1
|
Yang J, Yue G, Fan Z, Zhang N, Nie S, Li J, Ji Y. FOXA1 Targets NEK2 to Mediate Cisplatin Resistance in Lung Adenocarcinoma Cells by Activating DNA Damage Repair. Drug Dev Res 2025; 86:e70087. [PMID: 40233258 DOI: 10.1002/ddr.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
Lung adenocarcinoma (LUAD) is one of the main causes of death in cancer patients, as its hidden course is difficult to uncover, resulting in many patients being diagnosed as advanced. Late-stage LUAD patients are prone to develop resistance to cisplatin. This study aims to explore the potential molecular regulatory mechanism of NEK2 on cisplatin resistance in LUAD cells. The expression levels of NEK2 and FOXA1 in LUAD tissues were analyzed based on bioinformatics methods. qRT-PCR analysis was carried out to measure the mRNA expression levels of NEK2 and FOXA1 in LUAD cells. CCK8 detected and calculated cell viability and IC50 values for each group of cells. Gene set enrichment analysis (GSEA) analyzed signaling pathways enriched by the NEK2 gene in LUAD. Dual luciferase and CHIP experiments were conducted to verify the binding relationship between NEK2 and FOXA1. Comet assay was utilized to analyze the level of DNA damage in LUAD cells. Western blot (WB) measured the expression levels of DNA damage-related proteins (γ-H2AX, p-ATM). The experimental results showed that FOXA1 and NEK2 were highly expressed in LUAD tissues and cells. GSEA analysis showed that NEK2 was enriched in DNA damage-related pathways, and silencing NEK2 could reduce the vitality of LUAD cisplatin-resistant cells, lower the IC50 value of cells to cisplatin, and increase their DNA damage levels. FOXA1 can target the promoter region that binds to NEK2, and it can activate NEK2 through transcription to promote DNA damage repair and cisplatin resistance in cisplatin-resistant LUAD cells. This study confirms that FOXA1 can target NEK2 to promote DNA damage repair and cisplatin resistance in LUAD cells, providing a new valuable therapeutic target for the treatment of LUAD and the control of chemotherapy drug resistance.
Collapse
Affiliation(s)
- Junhong Yang
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Guangcheng Yue
- Department of Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Zhiguo Fan
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Ning Zhang
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Shiwei Nie
- Department of Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Jing Li
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Yuanyuan Ji
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| |
Collapse
|
2
|
Cai Q, Meng X, Sun J, Gagan J, Aggarwal A, Khanshour AM, Bhanvadia R, Xu J, Mohanty SK, Shah RB. Prostate Ductal Adenocarcinoma Revisited: Clinicopathological and Genomic Characterization Identifies Heterogenous Group of Diseases with Implications for Patient Management. Mod Pathol 2025; 38:100743. [PMID: 40015646 DOI: 10.1016/j.modpat.2025.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Prostate ductal adenocarcinoma (PDA) is an aggressive subtype of prostate adenocarcinoma (PA). It can be found either in the peripheral zone, typically associated with acinar PA, or centrally in or around the verumontanum as a urethral polyp. Whether centrally occurring PDAs are biologically and genetically different compared with peripheral PDA remains unknown. Thirty-five PDAs diagnosed on resection specimens were categorized into 3 groups based on PDA location (central [urethra] involvement only [PDA-C], both central and peripheral involvement [PDA-C&P], peripheral involvement only [PDA-P]) and analyzed for clinicopathological, genomic characteristics, and outcomes. Targeted next-generation DNA and RNA sequencing with full exon coverage of 1425 cancer-related genes was performed on 2 PDA-C, 8 PDA-C&P, and 12 PDA-P with a grossly dissectible population of viable PDA. In 11 PDA-P, the same patients' ductal and associated acinar components were sequenced separately. Of 35 PDAs, 2 (6%), 11 (31%), and 22 (63%) were PDA-C, PDA-C&P, and PDA-P, respectively. PDA-C&P compared with PDA-P presented with larger tumor size (median 45 mm vs 25 mm), % ductal component (100% vs 30%), ≥ pT3 disease (100% vs 64%), visceral metastasis (36% vs 0%), and cancer-specific mortality (27% vs 0%) (P < .05) and enrichment for at least 1 DNA damage and repair (DDR)-related gene alterations (BRCA2, ATM, CDK12, ERCC2) (63% vs 8%), and PI3K pathway alterations (37% vs none). PDA-Ps were enriched in FOXA1 alterations compared with PDA-C&P (75% vs 25%) including 5 (56%) having FOXA1 mutation in only ductal components. TMPRSS2::ERG fusion was present in only 1 patient with PDA-P in both ductal and acinar components. One patient with PDA-C and 3 with PDA-C&P exhibited novel gene fusion ACPP::FGFR2 and NF1::ADAP, FGFR2::POC1B, and RB1:TTTY3, respectively. In 2 patients with PDA-C, PDA was eradicated in transurethral resection with no residual disease in follow-up radical prostatectomy. PDA-C lacked alterations in DDR genes. Our findings suggest that PDAs are clinically and genetically heterogeneous diseases. Understanding the heterogeneity of PDA is critically important in determining its biological potential and facilitating optimal patient management.
Collapse
Affiliation(s)
- Qi Cai
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaosong Meng
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jing Sun
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey Gagan
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aditi Aggarwal
- Department of Anatomic Pathology, CORE Diagnostics, Gurgaon, India
| | - Anas M Khanshour
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Raj Bhanvadia
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jing Xu
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sambit K Mohanty
- Department of Anatomic Pathology, CORE Diagnostics, Gurgaon, India
| | - Rajal B Shah
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
3
|
Brea L, Yu J. Tumor-intrinsic regulators of the immune-cold microenvironment of prostate cancer. Trends Endocrinol Metab 2025:S1043-2760(24)00325-4. [PMID: 39753502 DOI: 10.1016/j.tem.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025]
Abstract
Prostate cancer (PC) is a notoriously immune-cold tumor in that it often lacks substantial infiltration by antitumor immune cells, and in advanced diseases such as neuroendocrine PC, it could be devoid of immune cells. A majority of PC patients thus have, unfortunately, been unable to benefit from recent advances in immunotherapies. What causes this immunosuppressive microenvironment around PC? In this review, we discuss various genetic and epigenetic regulators intrinsic to prostate tumor cells that could have profound effects on the tumor microenvironment, thus contributing to this immune-cold status. It will be essential to target the cancer cells themselves in order to change the tumor microenvironment to harness existing and developing immunotherapies that had great success in other tumors.
