1
|
Ranganathan R, Sari F, Wang SX, Thiery A, Buzzi AL, Guerra R, Moody SA, Streit A. Targets of the transcription factor Six1 identify previously unreported candidate deafness genes. Development 2025; 152:dev204533. [PMID: 40213817 PMCID: PMC12045605 DOI: 10.1242/dev.204533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/12/2025] [Indexed: 05/03/2025]
Abstract
Branchio-otic (BOS) and branchio-oto-renal (BOR) syndromes are autosomal dominant disorders featuring multiple birth defects including ear, renal and branchial malformations. Mutations in the homeodomain transcription factor SIX1 and its co-factor EYA1 have been identified in about 50% of individuals with BOS or BOR, while causative mutations are unknown in the other half. We hypothesise that SIX1 target genes represent new BOS and BOR candidates. Using published transcriptomic and epigenomic data from chick ear progenitors, we first identify putative Six1 targets. Next, we provide evidence that Six1 directly regulates some of these candidates: Six1 binds to their enhancers, and functional experiments in Xenopus and chick confirm that Six1 controls their expression. Finally, we show that most putative chick Six1 targets are also expressed in the human developing ear and are associated with known deafness loci. Together, our results not only characterise the molecular mechanisms that mediate Six1 function in the developing ear, but also provide new candidates for human congenital deafness.
Collapse
Affiliation(s)
- Ramya Ranganathan
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Fereshteh Sari
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Alexandre Thiery
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Ailin Leticia Buzzi
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Rosalinda Guerra
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Sally A. Moody
- Department of Anatomy & Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
2
|
Huang Y, Chen Z, Chen J, Liu J, Qiu C, Liu Q, Zhang L, Zhu G, Ma X, Sun S, Shi YS, Wan G. Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors. Cell Prolif 2025; 58:e13775. [PMID: 39551613 PMCID: PMC11969255 DOI: 10.1111/cpr.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Department of Neurology, The Affiliated Drum Tower Hospital of Medical School and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingChina
| | - Jingyue Liu
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Guang‐Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Shuohao Sun
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| |
Collapse
|
3
|
Lowenstein ED, Misios A, Buchert S, Ruffault PL. Molecular Characterization of Nodose Ganglia Development Reveals a Novel Population of Phox2b+ Glial Progenitors in Mice. J Neurosci 2024; 44:e1441232024. [PMID: 38830761 PMCID: PMC11236582 DOI: 10.1523/jneurosci.1441-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/17/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage-tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity, a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single-cell RNA-sequencing to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia, and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells, and display a transcriptional program that may underlie their bipotent nature.
Collapse
Affiliation(s)
- Elijah D Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Aristotelis Misios
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Sven Buchert
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
4
|
Neal SJ, Rajasekaran A, Jusić N, Taylor L, Read M, Alfandari D, Pignoni F, Moody SA. Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:212-240. [PMID: 37830236 PMCID: PMC11014897 DOI: 10.1002/jez.b.23222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.
Collapse
Affiliation(s)
- Scott J. Neal
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Anindita Rajasekaran
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Nisveta Jusić
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Louis Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mai Read
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
5
|
Xu M, Li S, Xie X, Guo L, Yu D, Zhuo J, Lin J, Kol L, Gan L. ISL1 and POU4F1 Directly Interact to Regulate the Differentiation and Survival of Inner Ear Sensory Neurons. J Neurosci 2024; 44:e1718232024. [PMID: 38267260 PMCID: PMC10883659 DOI: 10.1523/jneurosci.1718-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
The inner ear sensory neurons play a pivotal role in auditory processing and balance control. Though significant progresses have been made, the underlying mechanisms controlling the differentiation and survival of the inner ear sensory neurons remain largely unknown. During development, ISL1 and POU4F transcription factors are co-expressed and are required for terminal differentiation, pathfinding, axon outgrowth and the survival of neurons in the central and peripheral nervous systems. However, little is understood about their functional relationship and regulatory mechanism in neural development. Here, we have knocked out Isl1 or Pou4f1 or both in mice of both sexes. In the absence of Isl1, the differentiation of cochleovestibular ganglion (CVG) neurons is disturbed and with that Isl1-deficient CVG neurons display defects in migration and axon pathfinding. Compound deletion of Isl1 and Pou4f1 causes a delay in CVG differentiation and results in a more severe CVG defect with a loss of nearly all of spiral ganglion neurons (SGNs). Moreover, ISL1 and POU4F1 interact directly in developing CVG neurons and act cooperatively as well as independently in regulating the expression of unique sets of CVG-specific genes crucial for CVG development and survival by binding to the cis-regulatory elements including the promoters of Fgf10, Pou4f2, and Epha5 and enhancers of Eya1 and Ntng2 These findings demonstrate that Isl1 and Pou4f1 are indispensable for CVG development and maintenance by acting epistatically to regulate genes essential for CVG development.
Collapse
Affiliation(s)
- Mei Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
- Institution of Life Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Shuchun Li
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Xiaoling Xie
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Luming Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
- Institution of Life Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Dongliang Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaping Zhuo
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Jacey Lin
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Lotem Kol
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Georgia 30912
| |
Collapse
|
6
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
7
|
Griffin C, Saint-Jeannet JP. In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives. Dev Biol 2024; 506:20-30. [PMID: 38052294 PMCID: PMC10843546 DOI: 10.1016/j.ydbio.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia. To study cranial placodes and their derivatives and generate cells for therapeutic purposes, several groups have turned to in vitro derivation of placodal cells from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs). In this review, we summarize the signaling cues and mechanisms involved in cranial placode induction, specification, and differentiation in vivo, and discuss how this knowledge has informed protocols to derive cranial placodes in vitro. We also discuss the benefits and limitations of these protocols, and the potential of in vitro cranial placode modeling in regenerative medicine to treat cranial placode-related pathologies.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
8
|
Thawani A, Maunsell HR, Zhang H, Ankamreddy H, Groves AK. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border. Development 2023; 150:dev202047. [PMID: 37756587 PMCID: PMC10617604 DOI: 10.1242/dev.202047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Helen R. Maunsell
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Wang X, Llamas J, Trecek T, Shi T, Tao L, Makmura W, Crump JG, Segil N, Gnedeva K. SoxC transcription factors shape the epigenetic landscape to establish competence for sensory differentiation in the mammalian organ of Corti. Proc Natl Acad Sci U S A 2023; 120:e2301301120. [PMID: 37585469 PMCID: PMC10450657 DOI: 10.1073/pnas.2301301120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/28/2023] [Indexed: 08/18/2023] Open
Abstract
The auditory organ of Corti is comprised of only two major cell types-the mechanosensory hair cells and their associated supporting cells-both specified from a single pool of prosensory progenitors in the cochlear duct. Here, we show that competence to respond to Atoh1, a transcriptional master regulator necessary and sufficient for induction of mechanosensory hair cells, is established in the prosensory progenitors between E12.0 and 13.5. The transition to the competent state is rapid and is associated with extensive remodeling of the epigenetic landscape controlled by the SoxC group of transcription factors. Conditional loss of Sox4 and Sox11-the two homologous family members transiently expressed in the inner ear at the time of competence establishment-blocks the ability of prosensory progenitors to differentiate as hair cells. Mechanistically, we show that Sox4 binds to and establishes accessibility of early sensory lineage-specific regulatory elements, including ones associated with Atoh1 and its direct downstream targets. Consistent with these observations, overexpression of Sox4 or Sox11 prior to developmental establishment of competence precociously induces hair cell differentiation in the cochlear progenitors. Further, reintroducing Sox4 or Sox11 expression restores the ability of postnatal supporting cells to differentiate as hair cells in vitro and in vivo. Our findings demonstrate the pivotal role of SoxC family members as agents of epigenetic and transcriptional changes necessary for establishing competence for sensory receptor differentiation in the inner ear.
