreover, miR-374a-5p-induced protective effects involved the p38 MAPK signaling pathway. Collectively, miR-374a-5p exerted a protective role in sepsis-induced ALI by regulating the ZEB1-mediated p38 MAPK signaling pathway, providing a potential target for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Jia Shen
- Department of Intensive Care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750002, P.R. China
| | - Xiaojun Ma
- Department of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
35
|
Pal AK, Sharma P, Zia A, Siwan D, Nandave D, Nandave M, Gautam RK. Metabolomics and EMT Markers of Breast Cancer: A Crosstalk and Future Perspective. PATHOPHYSIOLOGY 2022; 29:200-222. [PMID: 35736645 PMCID: PMC9230911 DOI: 10.3390/pathophysiology29020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer cells undergo transient EMT and MET phenomena or vice versa, along with the parallel interplay of various markers, often correlated as the determining factor in decoding metabolic profiling of breast cancers. Moreover, various cancer signaling pathways and metabolic changes occurring in breast cancer cells modulate the expression of such markers to varying extents. The existing research completed so far considers the expression of such markers as determinants regulating the invasiveness and survival of breast cancer cells. Therefore, this manuscript is crosstalk among the expression levels of such markers and their correlation in regulating the aggressiveness and invasiveness of breast cancer. We also attempted to cover the possible EMT-based metabolic targets to retard migration and invasion of breast cancer.
Collapse
Affiliation(s)
- Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Prateek Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Alishan Zia
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Dipali Nandave
- Department of Dravyaguna, Karmavir V. T. Randhir Ayurved College, Boradi 425428, India;
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
- Correspondence: (M.N.); (R.K.G.)
| | - Rupesh K. Gautam
- Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Ambala 134007, India
- Correspondence: (M.N.); (R.K.G.)
| |
Collapse
|
36
|
Chen Y, Lu X, Gao L, Dean DC, Liu Y. Spheroid-induced heterogeneity and plasticity of uveal melanoma cells. Cell Oncol (Dordr) 2022; 45:309-321. [PMID: 35404029 PMCID: PMC9050762 DOI: 10.1007/s13402-022-00671-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The mechanism underlying cancer heterogeneity and plasticity remains elusive, in spite of the fact that multiple hypotheses have been put forward. We intended to clarify this heterogeneity in uveal melanoma (UM) by looking for evidence of cancer stem cell involvement and a potential role of ZEB1 in cancer cell plasticity. METHODS Spheroids derived from human UM cells as well as xenograft tumors in nude mice were dissected for signs of heterogeneity and plasticity. Two human UM cell lines were studied: the epithelioid type C918 cell line and the spindle type OCM1 cell line. We knocked down ZEB1 in both cell lines to investigate its involvement in the regulation of stem-like cell formation and vascularization by qRT-PCR, immunohistochemistry, flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. RESULTS We found that a small side population (SP) in OCM1 showed stem cell-like properties such as heterogeneity, remote dissemination and nuclear dye exclusion after spheroid formation in vitro. ZEB1 regulated UM stem cell generation indirectly by promoting cell proliferation to form large size tumors in vivo and spheroid in vitro, and directly by binding to stemness genes such as TERT and ABCB1. In addition, we found that ZEB1 participates in vasculogenic mimicry system formation through the regulation of CD34 and VE-cadherin expression. CONCLUSIONS From our data we conclude that cancer stem cells may contribute to UM heterogeneity and plasticity and that ZEB1 may play a regulatory role in it.