Collapse
Affiliation(s)
- Lourdes Brea
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Jindan Yu
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
De Felice D, Alaimo A, Bressan D, Genovesi S, Marmocchi E, Annesi N, Beccaceci G, Dalfovo D, Cutrupi F, Medaglia S, Foletto V, Lorenzoni M, Gandolfi F, Kannan S, Verma CS, Vasciaveo A, Shen MM, Romanel A, Chiacchiera F, Cambuli F, Lunardi A. Rarγ-Foxa1 signaling promotes luminal identity in prostate progenitors and is disrupted in prostate cancer. EMBO Rep 2025; 26:443-469. [PMID: 39633177 PMCID: PMC11772605 DOI: 10.1038/s44319-024-00335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Retinoic acid (RA) signaling is a master regulator of vertebrate development with crucial roles in body axis orientation and tissue differentiation, including in the reproductive system. However, a mechanistic understanding of how RA signaling governs cell lineage identity is often missing. Here, leveraging prostate organoid technology, we show that RA signaling orchestrates the commitment of adult mouse prostate progenitors to glandular identity, epithelial barrier integrity, and specification of prostatic lumen. RA-dependent RARγ activation promotes the expression of Foxa1, which synergizes with the androgen pathway for luminal expansion, cytoarchitecture and function. FOXA1 mutations are common in prostate and breast cancers, though their pathogenic mechanism is incompletely understood. Combining functional genetics with structural modeling of FOXA1 folding and chromatin binding analyses, we discover that FOXA1F254E255 is a loss-of-function mutation compromising its transcriptional function and luminal fate commitment of prostate progenitors. Overall, we define RA as an instructive signal for glandular identity in adult prostate progenitors. Importantly, we identify cancer-associated FOXA1 indels affecting residue F254 as loss-of-function mutations promoting dedifferentiation of adult prostate progenitors.
Collapse
Affiliation(s)
- Dario De Felice
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Davide Bressan
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Elisa Marmocchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Nicole Annesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Federico Cutrupi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Stefano Medaglia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Francesco Gandolfi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute (Agency for Science, Technology and Research, A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore, 138671, Singapore
| | - Chandra S Verma
- Bioinformatics Institute (Agency for Science, Technology and Research, A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Alessandro Vasciaveo
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Michael M Shen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Fulvio Chiacchiera
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Francesco Cambuli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy.
- Human Technopole, via Rita Levi Montalcini 1, Milan, Italy.
| | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy.
| |
Collapse
|
5
|
Ishii K, Iguchi K, Matsuda C, Hirokawa Y, Sugimura Y, Watanabe M. Application of Original Prostate Cancer Progression Model Interacting with Fibroblasts in Preclinical Research. J Clin Med 2024; 13:7837. [PMID: 39768760 PMCID: PMC11678552 DOI: 10.3390/jcm13247837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease that exhibits androgen sensitivity and responsiveness to androgen deprivation therapy (ADT). However, ADT induces only temporary remission, and the majority of PCa cases eventually progress to castration-resistant PCa (CRPC). During the development and progression of CRPC, androgen sensitivity and androgen receptor (AR) dependency in PCa cells are often deceased or lost due to ADT or spontaneously arising AR variants even before starting ADT. To prevent CRPC, a clinical PCa model derived from an AR-positive cancer cell line with weak or no androgen sensitivity is required. The human prostate LNCaP cell line is a good model for PCa because of its androgen sensitivity and AR dependency in terms of cell growth and gene expression. Notably, LNCaP cells are heterogeneous cells comprising different clones with natural variations in androgen sensitivity and AR dependency resulting from spontaneously occurring changes. In our group, to obtain androgen-insensitive or weakly sensitive clones spontaneously derived from parental LNCaP cells, we performed a limiting dilution of parental LNCaP cells and obtained several sublines with varying levels of androgen sensitivity and AR dependency. In addition, we established an androgen-insensitive subline from parental LNCaP cells by continuous passage under hormone-depleted conditions. This article provides a unique perspective on our original PCa progression model interacting with fibroblasts and its application in preclinical research.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (C.M.); (Y.H.); (M.W.)
- Department of Nursing, Nagoya University of Arts and Sciences, Nagoya 460-0001, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu 501-1196, Japan;
| | - Chise Matsuda
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (C.M.); (Y.H.); (M.W.)
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (C.M.); (Y.H.); (M.W.)
| | | | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (C.M.); (Y.H.); (M.W.)
| |
Collapse
|
6
|
Li L, Hyun Cho K, Yu X, Cheng S. Systematic Multi-Omics Investigation of Androgen Receptor Driven Gene Expression and Epigenetics changes in Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604505. [PMID: 39091838 PMCID: PMC11291036 DOI: 10.1101/2024.07.22.604505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Prostate cancer, a common malignancy, is driven by androgen receptor (AR) signaling. Understanding the function of AR signaling is critical for prostate cancer research. Methods We performed multi-omics data analysis for the AR+, androgen-sensitive LNCaP cell line, focusing on gene expression (RNAseq), chromatin accessibility (ATACseq), and transcription factor binding (ChIPseq). High-quality datasets were curated from public repositories and processed using state-of-the-art bioinformatics tools. Results Our analysis identified 1004 up-regulated and 707 down-regulated genes in response to androgen deprivation therapy (ADT) which diminished AR signaling activity. Gene-set enrichment analysis revealed that AR signaling influences pathways related to neuron differentiation, cell adhesion, P53 signaling, and inflammation. ATACseq and ChIPseq data demonstrated that as a transcription factor, AR primarily binds to distal enhancers, influencing chromatin modifications without affecting proximal promoter regions. In addition, the AR-induced genes maintained higher active chromatin states than AR-inhibited genes, even under ADT conditions. Furthermore, ADT did not directly induce neuroendocrine differentiation in LNCaP cells, suggesting a complex mechanism behind neuroendocrine prostate cancer development. In addition, a publicly available online application LNCaP-ADT (https://pcatools.shinyapps.io/shinyADT/) was launched for users to visualize and browse data generated by this study. Conclusion This study provides a comprehensive multi-omics dataset, elucidating the role of AR signaling in prostate cancer at the transcriptomic and epigenomic levels. The reprocessed data is publicly available, offering a valuable resource for future prostate cancer research.