Collapse
Affiliation(s)
- Xizi Wang
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Juan Llamas
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Talon Trecek
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Tuo Shi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Litao Tao
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Welly Makmura
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Neil Segil
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Ksenia Gnedeva
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| |
Collapse
|
10
|
Lee S, Yun Y, Cha JH, Han JH, Lee DH, Song JJ, Park MK, Lee JH, Oh SH, Choi BY, Lee SY. Phenotypic and molecular basis of SIX1 variants linked to non-syndromic deafness and atypical branchio-otic syndrome in South Korea. Sci Rep 2023; 13:11776. [PMID: 37479820 PMCID: PMC10361970 DOI: 10.1038/s41598-023-38909-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Branchio-oto-renal (BOR)/branchio-otic (BO) syndrome is a rare disorder and exhibits clinically heterogenous phenotypes, marked by abnormalities in the ear, branchial arch, and renal system. Sporadic cases of atypical BOR/BO syndrome have been recently reported; however, evidence on genotype-phenotype correlations and molecular mechanisms of those cases is lacking. We herein identified five SIX1 heterozygous variants (c.307dupC:p.Leu103Profs*51, c.373G>A:p.Glu125Lys, c.386_391del:p.Tyr129_Cys130del, c.397_399del:p.Glu133del, and c.501G>C:p.Gln167His), including three novel variants, through whole-exome sequencing in five unrelated Korean families. All eight affected individuals with SIX1 variants displayed non-syndromic hearing loss (DFNA23) or atypical BO syndrome. The prevalence of major and minor criteria for BOR/BO syndrome was significantly reduced among individuals with SIX1 variants, compared to 15 BOR/BO syndrome families with EYA1 variants. All SIX1 variants interacted with the EYA1 wild-type; their complexes were localized in the nucleus except for the p.Leu103Profs*51 variant. All mutants also showed obvious but varying degrees of reduction in DNA binding affinity, leading to a significant decrease in transcriptional activity. This study presents the first report of SIX1 variants in South Korea, expanding the genotypic and phenotypic spectrum of SIX1 variants, characterized by DFNA23 or atypical BO syndrome, and refines the diverse molecular aspects of SIX1 variants according to the EYA1-SIX1-DNA complex theory.
Collapse
Affiliation(s)
- Somin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yejin Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ju Hyuen Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Dae Hee Lee
- CTCELLS, Inc., 21, Yuseong-Daero, 1205 Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Genomic Medicine, Precision Medicine & Rare Disease Center, Seoul National University Hospital, Jongno-Gu, Daehak-Ro, 101, Seoul, South Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
11
|
Fritzsch B, Schultze HP, Elliott KL. The evolution of the various structures required for hearing in Latimeria and tetrapods. IBRO Neurosci Rep 2023; 14:325-341. [PMID: 37006720 PMCID: PMC10063410 DOI: 10.1016/j.ibneur.2023.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters-basilar papilla, cochlear aqueduct, and tympanic membrane-are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
- Correspondence to: Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA.
| | | | - Karen L. Elliott
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
| |
Collapse
|
12
|
Fang Q, Tian GG, Wang Q, Liu M, He L, Li S, Wu J. YTHDF1 phase separation triggers the fate transition of spermatogonial stem cells by activating the IκB-NF-κB-CCND1 axis. Cell Rep 2023; 42:112403. [PMID: 37060562 DOI: 10.1016/j.celrep.2023.112403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/29/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
N6-methyladenosine (m6A) modification controls cell fate determination. Here, we show that liquid-liquid phase separation (LLPS) of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a pivotal m6A "reader" protein, promotes the transdifferentiation of spermatogonial stem cells (SSCs) into neural stem cell-like cells by activating the IκB-nuclear factor κB (NF-κB)-CCND1 axis. The inhibition of IκBα/β mRNA translation mediated by YTHDF1 LLPS is the key to the activation of the IκB-NF-κB-CCND1 axis. Disrupting either YTHDF1 LLPS or NF-κB activation inhibits transdifferentiation efficiency. Moreover, overexpression of the YTH domain of YTHDF1 inhibits the activation of the IκB-NF-κB-CCND1 axis by promoting IκBα/β mRNA translation. Overexpression of the tau-YTH fusion protein reactivates IκB-NF-κB-CCND1 axis by inhibiting the translation of IκBα/β mRNAs, and tau LLPS is observed, which can restore transdifferentiation efficiency. Our findings demonstrate that the protein-RNA LLPS plays essential roles in cell fate transition and provide insights into translational medicine and the therapy of neurological diseases.
Collapse
Affiliation(s)
- Qian Fang
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Wang
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengyao Liu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin He
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shengtian Li
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
13
|
Zhang T, Xu PX. The role of Eya1 and Eya2 in the taste system of mice from embryonic stage to adulthood. Front Cell Dev Biol 2023; 11:1126968. [PMID: 37181748 PMCID: PMC10167055 DOI: 10.3389/fcell.2023.1126968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Members of the Eya family, which are a class of transcription factors with phosphatase activity, are widely expressed in cranial sensory organs during development. However, it is unclear whether these genes are expressed in the taste system during development and whether they play any role in specifying taste cell fate. In this study, we report that Eya1 is not expressed during embryonic tongue development but that Eya1-expressing progenitors in somites or pharyngeal endoderm give rise to tongue musculature or taste organs, respectively. In the Eya1-deficient tongues, these progenitors do not proliferate properly, resulting in a smaller tongue at birth, impaired growth of taste papillae, and disrupted expression of Six1 in the papillary epithelium. On the other hand, Eya2 is specifically expressed in endoderm-derived circumvallate and foliate papillae located on the posterior tongue during development. In adult tongues, Eya1 is predominantly expressed in IP3R3-positive taste cells in the taste buds of the circumvallate and foliate papillae, while Eya2 is persistently expressed in these papillae at higher levels in some epithelial progenitors and at lower levels in some taste cells. We found that conditional knockout of Eya1 in the third week or Eya2 knockout reduced Pou2f3+, Six1+ and IP3R3+ taste cells. Our data define for the first time the expression patterns of Eya1 and Eya2 during the development and maintenance of the mouse taste system and suggest that Eya1 and Eya2 may act together to promote lineage commitment of taste cell subtypes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
14
|
Zine A, Fritzsch B. Early Steps towards Hearing: Placodes and Sensory Development. Int J Mol Sci 2023; 24:6994. [PMID: 37108158 PMCID: PMC10139157 DOI: 10.3390/ijms24086994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Sensorineural hearing loss is the most prevalent sensory deficit in humans. Most cases of hearing loss are due to the degeneration of key structures of the sensory pathway in the cochlea, such as the sensory hair cells, the primary auditory neurons, and their synaptic connection to the hair cells. Different cell-based strategies to replace damaged inner ear neurosensory tissue aiming at the restoration of regeneration or functional recovery are currently the subject of intensive research. Most of these cell-based treatment approaches require experimental in vitro models that rely on a fine understanding of the earliest morphogenetic steps that underlie the in vivo development of the inner ear since its initial induction from a common otic-epibranchial territory. This knowledge will be applied to various proposed experimental cell replacement strategies to either address the feasibility or identify novel therapeutic options for sensorineural hearing loss. In this review, we describe how ear and epibranchial placode development can be recapitulated by focusing on the cellular transformations that occur as the inner ear is converted from a thickening of the surface ectoderm next to the hindbrain known as the otic placode to an otocyst embedded in the head mesenchyme. Finally, we will highlight otic and epibranchial placode development and morphogenetic events towards progenitors of the inner ear and their neurosensory cell derivatives.
