1
|
Franza M, Varricchio R, Alloisio G, De Simone G, Di Bella S, Ascenzi P, di Masi A. Zebrafish ( Danio rerio) as a Model System to Investigate the Role of the Innate Immune Response in Human Infectious Diseases. Int J Mol Sci 2024; 25:12008. [PMID: 39596075 PMCID: PMC11593600 DOI: 10.3390/ijms252212008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The zebrafish (Danio rerio) has emerged as a valuable model for studying host-pathogen interactions due to its unique combination of characteristics. These include extensive sequence and functional conservation with the human genome, optical transparency in larvae that allows for high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, advanced forward and reverse genetic tools, and suitability for chemical screening studies. Despite anatomical differences with humans, the zebrafish model has proven instrumental in investigating immune responses and human infectious diseases. Notably, zebrafish larvae rely exclusively on innate immune responses during the early stages of development, as the adaptive immune system becomes fully functional only after 4-6 weeks post-fertilization. This window provides a unique opportunity to isolate and examine infection and inflammation mechanisms driven by the innate immune response without the confounding effects of adaptive immunity. In this review, we highlight the strengths and limitations of using zebrafish as a powerful vertebrate model to study innate immune responses in infectious diseases. We will particularly focus on host-pathogen interactions in human infections caused by various bacteria (Clostridioides difficile, Staphylococcus aureus, and Pseudomonas aeruginosa), viruses (herpes simplex virus 1, SARS-CoV-2), and fungi (Aspergillus fumigatus and Candida albicans).
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Romualdo Varricchio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giulia Alloisio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy;
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Accademia Nazionale dei Lincei, 00165 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Centro Linceo Interdisciplinare “Beniamino Segre”, Accademia Nazionale dei Lincei, 00165 Roma, Italy
| |
Collapse
|
2
|
Moll T, Farber SA. Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look. Arterioscler Thromb Vasc Biol 2024; 44:1053-1064. [PMID: 38482694 PMCID: PMC11042983 DOI: 10.1161/atvbaha.123.318287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.
Collapse
|
3
|
Cardeira-da-Silva J, Wang Q, Sagvekar P, Mintcheva J, Latting S, Günther S, Ramadass R, Yekelchyk M, Preussner J, Looso M, Junker JP, Stainier DYR. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat Commun 2024; 15:3637. [PMID: 38684665 PMCID: PMC11058276 DOI: 10.1038/s41467-024-47430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.
Collapse
Affiliation(s)
- João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Qianchen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Pooja Sagvekar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Stephan Latting
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michail Yekelchyk
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jens Preussner
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
4
|
Kocere A, Chiavacci E, Soneson C, Wells HH, Méndez-Acevedo KM, MacGowan JS, Jacobson ST, Hiltabidle MS, Raghunath A, Shavit JA, Panáková D, Williams MLK, Robinson MD, Mosimann C, Burger A. Rbm8a deficiency causes hematopoietic defects by modulating Wnt/PCP signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536513. [PMID: 37090609 PMCID: PMC10120739 DOI: 10.1101/2023.04.12.536513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Defects in blood development frequently occur among syndromic congenital anomalies. Thrombocytopenia-Absent Radius (TAR) syndrome is a rare congenital condition with reduced platelets (hypomegakaryocytic thrombocytopenia) and forelimb anomalies, concurrent with more variable heart and kidney defects. TAR syndrome associates with hypomorphic gene function for RBM8A/Y14 that encodes a component of the exon junction complex involved in mRNA splicing, transport, and nonsense-mediated decay. How perturbing a general mRNA-processing factor causes the selective TAR Syndrome phenotypes remains unknown. Here, we connect zebrafish rbm8a perturbation to early hematopoietic defects via attenuated non-canonical Wnt/Planar Cell Polarity (PCP) signaling that controls developmental cell re-arrangements. In hypomorphic rbm8a zebrafish, we observe a significant reduction of cd41-positive thrombocytes. rbm8a-mutant zebrafish embryos accumulate mRNAs with individual retained introns, a hallmark of defective nonsense-mediated decay; affected mRNAs include transcripts for non-canonical Wnt/PCP pathway components. We establish that rbm8a-mutant embryos show convergent extension defects and that reduced rbm8a function interacts with perturbations in non-canonical Wnt/PCP pathway genes wnt5b, wnt11f2, fzd7a, and vangl2. Using live-imaging, we found reduced rbm8a function impairs the architecture of the lateral plate mesoderm (LPM) that forms hematopoietic, cardiovascular, kidney, and forelimb skeleton progenitors as affected in TAR Syndrome. Both mutants for rbm8a and for the PCP gene vangl2 feature impaired expression of early hematopoietic/endothelial genes including runx1 and the megakaryocyte regulator gfi1aa. Together, our data propose aberrant LPM patterning and hematopoietic defects as consequence of attenuated non-canonical Wnt/PCP signaling upon reduced rbm8a function. These results also link TAR Syndrome to a potential LPM origin and a developmental mechanism.
Collapse
Affiliation(s)
- Agnese Kocere
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Elena Chiavacci
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Charlotte Soneson
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Harrison H. Wells
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Jacalyn S. MacGowan
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seth T. Jacobson
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Max S. Hiltabidle
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Azhwar Raghunath
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniela Panáková
- Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
- University Hospital Schleswig Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg, Kiel, Lübeck, Germany
| | - Margot L. K. Williams
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mark D. Robinson
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Gouife M, Ban Z, Yue X, Jiang J, Xie J. Molecular characterization, gene expression and functional analysis of goldfish ( Carassius auratus L.) macrophage colony stimulating factor 2. Front Immunol 2023; 14:1235370. [PMID: 37593738 PMCID: PMC10431942 DOI: 10.3389/fimmu.2023.1235370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Background Macrophage colony-stimulating factor 2 (MCSF-2) is an important cytokine that controls how cells of the monocyte/macrophage lineage proliferate, differentiate, and survive in vertebrates. Two isoforms of MCSF have been identified in fish, each exhibiting distinct gene organization and expression patterns. In this study, we investigated a goldfish MCSF-2 gene in terms of its immunomodulatory and functional properties. Methods In this study, goldfish were acclimated for 3 weeks and sedated with TMS prior to handling. Two groups of fish were used for infection experiments, and tissues from healthy goldfish were collected for RNA isolation. cDNA synthesis was performed, and primers were designed based on transcriptome database sequences. Analysis of gfMCSF-2 sequences, including nucleotide and amino acid analysis, molecular mass prediction, and signal peptide prediction, was conducted. Real-time quantitative PCR (qPCR) was used to analyze gene expression levels, while goldfish head kidney leukocytes (HKLs) were isolated using standard protocols. The expression of gfMCSF-2 in activated HKLs was investigated, and recombinant goldfish MCSF-2 was expressed and purified. Western blot analysis, cell proliferation assays, and flow cytometric analysis of HKLs were performed. Gene expression analysis of transcription factors and pro-inflammatory cytokines in goldfish head kidney leukocytes exposed to rgMCSF-2 was conducted. Statistical analysis using one-way ANOVA and Dunnett's post hoc test was applied. Results We performed a comparative analysis of MCSF-1 and MCSF-2 at the protein and nucleotide levels using the Needleman-Wunsch algorithm. The results revealed significant differences between the two sequences, supporting the notion that they represent distinct genes rather than isoforms of the same gene. Sequence alignment demonstrated high sequence identity with MCSF-2 homologs from fish species, particularly C. carpio, which was supported by phylogenetic analysis. Expression analysis in various goldfish tissues demonstrated differential expression levels, with the spleen exhibiting the highest expression. In goldfish head kidney leukocytes, gfMCSF-2 expression was modulated by chemical stimuli and bacterial infection, with upregulation observed in response to lipopolysaccharide (LPS) and live Aeromonas hydrophila. Recombinant gfMCSF-2 (rgMCSF-2) was successfully expressed and purified, showing the ability to stimulate cell proliferation in HKLs. Flow cytometric analysis revealed that rgMCSF-2 induced differentiation of sorted leukocytes at a specific concentration. Moreover, rgMCSF-2 treatment upregulated TNFα and IL-1β mRNA levels and influenced the expression of transcription factors, such as MafB, GATA2, and cMyb, in a time-dependent manner. Conclusion Collectively, by elucidating the effects of rgMCSF-2 on cell proliferation, differentiation, and the modulation of pro-inflammatory cytokines and transcription factors, our findings provided a comprehensive understanding of the potential mechanisms underlying gfMCSF-2-mediated immune regulation. These results contribute to the fundamental knowledge of MCSF-2 in teleosts and establish a foundation for further investigations on the role of gfMCSF-2 in fish immune responses.
Collapse
Affiliation(s)
- Moussa Gouife
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ziqi Ban
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jianhu Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institule of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Sertori R, Zhang Y, Wiest DL. Zebrafish: A Tractable Model for Analysis of T Cell Development. Methods Mol Biol 2023; 2580:355-377. [PMID: 36374469 DOI: 10.1007/978-1-0716-2740-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the zebrafish has for some time been regarded as a powerful model organism with which to study early events in hematopoiesis, recent evidence suggests that it also ideal for unraveling the molecular requirements for T cell development in the thymus. Like mammals, zebrafish possess an adaptive immune system, comprising B lymphocytes as well as both the γδ and αβ lineages of T cells, which develop in the thymus. Moreover, the molecular processes underlying T cell development in zebrafish appear to be remarkably conserved. Thus, findings in the zebrafish model will be of high relevance to the equivalent processes in mammals. Finally, molecular processes can be interrogated in zebrafish far more rapidly than is possible in mammals because the zebrafish possesses many unique advantages. Here, we describe these unique attributes and the methods by which they can be exploited to investigate the role of novel genes in T cell development.