Collapse
Affiliation(s)
- Lin Li
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Kyung Hyun Cho
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
| | - Xiuping Yu
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
- Department of Urology, LSU Health Shreveport, Shreveport, LA
| | - Siyuan Cheng
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| |
Collapse
|
7
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
8
|
Felice DD, Alaimo A, Bressan D, Genovesi S, Marmocchi E, Annesi N, Beccaceci G, Dalfovo D, Cutrupi F, Foletto V, Lorenzoni M, Gandolfi F, Kannan S, Verma CS, Vasciaveo A, Shen MM, Romanel A, Chiacchiera F, Cambuli F, Lunardi A. Rarγ -Foxa1 signaling promotes luminal identity in prostate progenitors and is disrupted in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583256. [PMID: 38496627 PMCID: PMC10942448 DOI: 10.1101/2024.03.06.583256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Retinoic acid (RA) signaling is a master regulator of vertebrate development with crucial roles in directing body axis orientation and tissue differentiation, including in the reproductive system. However, a mechanistic understanding of how RA signaling promotes cell lineage identity in different tissues is often missing. Here, leveraging prostate organoid technology, we demonstrated that RA signaling orchestrates the commitment of adult mouse prostate progenitors to glandular identity, epithelial barrier integrity, and ultimately, proper specification of the prostatic lumen. Mechanistically, RA-dependent RARγ activation promotes the expression of the pioneer factor Foxa1, which synergizes with the androgen pathway for proper luminal expansion, cytoarchitecture and function. FOXA1 nucleotide variants are common in human prostate and breast cancers and considered driver mutations, though their pathogenic mechanism is incompletely understood. Combining functional genetics experiments with structural modeling of FOXA1 folding and chromatin binding analyses, we discovered that FOXA1 F254E255 is a loss-of-function mutation leading to compromised transcriptional function and lack of luminal fate commitment of prostate progenitors. Overall, we define RA as a crucial instructive signal for glandular identity in adult prostate progenitors. We propose deregulation of vitamin A metabolism as a risk factor for benign and malignant prostate disease, and identified cancer associated FOXA1 indels affecting residue F254 as loss-of-function mutations promoting dedifferentiation of adult prostate progenitors. Summary: Retinoic acid signaling orchestrates luminal differentiation of adult prostate progenitors.
Collapse
|
9
|
Pasterczyk KR, Li XL, Singh R, Zibitt MS, Hartford CCR, Pongor L, Jenkins LM, Hu Y, Zhao PX, Muys BR, Kumar S, Roper N, Aladjem MI, Pommier Y, Grammatikakis I, Lal A. Staufen1 Represses the FOXA1-Regulated Transcriptome by Destabilizing FOXA1 mRNA in Colorectal Cancer Cells. Mol Cell Biol 2024; 44:43-56. [PMID: 38347726 PMCID: PMC10950277 DOI: 10.1080/10985549.2024.2307574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.
Collapse
Affiliation(s)
- Katherine R. Pasterczyk
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ragini Singh
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Meira S. Zibitt
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Corrine Corrina R. Hartford
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lorinc Pongor
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Lisa M. Jenkins
- Mass Spectrometry Section, Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yue Hu
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Patrick X. Zhao
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Bruna R. Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Suresh Kumar
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Nitin Roper
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mirit I. Aladjem
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yves Pommier
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
10
|
Xie H, Guo L, Ma Q, Zhang W, Yang Z, Wang Z, Peng S, Wang K, Wen S, Shang Z, Niu Y. YAP is required for prostate development, regeneration, and prostate stem cell function. Cell Death Discov 2023; 9:339. [PMID: 37689711 PMCID: PMC10492789 DOI: 10.1038/s41420-023-01637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Prostate development and regeneration depend on prostate stem cell function, the delicate balance of stem cell self-renewal and differentiation. However, mechanisms modulating prostate stem cell function remain poorly identified. Here, we explored the roles of Yes-associated protein 1 (YAP) in prostate stem cells, prostate development and regeneration. Using YAPfl/fl, CD133-CreER mice, we found that stem cell-specific YAP-deficient mice had compromised branching morphogenesis and epithelial differentiation, resulting in damaged prostate development. YAP inhibition also significantly affected the regeneration process of mice prostate, leading to impaired regenerated prostate. Furthermore, YAP ablation in prostate stem cells significantly reduced its self-renewal activity in vitro, and attenuated prostate regeneration of prostate grafts in vivo. Further analysis revealed a decrease in Notch and Hedgehog pathways expression in YAP inhibition cells, and treatment with exogenous Shh partially restored the self-renewal ability of prostate sphere cells. Taken together, our results revealed the roles of YAP in prostate stem cell function and prostate development and regeneration through regulation of the Notch and Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Hui Xie
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Linpei Guo
- Gene and Immunotherapy Center, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Qianwang Ma
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Wenyi Zhang
- Department of Radiology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Zhao Yang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Zhun Wang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Shuanghe Peng
- Department of Pathology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Keruo Wang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Simeng Wen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China.
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
11
|
Sun JX, An Y, Xiang JC, Xu JZ, Hu J, Wang SG, Xia QD. The Prognosis-Predictive and Immunoregulatory Role of SUMOylation Related Genes: Potential Novel Targets in Prostate Cancer Treatment. Int J Mol Sci 2023; 24:13603. [PMID: 37686409 PMCID: PMC10488061 DOI: 10.3390/ijms241713603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
SUMOylation is an important part of post-translational protein modifications and regulates thousands of proteins in a dynamic manner. The dysregulation of SUMOylation is detected in many cancers. However, the comprehensive role of SUMOylation in prostate cancer (PCa) remains unclear. Using 174 SUMOylation-related genes (SRGs) from the MigDSB database and the transcript data of PCa from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we constructed a SUMOylation-related risk score and correlated it with prognosis, tumor mutation burden (TMB), tumor microenvironment (TME) infiltration, and response to chemotherapy and immunotherapy. Moreover, we validated two vital SRGs by RT-qPCR, western blotting, and immunohistochemistry. Two vital SRGs (DNMT3B and NUP210) were finally selected. The risk score based on these genes exhibited excellent predictive efficacy in predicting the biochemical recurrence (BCR) of PCa. A nomogram involving the risk score and T stage was established to further explore the clinical value of the risk score. We found the high-score group was correlated with worse prognosis, higher TMB, a more suppressive immune microenvironment, and a better response to Docetaxel but worse to PD-1/CTLA-4 blockade. Meanwhile, we validated the significantly higher expression level of NUP210 in PCa at mRNA and protein levels. This study elucidated the comprehensive role of SUMOylation-related genes in PCa. Importantly, we highlighted the role of an important SRG, NUP210, in PCa, which might be a promising target in PCa treatment. A better understanding of SUMOylation and utilizing the SUMOylation risk score could aid in precision medicine and improve the prognosis of PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China; (J.-X.S.); (Y.A.); (J.-C.X.); (J.-Z.X.); (J.H.)