Collapse
Affiliation(s)
- Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Kim DH, Yang M, Jo HS, Park J, Jang J, Shin S, Son S. A Preterm Infant with Feeding Aspiration Diagnosed with BOR Syndrome, Confirmed Case by Whole-Genome Sequencing and Structural Variant Calling. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010076. [PMID: 36670626 PMCID: PMC9856635 DOI: 10.3390/children10010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Branchiootorenal (BOR) syndrome is a rare autosomal dominant inherited disease with a prevalence of approximately 1 in 40,000 newborns. This disease is characterized by hearing loss, preauricular pits, branchial fistulas or cysts, and renal dysplasia. We discovered a case of BOR syndrome in a premature 2-week-old female infant with a gestational age of 32 weeks and two days. She and her family had major symptoms and a family history of BOR. BOR syndrome was confirmed by whole-genome sequencing and structural variant calling, which revealed an EYA1 exon 5-6 deletion. The infant had recurrent sleep and feeding cyanosis with second branchial anomalies. Via videofluoroscopic swallowing study and a modified barium swallow test, penetration into the vocal cords was observed before and during swallowing when bottle feeding. This is the first report of a preterm infant early diagnosed with BOR syndrome in which deletion margin was accurately identified by whole-genome sequencing and structural variant calling in Republic of Korea.
Collapse
Affiliation(s)
- Da Hyeon Kim
- Department of Pediatrics, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Misun Yang
- Department of Pediatrics, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Heui Seung Jo
- Department of Pediatrics, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Kangwon University Hospital, Chuncheon-si 24289, Republic of Korea
| | - JongHo Park
- Clinical Genomics Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - JaHyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sunghwan Shin
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - SeHyung Son
- Department of Pediatrics, CHA Ilsan Medical Center, Goyang-si 10414, Republic of Korea
- Correspondence:
| |
Collapse
|
17
|
Gordon T, Zaquin T, Kowarsky MA, Voskoboynik Y, Hendin N, Wurtzel O, Caicci F, Manni L, Voskoboynik A, Shenkar N. Stemness Activity Underlying Whole Brain Regeneration in a Basal Chordate. Cells 2022; 11:3727. [PMID: 36496987 PMCID: PMC9738451 DOI: 10.3390/cells11233727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding how neurons regenerate following injury remains a central challenge in regenerative medicine. Adult mammals have a very limited ability to regenerate new neurons in the central nervous system (CNS). In contrast, the basal chordate Polycarpa mytiligera can regenerate its entire CNS within seven days of complete removal. Transcriptome sequencing, cellular labeling, and proliferation in vivo essays revealed that CNS regeneration is mediated by a newly formed neural progeny and the activation of neurodevelopmental pathways that are associated with enhanced stem-cell activity. Analyzing the expression of 239 activated pathways enabled a quantitative understanding of gene-set enrichment patterns at key regeneration stages. The molecular and cellular mechanisms controlling the regenerative ability that this study reveals can be used to develop innovative approaches to enhancing neurogenesis in closely-related chordate species, including humans.
Collapse
Affiliation(s)
- Tal Gordon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tal Zaquin
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | | | - Yotam Voskoboynik
- Bioinformatics and System Biology, Jacobs School of Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Noam Hendin
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Omri Wurtzel
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Federico Caicci
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Lucia Manni
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
18
|
Fritzsch B, Elliott KL, Yamoah EN. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. Front Neural Circuits 2022; 16:913480. [PMID: 36213204 PMCID: PMC9539932 DOI: 10.3389/fncir.2022.913480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization, genetics, and various neuronal connections of four sensory systems: trigeminal, taste, vestibular, and auditory systems. The development of trigeminal fibers is comparable to many sensory systems, for they project mostly contralaterally from the brainstem or spinal cord to the telencephalon. Taste bud information is primarily projected ipsilaterally through the thalamus to reach the insula. The vestibular fibers develop bilateral connections that eventually reach multiple areas of the cortex to provide a complex map. The auditory fibers project in a tonotopic contour to the auditory cortex. The spatial and tonotopic organization of trigeminal and auditory neuron projections are distinct from the taste and vestibular systems. The individual sensory projections within the cortex provide multi-sensory integration in the telencephalon that depends on context-dependent tertiary connections to integrate other cortical sensory systems across the four modalities.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, The University of Iowa, Iowa City, IA, United States
- Department of Otolaryngology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch,
| | - Karen L. Elliott
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
19
|
Li J, Cheng C, Xu J, Zhang T, Tokat B, Dolios G, Ramakrishnan A, Shen L, Wang R, Xu PX. The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity. Nucleic Acids Res 2022; 50:10343-10359. [PMID: 36130284 PMCID: PMC9561260 DOI: 10.1093/nar/gkac760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/15/2022] Open
Abstract
Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Chunming Cheng
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Bengu Tokat
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Georgia Dolios
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | | | - Li Shen
- Department of Neurosciences, New York, NY 10029, USA
| | - Rong Wang
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Kastriti ME, Faure L, Von Ahsen D, Bouderlique TG, Boström J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, Lallemend F, Erickson A, Kaucka M, Dyachuk V, Perlmann T, Lahti L, Krivanek J, Brunet J, Fried K, Adameyko I. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 2022; 41:e108780. [PMID: 35815410 PMCID: PMC9434083 DOI: 10.15252/embj.2021108780] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Molecular Neuroscience, Center for Brain ResearchMedical University ViennaViennaAustria
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Dorothea Von Ahsen
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | | | - Johan Boström
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Tatiana Solovieva
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Cameron Jackson
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Marianne Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Dies Meijer
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Saida Hadjab
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Alek Erickson
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | | - Thomas Perlmann
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Laura Lahti
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jean‐Francois Brunet
- Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, École Normale SupérieurePSL Research UniversityParisFrance
| | - Kaj Fried
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Igor Adameyko
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| |
Collapse
|
21
|
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022; 14:814528. [PMID: 35250542 PMCID: PMC8891613 DOI: 10.3389/fnagi.2022.814528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, Montpellier, France
| |
Collapse
|
22
|
Rafiq A, Aashaq S, Jan I, Beigh MA. SIX1 transcription factor: A review of cellular functions and regulatory dynamics. Int J Biol Macromol 2021; 193:1151-1164. [PMID: 34742853 DOI: 10.1016/j.ijbiomac.2021.10.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Sine Oculis Homeobox 1 (SIX1) is a member of homeobox transcription factor family having pivotal roles in organismal development and differentiation. This protein functionally acts to regulate the expression of different proteins that are involved in organ development during embryogenesis and in disorders like cancer. Aberrant expression of this homeoprotein has therefore been reported in multiple pathological complexities like hearing impairment and renal anomalies during development and tumorigenesis in adult life. Most of the cellular effects mediated by it are mostly due to its role as a transcription factor. This review presents a concise narrative of its structure, interaction partners and cellular functions vis a vis its role in cancer. We thoroughly discuss the reported molecular mechanisms that govern its function in cellular milieu. Its post-translational regulation by phosphorylation and ubiquitination are also discussed with an emphasis on yet to be explored mechanistic insights regulating its molecular dynamics to fully comprehend its role in development and disease.
Collapse
Affiliation(s)
- Asma Rafiq
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar JK-190011, India
| | - Iqra Jan
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India.
| |
Collapse
|
23
|
Coppenrath K, Tavares ALP, Shaidani NI, Wlizla M, Moody SA, Horb M. Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease. Genesis 2021; 59:e23453. [PMID: 34664392 DOI: 10.1002/dvg.23453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
The vertebrate Six (Sine oculis homeobox) family of homeodomain transcription factors plays critical roles in the development of several organs. Six1 plays a central role in cranial placode development, including the precursor tissues of the inner ear, as well as other cranial sensory organs and the kidney. In humans, mutations in SIX1 underlie some cases of Branchio-oto-renal (BOR) syndrome, which is characterized by moderate-to-severe hearing loss. We utilized CRISPR/Cas9 technology to establish a six1 mutant line in Xenopus tropicalis that is available to the research community. We demonstrate that at larval stages, the six1-null animals show severe disruptions in gene expression of putative Six1 target genes in the otic vesicle, cranial ganglia, branchial arch, and neural tube. At tadpole stages, six1-null animals display dysmorphic Meckel's, ceratohyal, and otic capsule cartilage morphology. This mutant line will be of value for the study of the development of several organs as well as congenital syndromes that involve these tissues.