Collapse
Affiliation(s)
- Robert Sertori
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Xia Y, Duca S, Perder B, Dündar F, Zumbo P, Qiu M, Yao J, Cao Y, Harrison MRM, Zangi L, Betel D, Cao J. Activation of a transient progenitor state in the epicardium is required for zebrafish heart regeneration. Nat Commun 2022; 13:7704. [PMID: 36513650 PMCID: PMC9747719 DOI: 10.1038/s41467-022-35433-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The epicardium, a mesothelial cell tissue that encompasses vertebrate hearts, supports heart regeneration after injury through paracrine effects and as a source of multipotent progenitors. However, the progenitor state in the adult epicardium has yet to be defined. Through single-cell RNA-sequencing of isolated epicardial cells from uninjured and regenerating adult zebrafish hearts, we define the epithelial and mesenchymal subsets of the epicardium. We further identify a transiently activated epicardial progenitor cell (aEPC) subpopulation marked by ptx3a and col12a1b expression. Upon cardiac injury, aEPCs emerge from the epithelial epicardium, migrate to enclose the wound, undergo epithelial-mesenchymal transition (EMT), and differentiate into mural cells and pdgfra+hapln1a+ mesenchymal epicardial cells. These EMT and differentiation processes are regulated by the Tgfβ pathway. Conditional ablation of aEPCs blocks heart regeneration through reduced nrg1 expression and mesenchymal cell number. Our findings identify a transient progenitor population of the adult epicardium that is indispensable for heart regeneration and highlight it as a potential target for enhancing cardiac repair.
Collapse
Affiliation(s)
- Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Sierra Duca
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Michael R M Harrison
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Zhao S, Zhang A, Zhu H, Wen Z. The ETS transcription factor Spi2 regulates hematopoietic cell development in zebrafish. Development 2022; 149:276980. [DOI: 10.1242/dev.200881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The E26 transformation-specific or E-twenty-six (ETS) genes encode a superfamily of transcription factors involved in diverse biological processes. Here, we report the identification and characterization of a previously unidentified member of the ETS transcription factors, Spi2, that is found exclusively in the ray-finned fish kingdom. We show that the expression of spi2 is restricted to hemogenic endothelial cells (HECs) and to hematopoietic stem and progenitor cells (HSPCs) in zebrafish. Using bacteria artificial chromosome transgenesis, we generate a spi2 reporter line, TgBAC(spi2:P2a-GFP), which manifests the GFP pattern recapitulating the endogenous spi2 expression. Genetic ablation of spi2 has little effect on HEC formation and the endothelial-to-hematopoietic transition, but results in compromised proliferation of HSPCs in the caudal hematopoietic tissue (CHT) during early development and in severe myeloid lineage defect in adulthood. Epistatic analysis shows that spi2 acts downstream of runx1 in regulating HSPC development in the CHT. Our study identifies Spi2 as an essential regulator for definitive hematopoietic cell development and creates a TgBAC(spi2:P2a-GFP) reporter line for tracking HECs, HSPCs, myeloid cells and thrombocytes from early development to adulthood.
Collapse
Affiliation(s)
- Shizheng Zhao
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
| | - Ao Zhang
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
| | - Hao Zhu
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
| | - Zilong Wen
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University−Hong Kong University of Science and Technology Medical Center 2 , Shenzhen 518055 , China
| |
Collapse
|
9
|
Rubin SA, Baron CS, Pessoa Rodrigues C, Duran M, Corbin AF, Yang SP, Trapnell C, Zon LI. Single-cell analyses reveal early thymic progenitors and pre-B cells in zebrafish. J Exp Med 2022; 219:e20220038. [PMID: 35938989 PMCID: PMC9365674 DOI: 10.1084/jem.20220038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has proven to be a valuable model organism for studying hematopoiesis, but relatively little is known about zebrafish immune cell development and functional diversity. Elucidating key aspects of zebrafish lymphocyte development and exploring the breadth of effector functions would provide valuable insight into the evolution of adaptive immunity. We performed single-cell RNA sequencing on ∼70,000 cells from the zebrafish marrow and thymus to establish a gene expression map of zebrafish immune cell development. We uncovered rich cellular diversity in the juvenile and adult zebrafish thymus, elucidated B- and T-cell developmental trajectories, and transcriptionally characterized subsets of hematopoietic stem and progenitor cells and early thymic progenitors. Our analysis permitted the identification of two dendritic-like cell populations and provided evidence in support of the existence of a pre-B cell state. Our results provide critical insights into the landscape of zebrafish immunology and offer a foundation for cellular and genetic studies.
Collapse
Affiliation(s)
- Sara A. Rubin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Chloé S. Baron
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Cecilia Pessoa Rodrigues
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Alexandra F. Corbin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Song P. Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
10
|
Tu J, Yu S, Li J, Ren M, Zhang Y, Luo J, Sun K, Lv Y, Han Y, Huang Y, Ren X, Jiang T, Tang Z, Williams MTS, Lu Q, Liu M. Dhx38 is required for the maintenance and differentiation of erythro-myeloid progenitors and hematopoietic stem cells by alternative splicing. Development 2022; 149:276218. [DOI: 10.1242/dev.200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mutations that occur in RNA-splicing machinery may contribute to hematopoiesis-related diseases. How splicing factor mutations perturb hematopoiesis, especially in the differentiation of erythro-myeloid progenitors (EMPs), remains elusive. Dhx38 is a pre-mRNA splicing-related DEAH box RNA helicase, for which the physiological functions and splicing mechanisms during hematopoiesis currently remain unclear. Here, we report that Dhx38 exerts a broad effect on definitive EMPs as well as the differentiation and maintenance of hematopoietic stem and progenitor cells (HSPCs). In dhx38 knockout zebrafish, EMPs and HSPCs were found to be arrested in mitotic prometaphase, accompanied by a ‘grape’ karyotype, owing to the defects in chromosome alignment. Abnormal alternatively spliced genes related to chromosome segregation, the microtubule cytoskeleton, cell cycle kinases and DNA damage were present in the dhx38 mutants. Subsequently, EMPs and HSPCs in dhx38 mutants underwent P53-dependent apoptosis. This study provides novel insights into alternative splicing regulated by Dhx38, a process that plays a crucial role in the proliferation and differentiation of fetal EMPs and HSPCs.
Collapse
Affiliation(s)
- Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology 2 , Wuhan, Hubei 430065 , P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mengmeng Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yangjun Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 3 , Wuhan 430030 , P.R. China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mark Thomas Shaw Williams
- Charles Oakley Laboratories 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
- Glasgow Caledonian University 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| |
Collapse
|
11
|
Dai Y, Wu S, Cao C, Xue R, Luo X, Wen Z, Xu J. Csf1rb regulates definitive hematopoiesis in zebrafish. Development 2022; 149:276084. [DOI: 10.1242/dev.200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In vertebrates, hematopoietic stem and progenitor cells (HSPCs) are capable of self-renewal and continuously replenishing all mature blood lineages throughout life. However, the molecular signaling regulating the maintenance and expansion of HSPCs remains incompletely understood. Colony-stimulating factor 1 receptor (CSF1R) is believed to be the primary regulator for the myeloid lineage but not HSPC development. Here, we show a surprising role of Csf1rb, a zebrafish homolog of mammalian CSF1R, in preserving the HSPC pool by maintaining the proliferation of HSPCs. Deficiency of csf1rb leads to a reduction in both HSPCs and their differentiated progenies, including myeloid, lymphoid and erythroid cells at early developmental stages. Likewise, the absence of csf1rb conferred similar defects upon HSPCs and leukocytes in adulthood. Furthermore, adult hematopoietic cells from csf1rb mutants failed to repopulate immunodeficient zebrafish. Interestingly, loss-of-function and gain-of-function assays suggested that the canonical ligands for Csf1r in zebrafish, including Csf1a, Csf1b and Il34, were unlikely to be ligands of Csf1rb. Thus, our data indicate a previously unappreciated role of Csf1r in maintaining HSPCs, independently of known ligands.
Collapse
Affiliation(s)
- Yimei Dai
- School of Medicine, South China University of Technology 1 Laboratory of Immunology & Regeneration , , Guangzhou 510006, China
| | - Shuting Wu
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology 2 Division of Life Science , , Clear Water Bay, Kowloon, Hong Kong , People's Republic of China
| | - Canran Cao
- School of Medicine, South China University of Technology 1 Laboratory of Immunology & Regeneration , , Guangzhou 510006, China
| | - Rongtao Xue
- Nanfang Hospital, Southern Medical University 3 Department of Hematology , , Guangzhou, Guangdong 510515 , China
| | - Xuefen Luo
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology 2 Division of Life Science , , Clear Water Bay, Kowloon, Hong Kong , People's Republic of China
| | - Zilong Wen
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology 2 Division of Life Science , , Clear Water Bay, Kowloon, Hong Kong , People's Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University−Hong Kong University of Science and Technology Medical Center 4 , Shenzhen 518055 , China
| | - Jin Xu
- School of Medicine, South China University of Technology 1 Laboratory of Immunology & Regeneration , , Guangzhou 510006, China
| |
Collapse
|
12
|
Cui Y, Shi W, Zhang K, Hou Z, Wang Y, Yan W, Ma Q, He S, Huang J, Lu C, Wang Y, Wang G, Qiu J. Temporal-spatial low shear stress induces heterogenous distribution of hematopoietic stem cell budding in zebrafish. Cell Mol Life Sci 2022; 79:399. [PMID: 35792959 PMCID: PMC11073138 DOI: 10.1007/s00018-022-04411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) originate from endothelial cells (ECs) localized on the ventral side of the dorsal aorta (DA), and hemodynamic parameters may suffer sharp changes in DA at HSPCs development stage for intersegmental vessel formation. However, the temporal-spatial shear stress parameters and biomechanics mechanisms of HSPC budding remain unknown. Here, we found that the hematopoietic endothelium (HE) in the aorta-gonad-mesonephros was heterogeneous; that is, HEs were mainly distributed at the ventral side of the vascular bifurcation in zebrafish embryos, which was found to show low shear stress (LSS) through numerical simulation analysis. Furthermore, HSPCs localized in the posterior somite of aorta-gonad-mesonephros with slow velocity. On the temporal scale, there was a slow velocity and LSS during HE budding from 36 h post-fertilization and decreased shear stress with drug expanded HSPC numbers. Mechanistically, matrix metalloproteinase (MMP) expression and macrophage chemotaxis were significantly increased in HEs by RNA-seq. After treatment with an MMP13 inhibitor, HSPCs were significantly reduced in both the aorta-gonad-mesonephros and caudal hematopoietic tissue in embryos. Our results show that HSPC budding is heterogeneous, and the mechanism is that physiological LSS controls the emergence of HSPCs by promoting the accumulation of macrophages and subsequent MMP expression.
