1
|
Riddell J, Headon D. Embryonic feather bud development - A keystone model for vertebrate organogenesis. Dev Biol 2025; 521:142-148. [PMID: 39954756 DOI: 10.1016/j.ydbio.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The development of feathers in the embryonic skin has been used as a model for biological self-organisation for many decades. The availability, size and ease of manipulation of the skin has enabled it to serve as a model revealing concepts of epithelial-mesenchymal interaction, origins of periodic patterns in the anatomy, and the effects of growth factors and structural and mechanical properties on tissue development. These efforts provide a rich history of observation, informing continued development of new concepts in this system. Here we review the process of early feather bud development, the understanding gained from decades of experimentation, and current debate and future directions for progress.
Collapse
Affiliation(s)
- Jon Riddell
- Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Denis Headon
- Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
| |
Collapse
|
2
|
Drake PM, Franz‐Odendaal TA. Hydrocortisone treatment as a tool to study conjunctival placode induction. Dev Dyn 2025; 254:74-93. [PMID: 39096180 PMCID: PMC11737293 DOI: 10.1002/dvdy.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Conjunctival placodes are a series of placodes that develop into the conjunctival (scleral) papillae and ultimately induce a series of scleral ossicles in the eyes of many vertebrates. This study establishes a hydrocortisone injection procedure (incl. dosage) that consistently inhibits all conjunctival papillae in the embryonic chicken eye. The effects of this hydrocortisone treatment on apoptosis, vasculature, and placode-related gene expression were assessed. RESULTS Hydrocortisone treatment does not increase apoptotic cell death or have a major effect on the ciliary artery or vascular plexus in the eye. β-catenin and Eda expression levels were not significantly altered following hydrocortisone treatment, despite the absence of conjunctival papillae. Notably, Fgf20 expression was significantly reduced following hydrocortisone treatment, and the distribution of β-catenin was altered. CONCLUSIONS Our study showed that conjunctival papillae induction begins as early as HH27.5 (E5.5). Hydrocortisone treatment reduces Fgf20 expression independently of β-catenin and Eda and may instead affect other members of the Wnt/β-catenin or Eda/Edar pathways, or it may affect the ability of morphogens to diffuse through the extracellular matrix. This study contributes to a growing profile of gene expression data during placode development and enhances our understanding of how some vertebrate eyes develop these fascinating bones.
Collapse
Affiliation(s)
- Paige M. Drake
- Department of Medical NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | | |
Collapse
|
3
|
Evanitsky MN, Di Talia S. An active traveling wave of Eda/NF-κB signaling controls the timing and hexagonal pattern of skin appendages in zebrafish. Development 2023; 150:dev201866. [PMID: 37747266 PMCID: PMC10560567 DOI: 10.1242/dev.201866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023]
Abstract
Periodic patterns drive the formation of a variety of tissues, including skin appendages such as feathers and scales. Skin appendages serve important and diverse functions across vertebrates, yet the mechanisms that regulate their patterning are not fully understood. Here, we have used live imaging to investigate dynamic signals regulating the ontogeny of zebrafish scales. Scales are bony skin appendages that develop sequentially along the anterior-posterior and dorsal-ventral axes to cover the fish in a hexagonal array. We have found that scale development requires cell-cell communication and is coordinated through an active wave mechanism. Using a live transcriptional reporter, we show that a wave of Eda/NF-κB activity precedes scale initiation and is required for scale formation. Experiments decoupling the propagation of the wave from dermal placode formation and osteoblast differentiation demonstrate that the Eda/NF-κB activity wavefront controls the timing of the sequential patterning of scales. Moreover, this decoupling resulted in defects in scale size and significant deviations in the hexagonal patterning of scales. Thus, our results demonstrate that a biochemical traveling wave coordinates scale initiation and proper hexagonal patterning across the fish body.
Collapse
Affiliation(s)
- Maya N. Evanitsky
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Aman AJ, Saunders LM, Carr AA, Srivatasan S, Eberhard C, Carrington B, Watkins-Chow D, Pavan WJ, Trapnell C, Parichy DM. Transcriptomic profiling of tissue environments critical for post-embryonic patterning and morphogenesis of zebrafish skin. eLife 2023; 12:RP86670. [PMID: 37695017 PMCID: PMC10495112 DOI: 10.7554/elife.86670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Pigment patterns and skin appendages are prominent features of vertebrate skin. In zebrafish, regularly patterned pigment stripes and an array of calcified scales form simultaneously in the skin during post-embryonic development. Understanding the mechanisms that regulate stripe patterning and scale morphogenesis may lead to the discovery of fundamental mechanisms that govern the development of animal form. To learn about cell types and signaling interactions that govern skin patterning and morphogenesis, we generated and analyzed single-cell transcriptomes of skin from wild-type fish as well as fish having genetic or transgenically induced defects in squamation or pigmentation. These data reveal a previously undescribed population of epidermal cells that express transcripts encoding enamel matrix proteins, suggest hormonal control of epithelial-mesenchymal signaling, clarify the signaling network that governs scale papillae development, and identify a critical role for the hypodermis in supporting pigment cell development. Additionally, these comprehensive single-cell transcriptomic data representing skin phenotypes of biomedical relevance should provide a useful resource for accelerating the discovery of mechanisms that govern skin development and homeostasis.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Lauren M Saunders
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - August A Carr
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sanjay Srivatasan
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Colten Eberhard
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Blake Carrington
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Dawn Watkins-Chow
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - David M Parichy
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
5
|
Ji G, Zhang M, Tu Y, Liu Y, Shan Y, Ju X, Zou J, Shu J, Sheng Z, Li H. Molecular Regulatory Mechanisms in Chicken Feather Follicle Morphogenesis. Genes (Basel) 2023; 14:1646. [PMID: 37628697 PMCID: PMC10454116 DOI: 10.3390/genes14081646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
In China, the sale of freshly slaughtered chickens is becoming increasingly popular in comparison with that of live chickens, and due to this emerging trend, the skin and feather follicle traits of yellow-feathered broilers have attracted a great deal of research attention. The feather follicle originates from the interaction between the epidermis and dermis in the early embryonic stage. Feather follicle morphogenesis is regulated by the Wnt, ectodysplasin (Eda), epidermal growth factor (EGF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), sonic hedgehog (Shh), Notch, and other signaling pathways that exist in epithelial and mesenchymal cells. The Wnt pathway is essential for feather follicle and feather morphogenesis. Eda interacts with Wnt to induce FGF expression, which attracts mesenchymal cell movement and aggregates to form feather follicle primordia. BMP acts as an inhibitor of the above signaling pathways to limit the size of the feather tract and distance between neighboring feather primordia in a dose-dependent manner. The Notch/Delta pathway can interact with the FGF pathway to promote feather bud formation. While not a part of the early morphogenesis of feather follicles, Shh and BMP signaling are involved in late feather branching. This review summarizes the roles of miRNAs/lncRNA in the regulation of feather follicle and feather growth and development and suggests topics that need to be solved in a future study. This review focuses on the regulatory mechanisms involved in feather follicle morphogenesis and analyzes the impact of SNP sites on feather follicle traits in poultry. This work may help us to understand the molecular regulatory networks influencing feather follicle growth and provide basic data for poultry carcass quality.