Collapse
Affiliation(s)
- Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Marcin Wlizla
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Embryology Department, Charles River Laboratories, Wilmington, Massachusetts, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
24
|
Almasoudi SH, Schlosser G. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Front Neuroanat 2021; 15:722374. [PMID: 34616280 PMCID: PMC8488300 DOI: 10.3389/fnana.2021.722374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland
| |
Collapse
|
25
|
Almasoudi SH, Schlosser G. Eya1 protein distribution during embryonic development of Xenopus laevis. Gene Expr Patterns 2021; 42:119213. [PMID: 34536585 DOI: 10.1016/j.gep.2021.119213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022]
Abstract
Eya1 and other Eya proteins are important regulators of progenitor proliferation, cell differentiation and morphogenesis in all three germ layers. At present, most of our knowledge of Eya1 distribution is based on in situ hybridization for Eya1 mRNA. However, to begin to dissect the mechanisms underlying Eya1 functions, we need a better understanding of the spatiotemporal distribution of Eya1 proteins during embryonic development, their subcellular localization and their levels of expression in various tissues. Here we report the localization of Eya1 protein throughout embryonic development from neural plate stages to tadpole stages of Xenopus laevis using a specific antibody for Xenopus Eya1. Our study confirms the expression of Eya1 protein in cranial placodes, placodally derived sensory primordia (olfactory epithelium, otic vesicle, lateral line primordia) and cranial ganglia, as well as in somites, secondary heart field and pharyngeal endoderm. In addition, we report here a novel expression of Eya1 proteins in scattered epidermal cells in Xenopus. Our findings also reveal that, while being predominantly expressed in nuclei in most expression domains, Eya1 protein is also localized to the cytoplasm, in particular in the early preplacodal ectoderm, some placode-derived ganglia and a subset of epidermal cells. While some cytoplasmic roles of Eya1 have been previously described in other contexts, the functions of cytoplasmic Eya1 in the preplacodal ectoderm, cranial ganglia and epidermal cells remain to be investigated.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland.
| |
Collapse
|
26
|
Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. Proc Natl Acad Sci U S A 2021; 118:2025196118. [PMID: 33723076 DOI: 10.1073/pnas.2025196118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specification of Sox2+ proneurosensory progenitors within otic ectoderm is a prerequisite for the production of sensory cells and neurons for hearing. However, the underlying molecular mechanisms driving this lineage specification remain unknown. Here, we show that the Brg1-based SWI/SNF chromatin-remodeling complex interacts with the neurosensory-specific transcriptional regulators Eya1/Six1 to induce Sox2 expression and promote proneurosensory-lineage specification. Ablation of the ATPase-subunit Brg1 or both Eya1/Six1 results in loss of Sox2 expression and lack of neurosensory identity, leading to abnormal apoptosis within the otic ectoderm. Brg1 binds to two of three distal 3' Sox2 enhancers occupied by Six1, and Brg1-binding to these regions depends on Eya1-Six1 activity. We demonstrate that the activity of these Sox2 enhancers in otic neurosensory cells specifically depends on binding to Six1. Furthermore, genome-wide and transcriptome profiling indicate that Brg1 may suppress apoptotic factor Map3k5 to inhibit apoptosis. Together, our findings reveal an essential role for Brg1, its downstream pathways, and their interactions with Six1/Eya1 in promoting proneurosensory fate induction in the otic ectoderm and subsequent neuronal lineage commitment and survival of otic cells.
Collapse
|
27
|
Fritzsch B. An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception. DIVERSITY 2021; 13:364. [PMID: 35505776 PMCID: PMC9060560 DOI: 10.3390/d13080364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four sensory systems (vestibular, lateral line, electroreception, auditory) are unique and project exclusively to the brainstem of vertebrates. All sensory neurons depend on a common set of genes (Eya1, Sox2, Neurog1, Neurod1) that project to a dorsal nucleus and an intermediate nucleus, which differentiate into the vestibular ear, lateral line and electroreception in vertebrates. In tetrapods, a loss of two sensory systems (lateral line, electroreception) leads to the development of a unique ear and auditory system in amniotes. Lmx1a/b, Gdf7, Wnt1/3a, BMP4/7 and Atoh1 define the lateral line, electroreception and auditory nuclei. In contrast, vestibular nuclei depend on Neurog1/2, Ascl1, Ptf1a and Olig3, among others, to develop an independent origin of the vestibular nuclei. A common origin of hair cells depends on Eya1, Sox2 and Atoh1, which generate the mechanosensory cells. Several proteins define the polarity of hair cells in the ear and lateral line. A unique connection of stereocilia requires CDH23 and PCDH15 for connections and TMC1/2 proteins to perceive mechanosensory input. Electroreception has no polarity, and a different system is used to drive electroreceptors. All hair cells function by excitation via ribbons to activate neurons that innervate the distinct target areas. An integrated perspective is presented to understand the gain and loss of different sensory systems.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
李 隽, 赵 培, 夏 志, 姚 薇, 魏 幼, 郝 丽, 夏 忠, 何 学. [Novel duplication mutation of EYA1 causes branchio-oto-renal syndrome in a Chinese family]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:607-612. [PMID: 34304489 PMCID: PMC10127898 DOI: 10.13201/j.issn.2096-7993.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Indexed: 11/12/2022]
Abstract
Objective:To identify novel genetic causes of branchio-oto-renal (BOR) syndrome in a Chinese family. Methods:Clinical characteristics and treatment of a family with a BOR syndrome were retrospectively analyzed. Genetic analysis was conducted by trio whole exome sequencing (WES) and the duplicated exons were verified by fluorescence quantitative PCR (real-time PCR). Results: In this family, the affected individual had deafness, structural malformation of inner ear and middle ear, pre-auricular fistula, cervical fistula and renal atrophy consistent with the clinical diagnosis of BOR syndrome. Neither the father nor the mother had similar phenotype. WES and quantitative fluorescent PCR revealed that the patient had a de novo partial duplication involving exons 13 to 18 of EYA1 gene. This mutation has not been reported in literature or any database. Bilateral pre-auricular fistulas and cervical fistulas were surgically removed and the surgery wound healed well, while hearing AIDS had been worn to assist hearing. Conclusion:This study is the first to detect a novel de novo partial duplication (exons13-18) of EYA1 gene leading to BOR syndrome, and expands the mutant spectrum of EYA1 gene in Chinese population.