Collapse
Affiliation(s)
- Yao Chen
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, National Clinical Medical Center for Geriatric Diseases of Xiangya Hospital, Changsha, China
| | - Xiaoqin Lu
- Department of Medicine, James Graham Brown Cancer Center, Birth Defects Center, University of Louisville School of Medicine, Louisville, KY USA
| | - Ling Gao
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Douglas C. Dean
- Department of Medicine, James Graham Brown Cancer Center, Birth Defects Center, University of Louisville School of Medicine, Louisville, KY USA
| | - Yongqing Liu
- Department of Medicine, James Graham Brown Cancer Center, Birth Defects Center, University of Louisville School of Medicine, Louisville, KY USA
| |
Collapse
|
37
|
Zeb1 Regulation of Wound Healing-Induced Inflammation in Alkali-Damaged Corneas. iScience 2022; 25:104038. [PMID: 35340433 PMCID: PMC8941209 DOI: 10.1016/j.isci.2022.104038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
The cornea is an avascular tissue for vision clarity. Alkali burn could cause severe traumatic damage on the cornea with inflammation and neovascularization (NV), leading to vision reduction and blindness. Mechanisms underlying corneal inflammation and NV are not as clear. We previously reported that Zeb1 is an important factor in corneal NV, and we sought to clarify whether it is also involved in regulation of corneal inflammation. We analyzed the alkali burn-induced corneal inflammation and wound healing in both Zeb1+/+ and Zeb1−/+ littermates through a multidisciplinary approach. We provide evidence that Zeb1 forms a positive regulatory loop with Tgfb to regulate early corneal inflammation by maintenance of immune cell viability and mobility and later wound healing by activation of both Nf-κb and Tgfb-related Stat3 signaling pathways. We believe that ZEB1 is a potential therapeutic target, and inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition. Traumatic wound induces inflammation in the cornea, resulting in vision reduction Zeb1 is a key factor to retain immune cell viability, mobility, and cytokine expression Zeb1 regulates cytokine gene expression through both Nf-κb and Stat3 pathways Inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition
Collapse
|
38
|
Zhang S, Li Y, Huang X, Liu K, Wang QD, Chen AF, Sun K, Lui KO, Zhou B. Seamless Genetic Recording of Transiently Activated Mesenchymal Gene Expression in Endothelial Cells During Cardiac Fibrosis. Circulation 2021; 144:2004-2020. [PMID: 34797683 DOI: 10.1161/circulationaha.121.055417] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Cardiac fibrosis is a lethal outcome of excessive formation of myofibroblasts that are scar-forming cells accumulated after heart injury. It has been reported that cardiac endothelial cells (ECs) contribute to a substantial portion of myofibroblasts through EndoMT. Recent lineage tracing studies demonstrate that myofibroblasts are derived from expansion of resident fibroblasts rather than from transdifferentiation of ECs. However, it remains unknown whether ECs can transdifferentiate into myofibroblasts reversibly or EndoMT genes were just transiently activated in ECs during cardiac fibrosis. Methods: By using the dual recombination technology based on Cre-loxP and Dre-rox, we generated a genetic lineage tracing system for tracking EndoMT in cardiac ECs. We used it to examine if there is transiently activated mesenchymal gene expression in ECs during cardiac fibrosis. Activation of the broadly used marker gene in myofibroblasts, αSMA, and the transcription factor that induces epithelial to mesenchymal transition (EMT), Zeb1, was examined. Results: The genetic system enables continuous tracing of transcriptional activity of targeted genes in vivo. Our genetic fate mapping results revealed that a subset of cardiac ECs transiently expressed αSMA and Zeb1 during embryonic valve formation and transdifferentiated into mesenchymal cells through EndoMT. Nonetheless, they did not contribute to myofibroblasts; nor transiently expressed αSMA or Zeb1 after heart injury. Instead, expression of αSMA was activated in resident fibroblasts during cardiac fibrosis. Conclusions: Mesenchymal gene expression is activated in cardiac ECs through EndoMT in the developing heart; but ECs do not transdifferentiate into myofibroblasts, nor transiently express some known mesenchymal genes during homeostasis and fibrosis in the adult heart. Resident fibroblasts that are converted to myofibroblasts by activating mesenchymal gene expression are the major contributors to cardiac fibrosis.
