1
|
Dubacher N, Sugiyama K, Smith JD, Nussbaumer V, Csonka M, Ferenczi S, Kovács KJ, Caspar SM, Lamberti L, Meienberg J, Yanagisawa H, Sheppard MB, Matyas G. Novel Insights into the Aortic Mechanical Properties of Mice Modeling Hereditary Aortic Diseases. Thromb Haemost 2025; 125:142-152. [PMID: 38950604 PMCID: PMC11737803 DOI: 10.1055/s-0044-1787957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE Hereditary aortic diseases (hADs) increase the risk of aortic dissections and ruptures. Recently, we have established an objective approach to measure the rupture force of the murine aorta, thereby explaining the outcomes of clinical studies and assessing the added value of approved drugs in vascular Ehlers-Danlos syndrome (vEDS). Here, we applied our approach to six additional mouse hAD models. MATERIAL AND METHODS We used two mouse models (Fbn1C1041G and Fbn1mgR ) of Marfan syndrome (MFS) as well as one smooth-muscle-cell-specific knockout (SMKO) of Efemp2 and three CRISPR/Cas9-engineered knock-in models (Ltbp1, Mfap4, and Timp1). One of the two MFS models was subjected to 4-week-long losartan treatment. Per mouse, three rings of the thoracic aorta were prepared, mounted on a tissue puller, and uniaxially stretched until rupture. RESULTS The aortic rupture force of the SMKO and both MFS models was significantly lower compared with wild-type mice but in both MFS models higher than in mice modeling vEDS. In contrast, the Ltbp1, Mfap4, and Timp1 knock-in models presented no impaired aortic integrity. As expected, losartan treatment reduced aneurysm formation but surprisingly had no impact on the aortic rupture force of our MFS mice. CONCLUSION Our read-out system can characterize the aortic biomechanical integrity of mice modeling not only vEDS but also related hADs, allowing the aortic-rupture-force-focused comparison of mouse models. Furthermore, aneurysm progression alone may not be a sufficient read-out for aortic rupture, as antihypertensive drugs reducing aortic dilatation might not strengthen the weakened aortic wall. Our results may enable identification of improved medical therapies of hADs.
Collapse
Affiliation(s)
- Nicolo Dubacher
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
- Translational Cardiovascular Technologies, Department of Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Jeffrey D. Smith
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Vanessa Nussbaumer
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Máté Csonka
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina J. Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Sylvan M. Caspar
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Lisa Lamberti
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Janine Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Mary B. Sheppard
- Department of Family and Community Medicine, University of Kentucky, Lexington, Kentucky, United States
- Saha Aortic Center, University of Kentucky, Lexington, Kentucky, United States
| | - Gabor Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Shpitzen S, Rosen H, Ben-Zvi A, Meir K, Levin G, Gudgold A, Ben Dor S, Haffner R, Zwas DR, Leibowitz D, Slaugenhaupt SA, Banin E, Mizrachi R, Obolensky A, Levine RA, Gilon D, Leitersdorf E, Tessler I, Reshef N, Durst R. Characterization of LTBP2 mutation causing mitral valve prolapse. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeae106. [PMID: 39882270 PMCID: PMC11775471 DOI: 10.1093/ehjopen/oeae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Aims Mitral valve prolapse (MVP) is a common valvular disorder associated with significant morbidity and mortality, with a strong genetic basis. This study aimed to identify a mutation in a family with MVP and to characterize the valve phenotype in LTBP2 knockout (KO) mice. Methods and results Exome sequencing and segregation analysis were performed on a large family with MVP. Two mouse strains were generated: a complete KO of the LTBP2 gene and a knockin (KI) of the human mutation. At 6 months, phenotyping was conducted using echocardiography, histology, eye optical coherence tomography, and quantitative polymerase chain reaction analysis for TGF-β signalling targets (periostin/POSTN, RUNX2, and CTGF) in valve tissues. LTBP2 rs117800773 V1506M mutation exhibited segregation with MVP. LTBP2 KO mice had a higher incidence of myxomatous changes by histology (7 of 9 of KO vs. 0 of 7 control animals, P = 0.00186) and echocardiography (7 of 9 vs. 0 of 8, P = 0.0011). LTBP2 KI mice for the human mutation showed a significantly elevated myxomatous histological phenotype (8 of 8 vs. 0 of 9, P = 0.00004) as well as by echocardiography (6 of 8 vs. 0 of 9, P = 0.00123). Knockout mice demonstrated an increase in the depth of the anterior chamber as well as reduced visual acuity. LTBP2 KO mice demonstrated overexpression of both TGF-β signalling targets RUNX2 and periostin (P = 0.0144 and P = 0.001826, respectively). Conclusion We report a KO mouse strain with an LTBP2 mutation, demonstrating a valve phenotype, alongside a family with a novel mutation linked to MVP.
Collapse
Affiliation(s)
- Shoshi Shpitzen
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Haim Rosen
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research-Israel-Canada, Hebrew University—Hadassah Medical School, 9112001 Jerusalem, Israel
| | - Ayal Ben-Zvi
- Developmental Biology and Cancer Research, Hadassah—Hebrew University Medical School, 9112001 Jerusalem, Israel
| | - Karen Meir
- Department of Pathology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Galina Levin
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Amichay Gudgold
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Shifra Ben Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Herzl St 234, 7610001 Rehovot, Israel
| | - Rebecca Haffner
- Department of Veterinary Resources, Weizmann Institute of Science, Herzl St 234, 7610001 Rehovot, Israel
| | - Donna R Zwas
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - David Leibowitz
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, MA 02114, USA
| | - Eyal Banin
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 911200120 Jerusalem, Israel
| | - Rotem Mizrachi
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 911200120 Jerusalem, Israel
| | - Alexey Obolensky
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 911200120 Jerusalem, Israel
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Dan Gilon
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Eran Leitersdorf
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Idit Tessler
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
- Sheba Medical Center, Ramat Gan, P.O. Box 12000, 911200120 Jerusalem, Israel
- Faculty of Medicine, Tel-Aviv University, P.O. Box 12000, 911200120 Tel-Aviv, Israel
| | - Noga Reshef
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Ronen Durst
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| |
Collapse
|
3
|
Neupane S, Williamson DB, Roth RA, Halabi CM, Haltiwanger RS, Holdener BC. Poglut2/3 double knockout in mice results in neonatal lethality with reduced levels of fibrillin in lung tissues. J Biol Chem 2024; 300:107445. [PMID: 38844137 PMCID: PMC11261140 DOI: 10.1016/j.jbc.2024.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/30/2024] Open
Abstract
Fibrillin microfibrils play a critical role in the formation of elastic fibers, tissue/organ development, and cardiopulmonary function. These microfibrils not only provide structural support and flexibility to tissues, but they also regulate growth factor signaling through a plethora of microfibril-binding proteins in the extracellular space. Mutations in fibrillins are associated with human diseases affecting cardiovascular, pulmonary, skeletal, and ocular systems. Fibrillins consist of up to 47 epidermal growth factor-like repeats, of which more than half are modified by protein O-glucosyltransferase 2 (POGLUT2) and/or POGLUT3. Loss of these modifications reduces secretion of N-terminal fibrillin constructs overexpressed in vitro. Here, we investigated the role of POGLUT2 and POGLUT3 in vivo using a Poglut2/3 double knockout (DKO) mouse model. Blocking O-glucosylation caused neonatal death with skeletal, pulmonary, and eye defects reminiscent of fibrillin/elastin mutations. Proteomic analyses of DKO dermal fibroblast medium and extracellular matrix provided evidence that fibrillins were more sensitive to loss of O-glucose compared to other POGLUT2/3 substrates. This conclusion was supported by immunofluorescent analyses of late gestation DKO lungs where FBN levels were reduced and microfibrils appeared fragmented in the pulmonary arteries and veins, bronchioles, and developing saccules. Defects in fibrillin microfibrils likely contributed to impaired elastic fiber formation and histological changes observed in DKO lung blood vessels, bronchioles, and saccules. Collectively, these results highlight the importance of POGLUT2/3-mediated O-glucosylation in vivo and open the possibility that O-glucose modifications on fibrillin influence microfibril assembly and or protein interactions in the ECM environment.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Daniel B Williamson
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robyn A Roth
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Carmen M Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
4
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:777-796. [PMID: 38884748 DOI: 10.1007/978-3-031-44087-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The great arteries of the vertebrate carry blood from the heart to the systemic circulation and are derived from the pharyngeal arch arteries. In higher vertebrates, the pharyngeal arch arteries are a symmetrical series of blood vessels that rapidly remodel during development to become the asymmetric aortic arch arteries carrying oxygenated blood from the left ventricle via the outflow tract. At the base of the aorta, as well as the pulmonary trunk, are the semilunar valves. These valves each have three leaflets and prevent the backflow of blood into the heart. During development, the process of aortic arch and valve formation may go wrong, resulting in cardiovascular defects, and these may, at least in part, be caused by genetic mutations. In this chapter, we will review models harboring genetic mutations that result in cardiovascular defects affecting the great arteries and the semilunar valves.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Simon D Bamforth
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Truncus Arteriosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:853-865. [PMID: 38884754 DOI: 10.1007/978-3-031-44087-8_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In normal cardiovascular development in birds and mammals, the outflow tract of the heart is divided into two distinct channels to separate the oxygenated systemic blood flow from the deoxygenated pulmonary circulation. When the process of outflow tract septation fails, a single common outflow vessel persists resulting in a serious clinical condition known as persistent truncus arteriosus or common arterial trunk. In this chapter, we will review molecular pathways and the cells that are known to play a role in the formation and development of the outflow tract and how genetic manipulation of these pathways in animal models can result in common arterial trunk.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle, UK
| | | |
Collapse
|
6
|
LTBP1 promotes fibrillin incorporation into the extracellular matrix. Matrix Biol 2022; 110:60-75. [PMID: 35452817 DOI: 10.1016/j.matbio.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/23/2022]
Abstract
LTBP1 is a large extracellular matrix protein and an associated ligand of fibrillin-microfibrils. Knowledge of LTBP1 functions is largely limited to its role in targeting and sequestering TGFβ growth factors within the extracellular matrix, thereby regulating their bioavailability. However, the recent description of a wide spectrum of phenotypes in multiple tissues in patients harboring LTBP1 pathogenic variants suggests a multifaceted role of the protein in the homeostasis of connective tissues. To better understand the human pathology caused by LTBP1 deficiency it is important to investigate its functional role in extracellular matrix formation. In this study, we show that LTBP1 coordinates the incorporation of fibrillin-1 and -2 into the extracellular matrix in vitro. We also demonstrate that this function is differentially exerted by the two isoforms, the short and long forms of LTBP1. Thereby our findings uncover a novel TGFβ-independent LTBP1 function potentially contributing to the development of connective tissue disorders.