Collapse
Affiliation(s)
- Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Zhongwei Sheng
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
6
|
Tzika AC, Ullate-Agote A, Zakany S, Kummrow M, Milinkovitch MC. Somitic positional information guides self-organized patterning of snake scales. SCIENCE ADVANCES 2023; 9:eadf8834. [PMID: 37315141 DOI: 10.1126/sciadv.adf8834] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
Two influential concepts in tissue patterning are Wolpert's positional information and Turing's self-organized reaction-diffusion (RD). The latter establishes the patterning of hair and feathers. Here, our morphological, genetic, and functional-by CRISPR-Cas9-mediated gene disruption-characterization of wild-type versus "scaleless" snakes reveals that the near-perfect hexagonal pattern of snake scales is established through interactions between RD in the skin and somitic positional information. First, we show that ventral scale development is guided by hypaxial somites and, second, that ventral scales and epaxial somites guide the sequential RD patterning of the dorsolateral scales. The RD intrinsic length scale evolved to match somite periodicity, ensuring the alignment of ribs and scales, both of which play a critical role in snake locomotion.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Szabolcs Zakany
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
8
|
Zimm R, Oberdick D, Gnetneva A, Schneider P, Cebra-Thomas J, Moustakas-Verho JE. Turing's turtles all the way down: A conserved role of EDAR in the carapacial ridge suggests a deep homology of prepatterns across ectodermal appendages. Anat Rec (Hoboken) 2022; 306:1201-1213. [PMID: 36239299 DOI: 10.1002/ar.25096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
The scutes of the turtle shell are epidermal shields that begin their formation during the early stages of shell development. Like other skin appendages, turtle scutes are hypothesized to be patterned by reaction-diffusion systems. We have previously established ex vivo and in silico systems to study these mechanisms experimentally and have further shown that mathematical models can explain the dynamics of the induction of turtle scute primordia and the generation of final scute architecture. Using these foundations, we expand our current knowledge and test the roles of ectodysplasin and activin signaling in the development of turtle scutes. We find that these molecules play important roles in the prepatterning of scute primordia along the carapacial ridge and show that blocking Edar signaling may lead to a complete loss of marginal scute primordia. We show that it is possible to reproduce these observations using simple mathematical modeling, thereby suggesting a stabilizing role for ectodysplasin within the reaction-diffusion mechanisms. Finally, we argue that our findings further entrench turtle scutes within a class of developmental systems composed of hierarchically nested reaction-diffusion mechanisms, which is conserved across ectodermal organs.
Collapse
Affiliation(s)
- Roland Zimm
- Institute of Functional Genomics, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Danielle Oberdick
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
| | - Anna Gnetneva
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Judith Cebra-Thomas
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
| | | |
Collapse
|
9
|
Giffin JL, Franz-Odendaal TA. Quantitative gene expression dynamics of key placode signalling factors in the embryonic chicken scleral ossicle system. Gene Expr Patterns 2020; 38:119131. [PMID: 32755633 DOI: 10.1016/j.gep.2020.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Development of the scleral ossicles, a ring of bony elements within the sclera, is directed by a series of papillae that arise from placodes in the conjunctival epithelium over a 1.5-day induction period in the chicken embryo. The regular spacing of the papillae around the corneal-scleral limbus suggests that their induction may be regulated by a reaction-diffusion mechanism, similar to other epithelial appendages. Some key placode signalling molecules, including β-catenin, are known to be expressed throughout the induction period. However, others have been studied only at certain stages or have not been successfully detected. Here we use qPCR to study the gene expression patterns of the wingless integration (WNT)/β-catenin, bone morphogenetic protein (BMP), ectodysplasin (EDA), fibroblast growth factor (FGF) and hedgehog (HH) signalling families in discrete regions of the eye throughout the complete conjunctival placode and papillae induction period. This comprehensive analysis revealed a variable level of gene expression within specific eye regions, with some genes exhibiting high, moderate or low changes. Most genes exhibited an initial increase in gene expression, followed by a decrease or plateau as development proceeded, suggesting that some genes are important for a brief initial period whilst the sustained elevated expression level of other genes is needed for developmental progression. The timing or magnitude of these changes, and/or the overall gene expression trend differed in the temporal, nasal and/or dorsal eye regions for some, but not all genes, demonstrating that gene expression may vary across different eye regions. Temporal and nasal EDA receptor (EDAR) had the greatest number of strong correlations (r > 0.700) with other genes and β-catenin had the greatest number of moderate correlations (r = 0.400-0.700), while EDA had the greatest range in correlation strengths. Among the strongly correlated genes, two distinct signalling modules were identified, connected by some intermediate genes. The dynamic gene expression patterns of the five signalling pathways studied here from conjunctival placode formation through to papillae development is consistent with other epithelial appendages and confirms the presence of a conserved induction and patterning signalling network. Two unique gene expression patterns and corresponding gene interaction modules suggest functionally distinct roles throughout placode development. Furthermore, spatial differences in gene expression patterns among the temporal, nasal and dorsal regions of the eye may indicate that the expression of certain genes is influenced by mechanical forces exerted throughout development. Therefore, this study identifies key placode signalling factors and their interactions, as well as some potential region-specific features of gene expression in the scleral ossicle system and provides a basis for further exploration of the spatial expression of these genes and the patterning mechanism(s) active throughout conjunctival placode and papillae formation.
Collapse
Affiliation(s)
- Jennifer L Giffin
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
10
|
Characterization of Embryonic Skin Transcriptome in Anser cygnoides at Three Feather Follicles Developmental Stages. G3-GENES GENOMES GENETICS 2020; 10:443-454. [PMID: 31792007 PMCID: PMC7003092 DOI: 10.1534/g3.119.400875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to enrich the Anser cygnoides genome and identify the gene expression profiles of primary and secondary feather follicles development, de novo transcriptome assembly of skin tissues was established by analyzing three developmental stages at embryonic day 14, 18, and 28 (E14, E18, E28). Sequencing output generated 436,730,608 clean reads from nine libraries and de novo assembled into 56,301 unigenes. There were 2,298, 9,423 and 12,559 unigenes showing differential expression in three stages respectively. Furthermore, differentially expressed genes (DEGs) were functionally classified according to genes ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and series-cluster analysis. Relevant specific GO terms such as epithelium development, regulation of keratinocyte proliferation, morphogenesis of an epithelium were identified. In all, 15,144 DEGs were clustered into eight profiles with distinct expression patterns and 2,424 DEGs were assigned to 198 KEGG pathways. Skin development related pathways (mitogen-activated protein kinase signaling pathway, extra-cellular matrix -receptor interaction, Wingless-type signaling pathway) and genes (delta like canonical Notch ligand 1, fibroblast growth factor 2, Snail family transcriptional repressor 2, bone morphogenetic protein 6, polo like kinase 1) were identified, and eight DEGs were selected to verify the reliability of transcriptome results by real-time quantitative PCR. The findings of this study will provide the key insights into the complicated molecular mechanism and breeding techniques underlying the developmental characteristics of skin and feather follicles in Anser cygnoides.