Collapse
Affiliation(s)
- Shaohua Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiuzhen Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kuo Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kathy O Lui
- Department of Chemical Pathology; and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
39
|
LncRNA MALAT1 Modulates TGF-β1-Induced EMT in Keratinocyte. Int J Mol Sci 2021; 22:ijms222111816. [PMID: 34769245 PMCID: PMC8584148 DOI: 10.3390/ijms222111816] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
One of the major complications in diabetes is impaired wound healing. Unfortunately, effective therapies are currently lacking. Epithelial to mesenchymal transition (EMT) is a critical process involved in cutaneous wound healing. In response to injury, EMT is required to activate and mobilize stationary keratinocytes in the skin toward the wound bed, which allows for re-epithelialization. This process is stalled in diabetic wounds. In this study, we investigate the role of long non-coding RNA (lncRNA), MALAT1, in transforming growth factor beta 1(TGF-β1)-induced EMT of human keratinocyte (HaCaT) cells. Initially, we detected MALAT1 and TGF-β1 expression in non-diabetic and diabetic wounds and found that these expression are significantly up-regulated in diabetic wounds. Then, HaCaT cells were cultured and exposed to TGF-β1. The EMT of HaCaT cells were confirmed by the increased expression of CDH2, KRT10, and ACTA2, in addition to the down-regulation of CDH1. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA). MALAT1 silencing attenuates TGFβ1-induced EMT. Mechanistically, MALAT1 is involved in TGF-β1 mediated EMT through significantly induced ZEB1 expression, a critical transcription factor for EMT. In summary, lncRNA MALAT1 is involved in TGFβ1-induced EMT of human HaCaT cells and provides new understanding for the pathogenesis of diabetic wounds.
Collapse
|
40
|
Alsadi N, Mallet JF, Matar C. miRNA-200b Signature in the Prevention of Skin Cancer Stem Cells by Polyphenol-enriched Blueberry Preparation. J Cancer Prev 2021; 26:162-173. [PMID: 34703819 PMCID: PMC8511576 DOI: 10.15430/jcp.2021.26.3.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure of the skin to solar UV radiation leads to inflammation, DNA damage, and dysregulation of cellular signaling pathways, which may cause skin cancer. Photochemoprevention with natural products is an effective strategy for the control of cutaneous neoplasia. Polyphenols have been proven to help prevent skin cancer and to inhibit the growth of cancer stem cells (CSCs) through epigenetic mechanisms, including modulation of microRNAs expression. Thus, the current study aimed to assess the effect of polyphenol enriched blueberry preparation (PEBP) or non-fermented blueberry juice (NBJ) on expression of miRNAs and target proteins associated with different clinicopathological characteristics of skin cancer such as stemness, motility, and invasiveness. We observed that PEBP significantly inhibited the proliferation of skin CSCs derived from different melanoma cell lines, HS 294T and B16F10. Moreover, PEBP was able to reduce the formation of melanophores. We also showed that the expression of the CD133+ stem cell marker in B16F10 and HS294T cell lines was significantly decreased after treating the cells with PEBP in comparison to the NBJ and control groups. Importantly, tumor suppressors' miR-200s, involved in the regulation of the epithelial-to-mesenchymal transition and metastasis, were strikingly upregulated. In addition, we have shown that a protein target of the tumor suppressor miR200b, ZEB1, was also significantly modulated. Thus, the results demonstrates that PEBP possesses potent anticancer and anti-metastatic potentials and may represent a novel chemopreventative agent against skin cancer.
Collapse
Affiliation(s)
- Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Jean-François Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
41
|
Fratini L, Jaeger M, de Farias CB, Brunetto AT, Brunetto AL, Shaw L, Roesler R. Oncogenic functions of ZEB1 in pediatric solid cancers: interplays with microRNAs and long noncoding RNAs. Mol Cell Biochem 2021; 476:4107-4116. [PMID: 34292482 DOI: 10.1007/s11010-021-04226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The transcription factor Zinc finger E-box binding 1 (ZEB1) displays a range of regulatory activities in cell function and embryonic development, including driving epithelial-mesenchymal transition. Several aspects of ZEB1 function can be regulated by its functional interactions with noncoding RNA types, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Increasing evidence indicates that ZEB1 importantly influences cancer initiation, tumor progression, metastasis, and resistance to treatment. Cancer is the main disease-related cause of death in children and adolescents. Although the role of ZEB1 in pediatric cancer is still poorly understood, emerging findings have shown that it is expressed and regulates childhood solid tumors including osteosarcoma, retinoblastoma, neuroblastoma, and central nervous system tumors. Here, we review the evidence supporting a role for ZEB1, and its interplays with miRNAs and lncRNAs, in pediatric cancers.