Collapse
|
7
|
Identification, function, and biological relevance of POGLUT2 and POGLUT3. Biochem Soc Trans 2022; 50:1003-1012. [PMID: 35411374 DOI: 10.1042/bst20210850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
O-glycosylation of Epidermal Growth Factor-like (EGF) repeats plays crucial roles in protein folding, trafficking and function. The Notch extracellular domain has been used as a model to study these mechanisms due to its many O-glycosylated EGF repeats. Three enzymes were previously known to O-glycosylate Notch EGF repeats: Protein O-Glucosyltransferase 1 (POGLUT1), Protein O-Fucosyltransferase 1 (POFUT1), and EGF Domain Specific O-Linked N-Acetylglucosamine Transferase (EOGT). All of these modifications affect Notch activity. Recently, POGLUT2 and POGLUT3 were identified as two novel O-glucosyltransferases that modify a few Notch EGF repeats at sites distinct from those modified by POGLUT1. Comparison of these modification sites revealed a putative consensus sequence which predicted modification of many extracellular matrix proteins including fibrillins (FBNs) and Latent TGFβ-binding proteins (LTBPs). Glycoproteomic analysis revealed that approximately half of the 47 EGF repeats in FBN1 and FBN2, and half of the 18 EGF repeats in LTBP1, are modified by POGLUT2 and/or POGLUT3. Cellular assays showed that loss of modifications by POGLUT2 and/or POGLUT3 significantly reduces FBN1 secretion. There is precedent for EGF modifications to affect protein-protein interactions, as has been demonstrated by research of POGLUT1 and POFUT1 modifications on Notch. Here we discuss the identification and characterization of POGLUT2 and POGLUT3 and the ongoing research that continues to elucidate the biological significance of these novel enzymes.
Collapse
|
8
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
9
|
Abrial M, Basu S, Huang M, Butty V, Schwertner A, Jeffrey S, Jordan D, Burns CE, Burns CG. Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. Dis Model Mech 2022; 15:dmm046979. [PMID: 35098309 PMCID: PMC8990920 DOI: 10.1242/dmm.046979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFβ) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFβ signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFβ signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFβ signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maryline Abrial
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep Basu
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mengmeng Huang
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vincent Butty
- BioMicroCenter, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asya Schwertner
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Spencer Jeffrey
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Daniel Jordan
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Caroline E. Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C. Geoffrey Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
10
|
Rifkin D, Sachan N, Singh K, Sauber E, Tellides G, Ramirez F. The role of LTBPs in TGF beta signaling. Dev Dyn 2022; 251:95-104. [PMID: 33742701 DOI: 10.1002/dvdy.331] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 01/20/2023] Open
Abstract
The purpose of this review is to discuss the transforming growth factor beta (TGFB) binding proteins (LTBP) with respect to their participation in the activity of TGFB. We first describe pertinent aspects of the biology and cell function of the LTBPs. We then summarize the physiological consequences of LTBP loss in humans and mice. Finally, we consider a number of outstanding questions relating to LTBP function.
Collapse
Affiliation(s)
- Daniel Rifkin
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Nalani Sachan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Karan Singh
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Elyse Sauber
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Francesco Ramirez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mt Sinai, New York, New York, USA
| |
Collapse
|
11
|
Singh M, Becker M, Godwin AR, Baldock C. Structural studies of elastic fibre and microfibrillar proteins. Matrix Biol Plus 2021; 12:100078. [PMID: 34355160 PMCID: PMC8322146 DOI: 10.1016/j.mbplus.2021.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Elastic tissues owe their functional properties to the composition of their extracellular matrices, particularly the range of extracellular, multidomain extensible elastic fibre and microfibrillar proteins. These proteins include elastin, fibrillin, latent TGFβ binding proteins (LTBPs) and collagens, where their biophysical and biochemical properties not only give the matrix structural integrity, but also play a vital role in the mechanisms that underlie tissue homeostasis. Thus far structural information regarding the structure and hierarchical assembly of these molecules has been challenging and the resolution has been limited due to post-translational modification and their multidomain nature leading to flexibility, which together result in conformational and structural heterogeneity. In this review, we describe some of the matrix proteins found in elastic fibres and the new emerging techniques that can shed light on their structure and dynamic properties.
Collapse
Affiliation(s)
- Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mark Becker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Alan R.F. Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Halbgebauer D, Roos J, Funcke JB, Neubauer H, Hamilton BS, Simon E, Amri EZ, Debatin KM, Wabitsch M, Fischer-Posovszky P, Tews D. Latent TGFβ-binding proteins regulate UCP1 expression and function via TGFβ2. Mol Metab 2021; 53:101336. [PMID: 34481123 PMCID: PMC8456047 DOI: 10.1016/j.molmet.2021.101336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Activation of brown adipose tissue (BAT) in humans has been proposed as a new treatment approach for combating obesity and its associated diseases, as BAT participates in the regulation of energy homeostasis as well as glucose and lipid metabolism. Genetic contributors driving brown adipogenesis in humans have not been fully understood. Methods Profiling the gene expression of progenitor cells from subcutaneous and deep neck adipose tissue, we discovered new secreted factors with potential regulatory roles in white and brown adipogenesis. Among these, members of the latent transforming growth factor beta-binding protein (LTBP) family were highly expressed in brown compared to white adipocyte progenitor cells, suggesting that these proteins are capable of promoting brown adipogenesis. To investigate this potential, we used CRISPR/Cas9 to generate LTBP-deficient human preadipocytes. Results We demonstrate that LTBP2 and LTBP3 deficiency does not affect adipogenic differentiation, but diminishes UCP1 expression and function in the obtained mature adipocytes. We further show that these effects are dependent on TGFβ2 but not TGFβ1 signaling: TGFβ2 deficiency decreases adipocyte UCP1 expression, whereas TGFβ2 treatment increases it. The activity of the LTBP3–TGFβ2 axis that we delineate herein also significantly correlates with UCP1 expression in human white adipose tissue (WAT), suggesting an important role in regulating WAT browning as well. Conclusions These results provide evidence that LTBP3, via TGFβ2, plays an important role in promoting brown adipogenesis by modulating UCP1 expression and mitochondrial oxygen consumption. Inhibition of LTBP2 and LTBP3 reduces secretion of TGFβ2. Both knockout of LTBP2/3 or TGFβ2 inhibit UCP1 expression and mitochondrial respiration in human adipocytes. Expression of TGFβ2 correlates with UCP1 expression in human adipose tissue. Treatment with TGFβ2 rescues inhibition of UCP1 by LTBP knockout during adipogenesis.