Collapse
Affiliation(s)
- Yuliang Cui
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenpeng Shi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zhengjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yanyun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - WenHua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qinfeng Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Shicheng He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Chenfei Lu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
13
|
Taznin T, Perera K, Gibert Y, Ward AC, Liongue C. Cytokine Receptor-Like Factor 3 (CRLF3) Contributes to Early Zebrafish Hematopoiesis. Front Immunol 2022; 13:910428. [PMID: 35795682 PMCID: PMC9251315 DOI: 10.3389/fimmu.2022.910428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cytokine receptor-like factor 3 (CRLF3) is an ancient protein conserved across metazoans that contains an archetypal cytokine receptor homology domain (CHD). This domain is found in cytokine receptors present in bilateria, including higher vertebrates, that play key roles in a variety of developmental and homeostatic processes, particularly relating to blood and immune cells. However, understanding of CRLF3 itself remains very limited. This study aimed to investigate this evolutionarily significant protein by studying its embryonic expression and function in early development, particularly of blood and immune cells, using zebrafish as a model. Expression of crlf3 was identified in mesoderm-derived tissues in early zebrafish embryos, including the somitic mesoderm and both anterior and posterior lateral plate mesoderm. Later expression was observed in the thymus, brain, retina and exocrine pancreas. Zebrafish crlf3 mutants generated by genome editing technology exhibited a significant reduction in primitive hematopoiesis and early definitive hematopoiesis, with decreased early progenitors impacting on multiple lineages. No other obvious phenotypes were observed in the crlf3 mutants.
Collapse
Affiliation(s)
- Tarannum Taznin
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | - Yann Gibert
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- *Correspondence: Clifford Liongue,
| |
Collapse
|
14
|
Klaus A, Clapes T, Yvernogeau L, Basu S, Weijts B, Maas J, Smal I, Galjart N, Robin C. CLASP2 safeguards hematopoietic stem cell properties during mouse and fish development. Cell Rep 2022; 39:110957. [PMID: 35705037 DOI: 10.1016/j.celrep.2022.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/28/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem cells (HSCs) express a large variety of cell surface receptors that are associated with acquisition of self-renewal and multipotent properties. Correct expression of these receptors depends on a delicate balance between cell surface trafficking, recycling, and degradation and is controlled by the microtubule network and Golgi apparatus, whose roles have hardly been explored during embryonic/fetal hematopoiesis. Here we show that, in the absence of CLASP2, a microtubule-associated protein, the overall production of HSCs is reduced, and the produced HSCs fail to self-renew and maintain their stemness throughout mouse and zebrafish development. This phenotype can be attributed to decreased cell surface expression of the hematopoietic receptor c-Kit, which originates from increased lysosomal degradation in combination with a reduction in trafficking to the plasma membrane. A dysfunctional Golgi apparatus in CLASP2-deficient HSCs seems to be the underlying cause of the c-Kit expression and signaling imbalance.
Collapse
Affiliation(s)
- Anna Klaus
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Thomas Clapes
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sreya Basu
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Bart Weijts
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Joris Maas
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ihor Smal
- Theme Biomedical Sciences and Departments of Cell Biology and Molecular Genetics, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands.
| |
Collapse
|
15
|
In vivo impact of JAK3 A573V mutation revealed using zebrafish. Cell Mol Life Sci 2022; 79:322. [PMID: 35622134 PMCID: PMC9142468 DOI: 10.1007/s00018-022-04361-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Background Janus kinase 3 (JAK3) acts downstream of the interleukin-2 (IL-2) receptor family to play a pivotal role in the regulation of lymphoid cell development. Activating JAK3 mutations are associated with a number of lymphoid and other malignancies, with mutations within the regulatory pseudokinase domain common. Methods The pseudokinase domain mutations A572V and A573V were separately introduced into the highly conserved zebrafish Jak3 and transiently expressed in cell lines and zebrafish embryos to examine their activity and impact on early T cells. Genome editing was subsequently used to introduce the A573V mutation into the zebrafish genome to study the effects of JAK3 activation on lymphoid cells in a physiologically relevant context throughout the life-course. Results Zebrafish Jak3 A573V produced the strongest activation of downstream STAT5 in vitro and elicited a significant increase in T cells in zebrafish embryos. Zebrafish carrying just a single copy of the Jak3 A573V allele displayed elevated embryonic T cells, which continued into adulthood. Hematopoietic precursors and NK cells were also increased, but not B cells. The lymphoproliferative effects of Jak3 A573V in embryos was shown to be dependent on zebrafish IL-2Rγc, JAK1 and STAT5B equivalents, and could be suppressed with the JAK3 inhibitor Tofacitinib. Conclusions This study demonstrates that a single JAK3 A573V allele expressed from the endogenous locus was able to enhance lymphopoiesis throughout the life-course, which was mediated via an IL-2Rγc/JAK1/JAK3/STAT5 signaling pathway and was sensitive to Tofacitinib. This extends our understanding of oncogenic JAK3 mutations and creates a novel model to underpin further translational investigations. Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04361-8.
Collapse
|
16
|
Sertori R, Jones R, Basheer F, Rivera L, Dawson S, Loke S, Heidary S, Dhillon A, Liongue C, Ward AC. Generation and Characterization of a Zebrafish IL-2Rγc SCID Model. Int J Mol Sci 2022; 23:ijms23042385. [PMID: 35216498 PMCID: PMC8875600 DOI: 10.3390/ijms23042385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
The IL-2 family of cytokines act via receptor complexes that share the interleukin-2 receptor gamma common (IL-2Rγc) chain to play key roles in lymphopoiesis. Inactivating IL-2Rγc mutations results in severe combined immunodeficiency (SCID) in humans and other species. This study sought to generate an equivalent zebrafish SCID model. The zebrafish il2rga gene was targeted for genome editing using TALENs and presumed loss-of-function alleles analyzed with respect to immune cell development and impacts on intestinal microbiota and tumor immunity. Knockout of zebrafish Il-2rγc.a resulted in a SCID phenotype, including a significant reduction in T cells, with NK cells also impacted. This resulted in dysregulated intestinal microbiota and defective immunity to tumor xenotransplants. Collectively, this establishes a useful zebrafish SCID model.
Collapse
Affiliation(s)
- Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Realla Jones
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Leni Rivera
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Samantha Dawson
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Stella Loke
- School of Life and Environmental Science, Deakin University, Burwood, VIC 3125, Australia;
| | - Somayyeh Heidary
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Amardeep Dhillon
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
- Correspondence:
| |
Collapse
|
17
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
18
|
Erythropoietin receptor contributes to thrombopoietin receptor (Mpl)-independent thrombocytopoiesis in zebrafish. Leukemia 2022; 36:1193-1197. [PMID: 35039636 DOI: 10.1038/s41375-021-01495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
|
19
|
Using the Zebrafish as a Genetic Model to Study Erythropoiesis. Int J Mol Sci 2021; 22:ijms221910475. [PMID: 34638816 PMCID: PMC8508994 DOI: 10.3390/ijms221910475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
Vertebrates generate mature red blood cells (RBCs) via a highly regulated, multistep process called erythropoiesis. Erythropoiesis involves synthesis of heme and hemoglobin, clearance of the nuclei and other organelles, and remodeling of the plasma membrane, and these processes are exquisitely coordinated by specific regulatory factors including transcriptional factors and signaling molecules. Defects in erythropoiesis can lead to blood disorders such as congenital dyserythropoietic anemias, Diamond–Blackfan anemias, sideroblastic anemias, myelodysplastic syndrome, and porphyria. The molecular mechanisms of erythropoiesis are highly conserved between fish and mammals, and the zebrafish (Danio rerio) has provided a powerful genetic model for studying erythropoiesis. Studies in zebrafish have yielded important insights into RBC development and established a number of models for human blood diseases. Here, we focus on latest discoveries of the molecular processes and mechanisms regulating zebrafish erythropoiesis and summarize newly established zebrafish models of human anemias.
Collapse
|
20
|
Peña OA, Lubin A, Rowell J, Hoade Y, Khokhar N, Lemmik H, Mahony C, Dace P, Umamahesan C, Payne EM. Differential Requirement of Gata2a and Gata2b for Primitive and Definitive Myeloid Development in Zebrafish. Front Cell Dev Biol 2021; 9:708113. [PMID: 34589480 PMCID: PMC8475954 DOI: 10.3389/fcell.2021.708113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 11/14/2022] Open
Abstract
Germline loss or mutation of one copy of the transcription factor GATA2 in humans leads to a range of clinical phenotypes affecting hematopoietic, lymphatic and vascular systems. GATA2 heterozygous mice show only a limited repertoire of the features observed in humans. Zebrafish have two copies of the Gata2 gene as a result of an additional round of ancestral whole genome duplication. These genes, Gata2a and Gata2b, show distinct but overlapping expression patterns, and between them, highlight a significantly broader range of the phenotypes observed in GATA2 deficient syndromes, than each one alone. In this manuscript, we use mutants for Gata2a and Gata2b to interrogate the effects on hematopoiesis of these two ohnologs, alone and in combination, during development in order to further define the role of GATA2 in developmental hematopoiesis. We define unique roles for each ohnolog at different stages of developmental myelopoiesis and for the emergence of hematopoietic stem and progenitor cells. These effects are not additive in the haploinsufficient state suggesting a redundancy between these two genes in hematopoietic stem and progenitor cells. Rescue studies additionally support that Gata2b can compensate for the effects of Gata2a loss. Finally we show that adults with loss of combined heterozygosity show defects in the myeloid compartment consistent with GATA2 loss in humans. These results build on existing knowledge from other models of GATA2 deficiency and refine our understanding of the early developmental effects of GATA2. In addition, these studies shed light on the complexity and potential structure-function relationships as well as sub-functionalization of Gata2 genes in the zebrafish model.