Collapse
Affiliation(s)
- Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Lisa Shaw
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
42
|
Scheibner K, Schirge S, Burtscher I, Büttner M, Sterr M, Yang D, Böttcher A, Ansarullah, Irmler M, Beckers J, Cernilogar FM, Schotta G, Theis FJ, Lickert H. Epithelial cell plasticity drives endoderm formation during gastrulation. Nat Cell Biol 2021; 23:692-703. [PMID: 34168324 PMCID: PMC8277579 DOI: 10.1038/s41556-021-00694-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
It is generally accepted that epiblast cells ingress into the primitive streak by epithelial-to-mesenchymal transition (EMT) to give rise to the mesoderm; however, it is less clear how the endoderm acquires an epithelial fate. Here, we used embryonic stem cell and mouse embryo knock-in reporter systems to combine time-resolved lineage labelling with high-resolution single-cell transcriptomics. This allowed us to resolve the morphogenetic programs that segregate the mesoderm from the endoderm germ layer. Strikingly, while the mesoderm is formed by classical EMT, the endoderm is formed independent of the key EMT transcription factor Snail1 by mechanisms of epithelial cell plasticity. Importantly, forkhead box transcription factor A2 (Foxa2) acts as an epithelial gatekeeper and EMT suppressor to shield the endoderm from undergoing a mesenchymal transition. Altogether, these results not only establish the morphogenetic details of germ layer formation, but also have broader implications for stem cell differentiation and cancer metastasis.
Collapse
Affiliation(s)
- Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
43
|
Huang X, Chen C, Xu Y, Shen L, Chen Y, Su H. Infiltrating T-cell abundance combined with EMT-related gene expression as a prognostic factor of colon cancer. Bioengineered 2021; 12:2688-2701. [PMID: 34180352 PMCID: PMC8806648 DOI: 10.1080/21655979.2021.1939618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
EMT-related gene expression reportedly exhibits correlation with the anti-tumor immunity of T cells. In the present study, we explored the factors that might affect the efficacy of immunotherapy in colon cancer with treatment. In this regard, RNA-seq and clinical data of 469 colon cancer samples derived from the Cancer Genome Atlas (TCGA) database were used to calculate infiltrating T-cell abundance (ITA), to illustrate a pathway enrichment analysis, and to construct Cox proportional hazards (CPH) regression models. Subsequently, the RNA-seq and clinical data of 177 colon cancer samples derived from the GSE17536 cohort were used to validate the CPH regression models. We found that ITA showed correlation with EMT-related gene expression, and that it was not an independent prognostic factor for colon cancer. However, upon comparison of two groups with the same ITA, higher EMT expression helped predicted a worse prognosis, whereas a higher ITA could help predict a better prognosis upon comparison of two groups with the same EMT. Additionally, seven genes were found to be statistically related to the prognosis of patients with colon cancer. These results suggest that the balance between ITA and EMT-related gene expression is conducive to the prognosis of patients with colon cancer, and TPM1 is necessary to further explore the common target genes of immune checkpoint blockade.