Collapse
|
11
|
Hu X, Zhang X, Liu Z, Li S, Zheng X, Nie Y, Tao Y, Zhou X, Wu W, Yang G, Zhao Q, Zhang Y, Xu Q, Mou C. Exploration of key regulators driving primary feather follicle induction in goose skin. Gene 2020; 731:144338. [PMID: 31923576 DOI: 10.1016/j.gene.2020.144338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
The primary feather follicles are universal skin appendages widely distributed in the skin of feathered birds. The morphogenesis and development of the primary feather follicles in goose skin remain largely unknown. Here, the induction of primary feather follicles in goose embryonic skin (pre-induction vs induction) was investigated by de novo transcriptome analyses to reveal 409 differentially expressed genes (DEGs). The DEGs were characterized to potentially regulate the de novo formation of feather follicle primordia consisting of placode (4 genes) and dermal condensate (12 genes), and the thickening of epidermis (5 genes) and dermal fibroblasts (17 genes), respectively. Further analyses enriched DEGs into GO terms represented as cell adhesion and KEGG pathways including Wnt and Hedgehog signaling pathways that are highly correlated with cell communication and molecular regulation. Six selected Wnt pathway genes were detected by qPCR with up-regulation in goose skin during the induction of primary feather follicles. The localization of WNT16, SFRP1 and FRZB by in situ hybridization showed weak expression in the primary feather primordia, whereas FZD1, LEF1 and DKK1 were expressed initially in the inter-follicular skin and feather follicle primordia, then mainly restricted in the feather primordia. The spatial-temporal expression patterns indicate that Wnt pathway genes DKK1, FZD1 and LEF1 are the important regulators functioned in the induction of primary feather follicle in goose skin. The dynamic molecular changes and specific gene expression patterns revealed in this report provide the general knowledge of primary feather follicle and skin development in waterfowl, and contribute to further understand the diversity of hair and feather development beyond the mouse and chicken models.
Collapse
Affiliation(s)
- Xuewen Hu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaokang Zhang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Zhiwei Liu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Shaomei Li
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xinting Zheng
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yangfan Nie
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yingfeng Tao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaoliu Zhou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Wenqing Wu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Ge Yang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianqian Zhao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Chunyan Mou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China.
| |
Collapse
|
12
|
Feather Evolution from Precocial to Altricial Birds. Zool Stud 2019; 58:e24. [PMID: 31966325 DOI: 10.6620/zs.2019.58-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022]
Abstract
Birds are the most abundant terrestrial vertebrates and their diversity is greatly shaped by the feathers. How avian evolution is linked to feather evolution has long been a fascinating question. Numerous excellent studies have shed light on this complex relationship by investigating feather diversity and its underlying molecular mechanisms. However, most have focused on adult domestic birds, and the contribution of feather diversity to environmental adaptation has not been well-studied. In this review, we described bird diversity using the traditional concept of the altricial-precocial spectrum in bird hatchlings. We combined the spectrum with a recently published avian phylogeny to profile the spectrum evolution. We then focused on the discrete diagnostic character of the spectrum, the natal down, and propose a hypothesis for the precocial-to-altricial evolution. For the underlying molecular mechanisms in feather diversity and bird evolution, we reviewed the literature and constructed the known mechanisms for feather tract definition and natal down development. Finally, we suggested some future directions for research on altricial-precocial divergence, which may expand our understanding of the relationship between natal down diversity and bird evolution.
Collapse
|
13
|
Aman AJ, Fulbright AN, Parichy DM. Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. eLife 2018; 7:37001. [PMID: 30014845 PMCID: PMC6072442 DOI: 10.7554/elife.37001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding how patterning influences cell behaviors to generate three dimensional morphologies is a central goal of developmental biology. Additionally, comparing these regulatory mechanisms among morphologically diverse tissues allows for rigorous testing of evolutionary hypotheses. Zebrafish skin is endowed with a coat of precisely patterned bony scales. We use in-toto live imaging during scale development and manipulations of cell signaling activity to elucidate core features of scale patterning and morphogenesis. These analyses show that scale development requires the concerted activity of Wnt/β-catenin, Ectodysplasin (Eda) and Fibroblast growth factor (Fgf) signaling. This regulatory module coordinates Hedgehog (HH) dependent collective cell migration during epidermal invagination, a cell behavior not previously implicated in skin appendage morphogenesis. Our analyses demonstrate the utility of zebrafish scale development as a tractable system in which to elucidate mechanisms of developmental patterning and morphogenesis, and suggest a single, ancient origin of skin appendage patterning mechanisms in vertebrates.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Alexis N Fulbright
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - David M Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
14
|
Cooper RL, Martin KJ, Rasch LJ, Fraser GJ. Developing an ancient epithelial appendage: FGF signalling regulates early tail denticle formation in sharks. EvoDevo 2017; 8:8. [PMID: 28469835 PMCID: PMC5414203 DOI: 10.1186/s13227-017-0071-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/22/2017] [Indexed: 11/18/2022] Open
Abstract
Background Vertebrate epithelial appendages constitute a diverse group of organs that includes integumentary structures such as reptilian scales, avian feathers and mammalian hair. Recent studies have provided new evidence for the homology of integumentary organ development throughout amniotes, despite their disparate final morphologies. These structures develop from conserved molecular signalling centres, known as epithelial placodes. It is not yet certain whether this homology extends beyond the integumentary organs of amniotes, as there is a lack of knowledge regarding their development in basal vertebrates. As the ancient sister lineage of bony vertebrates, extant chondrichthyans are well suited to testing the phylogenetic depth of this homology. Elasmobranchs (sharks, skates and rays) possess hard, mineralised epithelial appendages called odontodes, which include teeth and dermal denticles (placoid scales). Odontodes constitute some of the oldest known vertebrate integumentary appendages, predating the origin of gnathostomes. Here, we used an emerging model shark (Scyliorhinus canicula) to test the hypothesis that denticles are homologous to other placode-derived amniote integumentary organs. To examine the conservation of putative gene regulatory network (GRN) member function, we undertook small molecule inhibition of fibroblast growth factor (FGF) signalling during caudal denticle formation. Results We show that during early caudal denticle morphogenesis, the shark expresses homologues of conserved developmental gene families, known to comprise a core GRN for early placode morphogenesis in amniotes. This includes conserved expression of FGFs, sonic hedgehog (shh) and bone morphogenetic protein 4 (bmp4). Additionally, we reveal that denticle placodes possess columnar epithelial cells with a reduced rate of proliferation, a conserved characteristic of amniote skin appendage development. Small molecule inhibition of FGF signalling revealed placode development is FGF dependent, and inhibiting FGF activity resulted in downregulation of shh and bmp4 expression, consistent with the expectation from comparison to the amniote integumentary appendage GRN. Conclusion Overall, these findings suggest the core GRN for building vertebrate integumentary epithelial appendages has been highly conserved over 450 million years. This provides evidence for the continuous, historical homology of epithelial appendage placodes throughout jawed vertebrates, from sharks to mammals. Epithelial placodes constitute the shared foundation upon which diverse vertebrate integumentary organs have evolved. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0071-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rory L Cooper
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Kyle J Martin
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Liam J Rasch
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| |
Collapse
|
15
|
Genomic determinants of epidermal appendage patterning and structure in domestic birds. Dev Biol 2017; 429:409-419. [PMID: 28347644 DOI: 10.1016/j.ydbio.2017.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022]
Abstract
Variation in regional identity, patterning, and structure of epidermal appendages contributes to skin diversity among many vertebrate groups, and is perhaps most striking in birds. In pioneering work on epidermal appendage patterning, John Saunders and his contemporaries took advantage of epidermal appendage diversity within and among domestic chicken breeds to establish the importance of mesoderm-ectoderm signaling in determining skin patterning. Diversity in chickens and other domestic birds, including pigeons, is driving a new wave of research to dissect the molecular genetic basis of epidermal appendage patterning. Domestic birds are not only outstanding models for embryonic manipulations, as Saunders recognized, but they are also ideal genetic models for discovering the specific genes that control normal development and the mutations that contribute to skin diversity. Here, we review recent genetic and genomic approaches to uncover the basis of epidermal macropatterning, micropatterning, and structural variation. We also present new results that confirm expression changes in two limb identity genes in feather-footed pigeons, a case of variation in appendage structure and identity.