Collapse
Affiliation(s)
- D Halbgebauer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany; Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - J Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - J B Funcke
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - H Neubauer
- Cardiometabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - B S Hamilton
- Cardiometabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - E Simon
- Global Computational Biology and Digital Sciences, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - E Z Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - K M Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - M Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - P Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - D Tews
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany; Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
13
|
Pottie L, Adamo CS, Beyens A, Lütke S, Tapaneeyaphan P, De Clercq A, Salmon PL, De Rycke R, Gezdirici A, Gulec EY, Khan N, Urquhart JE, Newman WG, Metcalfe K, Efthymiou S, Maroofian R, Anwar N, Maqbool S, Rahman F, Altweijri I, Alsaleh M, Abdullah SM, Al-Owain M, Hashem M, Houlden H, Alkuraya FS, Sips P, Sengle G, Callewaert B. Bi-allelic premature truncating variants in LTBP1 cause cutis laxa syndrome. Am J Hum Genet 2021; 108:1095-1114. [PMID: 33991472 PMCID: PMC8206382 DOI: 10.1016/j.ajhg.2021.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023] Open
Abstract
Latent transforming growth factor β (TGFβ)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFβ in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFβ growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFβ levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.
Collapse
Affiliation(s)
- Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Christin S Adamo
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Aude Beyens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium; Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Piyanoot Tapaneeyaphan
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | | | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium; VIB Center for Inflammation Research, Ghent 9052, Belgium; Ghent University Expertise Centre for Transmission Electron Microscopy and VIB Bioimaging Core, Ghent 9052, Belgium
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Health Sciences University, Istanbul 34303, Turkey
| | - Naz Khan
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Jill E Urquhart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Najwa Anwar
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Shazia Maqbool
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Fatima Rahman
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Ikhlass Altweijri
- Department of Neurosurgery, King Khalid University Hospital, Riyadh 11211, Saudi Arabia
| | - Monerah Alsaleh
- Heart Centre, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sawsan Mohamed Abdullah
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Street 21, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Cologne 50931, Germany
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
14
|
Su CT, Urban Z. LTBP4 in Health and Disease. Genes (Basel) 2021; 12:genes12060795. [PMID: 34071145 PMCID: PMC8224675 DOI: 10.3390/genes12060795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Latent transforming growth factor β (TGFβ)-binding protein (LTBP) 4, a member of the LTBP family, shows structural homology with fibrillins. Both these protein types are characterized by calcium-binding epidermal growth factor-like repeats interspersed with 8-cysteine domains. Based on its domain composition and distribution, LTBP4 is thought to adopt an extended structure, facilitating the linear deposition of tropoelastin onto microfibrils. In humans, mutations in LTBP4 result in autosomal recessive cutis laxa type 1C, characterized by redundant skin, pulmonary emphysema, and valvular heart disease. LTBP4 is an essential regulator of TGFβ signaling and is related to development, immunity, injury repair, and diseases, playing a central role in regulating inflammation, fibrosis, and cancer progression. In this review, we focus on medical disorders or diseases that may be manipulated by LTBP4 in order to enhance the understanding of this protein.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Internal Medicine, Renal Division, National Taiwan University Hospital Yunlin Branch, Douliu 640, Taiwan;
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei 106, Taiwan
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: ; Tel.: +1-412-648-8269
| |
Collapse
|
15
|
Abstract
The developing heart is formed of two tissue layers separated by an extracellular matrix (ECM) that provides chemical and physical signals to cardiac cells. While deposition of specific ECM components creates matrix diversity, the cardiac ECM is also dynamic, with modification and degradation playing important roles in ECM maturation and function. In this Review, we discuss the spatiotemporal changes in ECM composition during cardiac development that support distinct aspects of heart morphogenesis. We highlight conserved requirements for specific ECM components in human cardiac development, and discuss emerging evidence of a central role for the ECM in promoting heart regeneration.
Collapse
Affiliation(s)
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
16
|
Xiong Y, Sun R, Li J, Wu Y, Zhang J. Latent TGF-beta binding protein-1 plays an important role in craniofacial development. J Appl Oral Sci 2020; 28:e20200262. [PMID: 35320333 PMCID: PMC7695435 DOI: 10.1590/1678-7757-2020-0262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE This study aims to replicate the phenotype of Ltbp1 knockout mice in zebrafish, and to address the function of LTBP1 in craniofacial development. METHODS Whole mount in situ hybridization (WISH) of ltbp1 was performed at critical periods of zebrafish craniofacial development to explore the spatial-temporal expression pattern. Furthermore, we generated morpholino based knockdown model of ltbp1 to study the craniofacial phenotype. RESULTS WISH of ltbp1 was mainly detected in the mandibular jaw region, brain trunk, and internal organs such as pancreas and gallbladder. And ltbp1 colocalized with both sox9a and ckma in mandibular region. Morpholino based knockdown of ltbp1 results in severe jaw malformation. Alcian blue staining revealed severe deformity of Meckel's cartilage along with the absence of ceratobranchial. Three-dimension measurements of ltbp1 morphants jaws showed decrease in both mandible length and width and increase in open mouth distance. Expression of cartilage marker sox9a and muscle marker ckma was decreased in ltbp1 morphants. CONCLUSIONS Our experiments found that ltbp1 was expressed in zebrafish mandibular jaw cartilages and the surrounding muscles. The ltbp1 knockdown zebrafish exhibited phenotypes consistent with Ltbp1 knockout mice. And loss of ltbp1 function lead to significant mandibular jaw defects and affect both jaw cartilages and surrounding muscles.
Collapse
Affiliation(s)
- Yiting Xiong
- Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Orthodontics, School & Hospital of Stomatology, Shanghai, China
| | - Rongrong Sun
- Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Orthodontics, School & Hospital of Stomatology, Shanghai, China
| | - Jingyu Li
- Tongji University School of Life Sciences and Technology, Department of Molecular and Cell Biology, Shanghai, China
| | - Yue Wu
- Tongji University School of Life Sciences and Technology, Department of Molecular and Cell Biology, Shanghai, China
| | - Jingju Zhang
- Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Orthodontics, School & Hospital of Stomatology, Shanghai, China
| |
Collapse
|
17
|
Boezio GL, Bensimon-Brito A, Piesker J, Guenther S, Helker CS, Stainier DY. Endothelial TGF-β signaling instructs smooth muscle cell development in the cardiac outflow tract. eLife 2020; 9:57603. [PMID: 32990594 PMCID: PMC7524555 DOI: 10.7554/elife.57603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
The development of the cardiac outflow tract (OFT), which connects the heart to the great arteries, relies on a complex crosstalk between endothelial (ECs) and smooth muscle (SMCs) cells. Defects in OFT development can lead to severe malformations, including aortic aneurysms, which are frequently associated with impaired TGF-β signaling. To better understand the role of TGF-β signaling in OFT formation, we generated zebrafish lacking the TGF-β receptor Alk5 and found a strikingly specific dilation of the OFT: alk5-/- OFTs exhibit increased EC numbers as well as extracellular matrix (ECM) and SMC disorganization. Surprisingly, endothelial-specific alk5 overexpression in alk5-/- rescues the EC, ECM, and SMC defects. Transcriptomic analyses reveal downregulation of the ECM gene fibulin-5, which when overexpressed in ECs ameliorates OFT morphology and function. These findings reveal a new requirement for endothelial TGF-β signaling in OFT morphogenesis and suggest an important role for the endothelium in the etiology of aortic malformations.
Collapse
Affiliation(s)
- Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
18
|
Rohde S, Zafar MA, Ziganshin BA, Elefteriades JA. Thoracic aortic aneurysm gene dictionary. Asian Cardiovasc Thorac Ann 2020; 29:682-696. [PMID: 32689806 DOI: 10.1177/0218492320943800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm is typically clinically silent, with a natural history of progressive enlargement until a potentially lethal complication such as rupture or dissection occurs. Underlying genetic predisposition strongly influences the risk of thoracic aortic aneurysm and dissection. Familial cases are more virulent, have a higher rate of aneurysm growth, and occur earlier in life. To date, over 30 genes have been associated with syndromic and non-syndromic thoracic aortic aneurysm and dissection. The causative genes and their specific variants help to predict the disease phenotype, including age at presentation, risk of dissection at small aortic sizes, and risk of other cardiovascular and systemic manifestations. This genetic "dictionary" is already a clinical reality, allowing us to personalize care based on specific causative mutations for a substantial proportion of these patients. Widespread genetic sequencing of thoracic aortic aneurysm and dissection patients has been and continues to be crucial to the rapid expansion of this dictionary and ultimately, the delivery of truly personalized care to every patient.