Collapse
Affiliation(s)
- Xiaowei Huang
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chan Chen
- Department of Geriatric Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajing Xu
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lanxiao Shen
- Department of Radiotherapy Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Sweden
| | - Huafang Su
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Xu C, Shen WB, Reece EA, Hasuwa H, Harman C, Kaushal S, Yang P. Maternal diabetes induces senescence and neural tube defects sensitive to the senomorphic rapamycin. SCIENCE ADVANCES 2021; 7:eabf5089. [PMID: 34193422 PMCID: PMC8245044 DOI: 10.1126/sciadv.abf5089] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/18/2021] [Indexed: 05/03/2023]
Abstract
Neural tube defects (NTDs) are the second most common structural birth defect. Senescence, a state of permanent cell cycle arrest, occurs only after neural tube closure. Maternal diabetes-induced NTDs are severe diabetic complications that lead to infant mortality or lifelong morbidity and may be linked to premature senescence. Here, we report that premature senescence occurs in the mouse neuroepithelium and disrupts neurulation, leading to NTDs in diabetic pregnancy. Premature senescence and NTDs were abolished by knockout of the transcription factor Foxo3a, the miR-200c gene, and the cell cycle inhibitors p21 and p27; transgenic expression of the dominant-negative FoxO3a mutant; or the senomorphic rapamycin. Double transgenic expression of p21 and p27 mimicked maternal diabetes in inducing premature neuroepithelium senescence and NTDs. These findings integrate transcription- and epigenome-regulated miRNAs and cell cycle regulators in premature neuroepithelium senescence and provide a mechanistic basis for targeting premature senescence and NTDs using senomorphics.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hidetoshi Hasuwa
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Christopher Harman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunjay Kaushal
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Guo Y, Lu X, Chen Y, Rendon B, Mitchell RA, Cuatrecasas M, Cortés M, Postigo A, Liu Y, Dean DC. Zeb1 induces immune checkpoints to form an immunosuppressive envelope around invading cancer cells. SCIENCE ADVANCES 2021; 7:7/21/eabd7455. [PMID: 34020945 PMCID: PMC8139582 DOI: 10.1126/sciadv.abd7455] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/31/2021] [Indexed: 05/05/2023]
Abstract
The PDL1-PD1 immune checkpoint inhibits T cell activation, and its blockade is effective in a subset of patients. Studies are investigating how checkpoints are hijacked by cancer cells and why most patients remain resistant to immunotherapy. Epithelial mesenchymal transition (EMT), which drives tumor cell invasion via the Zeb1 transcription factor, is linked to immunotherapy resistance. In addition, M2-polarized tumor-associated macrophages (TAMs), which inhibit T cell migration and activation, may also cause immunotherapy resistance. How EMT in invading cancer cells is linked to therapy resistance and events driving TAM M2 polarization are therefore important questions. We show that Zeb1 links these two resistance pathways because it is required for PDL1 expression on invading lung cancer cells, and it also induces CD47 on these invading cells, which drives M2 polarization of adjacent TAMs. Resulting reprogramming of the microenvironment around invading cells shields them from the hostile inflammatory environment surrounding tumors.
Collapse
Affiliation(s)
- Yan Guo
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Xiaoqin Lu
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Yao Chen
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha, China
| | - Beatriz Rendon
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Robert A Mitchell
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Miriam Cuatrecasas
- Department of Pathology, Centro de Diagnóstico Biomédico (CDB) Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Marlies Cortés
- Group of Transcriptional Regulation of Gene Expression, IDIBAPS, and Dept. of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Antonio Postigo
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
- Group of Transcriptional Regulation of Gene Expression, IDIBAPS, and Dept. of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Yongqing Liu
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
| | - Douglas C Dean
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
| |
Collapse
|
46
|
Addison JB, Voronkova MA, Fugett JH, Lin CC, Linville NC, Trinh B, Livengood RH, Smolkin MB, Schaller MD, Ruppert JM, Pugacheva EN, Creighton CJ, Ivanov AV. Functional Hierarchy and Cooperation of EMT Master Transcription Factors in Breast Cancer Metastasis. Mol Cancer Res 2021; 19:784-798. [PMID: 33500360 PMCID: PMC8137545 DOI: 10.1158/1541-7786.mcr-20-0532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Several master transcription factors (TF) can activate the epithelial-to-mesenchymal transition (EMT). However, their individual and combinatorial contributions to EMT in breast cancer are not defined. We show that overexpression of EMT-TFs individually in epithelial cells upregulated endogenous SNAI2, ZEB1/2, TCF4, and TWIST1/2 as a result of positive feedback mediated in part by suppression of their negative regulator miRNAs miR200s/203/205. We identified TCF4 as a potential new target of miR200s. Expression of ZEB1/2 strongly correlated with the mesenchymal phenotype in breast cancer cells, with the CD24-/CD44+ stemness profile, and with lower expression of core epithelial genes in human breast tumors. Knockdown of EMT-TFs identified the key role of ZEB1 and its functional cooperation with other EMT-TFs in the maintenance of the mesenchymal state. Inducible ZEB1+2 knockdown in xenograft models inhibited pulmonary metastasis, emphasizing their critical role in dissemination from primary site and in extravasation. However, ZEB1+2 depletion one-week after intravenous injection did not inhibit lung colonization, suggesting that ZEB1/2 and EMT are not essential for macrometastatic outgrowth. These results provide strong evidence that EMT is orchestrated by coordinated expression of several EMT-TFs and establish ZEB1 as a key master regulator of EMT and metastasis in breast cancer. IMPLICATIONS: The EMT program is orchestrated by coordinated expression of multiple EMT transcription factors, whereas ZEB1 integrates the EMT master regulatory network and plays the major role in promoting EMT and metastasis.