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China; (J.-X.S.); (Y.A.); (J.-C.X.); (J.-Z.X.); (J.H.)
| |
Collapse
|
12
|
Li H, Chaitankar V, Cui L, Chen W, Chin K, Zhu J, Liu W, Rodgers GP. Characterization of olfactomedin 4+ cells in prostate and urethral-tube epithelium during murine postnatal development and in adult mice. Sci Rep 2023; 13:10290. [PMID: 37357228 DOI: 10.1038/s41598-023-37320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
Olfactomedin4 (Olfm4) is expressed in normal mouse prostate. However, Olfm4+ cells in the murine prostate have not been well characterized. In this study, we generated an Olfm4eGFP reporter mouse line with C57BL/6 mice and investigated the distribution of Olfm4/eGFP-expressing cells during postnatal development from P1, P7, P14, P20, P42, P56 to adult male mouse prostate and urethral tube. We observed Olfm4/eGFP expression in urogenital and prostatic epithelial cells during early postnatal development, which persisted into adulthood in urethral-tube and anterior-prostate (AP) epithelium. We found Olfm4+ cells are E-cadherin+/CD44+/Foxa1+ and some of subpopulation are Ck8+/Ck5+/Sca-1-/Ck4-/Syn- in the adult mouse AP epithelium. Functional studies of single-cell preparations of Olfm4/eGFP-expressing cells isolated from adult Olfm4eGFP mouse prostate demonstrated that Olfm4+ cells can grow and form colonies, spheres, or organoids in culture. Bioinformatic analysis of Olfm4+ cells using single-cell RNA sequencing meta data in adult mouse urethra (GSE145865) identified upregulation of genes related to cell and tissue migration and development, as well as upregulation of xenobiotic metabolism signaling pathways. In conclusion, Olfm4eGFP mouse is a novel model to further study Olfm4's biological functions and Olfm4+ cells may contribute importantly to cellular processes supporting development and homeostasis of the epithelium in murine prostate and urethral tube.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lena Cui
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weiping Chen
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Barker R, Biernacka K, Kingshott G, Sewell A, Gwiti P, Martin RM, Lane JA, McGeagh L, Koupparis A, Rowe E, Oxley J, Perks CM, Holly JMP. Associations of CTCF and FOXA1 with androgen and IGF pathways in men with localized prostate cancer. Growth Horm IGF Res 2023; 69-70:101533. [PMID: 37086646 DOI: 10.1016/j.ghir.2023.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
AIMS To examine associations between the transcription factors CCCTC-binding factor (CTCF) and forkhead box protein A1 (FOXA1) and the androgen receptor (AR) and their association with components of the insulin-like growth factor (IGF)-pathway in a cohort of men with localized prostate cancer. METHODS Using prostate tissue samples collected during the Prostate cancer: Evidence of Exercise and Nutrition Trial (PrEvENT) trial (N = 70 to 92, depending on section availability), we assessed the abundance of CTCF, FOXA1, AR, IGFIR, p-mTOR, PTEN and IGFBP-2 proteins using a modified version of the Allred scoring system. Validation studies were performed using large, publicly available datasets (TCGA) (N = 489). RESULTS We identified a strong correlation between CTCF and AR staining with benign prostate tissue. CTCF also strongly associated with the IGFIR, with PTEN and with phospho-mTOR. FOXA1 was also correlated with staining for the IGF-IR, with IGFBP-2 and with staining for activated phosphor-mTOR. The staining for the IGF-IR was strongly correlated with the AR. CONCLUSION Our findings emphasise the close and complex links between the endocrine controls, well known to play an important role in prostate cancer, and the transcription factors implicated by the recent genetic evidence.
Collapse
Affiliation(s)
- Rachel Barker
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Kalina Biernacka
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Georgina Kingshott
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Alex Sewell
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Paida Gwiti
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK; Department of Pathology, North West Anglia NHS Foundation Trust, Peterborough PE3 9GZ, UK
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK; National Institute for Health Research, Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Biomedical Research Unit Offices, University Hospitals Bristol Education Centre, Dental Hospital, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - J Athene Lane
- Bristol Trials Centre, Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Lucy McGeagh
- Supportive Cancer Care Research Group, Faculty of Health and Life Sciences, Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Jack Straws Lane, Marston, Oxford OX3 0FL, UK
| | - Anthony Koupparis
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | - Edward Rowe
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | - Jon Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Claire M Perks
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK.
| | - Jeff M P Holly
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
14
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
15
|
Cai H, Agersnap SN, Sjøgren A, Simonsen MK, Blaavand MS, Jensen UV, Thomsen MK. In Vivo Application of CRISPR/Cas9 Revealed Implication of Foxa1 and Foxp1 in Prostate Cancer Proliferation and Epithelial Plasticity. Cancers (Basel) 2022; 14:cancers14184381. [PMID: 36139541 PMCID: PMC9496785 DOI: 10.3390/cancers14184381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most common cancer in men in the Western world and the number is rising. Prostate cancer is notoriously heterogeneous, which makes it hard to generate and study in pre-clinical models. The family of Forkhead box (FOX) transcription factors are often altered in prostate cancer with especially high mutation burden in FOXA1 and FOXP1. FOXA1 harbors loss or gain of function mutations in 8% of prostate cancer, which increases to 14% in metastatic samples. FOXP1 predominately occurs with loss of function mutations in 7% of primary tumors, and similar incidents are found in metastatic samples. Here, we applied in vivo CRISPR editing, to study the loss of functions of these two FOX transcription factors, in murine prostate in combination with loss of Pten. Deficiency of Foxp1 increased proliferation in combination with loss of Pten. In contrast, proliferation was unchanged when androgen was deprived. The expression of Tmprss2 was increased when Foxp1 was mutated in vivo, showing that Foxp1 is a repressor for this androgen-regulated target. Furthermore, analysis of FOXP1 and TMPRSS2 expression in a human prostate cancer data set revealed a negative correlation. Mutation of Foxa1 in the murine prostate induces cell plasticity to luminal cells. Here, epithelial cells with loss of Foxa1 were transdifferentiated to cells with expression of the basal markers Ck5 and p63. Interestingly, these cells were located in the lumen and did not co-express Ck8. Overall, this study reveals that loss of Foxp1 increases cell proliferation, whereas loss of Foxa1 induces epithelial plasticity in prostate cancer.