Collapse
Affiliation(s)
- Stefanie Rohde
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA.,Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, Kazan, Russia
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Armando F, Gambini M, Corradi A, Becker K, Marek K, Pfankuche VM, Mergani AE, Brogden G, de Buhr N, von Köckritz-Blickwede M, Naim HY, Baumgärtner W, Puff C. Mesenchymal to epithelial transition driven by canine distemper virus infection of canine histiocytic sarcoma cells contributes to a reduced cell motility in vitro. J Cell Mol Med 2020; 24:9332-9348. [PMID: 32627957 PMCID: PMC7417708 DOI: 10.1111/jcmm.15585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcomas especially of histiocytic origin often possess a poor prognosis and response to conventional therapies. Interestingly, tumours undergoing mesenchymal to epithelial transition (MET) are often associated with a favourable clinical outcome. This process is characterized by an increased expression of epithelial markers leading to a decreased invasion and metastatic rate. Based on the failure of conventional therapies, viral oncolysis might represent a promising alternative with canine distemper virus (CDV) as a possible candidate. This study hypothesizes that a CDV infection of canine histiocytic sarcoma cells (DH82 cells) triggers the MET process leading to a decreased cellular motility. Immunofluorescence and immunoblotting were used to investigate the expression of epithelial and mesenchymal markers followed by scratch assay and an invasion assay as functional confirmation. Furthermore, microarray data were analysed for genes associated with the MET process, invasion and angiogenesis. CDV‐infected cells exhibited an increased expression of epithelial markers such as E‐cadherin and cytokeratin 8 compared to controls, indicating a MET process. This was accompanied by a reduced cell motility and invasiveness. Summarized, these results suggest that CDV infection of DH82 cells triggers the MET process by an increased expression of epithelial markers resulting in a decreased cell motility in vitro.
Collapse
Affiliation(s)
- Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Pathology Unit, Department of Veterinary Medicine, University of Parma, Parma, Italy
| | - Matteo Gambini
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Dipartimento di Medicina Veterinaria (DIMEVET), Universitá degli Studi di Milano, Lodi, Italy
| | - Attilio Corradi
- Pathology Unit, Department of Veterinary Medicine, University of Parma, Parma, Italy
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Ahmed Elmonastir Mergani
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Hannover, Germany, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
20
|
Coste de Bagneaux P, von Elsner L, Bierhals T, Campiglio M, Johannsen J, Obermair GJ, Hempel M, Flucher BE, Kutsche K. A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions. PLoS Genet 2020; 16:e1008625. [PMID: 32176688 PMCID: PMC7176149 DOI: 10.1371/journal.pgen.1008625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/22/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
P/Q-type channels are the principal presynaptic calcium channels in brain functioning in neurotransmitter release. They are composed of the pore-forming CaV2.1 α1 subunit and the auxiliary α2δ-2 and β4 subunits. β4 is encoded by CACNB4, and its multiple splice variants serve isoform-specific functions as channel subunits and transcriptional regulators in the nucleus. In two siblings with intellectual disability, psychomotor retardation, blindness, epilepsy, movement disorder and cerebellar atrophy we identified rare homozygous variants in the genes LTBP1, EMILIN1, CACNB4, MINAR1, DHX38 and MYO15 by whole-exome sequencing. In silico tools, animal model, clinical, and genetic data suggest the p.(Leu126Pro) CACNB4 variant to be likely pathogenic. To investigate the functional consequences of the CACNB4 variant, we introduced the corresponding mutation L125P into rat β4b cDNA. Heterologously expressed wild-type β4b associated with GFP-CaV1.2 and accumulated in presynaptic boutons of cultured hippocampal neurons. In contrast, the β4b-L125P mutant failed to incorporate into calcium channel complexes and to cluster presynaptically. When co-expressed with CaV2.1 in tsA201 cells, β4b and β4b-L125P augmented the calcium current amplitudes, however, β4b-L125P failed to stably complex with α1 subunits. These results indicate that p.Leu125Pro disrupts the stable association of β4b with native calcium channel complexes, whereas membrane incorporation, modulation of current density and activation properties of heterologously expressed channels remained intact. Wildtype β4b was specifically targeted to the nuclei of quiescent excitatory cells. Importantly, the p.Leu125Pro mutation abolished nuclear targeting of β4b in cultured myotubes and hippocampal neurons. While binding of β4b to the known interaction partner PPP2R5D (B56δ) was not affected by the mutation, complex formation between β4b-L125P and the neuronal TRAF2 and NCK interacting kinase (TNIK) seemed to be disturbed. In summary, our data suggest that the homozygous CACNB4 p.(Leu126Pro) variant underlies the severe neurological phenotype in the two siblings, most likely by impairing both channel and non-channel functions of β4b.
Collapse
Affiliation(s)
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Campiglio
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Jessika Johannsen
- Childrens Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerald J. Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol 2019; 101:123-139. [PMID: 31879265 DOI: 10.1016/j.semcdb.2019.12.010] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
'Jack of all trades, master of everything' is a fair label for transforming growth factor β1 (TGF-β) - a cytokine that controls our life at many levels. In the adult organism, TGF-β1 is critical for the development and maturation of immune cells, maintains immune tolerance and homeostasis, and regulates various aspects of immune responses. Following acute tissue damages, TGF-β1 becomes a master regulator of the healing process with impacts on about every cell type involved. Divergence from the tight control of TGF-β1 actions, for instance caused by chronic injury, severe trauma, or infection can tip the balance from regulated physiological to excessive pathological repair. This condition of fibrosis is characterized by accumulation and stiffening of collagenous scar tissue which impairs organ functions to the point of failure. Fibrosis and dysregulated immune responses are also a feature of cancer, in which tumor cells escape immune control partly by manipulating TGF-β1 regulation and where immune cells are excluded from the tumor by fibrotic matrix created during the stroma 'healing' response. Despite the obvious potential of TGF-β-signalling therapies, globally targeting TGF-β1 receptor, downstream pathways, or the active growth factor have proven to be extremely difficult if not impossible in systemic treatment regimes. However, TGF-β1 binding to cell receptors requires prior activation from latent complexes that are extracellularly presented on the surface of immune cells or within the extracellular matrix. These different locations have led to some divergence in the field which is often either seen from the perspective of an immunologists or a fibrosis/matrix researcher. Despite these human boundaries, there is considerable overlap between immune and tissue repair cells with respect to latent TGF-β1 presentation and activation. Moreover, the mechanisms and proteins employed by different cells and spatiotemporal control of latent TGF-β1 activation provide specificity that is amenable to drug development. This review aims at synthesizing the knowledge on TGF-β1 extracellular activation in the immune system and in fibrosis to further stimulate cross talk between the two research communities in solving the TGF-β conundrum.
Collapse
Affiliation(s)
- Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada.
| |
Collapse
|
22
|
Faggion Vinholo T, Brownstein AJ, Ziganshin BA, Zafar MA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2019 Update and Clinical Implications. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2019; 7:99-107. [PMID: 31842235 PMCID: PMC6914358 DOI: 10.1055/s-0039-3400233] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm is a typically silent disease characterized by a lethal natural history. Since the discovery of the familial nature of thoracic aortic aneurysm and dissection (TAAD) almost 2 decades ago, our understanding of the genetics of this disorder has undergone a transformative amplification. To date, at least 37 TAAD-causing genes have been identified and an estimated 30% of the patients with familial nonsyndromic TAAD harbor a pathogenic mutation in one of these genes. In this review, we present our yearly update summarizing the genes associated with TAAD and the ensuing clinical implications for surgical intervention. Molecular genetics will continue to bolster this burgeoning catalog of culprit genes, enabling the provision of personalized aortic care.
Collapse
Affiliation(s)
- Thais Faggion Vinholo
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Adam J Brownstein
- Department of Medicine, Johns Hopkins Hospital and Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut.,Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, Kazan, Russia
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Simon C Body
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
Colige A, Monseur C, Crawley JTB, Santamaria S, de Groot R. Proteomic discovery of substrates of the cardiovascular protease ADAMTS7. J Biol Chem 2019; 294:8037-8045. [PMID: 30926607 PMCID: PMC6527163 DOI: 10.1074/jbc.ra119.007492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Indexed: 12/23/2022] Open
Abstract
The protease ADAMTS7 functions in the extracellular matrix (ECM) of the cardiovascular system. However, its physiological substrate specificity and mechanism of regulation remain to be explored. To address this, we conducted an unbiased substrate analysis using terminal amine isotopic labeling of substrates (TAILS). The analysis identified candidate substrates of ADAMTS7 in the human fibroblast secretome, including proteins with a wide range of functions, such as collagenous and noncollagenous extracellular matrix proteins, growth factors, proteases, and cell-surface receptors. It also suggested that autolysis occurs at Glu-729-Val-730 and Glu-732-Ala-733 in the ADAMTS7 Spacer domain, which was corroborated by N-terminal sequencing and Western blotting. Importantly, TAILS also identified proteolysis of the latent TGF-β-binding proteins 3 and 4 (LTBP3/4) at a Glu-Val and Glu-Ala site, respectively. Using purified enzyme and substrate, we confirmed ADAMTS7-catalyzed proteolysis of recombinant LTBP4. Moreover, we identified multiple additional scissile bonds in an N-terminal linker region of LTBP4 that connects fibulin-5/tropoelastin and fibrillin-1-binding regions, which have an important role in elastogenesis. ADAMTS7-mediated cleavage of LTBP4 was efficiently inhibited by the metalloprotease inhibitor TIMP-4, but not by TIMP-1 and less efficiently by TIMP-2 and TIMP-3. As TIMP-4 expression is prevalent in cardiovascular tissues, we propose that TIMP-4 represents the primary endogenous ADAMTS7 inhibitor. In summary, our findings reveal LTBP4 as an ADAMTS7 substrate, whose cleavage may potentially impact elastogenesis in the cardiovascular system. We also identify TIMP-4 as a likely physiological ADAMTS7 inhibitor.