Collapse
Affiliation(s)
- Joseph B Addison
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Maria A Voronkova
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - James H Fugett
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Chen-Chung Lin
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Nathaniel C Linville
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Brandon Trinh
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Ryan H Livengood
- Department of Pathology, West Virginia University, Morgantown, West Virginia
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University, Morgantown, West Virginia
| | - Michael D Schaller
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - J Michael Ruppert
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Elena N Pugacheva
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Alexey V Ivanov
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
47
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
48
|
Expression and Function of ZEB1 in the Cornea. Cells 2021; 10:cells10040925. [PMID: 33923743 PMCID: PMC8074155 DOI: 10.3390/cells10040925] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is an important transcription factor for epithelial to mesenchymal transition (EMT) and in the regulation of cell differentiation and transformation. In the cornea, ZEB1 presents in all three layers: the epithelium, the stroma and the endothelium. Mutations of ZEB1 have been linked to multiple corneal genetic defects, particularly to the corneal dystrophies including keratoconus (KD), Fuchs endothelial corneal dystrophy (FECD), and posterior polymorphous corneal dystrophy (PPCD). Accumulating evidence indicates that dysfunction of ZEB1 may affect corneal stem cell homeostasis, and cause corneal cell apoptosis, stromal fibrosis, angiogenesis, squamous metaplasia. Understanding how ZEB1 regulates the initiation and progression of these disorders will help us in targeting ZEB1 for potential avenues to generate therapeutics to treat various ZEB1-related disorders.
Collapse
|
49
|
Jeffery D, Gatto A, Podsypanina K, Renaud-Pageot C, Ponce Landete R, Bonneville L, Dumont M, Fachinetti D, Almouzni G. CENP-A overexpression promotes distinct fates in human cells, depending on p53 status. Commun Biol 2021; 4:417. [PMID: 33772115 PMCID: PMC7997993 DOI: 10.1038/s42003-021-01941-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Tumour evolution is driven by both genetic and epigenetic changes. CENP-A, the centromeric histone H3 variant, is an epigenetic mark that directly perturbs genetic stability and chromatin when overexpressed. Although CENP-A overexpression is a common feature of many cancers, how this impacts cell fate and response to therapy remains unclear. Here, we established a tunable system of inducible and reversible CENP-A overexpression combined with a switch in p53 status in human cell lines. Through clonogenic survival assays, single-cell RNA-sequencing and cell trajectory analysis, we uncover the tumour suppressor p53 as a key determinant of how CENP-A impacts cell state, cell identity and therapeutic response. If p53 is functional, CENP-A overexpression promotes senescence and radiosensitivity. Surprisingly, when we inactivate p53, CENP-A overexpression instead promotes epithelial-mesenchymal transition, an essential process in mammalian development but also a precursor for tumour cell invasion and metastasis. Thus, we uncover an unanticipated function of CENP-A overexpression to promote cell fate reprogramming, with important implications for development and tumour evolution.