Collapse
Affiliation(s)
- Oscar A. Peña
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Alexandra Lubin
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Jasmine Rowell
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Yvette Hoade
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Noreen Khokhar
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Hanna Lemmik
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Christopher Mahony
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Phoebe Dace
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Chianna Umamahesan
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Elspeth M. Payne
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
- National Institute for Health Research (NIHR)/UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Gao S, Wang Z, Wang L, Wang H, Yuan H, Liu X, Chen S, Chen Z, de Thé H, Zhang W, Zhang Y, Zhu J, Zhou J. Irf2bp2a regulates terminal granulopoiesis through proteasomal degradation of Gfi1aa in zebrafish. PLoS Genet 2021; 17:e1009693. [PMID: 34351909 PMCID: PMC8370619 DOI: 10.1371/journal.pgen.1009693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/17/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
The ubiquitin-proteasome system plays important roles in various biological processes as it degrades the majority of cellular proteins. Adequate proteasomal degradation of crucial transcription regulators ensures the proper development of neutrophils. The ubiquitin E3 ligase of Growth factor independent 1 (GFI1), a key transcription repressor governing terminal granulopoiesis, remains obscure. Here we report that the deficiency of the ring finger protein Interferon regulatory factor 2 binding protein 2a (Irf2bp2a) leads to an impairment of neutrophils differentiation in zebrafish. Mechanistically, Irf2bp2a functions as a ubiquitin E3 ligase targeting Gfi1aa for proteasomal degradation. Moreover, irf2bp2a gene is repressed by Gfi1aa, thus forming a negative feedback loop between Irf2bp2a and Gfi1aa during neutrophils maturation. Different levels of GFI1 may turn it into a tumor suppressor or an oncogene in malignant myelopoiesis. Therefore, discovery of certain drug targets GFI1 for proteasomal degradation by IRF2BP2 might be an effective anti-cancer strategy.
Collapse
Affiliation(s)
- Shuo Gao
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zixuan Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Luxiang Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of hematology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haihong Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hao Yuan
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaohui Liu
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Saijuan Chen
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhu Chen
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hugues de Thé
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P.R. China
- * E-mail: (YZ); (JZ); (JZ)
| | - Jun Zhu
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
- * E-mail: (YZ); (JZ); (JZ)
| | - Jun Zhou
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- * E-mail: (YZ); (JZ); (JZ)
| |
Collapse
|
22
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
23
|
Gioacchino E, Koyunlar C, Zink J, de Looper H, de Jong M, Dobrzycki T, Mahony CB, Hoogenboezem R, Bosch D, van Strien PMH, van Royen ME, French PJ, Bindels E, Gussinklo KJ, Monteiro R, Touw IP, de Pater E. Essential role for Gata2 in modulating lineage output from hematopoietic stem cells in zebrafish. Blood Adv 2021; 5:2687-2700. [PMID: 34170285 PMCID: PMC8288679 DOI: 10.1182/bloodadvances.2020002993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023] Open
Abstract
The differentiation of hematopoietic stem cells (HSCs) is tightly controlled to ensure a proper balance between myeloid and lymphoid cell output. GATA2 is a pivotal hematopoietic transcription factor required for generation and maintenance of HSCs. GATA2 is expressed throughout development, but because of early embryonic lethality in mice, its role during adult hematopoiesis is incompletely understood. Zebrafish contains 2 orthologs of GATA2: Gata2a and Gata2b, which are expressed in different cell types. We show that the mammalian functions of GATA2 are split between these orthologs. Gata2b-deficient zebrafish have a reduction in embryonic definitive hematopoietic stem and progenitor cell (HSPC) numbers, but are viable. This allows us to uniquely study the role of GATA2 in adult hematopoiesis. gata2b mutants have impaired myeloid lineage differentiation. Interestingly, this defect arises not in granulocyte-monocyte progenitors, but in HSPCs. Gata2b-deficient HSPCs showed impaired progression of the myeloid transcriptional program, concomitant with increased coexpression of lymphoid genes. This resulted in a decrease in myeloid-programmed progenitors and a relative increase in lymphoid-programmed progenitors. This shift in the lineage output could function as an escape mechanism to avoid a block in lineage differentiation. Our study helps to deconstruct the functions of GATA2 during hematopoiesis and shows that lineage differentiation flows toward a lymphoid lineage in the absence of Gata2b.
Collapse
Affiliation(s)
| | - Cansu Koyunlar
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Joke Zink
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Hans de Looper
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Cancer Genome Editing Center, Erasmus MC, Rotterdam, The Netherlands
| | - Madelon de Jong
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Tomasz Dobrzycki
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Christopher B. Mahony
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | | | - Dennis Bosch
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Martin E. van Royen
- Department of Pathology, Cancer Treatment Screening Facility, Erasmus MC Optical Imaging Centre, and
| | - Pim J. French
- Department of Neurology, Cancer Treatment Screening Facility, Erasmus MC, Rotterdam, The Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Ivo P. Touw
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Cancer Genome Editing Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Cai Y, Wang J, Jin D, Liu Q, Chen X, Pan L, Li Y, Wang X, Qian F, Wang J, Zhong TP, Wang S. Dhx15 regulates zebrafish definitive hematopoiesis through the unfolded protein response pathway. Cancer Sci 2021; 112:3884-3894. [PMID: 34077586 PMCID: PMC8409414 DOI: 10.1111/cas.15002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gene alterations are recognized as important events in acute myeloid leukemia (AML) progression. Studies on hematopoiesis of altered genes contribute to a better understanding on their roles in AML progression. Our previous work reported a DEAH box helicase 15 (DHX15) R222G mutation in AML patients, and we showed DHX15 overexpression is associated with poor prognosis in AML patients. In this work, we further study the role of dhx15 in zebrafish developmental hematopoiesis by generating dhx15−/− zebrafish using transcription activator‐like effector nuclease technology. Whole‐mount in situ hybridization (WISH) analysis showed hematopoietic stem/progenitor cells were dramatically perturbed when dhx15 was deleted. Immunofluorescence staining indicated inhibited hematopoietic stem/progenitor cell (HSPC) proliferation instead of accelerated apoptosis were detected in dhx15−/− zebrafish. Furthermore, our data showed that HSPC defect is mediated through the unfolded protein response (UPR) pathway. DHX15 R222G mutation, a recurrent mutation identified in AML patients, displayed a compromised function in restoring HSPC failure in dhx15−/−; Tg (hsp: DHX15 R222G) zebrafish. Collectively, this work revealed a vital role of dhx15 in the maintenance of definitive hematopoiesis in zebrafish through the unfolded protein respone pathway. The study of DHX15 and DHX15 R222G mutation could hold clinical significance for evaluating prognosis of AML patients with aberrant DHX15 expression.
Collapse
Affiliation(s)
- Yuanhua Cai
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai, China
| | - Qiao Liu
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Xianglei Chen
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Lili Pan
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yang Li
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xuechun Wang
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Feng Qian
- School of Life Sciences and Institutes of Biomedical Sciences, Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Jiucun Wang
- School of Life Sciences and Institutes of Biomedical Sciences, Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Tao Peter Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai, China.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shaoyuan Wang
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
25
|
A novel conditioning-free hematopoietic stem cell transplantation model in zebrafish. Blood Adv 2021; 4:6189-6198. [PMID: 33351115 DOI: 10.1182/bloodadvances.2020002424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Transplantation is the most common assay for measuring the in vivo functionality of hematopoietic stem cells (HSCs). Although various HSC transplantation strategies have been developed in zebrafish, they are underutilized because of challenges related to immune matching and preconditioning toxicity. To circumvent these limitations, we developed a simple and robust transplantation model using HSC-deficient hosts. Homozygous runx1W84X mutants are devoid of definitive hematopoietic cells, including HSCs and adaptive immune cells; thus, they require no preconditioning regimen for transplantation. Marrow cell transplantation into runx1-mutant zebrafish 2 days after fertilization significantly improved their survival to adulthood and resulted in robust, multilineage, long-lasting, serially repopulating engraftment. Furthermore, we demonstrated that engraftment into runx1 homozygous mutants was significantly higher than into runx1 heterozygotes, demonstrating that the improved transplantation success is attributable to the empty HSC niche in mutants and not just the embryonic environment. Competitive transplantation of marrow cells into runx1 mutants revealed a stem cell frequency similar to that of murine marrow cells, which demonstrates the utility of this model for quantifying HSC function. The streamlined approach and robustness of this assay will help broaden its feasibility for future high-throughput transplantation experiments in zebrafish and will enable further novel discoveries in the biology of HSCs.
Collapse
|
26
|
A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proc Natl Acad Sci U S A 2021; 118:2015748118. [PMID: 33785593 PMCID: PMC8040670 DOI: 10.1073/pnas.2015748118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The caudal hematopoietic tissue (CHT) is characterized as a hematopoietic organ for fetal hematopoietic stem and progenitor cell (HSPC) expansion in zebrafish. In this study, we used scRNA-seq combined with functional assays to decode the developing CHT. First, we resolved fetal HSPC heterogeneity, manifested as lineage priming and metabolic gene signatures. We further analyzed the cellular interactions among nonhematopoietic niche components and HSPCs and identified an endothelial cell-specific factor, Gpr182, followed by experimental validation of its role in promoting HSPC expansion. Finally, we uncovered the conservation and divergence of developmental hematopoiesis between human fetal liver and zebrafish CHT. Our study provides a valuable resource for fetal HSPC development and clues to establish a supportive niche for HSPC expansion in vitro. During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand–receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein–coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.