Collapse
Affiliation(s)
- 隽 李
- 华中科技大学同济医学院附属武汉儿童医院耳鼻咽喉科(武汉,430016)Department of Otorhinolaryngology, Wuhan Children′s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - 培伟 赵
- 华中科技大学同济医学院附属武汉儿童医院精准医学实验室Precision Medical Laboratory, Wuhan Children′s Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - 志杰 夏
- 华中科技大学同济医学院附属武汉儿童医院耳鼻咽喉科(武汉,430016)Department of Otorhinolaryngology, Wuhan Children′s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - 薇 姚
- 华中科技大学同济医学院附属武汉儿童医院耳鼻咽喉科(武汉,430016)Department of Otorhinolaryngology, Wuhan Children′s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - 幼华 魏
- 华中科技大学同济医学院附属武汉儿童医院耳鼻咽喉科(武汉,430016)Department of Otorhinolaryngology, Wuhan Children′s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - 丽丽 郝
- 华中科技大学同济医学院附属武汉儿童医院耳鼻咽喉科(武汉,430016)Department of Otorhinolaryngology, Wuhan Children′s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - 忠芳 夏
- 华中科技大学同济医学院附属武汉儿童医院耳鼻咽喉科(武汉,430016)Department of Otorhinolaryngology, Wuhan Children′s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - 学莲 何
- 华中科技大学同济医学院附属武汉儿童医院精准医学实验室Precision Medical Laboratory, Wuhan Children′s Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
29
|
Mutations in SIX1 Associated with Branchio-oto-Renal Syndrome (BOR) Differentially Affect Otic Expression of Putative Target Genes. J Dev Biol 2021; 9:jdb9030025. [PMID: 34208995 PMCID: PMC8293042 DOI: 10.3390/jdb9030025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Several single-nucleotide mutations in SIX1 underlie branchio-otic/branchio-oto-renal (BOR) syndrome, but the clinical literature has not been able to correlate different variants with specific phenotypes. We previously assessed whether variants in either the cofactor binding domain (V17E, R110W) or the DNA binding domain (W122R, Y129C) might differentially affect early embryonic gene expression, and found that each variant had a different combination of effects on neural crest and placode gene expression. Since the otic vesicle gives rise to the inner ear, which is consistently affected in BOR, herein we focused on whether the variants differentially affected the otic expression of genes previously found to be likely Six1 targets. We found that V17E, which does not bind Eya cofactors, was as effective as wild-type Six1 in reducing most otic target genes, whereas R110W, W122R and Y129C, which bind Eya, were significantly less effective. Notably, V17E reduced the otic expression of prdm1, whereas R110W, W122R and Y129C expanded it. Since each mutant has defective transcriptional activity but differs in their ability to interact with Eya cofactors, we propose that altered cofactor interactions at the mutated sites differentially interfere with their ability to drive otic gene expression, and these differences may contribute to patient phenotype variability.
Collapse
|
30
|
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci 2021; 22:ijms22084189. [PMID: 33919542 PMCID: PMC8074135 DOI: 10.3390/ijms22084189] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix–loop–helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons’ fate into “hair cells”, highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of “intraganglionic” HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
| | - Gabriela Pavlínková
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czechia;
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
- Correspondence:
| |
Collapse
|
31
|
Chen A, Song J, Acke FRE, Mei L, Cai X, Feng Y, He C. Otological manifestations in branchiootorenal spectrum disorder: A systematic review and meta-analysis. Clin Genet 2021; 100:3-13. [PMID: 33624842 DOI: 10.1111/cge.13949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/09/2021] [Accepted: 02/20/2021] [Indexed: 11/30/2022]
Abstract
Branchiootorenal spectrum disorder (BORSD) is a group of rare autosomal dominant entities characterized by branchiogenic malformations, hearing loss (HL) and renal anomalies. It comprises branchiootorenal syndrome and branchiootic syndrome, distinguished by the presence or absence of renal abnormalities. Pathogenic variants have been discovered in the following genes: EYA1, SIX5, SIX1 and SALL1. As the otological phenotype in BORSD is inconsistently reported, we performed a systematic review to provide an up-to-date overview, correlated with the genotype. Forty publications were included, describing 295 individual patients. HL was diagnosed in 95%, usually bilateral and mixed-type, and differed among the different genes involved. Mixed moderate-to-severe HL was the predominant finding in patients with EYA1 involvement, regardless of the presence of renal abnormalities. The sensorineural HL of profound severity was more prevalent in patients with SIX1 mutations. No significant differences among different mutation types or location within the genes could be observed. Structural otological manifestations, ranging from periauricular to inner ear anomalies, were common in both genes. Especially periauricular anomalies were more common and more severe in EYA1. In summary, otological differences among the different genes involved in BORSD are observed, so the molecular analysis is strongly advised.
Collapse
Affiliation(s)
- Anhai Chen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Frederic R E Acke
- Department of Otorhinolaryngology, Ghent University/Ghent University Hospital, Ghent, Belgium
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinzhang Cai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,Department of Otorhinolaryngology, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Zhang T, Xu J, Xu PX. Eya2 expression during mouse embryonic development revealed by Eya2 lacZ knockin reporter and homozygous mice show mild hearing loss. Dev Dyn 2021; 250:1450-1462. [PMID: 33715274 DOI: 10.1002/dvdy.326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Eya2 expression during mouse development has been studied by in situ hybridization and it has been shown to be involved skeletal muscle development and limb formation. Here, we generated Eya2 knockout (Eya2- ) and a lacZ knockin reporter (Eya2lacZ ) mice and performed a detailed expression analysis for Eya2lacZ at different developmental stages to trace Eya2lacZ -positive cells in Eya2-null mice. We describe that Eya2 is not only expressed in cranial sensory and dorsal root ganglia, retina and olfactory epithelium, and somites as previously reported, but also Eya2 is specifically detected in other organs during mouse development. RESULTS We found that Eya2 is expressed in ocular and trochlear motor neurons. In the inner ear, Eya2lacZ is specifically expressed in differentiating hair cells in both vestibular and cochlear sensory epithelia of the inner ear and Eya2-/- or Eya2lacZ/lacZ mice displayed mild hearing loss. Furthermore, we detected Eya2 expression during both salivary gland and thymus development and Eya2-null mice had a smaller thymus. CONCLUSIONS As Eya2 is coexpressed with other members of the Eya family genes, these results together highlight that Eya2 as a potential regulator may act synergistically with other Eya genes to regulate the differentiation of the inner ear sensory hair cells and the formation of the salivary gland and thymus.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
33
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Derivation of Peripheral Nociceptive, Mechanoreceptive, and Proprioceptive Sensory Neurons from the same Culture of Human Pluripotent Stem Cells. Stem Cell Reports 2021; 16:446-457. [PMID: 33545066 PMCID: PMC7940146 DOI: 10.1016/j.stemcr.2021.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
The three peripheral sensory neuron (SN) subtypes, nociceptors, mechanoreceptors, and proprioceptors, localize to dorsal root ganglia and convey sensations such as pain, temperature, pressure, and limb movement/position. Despite previous reports, to date no protocol is available allowing the generation of all three SN subtypes at high efficiency and purity from human pluripotent stem cells (hPSCs). We describe a chemically defined differentiation protocol that generates all three SN subtypes from the same starting population, as well as methods to enrich for each individual subtype. The protocol yields high efficiency and purity cultures that are electrically active and respond to specific stimuli. We describe their molecular character and maturity stage and provide evidence for their use as an axotomy model; we show disease phenotypes in hPSCs derived from patients with familial dysautonomia. Our protocol will allow the modeling of human disorders affecting SNs, the search for treatments, and the study of human development.
Collapse
|
35
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
36
|
Filova I, Dvorakova M, Bohuslavova R, Pavlinek A, Elliott KL, Vochyanova S, Fritzsch B, Pavlinkova G. Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers. Mol Neurobiol 2020; 57:5307-5323. [PMID: 32880858 PMCID: PMC7547283 DOI: 10.1007/s12035-020-02092-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Ear development requires the transcription factors ATOH1 for hair cell differentiation and NEUROD1 for sensory neuron development. In addition, NEUROD1 negatively regulates Atoh1 gene expression. As we previously showed that deletion of the Neurod1 gene in the cochlea results in axon guidance defects and excessive peripheral innervation of the sensory epithelium, we hypothesized that some of the innervation defects may be a result of abnormalities in NEUROD1 and ATOH1 interactions. To characterize the interdependency of ATOH1 and NEUROD1 in inner ear development, we generated a new Atoh1/Neurod1 double null conditional deletion mutant. Through careful comparison of the effects of single Atoh1 or Neurod1 gene deletion with combined double Atoh1 and Neurod1 deletion, we demonstrate that NEUROD1-ATOH1 interactions are not important for the Neurod1 null innervation phenotype. We report that neurons lacking Neurod1 can innervate the flat epithelium without any sensory hair cells or supporting cells left after Atoh1 deletion, indicating that neurons with Neurod1 deletion do not require the presence of hair cells for axon growth. Moreover, transcriptome analysis identified genes encoding axon guidance and neurite growth molecules that are dysregulated in the Neurod1 deletion mutant. Taken together, we demonstrate that much of the projections of NEUROD1-deprived inner ear sensory neurons are regulated cell-autonomously.