Collapse
|
16
|
Bloomquist RF, Fowler TE, Sylvester JB, Miro RJ, Streelman JT. A compendium of developmental gene expression in Lake Malawi cichlid fishes. BMC DEVELOPMENTAL BIOLOGY 2017; 17:3. [PMID: 28158974 PMCID: PMC5291978 DOI: 10.1186/s12861-017-0146-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lake Malawi cichlids represent one of a growing number of vertebrate models used to uncover the genetic and developmental basis of trait diversity. Rapid evolutionary radiation has resulted in species that share similar genomes but differ markedly in phenotypes including brains and behavior, nuptial coloration and the craniofacial skeleton. Research has begun to identify the genes, as well as the molecular and developmental pathways that underlie trait divergence. RESULTS We assemble a compendium of gene expression for Lake Malawi cichlids, across pharyngula (the phylotypic stage) and larval stages of development, encompassing hundreds of gene transcripts. We chart patterns of expression in Bone morphogenetic protein (BMP), Fibroblast growth factor (FGF), Hedgehog (Hh), Notch and Wingless (Wnt) signaling pathways, as well as genes involved in neurogenesis, calcium and endocrine signaling, stem cell biology, and numerous homeobox (Hox) factors-in three planes using whole-mount in situ hybridization. Because of low sequence divergence across the Malawi cichlid assemblage, the probes we employ are broadly applicable in hundreds of species. We tabulate gene expression across general tissue domains, and highlight examples of unexpected expression patterns. CONCLUSIONS On the heels of recently published genomes, this compendium of developmental gene expression in Lake Malawi cichlids provides a valuable resource for those interested in the relationship between evolution and development.
Collapse
Affiliation(s)
- R F Bloomquist
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA.,Medical College of Georgia, School of Dentistry, Augusta, GA, USA
| | - T E Fowler
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - J B Sylvester
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - R J Miro
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - J T Streelman
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA.
| |
Collapse
|
17
|
Domyan ET, Shapiro MD. Pigeonetics takes flight: Evolution, development, and genetics of intraspecific variation. Dev Biol 2016; 427:241-250. [PMID: 27847323 DOI: 10.1016/j.ydbio.2016.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 11/26/2022]
Abstract
Intensive artificial selection over thousands of years has produced hundreds of varieties of domestic pigeon. As Charles Darwin observed, the morphological differences among breeds can rise to the magnitude of variation typically observed among different species. Nevertheless, different pigeon varieties are interfertile, thereby enabling forward genetic and genomic approaches to identify genes that underlie derived traits. Building on classical genetic studies of pigeon variation, recent molecular investigations find a spectrum of coding and regulatory alleles controlling derived traits, including plumage color, feather growth polarity, and limb identity. Developmental and genetic analyses of pigeons are revealing the molecular basis of variation in a classic example of extreme intraspecific diversity, and have the potential to nominate genes that control variation among other birds and vertebrates in general.
Collapse
Affiliation(s)
- Eric T Domyan
- Department of Biology, Utah Valley University, Orem, UT, United States.
| | - Michael D Shapiro
- Department of Biology, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
18
|
Toews D, Taylor S, Vallender R, Brelsford A, Butcher B, Messer P, Lovette I. Plumage Genes and Little Else Distinguish the Genomes of Hybridizing Warblers. Curr Biol 2016; 26:2313-8. [DOI: 10.1016/j.cub.2016.06.034] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/13/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
|
19
|
Di-Poï N, Milinkovitch MC. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes. SCIENCE ADVANCES 2016; 2:e1600708. [PMID: 28439533 PMCID: PMC5392058 DOI: 10.1126/sciadv.1600708] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 05/12/2023]
Abstract
Most mammals, birds, and reptiles are readily recognized by their hairs, feathers, and scales, respectively. However, the lack of fossil intermediate forms between scales and hairs and substantial differences in their morphogenesis and protein composition have fueled the controversy pertaining to their potential common ancestry for decades. Central to this debate is the apparent lack of an "anatomical placode" (that is, a local epidermal thickening characteristic of feathers' and hairs' early morphogenesis) in reptile scale development. Hence, scenarios have been proposed for the independent development of the anatomical placode in birds and mammals and parallel co-option of similar signaling pathways for their morphogenesis. Using histological and molecular techniques on developmental series of crocodiles and snakes, as well as of unique wild-type and EDA (ectodysplasin A)-deficient scaleless mutant lizards, we show for the first time that reptiles, including crocodiles and squamates, develop all the characteristics of an anatomical placode: columnar cells with reduced proliferation rate, as well as canonical spatial expression of placode and underlying dermal molecular markers. These results reveal a new evolutionary scenario where hairs, feathers, and scales of extant species are homologous structures inherited, with modification, from their shared reptilian ancestor's skin appendages already characterized by an anatomical placode and associated signaling molecules.
Collapse
Affiliation(s)
- Nicolas Di-Poï
- Laboratory of Artificial and Natural Evolution, Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Michel C. Milinkovitch
- Laboratory of Artificial and Natural Evolution, Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
- Corresponding author.
| |
Collapse
|
20
|
Morgan BA. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb Perspect Med 2014; 4:a015180. [PMID: 24985131 PMCID: PMC4066645 DOI: 10.1101/cshperspect.a015180] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dermal papilla (DP) of the hair follicle is both a chemical and physical niche for epithelial progenitor cells that regenerate the cycling portion of the hair follicle and generate the hair shaft. Here, we review experiments that revealed the importance of the DP in regulating the characteristics of the hair shaft and frequency of hair follicle regeneration. More recent work showed that the size of this niche is dynamic and actively regulated and reduction in DP cell number per follicle is sufficient to cause hair thinning and loss. The formation of the DP during follicle neogenesis provides a context to contemplate the mechanisms that maintain DP size and the potential to exploit these processes for hair preservation or restoration.