Collapse
|
27
|
Belmonte RL, Engbretson IL, Kim JH, Cajias I, Ahn EYE, Stachura DL. son is necessary for proper vertebrate blood development. PLoS One 2021; 16:e0247489. [PMID: 33630943 PMCID: PMC7906411 DOI: 10.1371/journal.pone.0247489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
The gene SON is on human chromosome 21 (21q22.11) and is thought to be associated with hematopoietic disorders that accompany Down syndrome. Additionally, SON is an RNA splicing factor that plays a role in the transcription of leukemia-associated genes. Previously, we showed that mutations in SON cause malformations in human and zebrafish spines and brains during early embryonic development. To examine the role of SON in normal hematopoiesis, we reduced expression of the zebrafish homolog of SON in zebrafish at the single-cell developmental stage with specific morpholinos. In addition to the brain and spinal malformations we also observed abnormal blood cell levels upon son knockdown. We then investigated how blood production was altered when levels of son were reduced. Decreased levels of son resulted in lower amounts of red blood cells when visualized with lcr:GFP transgenic fish. There were also reduced thrombocytes seen with cd41:GFP fish, and myeloid cells when mpx:GFP fish were examined. We also observed a significant decrease in the quantity of T cells, visualized with lck:GFP fish. However, when we examined their hematopoietic stem and progenitor cells (HSPCs), we saw no difference in colony-forming capability. These studies indicate that son is essential for the proper differentiation of the innate and adaptive immune system, and further investigation determining the molecular pathways involved during blood development should elucidate important information about vertebrate HSPC generation, proliferation, and differentiation.
Collapse
Affiliation(s)
- Rebecca L. Belmonte
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
| | - Isabella L. Engbretson
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
| | - Jung-Hyun Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Illiana Cajias
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
| | - Eun-Young Erin Ahn
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David L. Stachura
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Li J, Meng P, Zhou R, Zhang Y, Lin Q. Famciclovir leads to failure of hematopoiesis, but may have the benefit of relieving myeloid expansion in MDS-like zebrafish. Toxicol Appl Pharmacol 2020; 410:115334. [PMID: 33207248 DOI: 10.1016/j.taap.2020.115334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Famciclovir (FCV) is an antiviral drug that is often utilized after bone marrow transplantation to prevent viral infection. Yet, its role in hematopoiesis is poorly understood. Here, by utilizing a zebrafish model, we found that FCV exposure led to hematopoietic failure by impairing the proliferation of hematopoietic stem and progenitor cell (HSPC) and inducing HSPC apoptosis. On the other hand, FCV treatment could effectively relieve myeloid malignancies in the c-mybhyper MDS-like fish model, and played a role not only in the embryonic stage but also in adult zebrafish. This study reveals that FCV functions as a double-edged sword, with hematotoxicity at a high level, but that appropriate FCV treatment may be beneficial for the treatment of MDS.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Panpan Meng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Riyang Zhou
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR China.
| | - Qing Lin
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
29
|
Baron CS, Barve A, Muraro MJ, van der Linden R, Dharmadhikari G, Lyubimova A, de Koning EJP, van Oudenaarden A. Cell Type Purification by Single-Cell Transcriptome-Trained Sorting. Cell 2020; 179:527-542.e19. [PMID: 31585086 PMCID: PMC6863042 DOI: 10.1016/j.cell.2019.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023]
Abstract
Much of current molecular and cell biology research relies on the ability to purify cell types by fluorescence-activated cell sorting (FACS). FACS typically relies on the ability to label cell types of interest with antibodies or fluorescent transgenic constructs. However, antibody availability is often limited, and genetic manipulation is labor intensive or impossible in the case of primary human tissue. To date, no systematic method exists to enrich for cell types without a priori knowledge of cell-type markers. Here, we propose GateID, a computational method that combines single-cell transcriptomics with FACS index sorting to purify cell types of choice using only native cellular properties such as cell size, granularity, and mitochondrial content. We validate GateID by purifying various cell types from zebrafish kidney marrow and the human pancreas to high purity without resorting to specific antibodies or transgenes.
Collapse
Affiliation(s)
- Chloé S Baron
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Aditya Barve
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Mauro J Muraro
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Single Cell Discoveries, Utrecht, the Netherlands
| | - Reinier van der Linden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Gitanjali Dharmadhikari
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands
| | - Anna Lyubimova
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Eelco J P de Koning
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands; Section of Nephrology and Section of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
30
|
Weinberger M, Simões FC, Patient R, Sauka-Spengler T, Riley PR. Functional Heterogeneity within the Developing Zebrafish Epicardium. Dev Cell 2020; 52:574-590.e6. [PMID: 32084358 PMCID: PMC7063573 DOI: 10.1016/j.devcel.2020.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/07/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
The epicardium is essential during cardiac development, homeostasis, and repair, and yet fundamental insights into its underlying cell biology, notably epicardium formation, lineage heterogeneity, and functional cross-talk with other cell types in the heart, are currently lacking. In this study, we investigated epicardial heterogeneity and the functional diversity of discrete epicardial subpopulations in the developing zebrafish heart. Single-cell RNA sequencing uncovered three epicardial subpopulations with specific genetic programs and distinctive spatial distribution. Perturbation of unique gene signatures uncovered specific functions associated with each subpopulation and established epicardial roles in cell adhesion, migration, and chemotaxis as a mechanism for recruitment of leukocytes into the heart. Understanding which mechanisms epicardial cells employ to establish a functional epicardium and how they communicate with other cardiovascular cell types during development will bring us closer to repairing cellular relationships that are disrupted during cardiovascular disease. scRNA-seq uncovered 3 developmental epicardial subpopulations (Epi1-3) in the zebrafish Epi1-specific gene, tgm2b, regulates the cell numbers in the main epicardial sheet Epi2-specific gene, sema3fb, restricts the number of tbx18+ cells in the cardiac outflow tract Epi3-specific gene, cxcl12a, guides ptprc/CD45+ myeloid cells to the developing heart
Collapse
Affiliation(s)
- Michael Weinberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Roger Patient
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK.
| |
Collapse
|
31
|
Lundin V, Sugden WW, Theodore LN, Sousa PM, Han A, Chou S, Wrighton PJ, Cox AG, Ingber DE, Goessling W, Daley GQ, North TE. YAP Regulates Hematopoietic Stem Cell Formation in Response to the Biomechanical Forces of Blood Flow. Dev Cell 2020; 52:446-460.e5. [PMID: 32032546 DOI: 10.1016/j.devcel.2020.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/16/2019] [Accepted: 01/07/2020] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs), first specified from hemogenic endothelium (HE) in the ventral dorsal aorta (VDA), support lifelong hematopoiesis. Their de novo production promises significant therapeutic value; however, current in vitro approaches cannot efficiently generate multipotent long-lived HSPCs. Presuming this reflects a lack of extrinsic cues normally impacting the VDA, we devised a human dorsal aorta-on-a-chip platform that identified Yes-activated protein (YAP) as a cyclic stretch-induced regulator of HSPC formation. In the zebrafish VDA, inducible Yap overexpression significantly increased runx1 expression in vivo and the number of CD41+ HSPCs downstream of HE specification. Endogenous Yap activation by lats1/2 knockdown or Rho-GTPase stimulation mimicked Yap overexpression and induced HSPCs in embryos lacking blood flow. Notably, in static human induced pluripotent stem cell (iPSC)-derived HE culture, compound-mediated YAP activation enhanced RUNX1 levels and hematopoietic colony-forming potential. Together, our findings reveal a potent impact of hemodynamic Rho-YAP mechanotransduction on HE fate, relevant to de novo human HSPC production.
Collapse
Affiliation(s)
- Vanessa Lundin
- Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Wade W Sugden
- Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Lindsay N Theodore
- Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Patricia M Sousa
- Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Areum Han
- Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Stephanie Chou
- Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Paul J Wrighton
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew G Cox
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Wolfram Goessling
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - George Q Daley
- Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Trista E North
- Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
32
|
Shwartz A, Goessling W, Yin C. Macrophages in Zebrafish Models of Liver Diseases. Front Immunol 2019; 10:2840. [PMID: 31867007 PMCID: PMC6904306 DOI: 10.3389/fimmu.2019.02840] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatic macrophages are key components of the liver immunity and consist of two main populations. Liver resident macrophages, known as Kupffer cells in mammals, are crucial for maintaining normal liver homeostasis. Upon injury, they become activated to release proinflammatory cytokines and chemokines and recruit a large population of inflammatory monocyte-derived macrophages to the liver. During the progression of liver diseases, macrophages are highly plastic and have opposing functions depending on the signaling cues that they receive from the microenvironment. A comprehensive understanding of liver macrophages is essential for developing therapeutic interventions that target these cells in acute and chronic liver diseases. Mouse studies have provided the bulk of our current knowledge of liver macrophages. The emergence of various liver disease models and availability of transgenic tools to visualize and manipulate macrophages have made the teleost zebrafish (Danio rerio) an attractive new vertebrate model to study liver macrophages. In this review, we summarize the origin and behaviors of macrophages in healthy and injured livers in zebrafish. We highlight the roles of macrophages in zebrafish models of alcoholic and non-alcoholic liver diseases, hepatocellular carcinoma, and liver regeneration, and how they compare with the roles that have been described in mammals. We also discuss the advantages and challenges of using zebrafish to study liver macrophages.