Collapse
Affiliation(s)
- Alain Colige
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - Christine Monseur
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - James T B Crawley
- Centre for Haematology, Imperial College London, W12 0NN London, United Kingdom
| | | | - Rens de Groot
- Centre for Haematology, Imperial College London, W12 0NN London, United Kingdom.
| |
Collapse
|
24
|
Fibrillin microfibrils and elastic fibre proteins: Functional interactions and extracellular regulation of growth factors. Semin Cell Dev Biol 2018; 89:109-117. [PMID: 30016650 PMCID: PMC6461133 DOI: 10.1016/j.semcdb.2018.07.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
Fibrillin microfibrils are extensible polymers that endow connective tissues with long-range elasticity and have widespread distributions in both elastic and non-elastic tissues. They act as a template for elastin deposition during elastic fibre formation and are essential for maintaining the integrity of tissues such as blood vessels, lung, skin and ocular ligaments. A reduction in fibrillin is seen in tissues in vascular ageing, chronic obstructive pulmonary disease, skin ageing and UV induced skin damage, and age-related vision deterioration. Most mutations in fibrillin cause Marfan syndrome, a genetic disease characterised by overgrowth of the long bones and other skeletal abnormalities with cardiovascular and eye defects. However, mutations in fibrillin and fibrillin-binding proteins can also cause short-stature pathologies. All of these diseases have been linked to dysregulated growth factor signalling which forms a major functional role for fibrillin.
Collapse
|
25
|
Goumans MJ, Ten Dijke P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022210. [PMID: 28348036 DOI: 10.1101/cshperspect.a022210] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies in animals and humans indicate that gene mutations that functionally perturb transforming growth factor β (TGF-β) signaling are linked to specific hereditary vascular syndromes, including Osler-Rendu-Weber disease or hereditary hemorrhagic telangiectasia and Marfan syndrome. Disturbed TGF-β signaling can also cause nonhereditary disorders like atherosclerosis and cardiac fibrosis. Accordingly, cell culture studies using endothelial cells or smooth muscle cells (SMCs), cultured alone or together in two- or three-dimensional cell culture assays, on plastic or embedded in matrix, have shown that TGF-β has a pivotal effect on endothelial and SMC proliferation, differentiation, migration, tube formation, and sprouting. Moreover, TGF-β can stimulate endothelial-to-mesenchymal transition, a process shown to be of key importance in heart valve cushion formation and in various pathological vascular processes. Here, we discuss the roles of TGF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
26
|
Quiñones-Pérez B, VanNoy GE, Towne MC, Shen Y, Singh MN, Agrawal PB, Smith SE. Three-generation family with novel contiguous gene deletion on chromosome 2p22 associated with thoracic aortic aneurysm syndrome. Am J Med Genet A 2018; 176:560-569. [DOI: 10.1002/ajmg.a.38590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Bianca Quiñones-Pérez
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- Division of General Pediatrics; Boston Children's Hospital; Boston Massachusetts
| | - Grace E. VanNoy
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- The Manton Center for Orphan Disease Research; Boston Children's Hospital; Boston Massachusetts
| | - Meghan C. Towne
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- The Manton Center for Orphan Disease Research; Boston Children's Hospital; Boston Massachusetts
| | - Yiping Shen
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
| | - Michael N. Singh
- Department of Cardiology; Boston Children's Hospital; Boston Massachusetts
| | - Pankaj B. Agrawal
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- The Manton Center for Orphan Disease Research; Boston Children's Hospital; Boston Massachusetts
- Division of Newborn Medicine; Boston Children's Hospital; Boston Massachusetts
| | - Sharon E. Smith
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
| |
Collapse
|
27
|
LTBPs in biology and medicine: LTBP diseases. Matrix Biol 2017; 71-72:90-99. [PMID: 29217273 DOI: 10.1016/j.matbio.2017.11.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
The latent transforming growth factor (TGF) β binding proteins (LTBP) are crucial mediators of TGFβ function, as they control growth factor secretion, matrix deposition, presentation and activation. Deficiencies in specific LTBP isoforms yield discrete phenotypes representing defects in bone, lung and cardiovascular development mediated by loss of TGFβ signaling. Additional phenotypes represent loss of unique TGFβ-independent features of LTBP effects on elastogenesis and microfibril assembly. Thus, the LTBPs act as sensors for the regulation of both growth factor activity and matrix function.
Collapse
|
28
|
Cowan JR, Tariq M, Shaw C, Rao M, Belmont JW, Lalani SR, Smolarek TA, Ware SM. Copy number variation as a genetic basis for heterotaxy and heterotaxy-spectrum congenital heart defects. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0406. [PMID: 27821535 DOI: 10.1098/rstb.2015.0406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Genomic disorders and rare copy number abnormalities are identified in 15-25% of patients with syndromic conditions, but their prevalence in individuals with isolated birth defects is less clear. A spectrum of congenital heart defects (CHDs) is seen in heterotaxy, a highly heritable and genetically heterogeneous multiple congenital anomaly syndrome resulting from failure to properly establish left-right (L-R) organ asymmetry during early embryonic development. To identify novel genetic causes of heterotaxy, we analysed copy number variants (CNVs) in 225 patients with heterotaxy and heterotaxy-spectrum CHDs using array-based genotyping methods. Clinically relevant CNVs were identified in approximately 20% of patients and encompassed both known and putative heterotaxy genes. Patients were carefully phenotyped, revealing a significant association of abdominal situs inversus with pathogenic or likely pathogenic CNVs, while d-transposition of the great arteries was more frequently associated with common CNVs. Identified cytogenetic abnormalities ranged from large unbalanced translocations to smaller, kilobase-scale CNVs, including a rare, single exon deletion in ZIC3, a gene known to cause X-linked heterotaxy. Morpholino loss-of-function experiments in Xenopus support a role for one of these novel candidates, the platelet isoform of phosphofructokinase-1 (PFKP) in heterotaxy. Collectively, our results confirm a high CNV yield for array-based testing in patients with heterotaxy, and support use of CNV analysis for identification of novel biological processes relevant to human laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Jason R Cowan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Muhammad Tariq
- Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Clinical Biochemistry, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Chad Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mitchell Rao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teresa A Smolarek
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229, USA
| | - Stephanie M Ware
- Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Bolar N, Verstraeten A, Van Laer L, Loeys B. Molecular Insights into Bicuspid Aortic Valve Development and the associated aortopathy. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Dietzel E, Weiskirchen S, Floehr J, Horiguchi M, Todorovic V, Rifkin DB, Jahnen-Dechent W, Weiskirchen R. Latent TGF-β binding protein-1 deficiency decreases female fertility. Biochem Biophys Res Commun 2016; 482:1387-1392. [PMID: 27956181 DOI: 10.1016/j.bbrc.2016.12.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022]
Abstract
The four latent transforming growth factor-β (TGF-β) binding proteins LTBP1-4 are extracellular matrix-associated proteins playing a critical role in the activation of TGF-β. The LTBP1 gene forms two major transcript variants (i.e. Ltbp1S and Ltbp1L) that are derived from different promoters. We have previously shown the importance of LTBP1 in vivo by using three different Ltbp1 null mice that were either deleted for exons 1 and 2 (Ltbp1L knockout), exon 5 (Ltbp1ΔEx5), or exon 8 (Ltbp1ΔEx8). While the Ltbp1L knockout and the Ltbp1ΔEx8 are perinatal lethal and die of cardiovascular abnormalities, the Ltbp1ΔEx5 is viable because it expresses a short form of Ltbp1L that lacks 55 amino acids (Δ55 variant of Ltbp1) formed by splicing out exon 5, while lacking the Ltbp1S variant. Since only the Ltbp1ΔEx5 mouse is viable, we have used this model to address aspects of puberty, fertility, age-dependent reproduction, and ovary function. We report for the first time a function of LTBP1 in female reproduction. The Ltbp1ΔEx5 females showed impaired fertility associated with delayed sexual maturity (p = 0.0074) and ovarian cyst formation in females older than 40 weeks (p = 0.0204).
Collapse
Affiliation(s)
- Eileen Dietzel
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University, Medical Faculty, 52074 Aachen, Germany
| | - Julia Floehr
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074 Aachen, Germany
| | - Masahito Horiguchi
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Vesna Todorovic
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Medicine, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel B Rifkin
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Medicine, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University, Medical Faculty, 52074 Aachen, Germany.
| |
Collapse
|
31
|
Robertson IB, Rifkin DB. Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins. Cold Spring Harb Perspect Biol 2016; 8:8/6/a021907. [PMID: 27252363 DOI: 10.1101/cshperspect.a021907] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems.