Collapse
Affiliation(s)
- Huiqiang Cai
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Amalie Sjøgren
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | | | | | - Martin K. Thomsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
16
|
Abstract
Most prostate cancers initially respond to androgen deprivation therapy (ADT). With the long-term application of ADT, localized prostate cancer will progress to castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and neuroendocrine prostate cancer (NEPC), and the transcriptional network shifted. Forkhead box protein A1 (FOXA1) may play a key role in this process through multiple mechanisms. To better understand the role of FOXA1 in prostate cancer, we review the interplay among FOXA1-targeted genes, modulators of FOXA1, and FOXA1 with a particular emphasis on androgen receptor (AR) function. Furthermore, we discuss the distinct role of FOXA1 mutations in prostate cancer and clinical significance of FOXA1. We summarize possible regulation pathways of FOXA1 in different stages of prostate cancer. We focus on links between FOXA1 and AR, which may play different roles in various types of prostate cancer. Finally, we discuss FOXA1 mutation and its clinical significance in prostate cancer. FOXA1 regulates the development of prostate cancer through various pathways, and it could be a biomarker for mCRPC and NEPC. Future efforts need to focus on mechanisms underlying mutation of FOXA1 in advanced prostate cancer. We believe that FOXA1 would be a prognostic marker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Hui-Yu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tian-Ren Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
17
|
Racial disparities in prostate cancer: A complex interplay between socioeconomic inequities and genomics. Cancer Lett 2022; 531:71-82. [PMID: 35122875 DOI: 10.1016/j.canlet.2022.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
The largest US cancer health disparity exists in prostate cancer, with Black men having more than a two-fold increased risk of dying from prostate cancer compared to all other races. This disparity is a result of a complex network of factors including socioeconomic status (SES), environmental exposures, and genetics/biology. Inequity in the US healthcare system has emerged as a major driver of disparity in prostate cancer outcomes and has raised concerns that the actual incidence rates may be higher than current estimates. However, emerging studies argue that equalizing healthcare access will not fully eliminate racial health disparities and highlight the important role of biology. Significant differences have been observed in prostate cancer biology between various ancestral groups that may contribute to prostate cancer health disparities. These differences include enhanced androgen receptor signaling, increased genomic instability, metabolic dysregulation, and enhanced inflammatory and cytokine signaling. Immediate actions are needed to increase the establishment of adequate infrastructure and multi-center, interdisciplinary research to bridge the gap between social and biological determinants of prostate cancer health disparities.
Collapse
|
18
|
Leach DA, Fernandes RC, Bevan CL. Cellular specificity of androgen receptor, coregulators, and pioneer factors in prostate cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R112-R131. [PMID: 37435460 PMCID: PMC10259329 DOI: 10.1530/eo-22-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 07/13/2023]
Abstract
Androgen signalling, through the transcription factor androgen receptor (AR), is vital to all stages of prostate development and most prostate cancer progression. AR signalling controls differentiation, morphogenesis, and function of the prostate. It also drives proliferation and survival in prostate cancer cells as the tumour progresses; given this importance, it is the main therapeutic target for disseminated disease. AR is also essential in the surrounding stroma, for the embryonic development of the prostate and controlling epithelial glandular development. Stromal AR is also important in cancer initiation, regulating paracrine factors that excite cancer cell proliferation, but lower stromal AR expression correlates with shorter time to progression/worse outcomes. The profile of AR target genes is different between benign and cancerous epithelial cells, between castrate-resistant prostate cancer cells and treatment-naïve cancer cells, between metastatic and primary cancer cells, and between epithelial cells and fibroblasts. This is also true of AR DNA-binding profiles. Potentially regulating the cellular specificity of AR binding and action are pioneer factors and coregulators, which control and influence the ability of AR to bind to chromatin and regulate gene expression. The expression of these factors differs between benign and cancerous cells, as well as throughout disease progression. The expression profile is also different between fibroblast and mesenchymal cell types. The functional importance of coregulators and pioneer factors in androgen signalling makes them attractive therapeutic targets, but given the contextual expression of these factors, it is essential to understand their roles in different cancerous and cell-lineage states.
Collapse
Affiliation(s)
- Damien A Leach
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rayzel C Fernandes
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
19
|
Buskin A, Singh P, Lorenz O, Robson C, Strand DW, Heer R. A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease. Int J Mol Sci 2021; 22:ijms222313097. [PMID: 34884905 PMCID: PMC8658468 DOI: 10.3390/ijms222313097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men worldwide. A better understanding of the biological processes underpinning these diseases is needed to generate new treatment approaches. Developmental studies of the prostate have shed some light on the processes essential for prostate organogenesis, with many of these up- or downregulated genes expressions also observed in prostate cancer and/or BPH progression. These insights into human disease have been inferred through comparative biological studies relying primarily on rodent models. However, directly observing mechanisms of human prostate development has been more challenging due to limitations in accessing human foetal material. Induced pluripotent stem cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived prostate organoids present a significant opportunity to study early human prostate developmental processes. In this review, we discuss the current understanding of prostate development and its relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived prostate organoids for studying human prostate development and disease.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Correspondence: (A.B.); (R.H.)
| | - Parmveer Singh
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Oliver Lorenz
- Newcastle University School of Computing, Digital Institute, Urban Sciences Building, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Craig Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- Correspondence: (A.B.); (R.H.)