Collapse
Affiliation(s)
- Bruce A Morgan
- Department of Dermatology, Harvard Medical School and Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02129
| |
Collapse
|
21
|
Lefebvre S, Mikkola ML. Ectodysplasin research—Where to next? Semin Immunol 2014; 26:220-8. [DOI: 10.1016/j.smim.2014.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 01/29/2023]
|
22
|
Glazer AM, Cleves PA, Erickson PA, Lam AY, Miller CT. Parallel developmental genetic features underlie stickleback gill raker evolution. EvoDevo 2014; 5:19. [PMID: 24851181 PMCID: PMC4029907 DOI: 10.1186/2041-9139-5-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023] Open
Abstract
Background Convergent evolution, the repeated evolution of similar phenotypes in independent lineages, provides natural replicates to study mechanisms of evolution. Cases of convergent evolution might have the same underlying developmental and genetic bases, implying that some evolutionary trajectories might be predictable. In a classic example of convergent evolution, most freshwater populations of threespine stickleback fish have independently evolved a reduction of gill raker number to adapt to novel diets. Gill rakers are a segmentally reiterated set of dermal bones important for fish feeding. A previous large quantitative trait locus (QTL) mapping study using a marine × freshwater F2 cross identified QTL on chromosomes 4 and 20 with large effects on evolved gill raker reduction. Results By examining skeletal morphology in adult and developing sticklebacks, we find heritable marine/freshwater differences in gill raker number and spacing that are specified early in development. Using the expression of the Ectodysplasin receptor (Edar) gene as a marker of raker primordia, we find that the differences are present before the budding of gill rakers occurs, suggesting an early change to a lateral inhibition process controlling raker primordia spacing. Through linkage mapping in F2 fish from crosses with three independently derived freshwater populations, we find in all three crosses QTL overlapping both previously identified QTL on chromosomes 4 and 20 that control raker number. These two QTL affect the early spacing of gill raker buds. Conclusions Collectively, these data demonstrate that parallel developmental genetic features underlie the convergent evolution of gill raker reduction in freshwater sticklebacks, suggesting that even highly polygenic adaptive traits can have a predictable developmental genetic basis.
Collapse
Affiliation(s)
- Andrew M Glazer
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Phillip A Cleves
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Priscilla A Erickson
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Angela Y Lam
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Craig T Miller
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Kowalczyk-Quintas C, Willen L, Dang AT, Sarrasin H, Tardivel A, Hermes K, Schneider H, Gaide O, Donzé O, Kirby N, Headon DJ, Schneider P. Generation and characterization of function-blocking anti-ectodysplasin A (EDA) monoclonal antibodies that induce ectodermal dysplasia. J Biol Chem 2014; 289:4273-85. [PMID: 24391090 PMCID: PMC3924290 DOI: 10.1074/jbc.m113.535740] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/22/2013] [Indexed: 01/01/2023] Open
Abstract
Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/genetics
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/toxicity
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/toxicity
- Autoantibodies/genetics
- Autoantibodies/immunology
- Autoantibodies/toxicity
- Base Sequence
- Cattle
- Cell Line
- Dogs
- Ectodermal Dysplasia/chemically induced
- Ectodermal Dysplasia/genetics
- Ectodermal Dysplasia/immunology
- Ectodermal Dysplasia/metabolism
- Ectodermal Dysplasia/pathology
- Ectodysplasins/antagonists & inhibitors
- Ectodysplasins/genetics
- Ectodysplasins/immunology
- Ectodysplasins/metabolism
- Female
- Humans
- Male
- Mice
- Mice, Mutant Strains
- Molecular Sequence Data
- Pregnancy
Collapse
Affiliation(s)
| | - Laure Willen
- From the Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Anh Thu Dang
- From the Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Heidi Sarrasin
- From the Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Aubry Tardivel
- From the Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Katharina Hermes
- the Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Holm Schneider
- the Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Olivier Gaide
- the Department of Dermatology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | | | - Neil Kirby
- Edimer Pharmaceuticals, Cambridge, Massachusetts 02142, and
| | - Denis J. Headon
- the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin EH25 9RG, United Kingdom
| | - Pascal Schneider
- From the Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| |
Collapse
|
24
|
Disappearing scales in carps: re-visiting Kirpichnikov's model on the genetics of scale pattern formation. PLoS One 2014; 8:e83327. [PMID: 24386179 PMCID: PMC3875451 DOI: 10.1371/journal.pone.0083327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/02/2013] [Indexed: 11/19/2022] Open
Abstract
The body of most fishes is fully covered by scales that typically form tight, partially overlapping rows. While some of the genes controlling the formation and growth of fish scales have been studied, very little is known about the genetic mechanisms regulating scale pattern formation. Although the existence of two genes with two pairs of alleles (S&s and N&n) regulating scale coverage in cyprinids has been predicted by Kirpichnikov and colleagues nearly eighty years ago, their identity was unknown until recently. In 2009, the ‘S’ gene was found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1, while the second gene called ‘N’ has not yet been identified. We re-visited the original model of Kirpichnikov that proposed four major scale pattern types and observed a high degree of variation within the so-called scattered phenotype due to which this group was divided into two sub-types: classical mirror and irregular. We also analyzed the survival rates of offspring groups and found a distinct difference between Asian and European crosses. Whereas nude × nude crosses involving at least one parent of Asian origin or hybrid with Asian parent(s) showed the 25% early lethality predicted by Kirpichnikov (due to the lethality of the NN genotype), those with two Hungarian nude parents did not. We further extended Kirpichnikov's work by correlating changes in phenotype (scale-pattern) to the deformations of fins and losses of pharyngeal teeth. We observed phenotypic changes which were not restricted to nudes, as described by Kirpichnikov, but were also present in mirrors (and presumably in linears as well; not analyzed in detail here). We propose that the gradation of phenotypes observed within the scattered group is caused by a gradually decreasing level of signaling (a dose-dependent effect) probably due to a concerted action of multiple pathways involved in scale formation.
Collapse
|
25
|
The ectodysplasin pathway: from diseases to adaptations. Trends Genet 2013; 30:24-31. [PMID: 24070496 DOI: 10.1016/j.tig.2013.08.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 01/08/2023]
Abstract
The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution.
Collapse
|
26
|
Fraser GJ, Bloomquist RF, Streelman JT. Common developmental pathways link tooth shape to regeneration. Dev Biol 2013; 377:399-414. [PMID: 23422830 DOI: 10.1016/j.ydbio.2013.02.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 01/11/2023]
Abstract
In many non-mammalian vertebrates, adult dentitions result from cyclical rounds of tooth regeneration wherein simple unicuspid teeth are replaced by more complex forms. Therefore and by contrast to mammalian models, the numerical majority of vertebrate teeth develop shape during the process of replacement. Here, we exploit the dental diversity of Lake Malawi cichlid fishes to ask how vertebrates generally replace their dentition and in turn how this process acts to influence resulting tooth morphologies. First, we used immunohistochemistry to chart organogenesis of continually replacing cichlid teeth and discovered an epithelial down-growth that initiates the replacement cycle via a labial proliferation bias. Next, we identified sets of co-expressed genes from common pathways active during de novo, lifelong tooth replacement and tooth morphogenesis. Of note, we found two distinct epithelial cell populations, expressing markers of dental competence and cell potency, which may be responsible for tooth regeneration. Related gene sets were simultaneously active in putative signaling centers associated with the differentiation of replacement teeth with complex shapes. Finally, we manipulated targeted pathways (BMP, FGF, Hh, Notch, Wnt/β-catenin) in vivo with small molecules and demonstrated dose-dependent effects on both tooth replacement and tooth shape. Our data suggest that the processes of tooth regeneration and tooth shape morphogenesis are integrated via a common set of molecular signals. This linkage has subsequently been lost or decoupled in mammalian dentitions where complex tooth shapes develop in first generation dentitions that lack the capacity for lifelong replacement. Our dissection of the molecular mechanics of vertebrate tooth replacement coupled to complex shape pinpoints aspects of odontogenesis that might be re-evolved in the lab to solve problems in regenerative dentistry.