Collapse
Affiliation(s)
- Ian B Robertson
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Daniel B Rifkin
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016 Departments of Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
32
|
Mlynarski EE, Xie M, Taylor D, Sheridan MB, Guo T, Racedo SE, McDonald-McGinn DM, Chow EWC, Vorstman J, Swillen A, Devriendt K, Breckpot J, Digilio MC, Marino B, Dallapiccola B, Philip N, Simon TJ, Roberts AE, Piotrowicz M, Bearden CE, Eliez S, Gothelf D, Coleman K, Kates WR, Devoto M, Zackai E, Heine-Suñer D, Goldmuntz E, Bassett AS, Morrow BE, Emanuel BS. Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome. Hum Genet 2016; 135:273-85. [PMID: 26742502 DOI: 10.1007/s00439-015-1623-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/08/2015] [Indexed: 12/27/2022]
Abstract
The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60-75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients.
Collapse
Affiliation(s)
- Elisabeth E Mlynarski
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Xie
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Molly B Sheridan
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tingwei Guo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Silvia E Racedo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eva W C Chow
- Clinical Genetics Research Program, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Jacob Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584, Utrecht, The Netherlands
| | - Ann Swillen
- Center for Human Genetics, University of Leuven, 3000, Leuven, Belgium
| | - Koen Devriendt
- Center for Human Genetics, University of Leuven, 3000, Leuven, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University of Leuven, 3000, Leuven, Belgium
| | | | - Bruno Marino
- Lorillard Spencer Cenci Foundation and Department of Pediatrics, La Sapienza University of Rome, 00165, Rome, Italy
| | | | - Nicole Philip
- Department of Medical Genetics, Timone Children's Hospital, AP-HM and University of Mediterranee, 13005, Marseille, France
| | - Tony J Simon
- Department of Psychiatry and Behavioral Sciences, M.I.N.D. Institute, University of California, Sacramento, CA, 95817, USA
| | - Amy E Roberts
- Department of Cardiology and Division of Genetics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Małgorzata Piotrowicz
- Department of Genetics, Research Institute, Polish Mother's Memorial Hospital, 93-338, Lodz, Poland
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA
| | - Stephan Eliez
- Office Médico- Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, 1211, Geneva 8, Switzerland
| | - Doron Gothelf
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, 52621, Tel Aviv, Israel
| | - Karlene Coleman
- Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, and Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Marcella Devoto
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Molecular Medicine, University of Rome La Sapienza, 00185, Rome, Italy
| | - Elaine Zackai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damian Heine-Suñer
- Genetics Department, Hospital Universitari Son Espases, 07020, Palma de Mallorca, Spain
| | - Elizabeth Goldmuntz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
33
|
Zhang H, Zhu NX, Huang K, Cai BZ, Zeng Y, Xu YM, Liu Y, Yuan YP, Lin CM. iTRAQ-Based Quantitative Proteomic Comparison of Early- and Late-Passage Human Dermal Papilla Cell Secretome in Relation to Inducing Hair Follicle Regeneration. PLoS One 2016; 11:e0167474. [PMID: 27907131 PMCID: PMC5132394 DOI: 10.1371/journal.pone.0167474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 11/15/2016] [Indexed: 02/05/2023] Open
Abstract
Alopecia is an exceedingly prevalent problem that lacks effective therapy. Recently, research has focused on early-passage dermal papilla cells (DPCs), which have hair inducing activity both in vivo and in vitro. Our previous study indicated that factors secreted from early-passage DPCs contribute to hair follicle (HF) regeneration. To identify which factors are responsible for HF regeneration and why late-passage DPCs lose this potential, we collected 48-h-culture medium (CM) from both of passage 3 and 9 DPCs, and subcutaneously injected the DPC-CM into NU/NU mice. Passage 3 DPC-CM induced HF regeneration, based on the emergence of a white hair coat, but passage 9 DPC-CM did not. In order to identify the key factors responsible for hair induction, CM from passage 3 and 9 DPCs was analyzed by iTRAQ-based quantitative proteomic technology. We identified 1360 proteins, of which 213 proteins were differentially expressed between CM from early-passage vs. late-passage DPCs, including SDF1, MMP3, biglycan and LTBP1. Further analysis indicated that the differentially-expressed proteins regulated the Wnt, TGF-β and BMP signaling pathways, which directly and indirectly participate in HF morphogenesis and regeneration. Subsequently, we selected 19 proteins for further verification by multiple reaction monitoring (MRM) between the two types of CM. These results indicate DPC-secreted proteins play important roles in HF regeneration, with SDF1, MMP3, biglycan, and LTBP1 being potential key inductive factors secreted by dermal papilla cells in the regeneration of hair follicles.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ning-Xia Zhu
- Department of Cardiology, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Keng Huang
- Emergency Department, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Bo-Zhi Cai
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yang Zeng
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Yang Liu
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan-Ping Yuan
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Chang-Min Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
34
|
Mižíková I, Morty RE. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front Med (Lausanne) 2015; 2:91. [PMID: 26779482 PMCID: PMC4688343 DOI: 10.3389/fmed.2015.00091] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth that contributes significantly to morbidity and mortality in neonatal intensive care units. BPD results from life-saving interventions, such as mechanical ventilation and oxygen supplementation used to manage preterm infants with acute respiratory failure, which may be complicated by pulmonary infection. The pathogenic pathways driving BPD are not well-delineated but include disturbances to the coordinated action of gene expression, cell-cell communication, physical forces, and cell interactions with the extracellular matrix (ECM), which together guide normal lung development. Efforts to further delineate these pathways have been assisted by the use of animal models of BPD, which rely on infection, injurious mechanical ventilation, or oxygen supplementation, where histopathological features of BPD can be mimicked. Notable among these are perturbations to ECM structures, namely, the organization of the elastin and collagen networks in the developing lung. Dysregulated collagen deposition and disturbed elastin fiber organization are pathological hallmarks of clinical and experimental BPD. Strides have been made in understanding the disturbances to ECM production in the developing lung, but much still remains to be discovered about how ECM maturation and turnover are dysregulated in aberrantly developing lungs. This review aims to inform the reader about the state-of-the-art concerning the ECM in BPD, to highlight the gaps in our knowledge and current controversies, and to suggest directions for future work in this exciting and complex area of lung development (patho)biology.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
35
|
Abstract
The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans-golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly.
Collapse
|
36
|
Chiang MS, Yang JR, Liao SC, Hsu CC, Hsu CW, Yuan K. Latent transforming growth factor-β binding proteins (LTBP-1 and LTBP-2) and gingiva keratinization. Oral Dis 2015; 21:762-9. [PMID: 25858550 DOI: 10.1111/odi.12344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Transforming growth factor-beta (TGF-β) proteins are involved in epithelial keratinization. The major function of latent TGF-β binding proteins (LTBPs) is modulating TGF-β activity. However, whether LTBP-1 and LTBP-2 play roles in gingiva keratinization remains unclear. MATERIALS AND METHODS Human keratinized gingiva and non-keratinized alveolar mucosa were processed for LTBP-1, LTBP-2, cytokeratin-1 (K1), cytokeratin-4 (K4), and TGF-β immunohistochemical (IHC) staining. Porcine heterotopically transplanted connective tissues and newly grown epithelia were harvested for IHC staining. The expression levels of LTBP-1 and LTBP-2 were compared between differentiated and undifferentiated human normal oral keratinocytes (hNOK). The expression of LTBP-1 and LTBP-2 was knocked down in a cell line (OEC-M1) to evaluate the effects on the expression of K1, K4, and involucrin (INV). RESULTS In human and porcine specimens, LTBP-2 expression patterns distinguished keratinized and non-keratinized oral epithelia. Western blotting results showed that K1, LTBP-1, and INV proteins were upregulated in differentiated hNOK. In OEC-M1 cells, LTBP-2 knockdown resulted in upregulated the expression of K1 and INV and downregulated the expression of K4. LTBP-1 knockdown resulted in opposite effects. CONCLUSION The expression patterns of LTBP-2 differ in keratinized gingiva and non-keratinized mucosa. LTBP-1 and LTBP-2 are involved in the keratinization of oral epithelium; however, the underlying mechanism remains to be elucidated.