Collapse
Affiliation(s)
- Iva Filova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Martina Dvorakova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Romana Bohuslavova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Adam Pavlinek
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA
| | - Simona Vochyanova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czechia.
| |
Collapse
|
37
|
Ohmoto M, Kitamoto S, Hirota J. Expression of Eya1 in mouse taste buds. Cell Tissue Res 2020; 383:979-986. [PMID: 33242174 DOI: 10.1007/s00441-020-03311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
Taste substances are detected by taste receptor cells in the taste buds in the oral epithelium. Individual taste receptor cells contribute to evoking one of the five taste qualities: sweet, umami, bitter, sour, and salty (sodium). They are continuously replaced every few weeks by new ones generated from local epithelial stem cells. A POU transcription factor, Pou2f3 (also known as Skn-1a), regulates the generation and differentiation of sweet, umami, and bitter cells. However, the molecular mechanisms underlying terminal differentiation into these Pou2f3-dependent taste receptor cells remain unknown. To identify the candidate molecules that regulate the differentiation of these taste receptor cells, we searched for taste receptor type-specific transcription factors using RNA-sequence data of sweet and bitter cells. No transcription factor gene showing higher expression in sweet cells than in bitter cells was found. Eyes absent 1 (Eya1) was identified as the only transcription factor gene showing higher expression in bitter cells than in sweet cells. In situ hybridization revealed that Eya1 was predominantly expressed in bitter cells and also in the putative immature/differentiating taste bud cells in circumvallate and fungiform papillae and soft palate. Eya1 is a candidate molecule that regulates the generation and differentiation of bitter cells.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Satsuki Kitamoto
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Junji Hirota
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. .,Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
38
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
39
|
Dash S, Bhatt S, Sandell LL, Seidel CW, Ahn Y, Krumlauf RE, Trainor PA. The Mediator Subunit, Med23 Is Required for Embryonic Survival and Regulation of Canonical WNT Signaling During Cranial Ganglia Development. Front Physiol 2020; 11:531933. [PMID: 33192541 PMCID: PMC7642510 DOI: 10.3389/fphys.2020.531933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Development of the vertebrate head is a complex and dynamic process, which requires integration of all three germ layers and their derivatives. Of special importance are ectoderm-derived cells that form the cranial placodes, which then differentiate into the cranial ganglia and sensory organs. Critical to a fully functioning head, defects in cranial placode and sensory organ development can result in congenital craniofacial anomalies. In a forward genetic screen aimed at identifying novel regulators of craniofacial development, we discovered an embryonically lethal mouse mutant, snouty, which exhibits malformation of the facial prominences, cranial nerves and vasculature. The snouty mutation was mapped to a single nucleotide change in a ubiquitously expressed gene, Med23, which encodes a subunit of the global transcription co-factor complex, Mediator. Phenotypic analyses revealed that the craniofacial anomalies, particularly of the cranial ganglia, were caused by a failure in the proper specification of cranial placode neuronal precursors. Molecular analyses determined that defects in cranial placode neuronal differentiation in Med23 sn/sn mutants were associated with elevated WNT/β-catenin signaling, which can be partially rescued through combined Lrp6 and Wise loss-of-function. Our work therefore reveals a surprisingly tissue specific role for the ubiquitously expressed mediator complex protein Med23 in placode differentiation during cranial ganglia development. This highlights the importance of coupling general transcription to the regulation of WNT signaling during embryogenesis.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | | | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Robb E Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
40
|
Taroc EZM, Katreddi RR, Forni PE. Identifying Isl1 Genetic Lineage in the Developing Olfactory System and in GnRH-1 Neurons. Front Physiol 2020; 11:601923. [PMID: 33192618 PMCID: PMC7609815 DOI: 10.3389/fphys.2020.601923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
During embryonic development, symmetric ectodermal thickenings [olfactory placodes (OP)] give rise to several cell types that comprise the olfactory system, such as those that form the terminal nerve ganglion (TN), gonadotropin releasing hormone-1 neurons (GnRH-1ns), and other migratory neurons in rodents. Even though the genetic heterogeneity among these cell types is documented, unidentified cell populations arising from the OP remain. One candidate to identify placodal derived neurons in the developing nasal area is the transcription factor Isl1, which was recently identified in GnRH-3 neurons of the terminal nerve in fish, as well as expression in neurons of the nasal migratory mass (MM). Here, we analyzed the Isl1 genetic lineage in chemosensory neuronal populations in the nasal area and migratory GnRH-1ns in mice using in situ hybridization, immunolabeling a Tamoxifen inducible Isl1CreERT and a constitutive Isl1Cre knock-in mouse lines. In addition, we also performed conditional Isl1 ablation in developing GnRH neurons. We found Isl1 lineage across non-sensory cells of the respiratory epithelium and sustentacular cells of OE and VNO. We identified a population of transient embryonic Isl1 + neurons in the olfactory epithelium and sparse Isl1 + neurons in postnatal VNO. Isl1 is expressed in almost all GnRH neurons and in approximately half of the other neuron populations in the MM. However, Isl1 conditional ablation alone does not significantly compromise GnRH-1 neuronal migration or GnRH-1 expression, suggesting compensatory mechanisms. Further studies will elucidate the functional and mechanistic role of Isl1 in development of migratory endocrine neurons.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Raghu Ram Katreddi
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
41
|
Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, Xu PX, Phillips S, Young SM, Eberl DF, Fritzsch B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res Rev 2020; 59:101042. [PMID: 32173536 PMCID: PMC7261488 DOI: 10.1016/j.arr.2020.101042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit. ARHL reduces the quality of life of the growing population, setting seniors up for the enhanced mental decline. The size of the needy population, the structural deficit, and a likely research strategy for effective treatment of chronic neurosensory hearing in the elderly are needed. Although there has been profound advancement in auditory regenerative research, there remain multiple challenges to restore hearing loss. Thus, additional investigations are required, using novel tools. We propose how the (1) flat epithelium, remaining after the organ of Corti has deteriorated, can be converted to the repaired-sensory epithelium, using Sox2. This will include (2) developing an artificial gene regulatory network transmitted by (3) large viral vectors to the flat epithelium to stimulate remnants of the organ of Corti to restore hair cells. We hope to unite with our proposal toward the common goal, eventually restoring a functional human hearing organ by transforming the flat epithelial cells left after the organ of Corti loss.