Collapse
Affiliation(s)
- Gareth J Fraser
- Parker H. Petit Institute for Bioengineering and Bioscience and School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | |
Collapse
|
27
|
Chuong CM, Yeh CY, Jiang TX, Widelitz R. Module-based complexity formation: periodic patterning in feathers and hairs. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:97-112. [PMID: 23539312 PMCID: PMC3607644 DOI: 10.1002/wdev.74] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells.
Collapse
Affiliation(s)
- Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA,
| | - Chao-Yuan Yeh
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA,
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA,
| | - Randall Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA,
| |
Collapse
|
28
|
Lin J, Luo J, Redies C. Differential regional expression of multiple ADAMs during feather bud formation. Dev Dyn 2011; 240:2142-52. [DOI: 10.1002/dvdy.22703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 01/02/2023] Open
|
29
|
Zhang Y, Tomann P, Andl T, Gallant NM, Huelsken J, Jerchow B, Birchmeier W, Paus R, Piccolo S, Mikkola ML, Morrisey EE, Overbeek PA, Scheidereit C, Millar SE, Schmidt-Ullrich R. Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell 2009; 17:49-61. [PMID: 19619491 DOI: 10.1016/j.devcel.2009.05.011] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 03/22/2009] [Accepted: 05/06/2009] [Indexed: 01/19/2023]
Abstract
Wnt/beta-catenin and NF-kappaB signaling mechanisms provide central controls in development and disease, but how these pathways intersect is unclear. Using hair follicle induction as a model system, we show that patterning of dermal Wnt/beta-catenin signaling requires epithelial beta-catenin activity. We find that Wnt/beta-catenin signaling is absolutely required for NF-kappaB activation, and that Edar is a direct Wnt target gene. Wnt/beta-catenin signaling is initially activated independently of EDA/EDAR/NF-kappaB activity in primary hair follicle primordia. However, Eda/Edar/NF-kappaB signaling is required to refine the pattern of Wnt/beta-catenin activity, and to maintain this activity at later stages of placode development. We show that maintenance of localized expression of Wnt10b and Wnt10a requires NF-kappaB signaling, providing a molecular explanation for the latter observation, and identify Wnt10b as a direct NF-kappaB target. These data reveal a complex interplay and interdependence of Wnt/beta-catenin and EDA/EDAR/NF-kappaB signaling pathways in initiation and maintenance of primary hair follicle placodes.
Collapse
Affiliation(s)
- Yuhang Zhang
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mathew SJ, Haubert D, Krönke M, Leptin M. Looking beyond death: a morphogenetic role for the TNF signalling pathway. J Cell Sci 2009; 122:1939-46. [PMID: 19494121 DOI: 10.1242/jcs.044487] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumour necrosis factor alpha (TNFalpha) is a pro-inflammatory mediator with the capacity to induce apoptosis. An integral part of its apoptotic and inflammatory programmes is the control of cell shape through modulation of the cytoskeleton, but it is now becoming apparent that this morphogenetic function of TNF signalling is also employed outside inflammatory responses and is shared by the signalling pathways of other members of the TNF-receptor superfamily. Some proteins that are homologous to the components of the TNF signalling pathway, such as the adaptor TNF-receptor-associated factor 4 and the ectodysplasin A receptor (and its ligand and adaptors), have dedicated morphogenetic roles. The mechanism by which TNF signalling affects cell shape is not yet fully understood, but Rho-family GTPases have a central role. The fact that the components of the TNF signalling pathway are evolutionarily old suggests that an ancestral cassette from unicellular organisms has diversified its functions into partly overlapping morphogenetic, inflammatory and apoptotic roles in multicellular higher organisms.
Collapse
Affiliation(s)
- Sam J Mathew
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | | | | | |
Collapse
|
31
|
Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR, Streelman JT. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol 2009; 7:e31. [PMID: 19215146 PMCID: PMC2637924 DOI: 10.1371/journal.pbio.1000031] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 01/05/2009] [Indexed: 11/18/2022] Open
Abstract
Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral jaws of the first jawed vertebrate, and subsequently deployed as jaws enveloped teeth on novel pharyngeal jaws. Our data highlight an amazing modularity of jaws and teeth as they coevolved during the history of vertebrates. We exploit this diversity to infer a core dental gene network, common to the first tooth and all of its descendants.
Collapse
Affiliation(s)
- Gareth J Fraser
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (GJF); (JTS)
| | - C. Darrin Hulsey
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ryan F Bloomquist
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kristine Uyesugi
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - J. Todd Streelman
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (GJF); (JTS)
| |
Collapse
|
32
|
Harris MP, Rohner N, Schwarz H, Perathoner S, Konstantinidis P, Nüsslein-Volhard C. Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates. PLoS Genet 2008; 4:e1000206. [PMID: 18833299 PMCID: PMC2542418 DOI: 10.1371/journal.pgen.1000206] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 08/22/2008] [Indexed: 12/28/2022] Open
Abstract
The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda) and ectodysplasin receptor (edar) genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100) that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution.
Collapse
Affiliation(s)
- Matthew P Harris
- Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Michon F, Forest L, Collomb E, Demongeot J, Dhouailly D. BMP2 and BMP7 play antagonistic roles in feather induction. Development 2008; 135:2797-805. [PMID: 18635609 DOI: 10.1242/dev.018341] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Feathers, like hairs, first appear as primordia consisting of an epidermal placode associated with a dermal condensation that is necessary for the continuation of their differentiation. Previously, the BMPs have been proposed to inhibit skin appendage formation. We show that the function of specific BMPs during feather development is more complex. BMP2 and BMP7, which are expressed in both the epidermis and the dermis, are involved in an antagonistic fashion in regulating the formation of dermal condensations, and thus are both necessary for subsequent feather morphogenesis. BMP7 is expressed earlier and functions as a chemoattractant that recruits cells into the condensation, whereas BMP2 is expressed later, and leads to an arrest of cell migration, likely via its modulation of the EIIIA fibronectin domain and alpha4 integrin expression. Based on the observed cell proliferation, chemotaxis and the timing of BMP2 and BMP7 expression, we propose a mathematical model, a reaction-diffusion system, which not only simulates feather patterning, but which also can account for the negative effects of excess BMP2 or BMP7 on feather formation.