| |
Collapse
|
20
|
Wang Y, Yu J. Dissecting multiple roles of SUMOylation in prostate cancer. Cancer Lett 2021; 521:88-97. [PMID: 34464672 DOI: 10.1016/j.canlet.2021.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
Protein modification with small ubiquitin-like modifiers (SUMOs) plays dual roles in prostate cancer (PCa) tumorigenesis and development. Any intermediary of the SUMO conjugation cycle going awry may forfeit the balance between tumorigenic potential and anticancer effects. Deregulated SUMOylation on the androgen receptor and oncoproteins also takes part in this pathological process, as exemplified by STAT3/NF-κB and tumor suppressors such as PTEN and p53. Here, we outline recent developments and discoveries of SUMOylation in PCa and present an overview of its multiple roles in PCa tumorigenesis/promotion and suppression, while elucidating its potential as a therapeutic target for PCa.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
21
|
Lau CI, Rowell J, Yanez DC, Solanki A, Ross S, Ono M, Crompton T. The pioneer transcription factors Foxa1 and Foxa2 regulate alternative RNA splicing during thymocyte positive selection. Development 2021; 148:dev199754. [PMID: 34323272 PMCID: PMC8353164 DOI: 10.1242/dev.199754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023]
Abstract
During positive selection at the transition from CD4+CD8+ double-positive (DP) to single-positive (SP) thymocyte, TCR signalling results in appropriate MHC restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection of mouse T cells and that Foxa1 and Foxa2 have overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+ T cells. Foxa1 and Foxa2 regulated the expression of many genes encoding splicing factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prpf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons. Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple differentially used exons. Thus, Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and, by also regulating splicing of splicing factors, they exert widespread control of alternative splicing.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana C. Yanez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Anisha Solanki
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
22
|
Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, Brea LT, Wadosky K, Guo C, Abdulkadir SA, Crispino JD, Fang D, Ntziachristos P, Liu X, Li X, Wan Y, Goodrich DW, Zhao JC, Yu J. Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. SCIENCE ADVANCES 2021; 7:7/15/eabe2261. [PMID: 33827814 PMCID: PMC8026124 DOI: 10.1126/sciadv.abe2261] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/19/2021] [Indexed: 05/29/2023]
Abstract
Forkhead box protein A1 (FOXA1) is essential for androgen-dependent prostate cancer (PCa) growth. However, how FOXA1 levels are regulated remains elusive and its therapeutic targeting proven challenging. Here, we report FOXA1 as a nonhistone substrate of enhancer of zeste homolog 2 (EZH2), which methylates FOXA1 at lysine-295. This methylation is recognized by WD40 repeat protein BUB3, which subsequently recruits ubiquitin-specific protease 7 (USP7) to remove ubiquitination and enhance FOXA1 protein stability. They functionally converge in regulating cell cycle genes and promoting PCa growth. FOXA1 is a major therapeutic target of the inhibitors of EZH2 methyltransferase activities in PCa. FOXA1-driven PCa growth can be effectively mitigated by EZH2 enzymatic inhibitors, either alone or in combination with USP7 inhibitors. Together, our study reports EZH2-catalyzed methylation as a key mechanism to FOXA1 protein stability, which may be leveraged to enhance therapeutic targeting of PCa using enzymatic EZH2 inhibitors.
Collapse
Affiliation(s)
- Su H Park
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ka-Wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fang Wang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yongik Lee
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lourdes T Brea
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kristine Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chunming Guo
- Department of Urology and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John D Crispino
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Deyu Fang
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Panagiotis Ntziachristos
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Li
- Department of Urology and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yong Wan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
23
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|
24
|
Nanda JS, Awadallah WN, Kohrt SE, Popovics P, Cates JMM, Mirosevich J, Clark PE, Giannico GA, Grabowska MM. Increased nuclear factor I/B expression in prostate cancer correlates with AR expression. Prostate 2020; 80:1058-1070. [PMID: 32692871 PMCID: PMC7434711 DOI: 10.1002/pros.24019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Most prostate cancers express androgen receptor (AR), and our previous studies have focused on identifying transcription factors that modify AR function. We have shown that nuclear factor I/B (NFIB) regulates AR activity in androgen-dependent prostate cancer cells in vitro. However, the status of NFIB in prostate cancer was unknown. METHODS We immunostained a tissue microarray including normal, hyperplastic, prostatic intraepithelial neoplasia, primary prostatic adenocarcinoma, and castration-resistant prostate cancer tissue samples for NFIB, AR, and synaptophysin, a marker of neuroendocrine differentiation. We interrogated publically available data sets in cBioPortal to correlate NFIB expression and AR and neuroendocrine prostate cancer (NEPCa) activity scores. We analyzed prostate cancer cell lines for NFIB expression via Western blot analysis and used nuclear and cytoplasmic fractionation to assess where NFIB is localized. We performed co-immunoprecipitation studies to determine if NFIB and AR interact. RESULTS NFIB increased in the nucleus and cytoplasm of prostate cancer samples versus matched normal controls, independent of Gleason score. Similarly, cytoplasmic AR and synaptophysin increased in primary prostate cancer. We observed strong NFIB staining in primary small cell prostate cancer. The ratio of cytoplasmic-to-nuclear NFIB staining was predictive of earlier biochemical recurrence in prostate cancer, once adjusted for tumor margin status. Cytoplasmic AR was an independent predictor of biochemical recurrence. There was no statistically significant difference between NFIB and synaptophysin expression in primary and castration-resistant prostate cancer, but cytoplasmic AR expression was increased in castration-resistant samples. In primary prostate cancer, nuclear NFIB expression correlated with cytoplasmic NFIB and nuclear AR, while cytoplasmic NFIB correlated with synaptophysin, and nuclear and cytoplasmic AR. In castration-resistant prostate cancer samples, NFIB expression correlated positively with an AR activity score, and negatively with the NEPCa score. In prostate cancer cell lines, NFIB exists in several isoforms. We observed NFIB predominantly in the nuclear fraction of prostate cancer cells with increased cytoplasmic expression seen in castration-resistant cell lines. We observed an interaction between AR and NFIB through co-immunoprecipitation experiments. CONCLUSION We have described the expression pattern of NFIB in primary and castration-resistant prostate cancer and its positive correlation with AR. We have also demonstrated AR interacts with NFIB.