Collapse
Affiliation(s)
- Arkadi Shwartz
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Boston, MA, United States
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
33
|
Interleukin-6 signaling regulates hematopoietic stem cell emergence. Exp Mol Med 2019; 51:1-12. [PMID: 31649245 PMCID: PMC6813302 DOI: 10.1038/s12276-019-0320-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) produce all lineages of mature blood cells for the lifetime of an organism. In vertebrates, HSCs derive from the transition of the hemogenic endothelium (HE) in the floor of the embryonic dorsal aorta. Most recently, a series of proinflammatory factors, such as tumor necrosis factor-α, interferon-γ, and Toll-like receptor 4, have been confirmed to play a key role in HSC specification. However, the full complement of necessary signaling inputs remains unknown to date. Here, we show that interleukin-6R (IL6R) via IL6 is required and sufficient for HSC generation. We found that Notch activates IL6R by regulating its expression in the HE and in HSCs. The secretion of IL6 mainly originates from HSC-independent myeloid cells, but not from HSCs and their adjacent vascular endothelial cells. In addition, blocking IL6 signaling does not affect vascular development or the production of primitive erythrocytes. Taken together, our results uncover a previously obscure relationship between IL6 signaling and HSC production and provide new insights into HSC regeneration using proinflammatory factors in vitro. A molecule that triggers inflammation, interleukin-6 (IL6), is crucial for development of blood stem cells, known as hematopoetic stem cells (HSCs). HSCs can differentiate into any type of blood or immune cell, and have enormous therapeutic potential. Although some of the signaling molecules that trigger their development are known, HSCs have yet to be grown under laboratory conditions, so knowledge gaps remain. Based on clues that IL6 might be one of the missing signals, He Huang at the Zhejiang University School of Medicine, Hangzhou, China, and coworkers investigated how IL6 affects HSC development in zebrafish, a common model of development. Zebrafish embryos lacking IL6 were deficient in HSCs, but showed normal blood vessel growth. Treating with IL6 restored HSC production. These results represent another step toward being able to grow HSCs for transplantation and therapy.
Collapse
|
34
|
de Bakker BS, van den Hoff MJB, Vize PD, Oostra RJ. The Pronephros; a Fresh Perspective. Integr Comp Biol 2019; 59:29-47. [PMID: 30649320 PMCID: PMC11616628 DOI: 10.1093/icb/icz001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Contemporary papers and book chapters on nephrology open with the assumption that human kidney development passes through three morphological stages: pronephros, mesonephros, and metanephros. Current knowledge of the human pronephros, however, appears to be based on only a hand full of human specimens. The ongoing use of variations in the definition of a pronephros hampers the interpretation of study results. Because of the increased interest in the anamniote pronephros as a genetic model for kidney organogenesis we aimed to provide an overview of the literature concerning kidney development and to clarify the existence of a pronephros in human embryos. We performed an extensive literature survey regarding vertebrate renal morphology and we investigated histological sections of human embryos between 2 and 8 weeks of development. To facilitate better understanding of the literature about kidney development, a referenced glossary with short definitions was composed. The most striking difference between pronephros versus meso- and metanephros is found in nephron architecture. The pronephros consists exclusively of non-integrated nephrons with external glomeruli, whereas meso- and metanephros are composed of integrated nephrons with internal glomeruli. Animals whose embryos have comparatively little yolk at their disposal and hence have a free-swimming larval stage do develop a pronephros that is dedicated to survival in aquatic environments. Species in which embryos do not have a free-swimming larval stage have embryos that are supplied with a large amount of yolk or that develop within the body of the parent. In those species the pronephros is usually absent, incompletely developed, and apparently functionless. Non-integrated nephrons were not identified in histological sections of human embryos. Therefore, we conclude that a true pronephros is not detectable in human embryos although the most cranial part of the amniote excretory organ is often confusingly referred to as pronephros. The term pronephros should be avoided in amniotes unless all elements for a functional pronephros are undeniably present.
Collapse
Affiliation(s)
- B S de Bakker
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - M J B van den Hoff
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - P D Vize
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - R J Oostra
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
35
|
Stanic K, Reig G, Figueroa RJ, Retamal PA, Wichmann IA, Opazo JC, Owen GI, Corvalán AH, Concha ML, Amigo JD. The Reprimo gene family member, reprimo-like (rprml), is required for blood development in embryonic zebrafish. Sci Rep 2019; 9:7131. [PMID: 31073223 PMCID: PMC6509255 DOI: 10.1038/s41598-019-43436-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/24/2019] [Indexed: 11/09/2022] Open
Abstract
The Reprimo gene family comprises a group of single-exon genes for which their physiological function remains poorly understood. Heretofore, mammalian Reprimo (RPRM) has been described as a putative p53-dependent tumor suppressor gene that functions at the G2/M cell cycle checkpoint. Another family member, Reprimo-like (RPRML), has not yet an established role in physiology or pathology. Importantly, RPRML expression pattern is conserved between zebrafish and human species. Here, using CRISPR-Cas9 and antisense morpholino oligonucleotides, we disrupt the expression of rprml in zebrafish and demonstrate that its loss leads to impaired definitive hematopoiesis. The formation of hemangioblasts and the primitive wave of hematopoiesis occur normally in absence of rprml. Later in development there is a significant reduction in erythroid-myeloid precursors (EMP) at the posterior blood island (PBI) and a significant decline of definitive hematopoietic stem/progenitor cells (HSPCs). Furthermore, loss of rprml also increases the activity of caspase-3 in endothelial cells within the caudal hematopoietic tissue (CHT), the first perivascular niche where HSPCs reside during zebrafish embryonic development. Herein, we report an essential role for rprml during hematovascular development in zebrafish embryos, specifically during the definitive waves of hematopoiesis, indicating for the first time a physiological role for the rprml gene.
Collapse
Affiliation(s)
- Karen Stanic
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German Reig
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Universidad Bernardo O´Higgins, Escuela de Tecnología Médica and Centro Integrativo de Biología y Química Aplicada (CIBQA), Santiago, Chile
| | - Ricardo J Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Retamal
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Laboratorio de Oncología, Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gareth I Owen
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Laboratorio de Oncología, Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel L Concha
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile, Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Julio D Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
36
|
Zebrafish Granulocyte Colony-Stimulating Factor Receptor Maintains Neutrophil Number and Function throughout the Life Span. Infect Immun 2019; 87:IAI.00793-18. [PMID: 30455199 DOI: 10.1128/iai.00793-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023] Open
Abstract
Granulocyte colony-stimulating factor receptor (G-CSFR), encoded by the CSF3R gene, represents a major regulator of neutrophil production and function in mammals, with inactivating extracellular mutations identified in a cohort of neutropenia patients unresponsive to G-CSF treatment. This study sought to elucidate the role of the zebrafish G-CSFR by generating mutants harboring these inactivating extracellular mutations using genome editing. Zebrafish csf3r mutants possessed significantly decreased numbers of neutrophils from embryonic to adult stages, which were also functionally compromised, did not respond to G-CSF, and displayed enhanced susceptibility to bacterial infection. The study has identified an important role for the zebrafish G-CSFR in maintaining the number and functionality of neutrophils throughout the life span and created a bona fide zebrafish model of nonresponsive neutropenia.
Collapse
|
37
|
Bujko K, Kucia M, Ratajczak J, Ratajczak MZ. Hematopoietic Stem and Progenitor Cells (HSPCs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:49-77. [PMID: 31898781 DOI: 10.1007/978-3-030-31206-0_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) isolated from bone marrow have been successfully employed for 50 years in hematological transplantations. Currently, these cells are more frequently isolated from mobilized peripheral blood or umbilical cord blood. In this chapter, we overview several topics related to these cells including their phenotype, methods for isolation, and in vitro and in vivo assays to evaluate their proliferative potential. The successful clinical application of HSPCs is widely understood to have helped establish the rationale for the development of stem cell therapies and regenerative medicine.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
38
|
Zebrafish disease models in hematology: Highlights on biological and translational impact. Biochim Biophys Acta Mol Basis Dis 2018; 1865:620-633. [PMID: 30593895 DOI: 10.1016/j.bbadis.2018.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Zebrafish (Danio rerio) has proven to be a versatile and reliable in vivo experimental model to study human hematopoiesis and hematological malignancies. As vertebrates, zebrafish has significant anatomical and biological similarities to humans, including the hematopoietic system. The powerful genome editing and genome-wide forward genetic screening tools have generated models that recapitulate human malignant hematopoietic pathologies in zebrafish and unravel cellular mechanisms involved in these diseases. Moreover, the use of zebrafish models in large-scale chemical screens has allowed the identification of new molecular targets and the design of alternative therapies. In this review we summarize the recent achievements in hematological research that highlight the power of the zebrafish model for discovery of new therapeutic molecules. We believe that the model is ready to give an immediate translational impact into the clinic.
Collapse
|
39
|
Cortegano I, Serrano N, Ruiz C, Rodríguez M, Prado C, Alía M, Hidalgo A, Cano E, de Andrés B, Gaspar ML. CD45 expression discriminates waves of embryonic megakaryocytes in the mouse. Haematologica 2018; 104:1853-1865. [PMID: 30573502 PMCID: PMC6717566 DOI: 10.3324/haematol.2018.192559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Embryonic megakaryopoiesis starts in the yolk sac on gestational day 7.5 as part of the primitive wave of hematopoiesis, and it continues in the fetal liver when this organ is colonized by hematopoietic progenitors between day 9.5 and 10.5, as the definitive hematopoiesis wave. We characterized the precise phenotype of embryo megakaryocytes in the liver at gestational day 11.5, identifying them as CD41++CD45-CD9++CD61+MPL+CD42c+ tetraploid cells that express megakaryocyte-specific transcripts and display differential traits when compared to those present in the yolk sac at the same age. In contrast to megakaryocytes from adult bone marrow, embryo megakaryocytes are CD45− until day 13.5 of gestation, as are both the megakaryocyte progenitors and megakaryocyte/erythroid-committed progenitors. At gestational day 11.5, liver and yolk sac also contain CD41+CD45+ and CD41+CD45− cells. These populations, and that of CD41++CD45−CD42c+ cells, isolated from liver, differentiate in culture into CD41++CD45−CD42c+ proplatelet-bearing megakaryocytes. Also present at this time are CD41−CD45++CD11b+ cells, which produce low numbers of CD41++CD45−CD42c+ megakaryocytes in vitro, as do fetal liver cells expressing the macrophage-specific Csf receptor-1 (Csf1r/CD115) from MaFIA transgenic mice, which give rise poorly to CD41++CD45−CD42c+ embryo megakaryocytes both in vivo and in vitro. In contrast, around 30% of adult megakaryocytes (CD41++CD45++CD9++CD42c+) from C57BL/6 and MaFIA mice express CD115. We propose that differential pathways operating in the mouse embryo liver at gestational day 11.5 beget CD41++CD45−CD42c+ embryo megakaryocytes that can be produced from CD41+CD45− or from CD41+CD45+ cells, at difference from those from bone marrow.