Collapse
Affiliation(s)
- Frederic Michon
- Equipe Ontogenèse et Cellules Souches du Tégument, Centre de Recherche INSERM UJF - U823, Institut Albert Bonniot, Site Santé, La Tronche, BP170, 38042 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
34
|
Fraser GJ, Bloomquist RF, Streelman JT. A periodic pattern generator for dental diversity. BMC Biol 2008; 6:32. [PMID: 18625062 PMCID: PMC2496899 DOI: 10.1186/1741-7007-6-32] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/14/2008] [Indexed: 11/18/2022] Open
Abstract
Background Periodic patterning of iterative structures is a fundamental process during embryonic organization and development. Studies have shown how gene networks are employed to pattern butterfly eyespots, fly bristles and vertebrate epithelial appendages such as teeth, feathers, hair and mammary glands. Despite knowledge of how these features are organized, little is known about how diversity in periodic patterning is generated in nature. We address this problem through the molecular analysis of oral jaw dental diversity in Lake Malawi cichlids, where closely related species exhibit from 1 to 20 rows of teeth, with total teeth counts ranging from around 10 to 700. Results We investigate the expression of conserved gene networks (involving bmp2, bmp4, eda, edar, fgf8, pax9, pitx2, runx2, shh and wnt7b) known to pattern iterative structures and teeth in other vertebrates. We show that spatiotemporal variation in expression pattern reflects adult morphological diversity among three closely related Malawi cichlid species. Combinatorial epithelial expression of pitx2 and shh appears to govern the competence both of initial tooth sites and future tooth rows. Epithelial wnt7b and mesenchymal eda are expressed in the inter-germ and inter-row regions, and likely regulate the spacing of these shh-positive units. Finally, we used chemical knockdown to demonstrate the fundamental role of hedgehog signalling and initial placode formation in the organization of the periodically patterned cichlid dental programme. Conclusion Coordinated patterns of gene expression differ among Malawi species and prefigure the future-ordered distribution of functional teeth of specific size and spacing. This variation in gene expression among species occurs early in the developmental programme for dental patterning. These data show how a complex multi-rowed vertebrate dentition is organized and how developmental tinkering of conserved gene networks during iterative pattern formation can impact upon the evolution of trophic novelty.
Collapse
Affiliation(s)
- Gareth J Fraser
- School of Biology, Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | | | |
Collapse
|
35
|
|
36
|
Houghton L, Lindon CM, Freeman A, Morgan BA. Abortive placode formation in the feather tract of the scaleless chicken embryo. Dev Dyn 2008; 236:3020-30. [PMID: 17948257 DOI: 10.1002/dvdy.21337] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The featherless phenotype of the scaleless mutant provides a model for delineating the process of feather follicle formation. Initial studies established that the mutation affects the epidermis and suggested that epidermis is unable to respond to signals from underlying dermis, or propagate a reciprocal signal. The work presented here demonstrates that scaleless epidermis does indeed respond to the initial inductive signals from dermis, as indicated by the localization of nuclear beta-catenin and transient focal expression of genes expressed in the placode of wild-type feather rudiments. In the sporadic "escaper" feathers that form in scaleless, expression of many genes associated with the progression of feather development is comparable to that in wild-type embryos. An exception is the ectodysplasin receptor gene Edar, which is expressed at lower levels in mutant feather buds. These observations suggest that the scaleless mutation impairs the locally augmented expression of Edar required to stabilize the placodal fate and sustain feather development.
Collapse
Affiliation(s)
- Leslie Houghton
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
37
|
Pantalacci S, Chaumot A, Benoît G, Sadier A, Delsuc F, Douzery EJP, Laudet V. Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development. Mol Biol Evol 2008; 25:912-28. [PMID: 18304980 DOI: 10.1093/molbev/msn038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It is widely accepted that evolutionary changes in conserved developmental signaling pathways play an important role in morphological evolution. However, few in silico studies were interested in tracking such changes in a signaling pathway. The Ectodysplasin (EDA) pathway provides an opportunity to fill this gap because it is involved in vertebrate skin appendage development such as scales, teeth, hair, and feathers that take an obvious part in the adaptation of species to their environment. We benefited from the large amount of genomic data now available to explore the evolution of the upstream genes of the EDA pathway. In mammals, these genes are eda (encoding 2 ligands, EDA-A1 and EDA-A2), edar (EDA-A1 receptor), edaradd (EDA receptor [EDAR] adapter), xedar (EDA-A2 receptor), and troy (a XEDAR-related receptor). We show that the evolution of EDA pathway genes combines both strongly conserved features and evolutionary shifts. These shifts are found at different signaling levels (from the ligand to intracellular signaling) and at different taxonomic levels (class, suborder, and genera). Although conserved features likely participate to the similarities found in the early development of vertebrate skin appendages, these shifts might account for innovations and specializations. Moreover, our study demonstrates that we can now benefit from the large number of sequenced vertebrate genomes to explore the evolution of specific signaling pathways and thereby to open new perspectives for developmental biology and evolutionary developmental biology.
Collapse
Affiliation(s)
- Sophie Pantalacci
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Institut Fédératif Biosciences 128 Gerland Lyon Sud, CNRS, INRA, Université Claude Bernard Lyon 1, 69364 Lyon cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Wu W, Xu R, Xiao L, Xu H, Gao G. Expression of the β-Catenin Gene in the Skin of Embryonic Geese During Feather Bud Development. Poult Sci 2008; 87:204-11. [DOI: 10.3382/ps.2007-00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Streelman J, Peichel C, Parichy D. Developmental Genetics of Adaptation in Fishes: The Case for Novelty. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J.T. Streelman
- School of Biology, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230;
| | - C.L. Peichel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024;
| | - D.M. Parichy
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195-1800;
| |
Collapse
|
40
|
Michon F, Charveron M, Dhouailly D. Dermal condensation formation in the chick embryo: requirement for integrin engagement and subsequent stabilization by a possible notch/integrin interaction. Dev Dyn 2007; 236:755-68. [PMID: 17279577 DOI: 10.1002/dvdy.21080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During embryonic development, feathers appear first as primordia consisting of an epidermal placode associated with a dermal condensation. When 7-day chick embryo dorsal skin fragments showing three rows of feather primordia are cultured, they undergo a complete reorganization, which involves the down-regulation of morphogenetic genes and dispersal of dermal fibroblasts, leading to the disappearance of primordia. This loss of organisation is followed by de novo differentiation events. We have used this model to study potential factors involved in the formation of dermal condensations. Activation of Integrins by extracellular Manganese or intracellular Calcium prevents the initial disappearance of the dermal condensations. New primordia formation occurs even after inhibition of the Notch pathway albeit with some fusion between primordia. In conclusion, dermal fibroblast migration requires beta1-Integrin whereas the stability of dermal condensations could depend on Notch/Integrin interaction.
Collapse
Affiliation(s)
- Frederic Michon
- Centre de Recherche INSERM-Institut Albert Bonniot U823, Ontogenesis and Stem Cell of the Tegument Team, Grenoble, France
| | | | | |
Collapse
|
41
|
Hammerschmidt B, Schlake T. Localization of Shh expression by Wnt and Eda affects axial polarity and shape of hairs. Dev Biol 2007; 305:246-61. [PMID: 17376426 DOI: 10.1016/j.ydbio.2007.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/18/2007] [Accepted: 02/09/2007] [Indexed: 12/27/2022]
Abstract
Axial patterning is a recurrent theme during embryonic development. To elucidate its fundamental principles, the hair follicle is an attractive model due to its easy accessibility and dispensability. Hair follicle asymmetry is evident from its angling and the localization of associated structures. However, axial patterning is not restricted to the follicle itself but also generates rotational hair shaft asymmetry which, for zigzag hairs, generates 3-4 bends that alternately point into opposite directions. Here we show by analyzing mutant and transgenic mice that WNT and ectodysplasin signaling are involved in the control of the molecular and morphological asymmetry of the follicle and the associated hair shaft, respectively. Asymmetry is affected by polarized WNT and ectodysplasin signaling in mature hair follicles. When endogenous signaling is impaired, molecular asymmetry is lost and mice no longer form zigzag hairs. Both signaling pathways affect the polarized expression of Shh which likely functions as a directional reference for hair shaft production in all follicles. We propose that this regulatory pathway also establishes follicular asymmetry during morphogenesis. Moreover, the identified molecular hierarchy offers a model for the periodic patterning of zigzag hairs mechanistically similar to mesodermal segmentation.