Collapse
Affiliation(s)
- Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Kathy Cheah
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Pin-Xian Xu
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Stacia Phillips
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA; Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Daniel F Eberl
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, USA.
| |
Collapse
|
42
|
Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM, Moody SA. Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. Dis Model Mech 2020; 13:dmm043489. [PMID: 31980437 PMCID: PMC7063838 DOI: 10.1242/dmm.043489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide mutations in human SIX1 result in amino acid substitutions in either the protein-protein interaction domain or the homeodomain, and cause ∼4% of branchio-otic (BOS) and branchio-oto-renal (BOR) cases. The phenotypic variation between patients with the same mutation, even within affected members of the same family, make it difficult to functionally distinguish between the different SIX1 mutations. We made four of the BOS/BOR substitutions in the Xenopus Six1 protein (V17E, R110W, W122R, Y129C), which is 100% identical to human in both the protein-protein interaction domain and the homeodomain, and expressed them in embryos to determine whether they cause differential changes in early craniofacial gene expression, otic gene expression or otic morphology. We confirmed that, similar to the human mutants, all four mutant Xenopus Six1 proteins access the nucleus but are transcriptionally deficient. Analysis of craniofacial gene expression showed that each mutant causes specific, often different and highly variable disruptions in the size of the domains of neural border zone, neural crest and pre-placodal ectoderm genes. Each mutant also had differential effects on genes that pattern the otic vesicle. Assessment of the tadpole inner ear demonstrated that while the auditory and vestibular structures formed, the volume of the otic cartilaginous capsule, otoliths, lumen and a subset of the hair cell-containing sensory patches were reduced. This detailed description of the effects of BOS/BOR-associated SIX1 mutations in the embryo indicates that each causes subtle changes in gene expression in the embryonic ectoderm and otocyst, leading to inner ear morphological anomalies.
Collapse
Affiliation(s)
- Ankita M Shah
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Patrick Krohn
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Institute of Zoology, University of Hohenheim, Stuttgart 70599, Germany
| | - Aparna B Baxi
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Charles H Sullivan
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Yeshwant R Chillakuru
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
43
|
Kari E, Llaci L, Go JL, Naymik M, Knowles JA, Leal SM, Rangasamy S, Huentelman MJ, Friedman RA, Schrauwen I. A de novo SIX1 variant in a patient with a rare nonsyndromic cochleovestibular nerve abnormality, cochlear hypoplasia, and bilateral sensorineural hearing loss. Mol Genet Genomic Med 2019; 7:e995. [PMID: 31595699 PMCID: PMC6900394 DOI: 10.1002/mgg3.995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
Background Childhood hearing impairment affects language and cognitive development. Profound congenital sensorineural hearing impairment can be due to an abnormal cochleovestibular nerve (CVN) and cochleovestibular malformations, however, the etiology of these conditions remains unclear. Methods We used a trio‐based exome sequencing approach to unravel the underlying molecular etiology of a child with a rare nonsyndromic CVN abnormality and cochlear hypoplasia. Clinical and imaging data were also reviewed. Results We identified a de novo missense variant [p(Asn174Tyr)] in the DNA‐binding Homeodomain of SIX1, a gene which previously has been associated with autosomal dominant hearing loss (ADHL) and branchio‐oto‐renal or Branchio‐otic syndrome, a condition not seen in this patient. Conclusions SIX1 has an important function in otic vesicle patterning during embryogenesis, and mice show several abnormalities to their inner ear including loss of inner ear innervation. Previous reports on patients with SIX1 variants lack imaging data and nonsyndromic AD cases were reported to have no inner ear malformations. In conclusion, we show that a de novo variant in SIX1 in a patient with sensorineural hearing loss leads to cochleovestibular malformations and abnormalities of the CVN, without any other abnormalities. Without proper interventions, severe to profound hearing loss is devastating to both education and social integration. Choosing the correct intervention can be challenging and a molecular diagnosis may adjust intervention and improve outcomes, especially for rare cases.
Collapse
Affiliation(s)
- Elina Kari
- Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Lorida Llaci
- Neurogenomics Division and Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - John L Go
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marcus Naymik
- Neurogenomics Division and Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - James A Knowles
- Department of Cell Biology - MSC 5, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
| | - Sampath Rangasamy
- Neurogenomics Division and Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Matthew J Huentelman
- Neurogenomics Division and Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Rick A Friedman
- Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Isabelle Schrauwen
- Neurogenomics Division and Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA.,Center for Statistical Genetics, Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Efficient genome-wide first-generation phenotypic screening system in mice using the piggyBac transposon. Proc Natl Acad Sci U S A 2019; 116:18507-18516. [PMID: 31451639 DOI: 10.1073/pnas.1906354116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome-wide phenotypic screens provide an unbiased way to identify genes involved in particular biological traits, and have been widely used in lower model organisms. However, cost and time have limited the utility of such screens to address biological and disease questions in mammals. Here we report a highly efficient piggyBac (PB) transposon-based first-generation (F1) dominant screening system in mice that enables an individual investigator to conduct a genome-wide phenotypic screen within a year with fewer than 300 cages. The PB screening system uses visually trackable transposons to induce both gain- and loss-of-function mutations and generates genome-wide distributed new insertions in more than 55% of F1 progeny. Using this system, we successfully conducted a pilot F1 screen and identified 5 growth retardation mutations. One of these mutants, a Six1/4 PB/+ mutant, revealed a role in milk intake behavior. The mutant animals exhibit abnormalities in nipple recognition and milk ingestion, as well as developmental defects in cranial nerves V, IX, and X. This PB F1 screening system offers individual laboratories unprecedented opportunities to conduct affordable genome-wide phenotypic screens for deciphering the genetic basis of mammalian biology and disease pathogenesis.
Collapse
|
45
|
Chen P, Liu H, Lin Y, Xu J, Zhu W, Wu H, Yang T. EYA1 mutations leads to Branchio-Oto syndrome in two Chinese Han deaf families. Int J Pediatr Otorhinolaryngol 2019; 123:141-145. [PMID: 31102969 DOI: 10.1016/j.ijporl.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Branchio-Oto (BO) syndrome is one of the common syndromic forms of hearing loss. In this study, we aimed to characterize the clinical and genetic features of BO syndrome in two Chinese Han deaf families. METHODS The auditory and other BO-related clinical features of Family 1809 and Family 1974 were summarized. Targeted next-generation sequencing in 144 known deafness genes was performed in the probands. Co-segregation of the pathogenic mutations and the phenotype was confirmed by Sanger sequencing in the family members. RESULTS Interfamilial and intrafamilial variations can be observed in the clinical phenotypes of BO syndrome in Family 1809 and 1974. A novel c.1493_1494insAT (p.Ile498PhefsTer*3) mutation and a previous reported c.967-2A>G mutation in EYA1 were identified as the pathogenic cause in Family 1974 and 1809, respectively. CONCLUSION Our results supported the heterogeneity of the genetic and phenotypic spectrum of BO syndrome. The recurrent c.967-2A>G in different ethnical groups suggested that it is a hot-spot mutation.
Collapse
Affiliation(s)
- Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haijin Liu
- Department of Pediatric Surgery, The 1st Affiliated Hospital of Gannan Medical University, Jiangxi Province, China
| | - Yun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Weidong Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Tao Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
46
|
Solorzano-Vargas RS, Bjerknes M, Wu SV, Wang J, Stelzner M, Dunn JCY, Dhawan S, Cheng H, Georgia S, Martín MG. The cellular regulators PTEN and BMI1 help mediate NEUROGENIN-3-induced cell cycle arrest. J Biol Chem 2019; 294:15182-15192. [PMID: 31341016 DOI: 10.1074/jbc.ra119.008926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Indexed: 11/06/2022] Open
Abstract
Neurogenin-3 (NEUROG3) is a helix-loop-helix (HLH) transcription factor involved in the production of endocrine cells in the intestine and pancreas of humans and mice. However, the human NEUROG3 loss-of-function phenotype differs subtly from that in mice, but the reason for this difference remains poorly understood. Because NEUROG3 expression precedes exit of the cell cycle and the expression of endocrine cell markers during differentiation, we investigated the effect of lentivirus-mediated overexpression of the human NEUROG3 gene on the cell cycle of BON4 cells and various human nonendocrine cell lines. NEUROG3 overexpression induced a reversible cell cycle exit, whereas expression of a neuronal lineage homolog, NEUROG1, had no such effect. In endocrine lineage cells, the cellular quiescence induced by short-term NEUROG3 expression required cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21CIP1 expression. Expression of endocrine differentiation markers required sustained NEUROG3 expression in the quiescent, but not in the senescent, state. Inhibition of the phosphatase and tensin homolog (PTEN) pathway reversed quiescence by inducing cyclin-dependent kinase 2 (CDK2) and reducing p21CIP1 and NEUROG3 protein levels in BON4 cells and human enteroids. We discovered that NEUROG3 expression stimulates expression of CDKN2a/p16INK4a and BMI1 proto-oncogene polycomb ring finger (BMI1), with the latter limiting expression of the former, delaying the onset of CDKN2a/p16INK4a -driven cellular senescence. Furthermore, NEUROG3 bound to the promoters of both CDKN1a/p21CIP1 and BMI1 genes, and BMI1 attenuated NEUROG3 binding to the CDKN1a/p21CIP1 promoter. Our findings reveal how human NEUROG3 integrates inputs from multiple signaling pathways and thereby mediates cell cycle exit at the onset of differentiation.