Collapse
Affiliation(s)
- Isabel Cortegano
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Natalia Serrano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CBMSO-CSIC), Madrid
| | - Carolina Ruiz
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Mercedes Rodríguez
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Carmen Prado
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Mario Alía
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid
| | - Eva Cano
- Neuroinflamation Unit, Chronic Diseases Research Program, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Belén de Andrés
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - María-Luisa Gaspar
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| |
Collapse
|
40
|
Moore MJ, El-Rass S, Xiao Y, Wang Y, Wen XY, Kolios MC. Simultaneous ultra-high frequency photoacoustic microscopy and photoacoustic radiometry of zebrafish larvae in vivo. PHOTOACOUSTICS 2018; 12:14-21. [PMID: 30225194 PMCID: PMC6139000 DOI: 10.1016/j.pacs.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 05/07/2023]
Abstract
With their optically transparent appearance, zebrafish larvae are readily imaged with optical-resolution photoacoustic (PA) microscopy (OR-PAM). Previous OR-PAM studies have mapped endogenous chromophores (e.g. melanin and hemoglobin) within larvae; however, anatomical features cannot be imaged with OR-PAM alone due to insufficient optical absorption. We have previously reported on the photoacoustic radiometry (PAR) technique, which can be used simultaneously with OR-PAM to generate images dependent upon the optical attenuation properties of a sample. Here we demonstrate application of the duplex PAR/PA technique for label-free imaging of the anatomy and vasculature of zebrafish larvae in vivo at 200 and 400 MHz ultrasound detection frequencies. We then use the technique to assess the effects of anti-angiogenic drugs on the development of the larval vasculature. Our results demonstrate the effectiveness of simultaneous PAR/PA for acquiring anatomical images of optically transparent samples in vivo, and its potential applications in assessing drug efficacy and embryonic development.
Collapse
Affiliation(s)
- Michael J. Moore
- Department of Physics, Ryerson University, Toronto, M5B 2K3, Canada
- Institute for Biomedical Engineering and Science Technology, A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, M5B 1W8, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
| | - Suzan El-Rass
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Zebrafish Centre for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Institute of Medical Science, Departments of Medicine, Laboratory Medicine and Pathobiology & Physiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Yongliang Xiao
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Zebrafish Centre for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Institute of Medical Science, Departments of Medicine, Laboratory Medicine and Pathobiology & Physiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Youdong Wang
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Zebrafish Centre for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Institute of Medical Science, Departments of Medicine, Laboratory Medicine and Pathobiology & Physiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Xiao-Yan Wen
- Institute for Biomedical Engineering and Science Technology, A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, M5B 1W8, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Zebrafish Centre for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Institute of Medical Science, Departments of Medicine, Laboratory Medicine and Pathobiology & Physiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, M5B 2K3, Canada
- Institute for Biomedical Engineering and Science Technology, A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, M5B 1W8, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, M5B 1W8, Canada
- Corresponding author at: Department of Physics, Ryerson University, Toronto, M5B 2K3, Canada.
| |
Collapse
|
41
|
Parada-Kusz M, Penaranda C, Hagedorn EJ, Clatworthy A, Nair AV, Henninger JE, Ernst C, Li B, Riquelme R, Jijon H, Villablanca EJ, Zon LI, Hung D, Allende ML. Generation of mouse-zebrafish hematopoietic tissue chimeric embryos for hematopoiesis and host-pathogen interaction studies. Dis Model Mech 2018; 11:dmm034876. [PMID: 30266803 PMCID: PMC6262816 DOI: 10.1242/dmm.034876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/18/2018] [Indexed: 12/24/2022] Open
Abstract
Xenografts of the hematopoietic system are extremely useful as disease models and for translational research. Zebrafish xenografts have been widely used to monitor blood cancer cell dissemination and homing due to the optical clarity of embryos and larvae, which allow unrestricted in vivo visualization of migratory events. Here, we have developed a xenotransplantation technique that transiently generates hundreds of hematopoietic tissue chimeric embryos by transplanting murine bone marrow cells into zebrafish blastulae. In contrast to previous methods, this procedure allows mammalian cell integration into the fish developmental hematopoietic program, which results in chimeric animals containing distinct phenotypes of murine blood cells in both circulation and the hematopoietic niche. Murine cells in chimeric animals express antigens related to (i) hematopoietic stem and progenitor cells, (ii) active cell proliferation and (iii) myeloid cell lineages. We verified the utility of this method by monitoring zebrafish chimeras during development using in vivo non-invasive imaging to show novel murine cell behaviors, such as homing to primitive and definitive hematopoietic tissues, dynamic hematopoietic cell and hematopoietic niche interactions, and response to bacterial infection. Overall, transplantation into the zebrafish blastula provides a useful method that simplifies the generation of numerous chimeric animals and expands the range of murine cell behaviors that can be studied in zebrafish chimeras. In addition, integration of murine cells into the host hematopoietic system during development suggests highly conserved molecular mechanisms of hematopoiesis between zebrafish and mammals.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Margarita Parada-Kusz
- Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 8370415, Chile
| | - Cristina Penaranda
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Clatworthy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anil V Nair
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan E Henninger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ernst
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brian Li
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Raquel Riquelme
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Humberto Jijon
- Gastrointestinal Research Group, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Eduardo J Villablanca
- Immunology and Allergy, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm SE-171 76, Sweden
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Deborah Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Miguel L Allende
- Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago 8370415, Chile
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
42
|
Peters MJ, Parker SK, Grim J, Allard CAH, Levin J, Detrich HW. Divergent Hemogen genes of teleosts and mammals share conserved roles in erythropoiesis: analysis using transgenic and mutant zebrafish. Biol Open 2018; 7:bio.035576. [PMID: 30097520 PMCID: PMC6124579 DOI: 10.1242/bio.035576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hemogen is a vertebrate transcription factor that performs important functions in erythropoiesis and testicular development and may contribute to neoplasia. Here we identify zebrafish Hemogen and show that it is considerably smaller (∼22 kDa) than its human ortholog (∼55 kDa), a striking difference that is explained by an underlying modular structure. We demonstrate that Hemogens are largely composed of 21-25 amino acid repeats, some of which may function as transactivation domains (TADs). Hemogen expression in embryonic and adult zebrafish is detected in hematopoietic, renal, neural and gonadal tissues. Using Tol2- and CRISPR/Cas9-generated transgenic zebrafish, we show that Hemogen expression is controlled by two Gata1-dependent regulatory sequences that act alone and together to control spatial and temporal expression during development. Partial depletion of Hemogen in embryos by morpholino knockdown reduces the number of erythrocytes in circulation. CRISPR/Cas9-generated zebrafish lines containing either a frameshift mutation or an in-frame deletion in a putative, C-terminal TAD display anemia and embryonic tail defects. This work expands our understanding of Hemogen and provides mutant zebrafish lines for future study of the mechanism of this important transcription factor. Summary: Transgenic and mutant zebrafish lines were created to characterize the expression and functions of Hemogen, a transcription factor involved in the formation of red blood cells and other processes.
Collapse
Affiliation(s)
- Michael J Peters
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Sandra K Parker
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Jeffrey Grim
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Corey A H Allard
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Jonah Levin
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
43
|
Lancino M, Majello S, Herbert S, De Chaumont F, Tinevez JY, Olivo-Marin JC, Herbomel P, Schmidt A. Anisotropic organization of circumferential actomyosin characterizes hematopoietic stem cells emergence in the zebrafish. eLife 2018; 7:37355. [PMID: 30132756 PMCID: PMC6105311 DOI: 10.7554/elife.37355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hematopoiesis leads to the formation of blood and immune cells. Hematopoietic stem cells emerge during development, from vascular components, via a process called the endothelial-to-hematopoietic transition (EHT). Here, we reveal essential biomechanical features of the EHT, using the zebrafish embryo imaged at unprecedented spatio-temporal resolution and an algorithm to unwrap the aorta into 2D-cartography. We show that the transition involves anisotropic contraction along the antero-posterior axis, with heterogenous organization of contractile circumferential actomyosin. The biomechanics of the contraction is oscillatory, with unusually long periods in comparison to other apical constriction mechanisms described so far in morphogenesis, and is supported by the anisotropic reinforcement of junctional contacts. Finally, we show that abrogation of blood flow impairs the actin cytoskeleton, the morphodynamics of EHT cells, and the orientation of the emergence. Overall, our results underline the peculiarities of the EHT biomechanics and the influence of the mechanical forces exerted by blood flow. As humans, we have two major types of blood cell: our red blood cells transport oxygen around the body, while our white blood cells fight disease. Both types of cell come from the same stem cells, which first appear early in embryonic development. These stem cells emerge from the walls of major blood vessels, including the aorta – which carries blood from the heart. Stem cells have not yet decided which adult cell to become. Given the right signals, blood stem cells can form red blood cells or any of the different types of white blood cell. Understanding this process could allow scientists to recreate it in the laboratory, making blood stem cells that can give rise to all blood cells found in the body. But, this is not yet possible because we do not know all the conditions needed to make the cells and ensure they survive. One crucial gap in our understanding concerns the importance of blood flow. As the main blood vessel leaving the heart, the aorta experiences mechanical stress every time the heart beats. Lancino et al. wanted to find out whether this influences the development of the blood stem cells. Zebrafish embryos are transparent, making it easy to see their bodies developing under a microscope. Like humans, they also produce both red blood cells and white blood cells meaning Lancino et al. could watch the birth of blood stem cells in these embryos from a part of the aorta called the aortic floor. A new software tool unwrapped pictures of the tube-shaped blood vessel into flat, two-dimensional maps, making it possible to see how the aorta changed over time. This revealed that, as blood stem cells leave the aortic floor, they bend and contract with the direction of the blood flow. Rings of actin and myosin proteins that formed around the stem cells as they are born helped the process along, while stopping the heartbeat changed the way the blood cells emerged. Without any blood flow, the actin proteins did not assemble properly; the stem cells also emerged in the wrong direction and some of them even died. These findings show that physical forces play a role in the formation of blood stem cells. Understanding this process brings scientists a step closer to recreating the conditions for making different kinds of blood cells outside of the body.