Collapse
|
42
|
Drew CF, Lin CM, Jiang TX, Blunt G, Mou C, Chuong CM, Headon DJ. The Edar subfamily in feather placode formation. Dev Biol 2007; 305:232-45. [PMID: 17362907 PMCID: PMC2696204 DOI: 10.1016/j.ydbio.2007.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/17/2007] [Accepted: 02/09/2007] [Indexed: 12/24/2022]
Abstract
A subgroup of the TNF receptor family, composed of Edar, Troy and Xedar, are implicated in the development of ectodermal appendages, such as hair follicles, teeth and sweat glands. We have isolated chicken orthologues of these three receptors and analysed their roles in early feather development. Conservation of protein sequences between mammalian and avian proteins is variable, with avian Edar showing the greatest degree of sequence identity. cXedar differs from its mammalian orthologue in that it contains an intracellular death domain. All three receptors are expressed during early feather morphogenesis and dominant negative forms of each receptor impair the epithelial contribution to feather bud morphogenesis, while the dermal contribution appears unaffected. Hyperactivation of each receptor leads to more widespread assumption of placode fate, though in different regions of the skin. Receptor signaling converges on NF-kappaB, and inhibiting this transcription factor alters feather bud number and size in a stage-specific manner. Our findings illustrate the roles of these three receptors during avian skin morphogenesis and also suggest that activators of feather placode fate undergo mutual regulation to reach a decision on skin appendage location and size.
Collapse
Affiliation(s)
- Caroline F. Drew
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Chih Min Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ting Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Geoff Blunt
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Chunyan Mou
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cheng Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Denis J. Headon
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Corresponding author. E-mail address: , Phone: +44 161 2751534
| |
Collapse
|
43
|
Pummila M, Fliniaux I, Jaatinen R, James MJ, Laurikkala J, Schneider P, Thesleff I, Mikkola ML. Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development 2007; 134:117-25. [PMID: 17164417 DOI: 10.1242/dev.02708] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Edaleads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh)signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-κB (NF-κB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.
Collapse
Affiliation(s)
- Marja Pummila
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lin CM, Jiang TX, Widelitz RB, Chuong CM. Molecular signaling in feather morphogenesis. Curr Opin Cell Biol 2006; 18:730-41. [PMID: 17049829 PMCID: PMC4406286 DOI: 10.1016/j.ceb.2006.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/05/2006] [Indexed: 12/17/2022]
Abstract
The development and regeneration of feathers have gained much attention recently because of progress in the following areas. First, pattern formation. The exquisite spatial arrangement provides a simple model for decoding the rules of morphogenesis. Second, stem cell biology. In every molting, a few stem cells have to rebuild the entire epithelial organ, providing much to learn on how to regenerate an organ physiologically. Third, evolution and development ('Evo-Devo'). The discovery of feathered dinosaur fossils in China prompted enthusiastic inquiries about the origin and evolution of feathers. Progress has been made in elucidating feather morphogenesis in five successive phases: macro-patterning, micro-patterning, intra-bud morphogenesis, follicle morphogenesis and regenerative cycling.
Collapse
Affiliation(s)
- Chih-Min Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
45
|
Streelman JT, Albertson RC. Evolution of novelty in the cichlid dentition. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:216-26. [PMID: 16555305 DOI: 10.1002/jez.b.21101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The shape of teeth occupies a central position in various biological disciplines, from paleo-ecology to molecular biology to cosmetic and reconstructive dentistry. Despite a long tradition of study in mammals, important questions remain regarding the genetic and developmental basis of differences in tooth shape. Here, we use natural mutants of cichlid fish from East Africa, which exhibit tremendous dental diversity, to help fill the gaps in our understanding of vertebrate odontogenesis. We employ an expanded genetic linkage map to demonstrate that cusp number segregates as a gene of major effect, which explains approximately 40% of the phenotypic variance, on cichlid chromosome 5. Furthermore, we examine patterns of Bmp4 expression in early odontogenesis to address and refine predictions of models linking tooth shape and tooth number. Mutations in the Bmp4 cistron do not control tooth shape in this mapping cross. Our data suggest that the evolution of novelty in the cichlid dentition is galvanized by a small number of genetic changes, echoing similar conclusions from recent studies of other vertebrate adaptive morphologies.
Collapse
Affiliation(s)
- Jeffrey Todd Streelman
- School of Biology, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | |
Collapse
|
46
|
Schmidt-Ullrich R, Tobin DJ, Lenhard D, Schneider P, Paus R, Scheidereit C. NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development 2006; 133:1045-57. [PMID: 16481354 DOI: 10.1242/dev.02278] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel function of NF-kappaB in the development of most ectodermal appendages, including two types of murine pelage hair follicles, was detected in a mouse model with suppressed NF-kappaB activity (c(IkappaBalphaDeltaN)). However, the developmental processes regulated by NF-kappaB in hair follicles has remained unknown. Furthermore, the similarity between the phenotypes of c(IkappaBADeltaN) mice and mice deficient in Eda A1 (tabby) or its receptor EdaR (downless) raised the issue of whether in vivo NF-kappaB regulates or is regulated by these novel TNF family members. We now demonstrate that epidermal NF-kappaB activity is first observed in placodes of primary guard hair follicles at day E14.5, and that in vivo NF-kappaB signalling is activated downstream of Eda A1 and EdaR. Importantly, ectopic signals which activate NF-kappaB can also stimulate guard hair placode formation, suggesting a crucial role for NF-kappaB in placode development. In downless and c(IkappaBalphaDeltaN) mice, placodes start to develop, but rapidly abort in the absence of EdaR/NF-kappaB signalling. We show that NF-kappaB activation is essential for induction of Shh and cyclin D1 expression and subsequent placode down growth. However, cyclin D1 induction appears to be indirectly regulated by NF-kappaB, probably via Shh and Wnt. The strongly decreased number of hair follicles observed in c(IkappaBalphaDeltaN) mice compared with tabby mice, indicates that additional signals, such as TROY, must regulate NF-kappaB activity in specific hair follicle subtypes.
Collapse
|
47
|
Rawlins EL, Hogan BLM. Intercellular growth factor signaling and the development of mouse tracheal submucosal glands. Dev Dyn 2005; 233:1378-85. [PMID: 15973734 DOI: 10.1002/dvdy.20461] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To provide a genetic framework for investigating changes in airway submucosal gland function in human respiratory disease, we have investigated their counterparts in normal and mutant mice. We describe their morphogenesis in relation to the expression of genes encoding conserved intercellular signaling pathways. Submucosal glands are severely reduced in number and size in mice heterozygous for Fgf10. Glands are completely absent in mice lacking Ectodysplasin (Eda) and Edaradd (Eda receptor adaptor protein), members of the tumor necrosis (TNF) superfamily of signaling factors. Furthermore, components of the Eda and closely related pathways are transcribed throughout the respiratory system in the adult mouse. Finally, the temporal and spatial pattern of Bmp4 expression suggests that it may control submucosal gland development and homeostasis. Taken together, our observations have important implications for the better understanding of the submucosal gland remodeling that occurs in human respiratory disease.
Collapse
Affiliation(s)
- Emma L Rawlins
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|