Collapse
Affiliation(s)
- R Sergio Solorzano-Vargas
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Bjerknes
- Department of Medicine, Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - S Vincent Wu
- Veterans Affairs Greater Los Angeles Healthcare System, and Department of Medicine, University of California, Los Angeles, Los Angeles, California 90073
| | - Jiafang Wang
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthias Stelzner
- Division of General Surgery, Department of Surgery, University of California, Los Angeles, Los Angeles, California 90095
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, California 91010
| | - Hazel Cheng
- Department of Medicine, Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Senta Georgia
- Department of Pediatrics, Division of Endocrinology, Children's Hospital of Los Angeles, University of Southern California, Los Angeles, Los Angeles, California 90027
| | - Martín G Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
47
|
Differences between Dorsal Root and Trigeminal Ganglion Nociceptors in Mice Revealed by Translational Profiling. J Neurosci 2019; 39:6829-6847. [PMID: 31253755 DOI: 10.1523/jneurosci.2663-18.2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Nociceptors located in the trigeminal ganglion (TG) and DRG are the primary sensors of damaging or potentially damaging stimuli for the head and body, respectively, and are key drivers of chronic pain states. While nociceptors in these two tissues show a high degree of functional similarity, there are important differences in their development lineages, their functional connections to the CNS, and recent genome-wide analyses of gene expression suggest that they possess some unique genomic signatures. Here, we used translating ribosome affinity purification to comprehensively characterize and compare mRNA translation in Scn10a-positive nociceptors in the TG and DRG of male and female mice. This unbiased method independently confirms several findings of differences between TG and DRG nociceptors described in the literature but also suggests preferential utilization of key signaling pathways. Most prominently, we provide evidence that translational efficiency in mechanistic target of rapamycin (mTOR)-related genes is higher in the TG compared with DRG, whereas several genes associated with the negative regulator of mTOR, AMP-activated protein kinase, have higher translational efficiency in DRG nociceptors. Using capsaicin as a sensitizing stimulus, we show that behavioral responses are greater in the TG region and this effect is completely reversible with mTOR inhibition. These findings have implications for the relative capacity of these nociceptors to be sensitized upon injury. Together, our data provide a comprehensive, comparative view of transcriptome and translatome activity in TG and DRG nociceptors that enhances our understanding of nociceptor biology.SIGNIFICANCE STATEMENT The DRG and trigeminal ganglion (TG) provide sensory information from the body and head, respectively. Nociceptors in these tissues are critical first neurons in the pain pathway. Injury to peripheral neurons in these tissues can cause chronic pain. Interestingly, clinical and preclinical findings support the conclusion that injury to TG neurons is more likely to cause chronic pain and chronic pain in the TG area is more intense and more difficult to treat. We used translating ribosome affinity purification technology to gain new insight into potential differences in the translatomes of DRG and TG neurons. Our findings demonstrate previously unrecognized differences between TG and DRG nociceptors that provide new insight into how injury may differentially drive plasticity states in nociceptors in these two tissues.
Collapse
|
48
|
Ocak E, Duman D, Tekin M. Genetic Causes of Inner Ear Anomalies: a Review from the Turkish Study Group for Inner Ear Anomalies. Balkan Med J 2019; 36:206-211. [PMID: 31131597 PMCID: PMC6636654 DOI: 10.4274/balkanmedj.galenos.2019.2019.4.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inner ear anomalies diagnosed using a radiological study are detected in almost 30% of cases with congenital or prelingual-onset sensorineural hearing loss. Inner ear anomalies can be isolated or occur along with a part of a syndrome involving other systems. Although astonishing progress has been made in research aimed at revealing the genetic causes of hearing loss in the past few decades, only a few genes have been linked to inner ear anomalies. The aim of this review is to discuss the known genetic causes of inner ear anomalies. Identifying the genetic causes of inner ear anomalies is important for guiding clinical care that includes empowered reproductive decisions provided to the affected individuals. Furthermore, understanding the molecular underpinnings of the development of the inner ear in humans is important to develop novel treatment strategies for people with hearing loss.
Collapse
Affiliation(s)
- Emre Ocak
- Department of Otolaryngology, Ankara University School of Medicine, Ankara, Turkey
| | - Duygu Duman
- Division of Genetics, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey,Department of Audiology, Ankara University Faculty of Health Sciences, Ankara, Turkey
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA,Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
49
|
Xie Y, Jin P, Sun X, Jiao T, Zhang Y, Li Y, Sun M. SIX1 is upregulated in gastric cancer and regulates proliferation and invasion by targeting the ERK pathway and promoting epithelial-mesenchymal transition. Cell Biochem Funct 2018; 36:413-419. [PMID: 30379332 DOI: 10.1002/cbf.3361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/29/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Sine oculis homeobox homologue 1 (SIX1) is a Six class homeobox gene conserved throughout many species. It has been reported to act as an oncogene and is overexpressed in many cancers. However, the function and regulatory mechanism of SIX1 in gastric cancer (GC) remains unclear. In our study, we detected protein levels of SIX1 via immunohistochemistry (IHC) and its proliferation and invasion effects via CCK8 and transwell assays. Additionally, expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins was measured by western blotting. We found that SIX1 had significantly higher expression in GC tissues and that it could promote GC cell proliferation and invasion. Also, overexpression of SIX1 increased the expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins, which could all be inhibited by knocking down SIX1. In conclusion, SIX1 is upregulated in GC tissues. It can promote GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. SIGNIFICANCE OF THE STUDY: Our study showed that SIX1 was upregulated in GC tissues, and promoted GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. These results suggested the potential regulatory mechanism of SIX1 in proliferation and invasion of gastric cancer.
Collapse
Affiliation(s)
- Ying Xie
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Peng Jin
- Department of the Third Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuren Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Taiwei Jiao
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yining Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yue Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
50
|
Zheng X, Liu Q, Yi M, Qin S, Wu K. The regulation of cytokine signaling by retinal determination gene network pathway in cancer. Onco Targets Ther 2018; 11:6479-6487. [PMID: 30323623 PMCID: PMC6177397 DOI: 10.2147/ott.s176113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor environment plays a pivotal role in determining cancer biology characteristics. Cytokine factors, as a critical component in tumor milieu, execute distinct functions in the process of tumorigenesis and progression via the autocrine or paracrine manner. The retinal determination gene network (RDGN), which mainly comprised DACH, SIX, and EYA family members, is required for the organ development in mammalian species. While the aberrant expression of RDGN is involved in the proliferation, apoptosis, angiogenesis, and metastasis of tumors via interacting with different cytokine-related signals, such as CXCL8, IL-6, TGF-β, FGF, and VEGF, in a cell- or tissue-dependent manner. Thus, joint detection of this pathway might be used as a potential biomarker for the stratification of target therapy and for the precision prediction of the prognosis of cancer patients.
Collapse
Affiliation(s)
- Xinhua Zheng
- Department of Clinical Medicine, Medical School of Pingdingshan University, Pingdingshan, Henan 467000, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| |
Collapse
|