Collapse
Grants
- Ligue Contre le Cancer
- Agence Nationale de la Recherche (French National Research Agency)
- Université de Recherche Paris Sciences et Lettres (PSL Research University)
- Centre National de la Recherche Scientifique (National Center for Scientific Research)
- Institut Curie
- AG, CRP, DJ, KP, LB, RPL and GA were supported by la Ligue Nationale contre le Cancer (Equipe labellisée Ligue), Labex DEEP (ANR-11-LABX-0044_DEEP, ANR-10-IDEX-0001-02), PSL, ERC-2015-ADG-694694 ChromADICT and ANR-16-CE12-0024 CHIFT. Funding for RPL provided by Horizon 2020 Marie Skłodowska-Curie Actions Initial Training Network “EpiSyStem” (grant number 765966). Individual funding was also provided to DJ from la Fondation ARC pour la recherche sur le cancer (“Aides individuelles” 3 years, post-doc), and to AG from the Horizon 2020 Framework Programme for Research and Innovation (H2020 Marie Skłodowska-Curie Actions grant agreement 798106 “REPLICHROM4D”). DF receives salary support from the Centre Nationale de Recherche Scientifique (CNRS). MD receives salary support from the City of Paris via Emergence(s) 2018 of DF.
Collapse
Affiliation(s)
- Daniel Jeffery
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Alberto Gatto
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Katrina Podsypanina
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Charlène Renaud-Pageot
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Rebeca Ponce Landete
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lorraine Bonneville
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, Centre de Recherche, Sorbonne Université, Cell Biology and Cancer Unit, Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Centre de Recherche, Sorbonne Université, Cell Biology and Cancer Unit, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
50
|
Jun SY, Brown AJ, Chua NK, Yoon JY, Lee JJ, Yang JO, Jang I, Jeon SJ, Choi TI, Kim CH, Kim NS. Reduction of Squalene Epoxidase by Cholesterol Accumulation Accelerates Colorectal Cancer Progression and Metastasis. Gastroenterology 2021; 160:1194-1207.e28. [PMID: 32946903 DOI: 10.1053/j.gastro.2020.09.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Squalene epoxidase (SQLE), a rate-limiting enzyme in cholesterol biosynthesis, is suggested as a proto-oncogene. Paradoxically, SQLE is degraded by excess cholesterol, and low SQLE is associated with aggressive colorectal cancer (CRC). Therefore, we studied the functional consequences of SQLE reduction in CRC progression. METHODS Gene and protein expression data and clinical features of CRCs were obtained from public databases and 293 human tissues, analyzed by immunohistochemistry. In vitro studies showed underlying mechanisms of CRC progression mediated by SQLE reduction. Mice were fed a 2% high-cholesterol or a control diet before and after cecum implantation of SQLE genetic knockdown/control CRC cells. Metastatic dissemination and circulating cancer stem cells were demonstrated by in vivo tracking and flow cytometry analysis, respectively. RESULTS In vitro studies showed that SQLE reduction helped cancer cells overcome constraints by inducing the epithelial-mesenchymal transition required to generate cancer stem cells. Surprisingly, SQLE interacted with GSK3β and p53. Active GSK3β contributes to the stability of SQLE, thereby increasing cell cholesterol content, whereas SQLE depletion disrupted the GSK3β/p53 complex, resulting in a metastatic phenotype. This was confirmed in a spontaneous CRC metastasis mice model, where SQLE reduction, by a high-cholesterol regimen or genetic knockdown, strikingly promoted CRC aggressiveness through the production of migratory cancer stem cells. CONCLUSIONS We showed that SQLE reduction caused by cholesterol accumulation aggravates CRC progression via the activation of the β-catenin oncogenic pathway and deactivation of the p53 tumor suppressor pathway. Our findings provide new insights into the link between cholesterol and CRC, identifying SQLE as a key regulator in CRC aggressiveness and a prognostic biomarker.
Collapse
Affiliation(s)
- Soo Young Jun
- Medical Genomics Research Center, Daejon, Korea; Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Jin Ok Yang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - InSu Jang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Su-Jin Jeon
- Medical Genomics Research Center, Daejon, Korea; Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Nam-Soon Kim
- Medical Genomics Research Center, Daejon, Korea; Functional Genomics, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|