Collapse
Affiliation(s)
- M-S Chiang
- Department of Oral Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - J-R Yang
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan
| | - S-C Liao
- Department of Oral Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - C-C Hsu
- Department of Oral Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - C-W Hsu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Dental Department, Tainan Municipal Hospital, Tainan, Taiwan
| | - K Yuan
- Department of Oral Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
37
|
Turner CJ, Badu-Nkansah K, Crowley D, van der Flier A, Hynes RO. α5 and αv integrins cooperate to regulate vascular smooth muscle and neural crest functions in vivo. Development 2015; 142:797-808. [PMID: 25670798 DOI: 10.1242/dev.117572] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The RGD-binding α5 and αv integrins have been shown to be key regulators of vascular smooth muscle cell (vSMC) function in vitro. However, their role on vSMCs during vascular development in vivo remains unclear. To address this issue, we have generated mice that lack α5, αv or both α5 and αv integrins on their vSMCs, using the SM22α-Cre transgenic mouse line. To our surprise, neither α5 nor αv mutants displayed any obvious vascular defects during embryonic development. By contrast, mice lacking both α5 and αv integrins developed interrupted aortic arches, large brachiocephalic/carotid artery aneurysms and cardiac septation defects, but developed extensive and apparently normal vasculature in the skin. Cardiovascular defects were also found, along with cleft palates and ectopically located thymi, in Wnt1-Cre α5/αv mutants, suggesting that α5 and αv cooperate on neural crest-derived cells to control the remodelling of the pharyngeal arches and the septation of the heart and outflow tract. Analysis of cultured α5/αv-deficient vSMCs suggests that this is achieved, at least in part, through proper assembly of RGD-containing extracellular matrix proteins and the correct incorporation and activation of latent TGF-β.
Collapse
Affiliation(s)
- Christopher J Turner
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kwabena Badu-Nkansah
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Denise Crowley
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjan van der Flier
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Horiguchi M, Todorovic V, Hadjiolova K, Weiskirchen R, Rifkin DB. Abrogation of both short and long forms of latent transforming growth factor-β binding protein-1 causes defective cardiovascular development and is perinatally lethal. Matrix Biol 2015; 43:61-70. [PMID: 25805620 DOI: 10.1016/j.matbio.2015.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 12/30/2022]
Abstract
Latent transforming growth factor-β binding protein-1 (LTBP-1) is an extracellular protein that is structurally similar to fibrillin and has an important role in controlling transforming growth factor-β (TGF-β) signaling by storing the cytokine in the extracellular matrix and by being involved in the conversion of the latent growth factor to its active form. LTBP-1 is found as both short (LTBP-1S) and long (LTBP-1L) forms, which are derived through the use of separate promoters. There is controversy regarding the importance of LTBP-1L, as Ltbp1L knockout mice showed multiple cardiovascular defects but the complete null mice did not. Here, we describe a third line of Ltbp1 knockout mice generated utilizing a conditional knockout strategy that ablated expression of both L and S forms of LTBP-1. These mice show severe developmental cardiovascular abnormalities and die perinatally; thus these animals display a phenotype similar to previously reported Ltbp1L knockout mice. We reinvestigated the other "complete" knockout line and found that these mice express a splice variant of LTBP-1L and, therefore, are not complete Ltbp1 knockouts. Our results clarify the phenotypes of Ltbp1 null mice and re-emphasize the importance of LTBP-1 in vivo.
Collapse
Affiliation(s)
- Masahito Horiguchi
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Vesna Todorovic
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Medicine, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Krassimira Hadjiolova
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Daniel B Rifkin
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Medicine, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
39
|
Dabovic B, Robertson IB, Zilberberg L, Vassallo M, Davis EC, Rifkin DB. Function of latent TGFβ binding protein 4 and fibulin 5 in elastogenesis and lung development. J Cell Physiol 2015; 230:226-36. [PMID: 24962333 DOI: 10.1002/jcp.24704] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 01/20/2023]
Abstract
Mice deficient in Latent TGFβ Binding Protein 4 (Ltbp4) display a defect in lung septation and elastogenesis. The lung septation defect is normalized by genetically decreasing TGFβ2 levels. However, the elastic fiber assembly is not improved in Tgfb2(-/-) ;Ltbp4S(-/-) compared to Ltbp4S(-/-) lungs. We found that decreased levels of TGFβ1 or TGFβ3 did not improve lung septation indicating that the TGFβ isoform elevated in Ltbp4S(-/-) lungs is TGFβ2. Expression of a form of Ltbp4 that could not bind latent TGFβ did not affect lung phenotype indicating that normal lung development does not require the formation of LTBP4-latent TGFβ complexes. Therefore, the change in TGFβ-level in the lungs is not directly related to Ltbp4 deficiency but probably is a consequence of changes in the extracellular matrix. Interestingly, combination of the Ltbp4S(-/-) mutation with a fibulin-5 null mutant in Fbln5(-/-) ;Ltbp4S(-/-) mice improves the lung septation compared to Ltbp4S(-/-) lungs. Large globular elastin aggregates characteristic for Ltbp4S(-/-) lungs do not form in Fbln5(-/-) ;Ltbp4S(-/-) lungs and EM studies showed that elastic fibers in Fbln5(-/-) ;Ltbp4S(-/-) lungs resemble those found in Fbln5(-/-) mice. These results are consistent with a role for TGFβ2 in lung septation and for Ltbp4 in regulating fibulin-5 dependent elastic fiber assembly.
Collapse
Affiliation(s)
- Branka Dabovic
- Departments of Cell Biology, New York University Medical Center, 550 First Avenue, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
40
|
Koefoed K, Veland IR, Pedersen LB, Larsen LA, Christensen ST. Cilia and coordination of signaling networks during heart development. Organogenesis 2013; 10:108-25. [PMID: 24345806 DOI: 10.4161/org.27483] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.
Collapse
Affiliation(s)
- Karen Koefoed
- Department of Biology; University of Copenhagen; Copenhagen, Denmark; Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen, Denmark
| | - Iben Rønn Veland
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | | | - Lars Allan Larsen
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen, Denmark
| | | |
Collapse
|
41
|
Chandramouli A, Simundza J, Pinderhughes A, Hiremath M, Droguett G, Frendewey D, Cowin P. Ltbp1L is focally induced in embryonic mammary mesenchyme, demarcates the ductal luminal lineage and is upregulated during involution. Breast Cancer Res 2013; 15:R111. [PMID: 24262428 PMCID: PMC3978911 DOI: 10.1186/bcr3578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Latent TGFβ binding proteins (LTBPs) govern TGFβ presentation and activation and are important for elastogenesis. Although TGFβ is well-known as a tumor suppressor and metastasis promoter, and LTBP1 is elevated in two distinct breast cancer metastasis signatures, LTBPs have not been studied in the normal mammary gland. Methods To address this we have examined Ltbp1 promoter activity throughout mammary development using an Ltbp1L-LacZ reporter as well as expression of both Ltbp1L and 1S mRNA and protein by qRT-PCR, immunofluorescence and flow cytometry. Results Our data show that Ltbp1L is transcribed coincident with lumen formation, providing a rare marker distinguishing ductal from alveolar luminal lineages. Ltbp1L and Ltbp1S are silent during lactation but robustly induced during involution, peaking at the stage when the remodeling process becomes irreversible. Ltbp1L is also induced within the embryonic mammary mesenchyme and maintained within nipple smooth muscle cells and myofibroblasts. Ltbp1 protein exclusively ensheaths ducts and side branches. Conclusions These data show Ltbp1 is transcriptionally regulated in a dynamic manner that is likely to impose significant spatial restriction on TGFβ bioavailability during mammary development. We hypothesize that Ltbp1 functions in a mechanosensory capacity to establish and maintain ductal luminal cell fate, support and detect ductal distension, trigger irreversible involution, and facilitate nipple sphincter function.
Collapse
|
42
|
Robertson IB, Rifkin DB. Unchaining the beast; insights from structural and evolutionary studies on TGFβ secretion, sequestration, and activation. Cytokine Growth Factor Rev 2013; 24:355-72. [PMID: 23849989 DOI: 10.1016/j.cytogfr.2013.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
Abstract
TGFβ is secreted in a latent state and must be "activated" by molecules that facilitate its release from a latent complex and allow binding to high affinity cell surface receptors. Numerous molecules have been implicated as potential mediators of this activation process, but only a limited number of these activators have been demonstrated to play a role in TGFβ mobilisation in vivo. Here we review the process of TGFβ secretion and activation using evolutionary data, sequence conservation and structural information to examine the molecular mechanisms by which TGFβ is secreted, sequestered and released. This allows the separation of more ancient TGFβ activators from those factors that emerged more recently, and helps to define a potential hierarchy of activation mechanisms.