Collapse
Affiliation(s)
- Mylene Lancino
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France.,Sorbonne Université, UPMC Paris 06, Complexité du Vivant, Paris, France
| | - Sara Majello
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France
| | - Sebastien Herbert
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France.,Image Analysis Hub, UTechSPhotonic BioImaging (Imagopole), Citech, Institut Pasteur, Paris, France
| | - Fabrice De Chaumont
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France.,CNRS, UMR3691, Paris, France
| | - Jean-Yves Tinevez
- Image Analysis Hub, UTechSPhotonic BioImaging (Imagopole), Citech, Institut Pasteur, Paris, France
| | | | - Philippe Herbomel
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France
| | - Anne Schmidt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France
| |
Collapse
|
44
|
Berrun A, Harris E, Stachura DL. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish. PLoS One 2018; 13:e0196872. [PMID: 29758043 PMCID: PMC5951578 DOI: 10.1371/journal.pone.0196872] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility.
Collapse
Affiliation(s)
- Arturo Berrun
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| | - Elena Harris
- Department of Computer Sciences, California State University Chico, Chico, CA, United States of America
| | - David L Stachura
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| |
Collapse
|
45
|
Liu C, Han T, Stachura DL, Wang H, Vaisman BL, Kim J, Klemke RL, Remaley AT, Rana TM, Traver D, Miller YI. Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nat Commun 2018; 9:1310. [PMID: 29615667 PMCID: PMC5882990 DOI: 10.1038/s41467-018-03775-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/07/2018] [Indexed: 01/15/2023] Open
Abstract
Lipoprotein lipase (LPL) mediates hydrolysis of triglycerides (TGs) to supply free fatty acids (FFAs) to tissues. Here, we show that LPL activity is also required for hematopoietic stem progenitor cell (HSPC) maintenance. Knockout of Lpl or its obligatory cofactor Apoc2 results in significantly reduced HSPC expansion during definitive hematopoiesis in zebrafish. A human APOC2 mimetic peptide or the human very low-density lipoprotein, which carries APOC2, rescues the phenotype in apoc2 but not in lpl mutant zebrafish. Creating parabiotic apoc2 and lpl mutant zebrafish rescues the hematopoietic defect in both. Docosahexaenoic acid (DHA) is identified as an important factor in HSPC expansion. FFA-DHA, but not TG-DHA, rescues the HSPC defects in apoc2 and lpl mutant zebrafish. Reduced blood cell counts are also observed in Apoc2 mutant mice at the time of weaning. These results indicate that LPL-mediated release of the essential fatty acid DHA regulates HSPC expansion and definitive hematopoiesis.
Collapse
Affiliation(s)
- Chao Liu
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tianxu Han
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David L Stachura
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Huawei Wang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Boris L Vaisman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Richard L Klemke
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
46
|
Abstract
Assessing the immunotoxicity of xenobiotics by current regulatory testing has revealed compounds that can cause immunosuppression and stimulation. Flow cytometry is a cutting edge technique that can provide data on how toxicants can alter the quality and quantity of the immune response after exposure. Here we describe protocols for how to use flow cytometry to measure the immune response in multiple rodent organs (blood and lymphoid and nonlymphoid) as well as in novel models recently being utilized in the field of toxicology. These methods can be used for current testing and to determine mechanisms by which a xenobiotic can cause immunotoxicity.
Collapse
Affiliation(s)
- Scott T Espenschied
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
47
|
Kulkeaw K, Inoue T, Ishitani T, Nakanishi Y, Zon LI, Sugiyama D. Purification of zebrafish erythrocytes as a means of identifying a novel regulator of haematopoiesis. Br J Haematol 2017; 180:420-431. [PMID: 29265183 DOI: 10.1111/bjh.15048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
Abstract
Zebrafish embryos are useful to study haematopoietic gene function in vertebrates, although lack of antibodies to zebrafish proteins has limited the purification of specific cell populations. Here, we purified primitive zebrafish erythrocytes using 1, 5-bis{[2-(di-methylamino)ethyl]amino}-4, 8-dihydroxyanthracene-9, 10-dione (DRAQ5TM ), a DNA-staining fluorescent dye. At 48-h post-fertilization, we sorted small-sized cells from embryos using forward scatter and found that they consisted of DRAQ5high and DRAQ5low populations. DRAQ5high cells contained haemoglobin, lacked myeloperoxidase activity and expressed high levels of embryonic globin (hbae3 and hbbe1.1) mRNA, all characteristics of primitive erythrocytes. Following DRAQ5TM analysis of gata1:dsRed transgenic embryos, we purified primitive DRAQ5high dsRed+ erythrocytes from haematopoietic progenitor cells. Using this method, we identified docking protein 2 (Dok2) as functioning in differentiation of primitive erythrocytes. We conclude that DRAQ5TM -based flow cytometry enables purification of primitive zebrafish erythrocytes.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Inoue
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tohru Ishitani
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yoichi Nakanishi
- Department of Clinical Study, Centre for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Haematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Daisuke Sugiyama
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Clinical Study, Centre for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan.,Centre for Clinical and Translational Research, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Potts KS, Bowman TV. Modeling Myeloid Malignancies Using Zebrafish. Front Oncol 2017; 7:297. [PMID: 29255698 PMCID: PMC5722844 DOI: 10.3389/fonc.2017.00297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Human myeloid malignancies represent a substantial disease burden to individuals, with significant morbidity and death. The genetic underpinnings of disease formation and progression remain incompletely understood. Large-scale human population studies have identified a high frequency of potential driver mutations in spliceosomal and epigenetic regulators that contribute to malignancies, such as myelodysplastic syndromes (MDS) and leukemias. The high conservation of cell types and genes between humans and model organisms permits the investigation of the underlying mechanisms of leukemic development and potential therapeutic testing in genetically pliable pre-clinical systems. Due to the many technical advantages, such as large-scale screening, lineage-tracing studies, tumor transplantation, and high-throughput drug screening approaches, zebrafish is emerging as a model system for myeloid malignancies. In this review, we discuss recent advances in MDS and leukemia using the zebrafish model.
Collapse
Affiliation(s)
- Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
49
|
Berrun AC, Stachura DL. Development of an In Vitro Assay to Quantitate Hematopoietic Stem and Progenitor Cells (HSPCs) in Developing Zebrafish Embryos. J Vis Exp 2017:56836. [PMID: 29286381 PMCID: PMC5755513 DOI: 10.3791/56836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hematopoiesis is an essential cellular process in which hematopoietic stem and progenitor cells (HSPCs) differentiate into the multitude of different cell lineages that comprise mature blood. Isolation and identification of these HSPCs is difficult because they are defined ex post facto; they can only be defined after their differentiation into specific cell lineages. Over the past few decades, the zebrafish (Danio rerio) has become a model organism to study hematopoiesis. Zebrafish embryos develop ex utero, and by 48 h post-fertilization (hpf) have generated definitive HSPCs. Assays to assess HSPC differentiation and proliferation capabilities have been developed, utilizing transplantation and subsequent reconstitution of the hematopoietic system in addition to visualizing specialized transgenic lines with confocal microscopy. However, these assays are cost prohibitive, technically difficult, and time consuming for many laboratories. Development of an in vitro model to assess HSPCs would be cost effective, quicker, and present fewer difficulties compared to previously described methods, allowing laboratories to quickly assess mutagenesis and drug screens that affect HSPC biology. This novel in vitro assay to assess HSPCs is performed by plating dissociated whole zebrafish embryos and adding exogenous factors that promote only HSPC differentiation and proliferation. Embryos are dissociated into single cells and plated with HSPC-supportive colony stimulating factors that cause them to generate colony forming units (CFUs) that arise from a single progenitor cell. These assays should allow more careful examination of the molecular pathways responsible for HSPC proliferation, differentiation, and regulation, which will allow researchers to understand the underpinnings of vertebrate hematopoiesis and its dysregulation during disease.
Collapse
Affiliation(s)
- A C Berrun
- Department of Biological Sciences, California State University, Chico
| | - D L Stachura
- Department of Biological Sciences, California State University, Chico;
| |
Collapse
|
50
|
Wnt9a Is Required for the Aortic Amplification of Nascent Hematopoietic Stem Cells. Cell Rep 2017; 17:1595-1606. [PMID: 27806298 PMCID: PMC6309681 DOI: 10.1016/j.celrep.2016.10.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/07/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023] Open
Abstract
All mature blood cell types in the adult animal arise from hematopoietic stem and progenitor cells (HSPCs). However, the developmental cues regulating HSPC ontogeny are incompletely understood. In particular, the details surrounding a requirement for Wnt/β-catenin signaling in the development of mature HSPCs are controversial and difficult to consolidate. Using zebrafish, we demonstrate that Wnt signaling is required to direct an amplification of HSPCs in the aorta. Wnt9a is specifically required for this process and cannot be replaced by Wnt9b or Wnt3a. This proliferative event occurs independently of initial HSPC fate specification, and the Wnt9a input is required prior to aorta formation. HSPC arterial amplification occurs prior to seeding of secondary hematopoietic tissues and proceeds, in part, through the cell cycle regulator myca (c-myc). Our results support a general paradigm, in which early signaling events, including Wnt, direct later HSPC developmental processes. Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the blood cells of the adult organism; however, how these cells are derived in vivo is still incompletely understood. Using zebrafish, Grainger et al. find that Wnt9a mediates amplification of HSPCs prior to their migration to secondary hematopoietic sites.
Collapse
|