Collapse
Affiliation(s)
- Jagpreet S. Nanda
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Sarah E. Kohrt
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Petra Popovics
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Justin M. M. Cates
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Janni Mirosevich
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Peter E. Clark
- Department of Urology, Levine Cancer Center/Atrium Health, Charlotte, NC
| | - Giovanna A. Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Magdalena M. Grabowska
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Address correspondence to: Magdalena M. Grabowska, 2123 Adelbert Road, Wood Research Tower; RTG00, Cleveland, OH 44106, Phone: 216-368-5736,
| |
Collapse
|
25
|
Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, Liao JY, Hu KS, He JH, Saw PE, Xu X, Yin D. LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics 2020; 10:10823-10837. [PMID: 32929382 PMCID: PMC7482804 DOI: 10.7150/thno.47830] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: The forkhead box A1 (FOXA1) is a crucial transcription factor in initiation and development of breast, lung and prostate cancer. Previous studies about the FOXA1 transcriptional network were mainly focused on protein-coding genes. Its regulatory network of long non-coding RNAs (lncRNAs) and their role in FOXA1 oncogenic activity remains unknown. Methods: The Cancer Genome Atlas (TCGA) data, RNA-seq and ChIP-seq data were used to analyze FOXA1 regulated lncRNAs. RT-qPCR was used to detect the expression of DSCAM-AS1, RT-qPCR and Western blotting were used to determine the expression of FOXA1, estrogen receptor α (ERα) and Y box binding protein 1 (YBX1). RNA pull-down and RIP-qPCR were employed to investigate the interaction between DSCAM-AS1 and YBX1. The effect of DSCAM-AS1 on malignant phenotypes was examined through in vitro and in vivo assays. Results: In this study, we conducted a global analysis of FOXA1 regulated lncRNAs. For detailed analysis, we chose lncRNA DSCAM-AS1, which is specifically expressed in lung adenocarcinoma, breast and prostate cancer. The expression level of DSCAM-AS1 is regulated by two super-enhancers (SEs) driven by FOXA1. High expression levels of DSCAM-AS1 was associated with poor prognosis. Knockout experiments showed DSCAM-AS1 was essential for the growth of xenograft tumors. Moreover, we demonstrated DSCAM-AS1 can regulate the expression of the master transcriptional factor FOXA1. In breast cancer, DSCAM-AS1 was also found to regulate ERα. Mechanistically, DSCAM-AS1 interacts with YBX1 and influences the recruitment of YBX1 in the promoter regions of FOXA1 and ERα. Conclusion: Our study demonstrated that lncRNA DSCAM-AS1 was transcriptionally activated by super-enhancers driven by FOXA1 and exhibited lineage-specific expression pattern. DSCAM-AS1 can promote cancer progression by interacting with YBX1 and regulating expression of FOXA1 and ERα.
Collapse
Affiliation(s)
- Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Yong-Xin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Dan-Lan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Hai-Yan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Le-Hang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Li-Min Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Yong-Sheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Kai-Shun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| |
Collapse
|
26
|
Xia YK, Zeng YR, Zhang ML, Liu P, Liu F, Zhang H, He CX, Sun YP, Zhang JY, Zhang C, Song L, Ding C, Tang YJ, Yang Z, Yang C, Wang P, Guan KL, Xiong Y, Ye D. Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell 2020; 12:557-577. [PMID: 32683582 PMCID: PMC8225741 DOI: 10.1007/s13238-020-00754-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
Additional sex combs-like 1 (ASXL1) interacts with BRCA1-associated protein 1 (BAP1) deubiquitinase to oppose the polycomb repressive complex 1 (PRC1)-mediated histone H2A ubiquitylation. Germline BAP1 mutations are found in a spectrum of human malignancies, while ASXL1 mutations recurrently occur in myeloid neoplasm and are associated with poor prognosis. Nearly all ASXL1 mutations are heterozygous frameshift or nonsense mutations in the middle or to a less extent the C-terminal region, resulting in the production of C-terminally truncated mutant ASXL1 proteins. How ASXL1 regulates specific target genes and how the C-terminal truncation of ASXL1 promotes leukemogenesis are unclear. Here, we report that ASXL1 interacts with forkhead transcription factors FOXK1 and FOXK2 to regulate a subset of FOXK1/K2 target genes. We show that the C-terminally truncated mutant ASXL1 proteins are expressed at much higher levels than the wild-type protein in ASXL1 heterozygous leukemia cells, and lose the ability to interact with FOXK1/K2. Specific deletion of the mutant allele eliminates the expression of C-terminally truncated ASXL1 and increases the association of wild-type ASXL1 with BAP1, thereby restoring the expression of BAP1-ASXL1-FOXK1/K2 target genes, particularly those involved in glucose metabolism, oxygen sensing, and JAK-STAT3 signaling pathways. In addition to FOXK1/K2, we also identify other DNA-binding transcription regulators including transcription factors (TFs) which interact with wild-type ASXL1, but not C-terminally truncated mutant. Our results suggest that ASXL1 mutations result in neomorphic alleles that contribute to leukemogenesis at least in part through dominantly inhibiting the wild-type ASXL1 from interacting with BAP1 and thereby impairing the function of ASXL1-BAP1-TF in regulating target genes and leukemia cell growth.
Collapse
Affiliation(s)
- Yu-Kun Xia
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Yi-Rong Zeng
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Meng-Li Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Peng Liu
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Fang Liu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai, 200032, China.,Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen-Xi He
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China
| | - Yi-Ping Sun
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Jin-Ye Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Cheng Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu-Jie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhen Yang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai, 200032, China.,Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pu Wang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Dan Ye
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China. .,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China. .,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Gredler ML, Patterson SE, Seifert AW, Cohn MJ. Foxa1 and Foxa2 orchestrate development of the urethral tube and division of the embryonic cloaca through an autoregulatory loop with Shh. Dev Biol 2020; 465:23-30. [PMID: 32645357 DOI: 10.1016/j.ydbio.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/04/2023]
Abstract
Congenital anomalies of external genitalia affect approximately 1 in 125 live male births. Development of the genital tubercle, the precursor of the penis and clitoris, is regulated by the urethral plate epithelium, an endodermal signaling center. Signaling activity of the urethral plate is mediated by Sonic hedgehog (SHH), which coordinates outgrowth and patterning of the genital tubercle by controlling cell cycle kinetics and expression of downstream genes. The mechanisms that govern Shh transcription in urethral plate cells are largely unknown. Here we show that deletion of Foxa1 and Foxa2 results in persistent cloaca, an incomplete separation of urinary, genital, and anorectal tracts, and severe hypospadias, a failure of urethral tubulogenesis. Loss of Foxa2 and only one copy of Foxa1 results in urethral fistula, an additional opening of the penile urethra. Foxa1/a2 participate in an autoregulatory feedback loop with Shh, in which FOXA1 and FOXA2 positively regulate transcription of Shh in the urethra, and SHH feeds back to negatively regulate Foxa1 and Foxa2 expression. These findings reveal novel roles for Foxa genes in development of the urethral tube and in division of the embryonic cloaca.