Collapse
Affiliation(s)
- Ian B Robertson
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, Cell Biology Floor 6 Room 650, Medical Science Building, New York, NY 10016, United States.
| | | |
Collapse
|
43
|
Shibahara K, Ota M, Horiguchi M, Yoshinaga K, Melamed J, Rifkin DB. Production of gastrointestinal tumors in mice by modulating latent TGF-β1 activation. Cancer Res 2012; 73:459-68. [PMID: 23117884 DOI: 10.1158/0008-5472.can-12-3141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
TGF-β and its signaling pathways are important mediators in the suppression of cancers of the gastrointestinal tract. TGF-β is released from cells in a latent complex consisting of TGF-β, the TGF-β propeptide [latency associated protein (LAP)], and a latent TGF-β binding protein (LTBP). We previously generated mice in which the LTBP-binding cysteine residues in LAP TGF-β1 were mutated to serine precluding covalent interactions with LTBP. These Tgfb1(C33S/C33S) mice develop multiorgan inflammation and tumors consistent with reduced TGF-β1 activity. To test whether further reduction in active TGF-β levels would yield additional tumors and a phenotype more similar to Tgfb1(-/-) mice, we generated mice that express TGF-β1(C33S) and are deficient in either integrin β8 or TSP-1, known activators of latent TGF-β1. In addition, we generated mice that have one mutant allele and one null allele at the Tgfb1 locus, reasoning that these mice should synthesize half the total amount of TGF-β1 as Tgfb1(C33S/C33S) mice, and the amount of active TGF-β1 would be correspondingly decreased compared with Tgfb1(C33S/C33S) mice. These compound-mutant mice displayed more severe inflammation and higher tumor numbers than the parental Tgfb1(C33S/C33S) animals. The level of active TGF-β1 in compound mutant mice seemed to be decreased compared with Tgfb1(C33S/C33S) mice as determined from analyses of surrogate markers of active TGF-β, such as P-Smad2, C-Myc, KI-67, and markers of cell-cycle traverse. We conclude that these mutant mice provide a useful system for modulating TGF-β levels in a manner that determines tumor number and inflammation within the gastrointestinal tract.
Collapse
Affiliation(s)
- Kotaro Shibahara
- Department of Cell Biology, New York University Langone School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
44
|
[Congenital heart defects of the septa, endocardial cushions and the conotruncus]. DER PATHOLOGE 2012; 33:205-16. [PMID: 22576596 DOI: 10.1007/s00292-011-1557-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
During embryological development the heart develops from a simple tube into a complex fully developed heart with four chambers. Hence all congenital heart defects develop before the ninth week of gestation. Currently a steadily increasing number of genetic mutations have been found to be responsible for congenital heart defects. Nevertheless, up to now it has been impossible to diagnose a heart defect just on the basis of molecular pathology. Despite the current excellent prenatal and postnatal ultrasound diagnostics, the post-mortem examination is still the gold standard for the diagnosis of complex heart malformations. However, this requires knowledge of the pathomorphology of the heart malformation in question. Therefore, characteristic and distinguishing features of septal defects including atrioventricular septal defects are presented, especially as the latter are part of complex heart defects, such as conotruncal heart malformations.
Collapse
|
45
|
Horiguchi M, Ota M, Rifkin DB. Matrix control of transforming growth factor-β function. J Biochem 2012; 152:321-9. [PMID: 22923731 DOI: 10.1093/jb/mvs089] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cytokine transforming growth factor-beta (TGF-β) has multiple effects in both physiological and pathological conditions. TGF-β is secreted as part of a tripartite complex from which it must be released in order to bind to its receptor. Sequestration of latent TGF-β in the extracellular matrix (ECM) is crucial for proper mobilization of the latent cytokine and its activation. However, contrary to expectation, loss-of-function mutations in genes encoding certain matrix proteins that bind TGF-β yield elevated, rather than decreased, TGF-β levels, posing a 'TGF-β paradox.' In this review, we discuss recent findings concerning the relationship of TGF-β, ECM molecules, and latent TGF-β activation and propose a model to resolve the 'TGF-β paradox.'
Collapse
Affiliation(s)
- Masahito Horiguchi
- Departments of Cell Biology and Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
46
|
Abstract
Latent transforming growth factor beta (TGF-β) binding proteins (LTBPs) are large extracellular glycoproteins structurally similar to fibrillins. They perform intricate and important roles in the extracellular matrix (ECM) and perturbations of their function manifest as a wide range of diseases. LTBPs are major regulators of TGF-β bioavailability and action. In addition, LTBPs interact with other ECM proteins-from cytokines to large multi-factorial aggregates like microfibrils and elastic fibers, affecting their genesis, structure, and performance. In the present article, we review recent advancements in the field and relate the complex roles of LTBP in development and homeostasis.
Collapse
Affiliation(s)
- Vesna Todorovic
- Department of Cell Biology, NYU Langone Medical Center, New York, New York 10016, USA.
| | | |
Collapse
|
47
|
Sørensen KM, El-Segaier M, Fernlund E, Errami A, Bouvagnet P, Nehme N, Steensberg J, Hjortdal V, Soller M, Behjati M, Werge T, Kirchoff M, Schouten J, Tommerup N, Andersen PS, Larsen LA. Screening of congenital heart disease patients using multiplex ligation-dependent probe amplification: early diagnosis of syndromic patients. Am J Med Genet A 2012; 158A:720-5. [PMID: 22383218 DOI: 10.1002/ajmg.a.35214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 11/10/2011] [Indexed: 11/07/2022]
Abstract
Recurrent copy number variants (CNVs) are found in a significant proportion of patients with congenital heart disease (CHD) and some of these CNVs are associated with other developmental defects. In some syndromic patients, CHD may be the first presenting symptom, thus screening of patients with CHD for CNVs in specific genomic regions may lead to early diagnosis and awareness of extracardiac symptoms. We designed a multiplex ligation-dependent probe amplification (MLPA) assay specifically for screening of CHD patients. The MLPA assay allows for simultaneous analysis of CNVs in 25 genomic regions previously associated with CHD. We screened blood samples from 402 CHD patients and identified 14 rare CNVs in 13 (3.2%) patients. Five CNVs were de novo and six where inherited from a healthy parent. The MLPA screen led to early syndrome diagnosis in two of these patients. We conclude that the MLPA assay detects clinically relevant CNVs and suggest that it could be used within pediatric cardiology as a first tier screen to detect clinically relevant CNVs and identify syndromic patients at an early stage.
Collapse
|
48
|
Hayashi H, Sakai T. Biological Significance of Local TGF-β Activation in Liver Diseases. Front Physiol 2012; 3:12. [PMID: 22363291 PMCID: PMC3277268 DOI: 10.3389/fphys.2012.00012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/17/2012] [Indexed: 12/20/2022] Open
Abstract
The cytokine transforming growth factor-β (TGF-β) plays a pivotal role in a diverse range of cellular responses, including cell proliferation, apoptosis, differentiation, migration, adhesion, angiogenesis, stimulation of extracellular matrix (ECM) synthesis, and downregulation of ECM degradation. TGF-β and its receptors are ubiquitously expressed by most cell types and tissues in vivo. In intact adult tissues and organs, TGF-β is secreted in a biologically inactive (latent) form associated in a non-covalent complex with the ECM. In response to injury, local latent TGF-β complexes are converted into active TGF-β according to a tissue- and injury type-specific activation mechanism. Such a well and tightly orchestrated regulation in TGF-β activity enables an immediate, highly localized response to type-specific tissue injury. In the pathological process of liver fibrosis, TGF-β plays as a master profibrogenic cytokine in promoting activation and myofibroblastic differentiation of hepatic stellate cells, a central event in liver fibrogenesis. Continuous and/or persistent TGF-β signaling induces sustained production of ECM components and of tissue inhibitor of metalloproteinase synthesis. Therefore, the regulation of locally activated TGF-β levels is increasingly recognized as a therapeutic target for liver fibrogenesis. This review summarizes our present knowledge of the activation mechanisms and bioavailability of latent TGF-β in biological and pathological processes in the liver.
Collapse
Affiliation(s)
- Hiromitsu Hayashi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA
| | | |
Collapse
|
49
|
Thiolloy S, Edwards JR, Fingleton B, Rifkin DB, Matrisian LM, Lynch CC. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment. PLoS One 2012; 7:e29862. [PMID: 22238668 PMCID: PMC3251607 DOI: 10.1371/journal.pone.0029862] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/05/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment. METHODOLOGY/PRINCIPAL FINDINGS To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays). CONCLUSION/SIGNIFICANCE Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.
Collapse
Affiliation(s)
- Sophie Thiolloy
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - James R. Edwards
- Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom
| | - Barbara Fingleton
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Daniel B. Rifkin
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Lynn M. Matrisian
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Conor C. Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| |
Collapse
|
50
|
Munger JS, Sheppard D. Cross talk among TGF-β signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol 2011; 3:a005017. [PMID: 21900405 DOI: 10.1101/cshperspect.a005017] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The growth factor TGF-β is secreted in a latent complex consisting of three proteins: TGF-β, an inhibitor (latency-associated protein, LAP, which is derived from the TGF-β propeptide) and an ECM-binding protein (one of the latent TGF-β binding proteins, or LTBPs). LTBPs interact with fibrillins and other ECM components and thus function to localize latent TGF-β in the ECM. LAP contains an integrin-binding site (RGD), and several RGD-binding integrins are able to activate latent TGF-β through binding this site. Mutant mice defective in integrin-mediated activators, and humans and mice with fibrillin gene mutations, show the critical role of ECM and integrins in regulating TGF-β signaling.
Collapse
Affiliation(s)
- John S Munger
- Department of Medicine, New York University, New York, New York 10016, USA.
| | | |
Collapse
|