Collapse
Affiliation(s)
- Marissa L Gredler
- Department of Biology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA; Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| | - Sara E Patterson
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| | - Ashley W Seifert
- Department of Biology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| | - Martin J Cohn
- Department of Biology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA; Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA.
| |
Collapse
|
28
|
Hankey W, Chen Z, Wang Q. Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Res 2020; 80:2427-2436. [PMID: 32094298 PMCID: PMC7299826 DOI: 10.1158/0008-5472.can-19-3447] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 01/28/2023]
Abstract
The androgen receptor (AR) is a critical therapeutic target in prostate cancer that responds to antagonists in primary disease, but inevitably becomes reactivated, signaling onset of the lethal castration-resistant prostate cancer (CRPC) stage. Epigenomic investigation of the chromatin environment and interacting partners required for AR transcriptional activity has uncovered three pioneer factors that open up chromatin and facilitate AR-driven transcriptional programs. FOXA1, HOXB13, and GATA2 are required for normal AR transcription in prostate epithelial development and for oncogenic AR transcription during prostate carcinogenesis. AR signaling is dependent upon these three pioneer factors both before and after the clinical transition from treatable androgen-dependent disease to untreatable CRPC. Agents targeting their respective DNA binding or downstream chromatin-remodeling events have shown promise in preclinical studies of CRPC. AR-independent functions of FOXA1, HOXB13, and GATA2 are emerging as well. While all three pioneer factors exert effects that promote carcinogenesis, some of their functions may inhibit certain stages of prostate cancer progression. In all, these pioneer factors represent some of the most promising potential therapeutic targets to emerge thus far from the study of the prostate cancer epigenome.
Collapse
Affiliation(s)
- William Hankey
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Zhong Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
29
|
Li H, Wang L, Li Z, Geng X, Li M, Tang Q, Wu C, Lu Z. SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer. J Transl Med 2020; 100:570-582. [PMID: 31772313 DOI: 10.1038/s41374-019-0343-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying the lineage switching from prostate adenocarcinoma (AdPC) to lethal neuroendocrine prostate cancer (NEPC) have yet to be completely elucidated. In this study, RNA sequencing data from a unique patient-derived xenograft NEPC model and a clinical NEPC cohort were used to identify the potential genes driving NEPC progression. Enrichr analysis resulted in the identification of SRY-related HMG-box gene 2 (SOX2) as a potential repressor that causes decrease in the expression of AdPC specific genes in NEPC. Assays involving the stable overexpression of SOX2 in LNCaP and CWR22RV1 cells validated this role of SOX2 in vitro. Mechanistic studies showed that the repressor role of SOX2 was attributed to the marked global hypomethylation of histone H3, which was driven by the activation of lysine-specific demethylase 1 (LSD1). Furthermore, Enrichr also predicted SOX2 as a driver gene involved in the upregulation of NEPC specific genes. However, SOX2 alone could only marginally induce the expression of some neuroendocrine markers in vitro, which was consistent with previous reports. Moreover, we also elucidated the molecular features of LNCaP-SOX2 cells that may confer resistance to androgen-deprivation therapy (ADT) and the inclination toward neuroendocrine transdifferentiation. The results of this study reveal a novel mechanism for SOX2 in the progression of NEPC via LSD1-mediated global epigenetic modulation. This discovery suggests that LSD1 may be a selective target for the prevention of NEPC progression.
Collapse
Affiliation(s)
- Haiying Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Lili Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Zhang Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Xu Geng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Qi Tang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Chunxiao Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China.
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
30
|
Frequent FOXA1-Activating Mutations in Extramammary Paget's Disease. Cancers (Basel) 2020; 12:cancers12040820. [PMID: 32235312 PMCID: PMC7226542 DOI: 10.3390/cancers12040820] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Extramammary Paget’s disease (EMPD) is a neoplastic skin disease of indeterminate origin with an unknown genetic cause. We performed a comprehensive genetic analysis or targeted gene sequencing in 48 patients with EMPD. We identified FOXA1 mutations, a GAS6–FOXA1 fusion gene, and somatic hotspot mutations in the FOXA1 promoter region in 11 of the 48 EMPD patients (11/48, 23%). Additional mutations were identified in PIK3CA (six patients) and in HIST1H2BB, HIST1H2BC, and SMARCB1 (one patient each), but none were found in other frequently mutated genes in cancer. A global gene expression analysis using EMPD clinical samples found the upregulation of PI3 kinase–AKT–mTOR signaling. ABCC11, which is specifically expressed in the apocrine secretory cells and is necessary for their sweat secretion, was upregulated in the EMPD samples. This upregulation suggests that Paget cells originate from apocrine secretory cells. Immunohistochemical staining revealed that FOXA1 expression was prevalent in all of the EMPD samples analyzed and was associated with estrogen receptor expression. Our genetic analysis indicates that EMPD frequently involves FOXA1 mutations. FOXA1 is a transcriptional pioneer factor for the estrogen receptor, and the present results suggest that certain treatments for hormone-dependent cancers could be effective for EMPD.
Collapse
|
31
|
Yao J, Zhang H, Li H, Qian R, Liu P, Huang J. P53-regulated lncRNA uc061hsf.1 inhibits cell proliferation and metastasis in human esophageal squamous cell cancer. IUBMB Life 2019; 72:401-412. [PMID: 31743955 DOI: 10.1002/iub.2196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
The expression of long noncoding RNAs (lncRNAs) is closely associated with cancer development and progression, making these lncRNAs potentially novel therapeutic targets. In this study, we aimed to explore the potential function of lncRNA-uc061hsf.1 in esophageal squamous cell carcinoma (ESCC). The expression of lncRNA-uc061hsf.1 in ESCC tissues and cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, and metastasis were detected via CCK-8, flow cytometry, and Transwell assays. The interaction between p53 and lncRNA uc061hsf.1 was analyzed using luciferase reporter gene and qRT-PCR. Through this approach, we identified the novel lncRNA uc061hsf.1, which was expressed in low level in ESCC and was correlated with lymph node metastasis and poor differentiation in ESCC patients. Knockdown or overexpression of lncRNA uc061hsf.1 in ESCC cells promoted or inhibited cell proliferation and metastasis, respectively. Mechanistically, lncRNA uc061hsf.1 was induced by p53, and luciferase reporter gene confirmed that lncRNA uc061hsf.1 was a direct transcriptional target of p53. We further found that uc061hsf.1 was able to regulate expression of the transcription factor FoxA1, thereby potentially influencing tumor cell migration. In conclusion, these results suggest that p53-regulated lncRNA uc061hsf.1 is a cancer suppressor gene which is associated with tumor progression in ESCC.
Collapse
Affiliation(s)
- Juan Yao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Hao Zhang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Hua Li
- Department of Geriatric, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Rongyu Qian
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Ping Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| |
Collapse
|
32
|
Suzuki A, Shim J, Ogata K, Yoshioka H, Iwata J. Cholesterol metabolism plays a crucial role in the regulation of autophagy for cell differentiation of granular convoluted tubules in male mouse submandibular glands. Development 2019; 146:dev.178335. [PMID: 31558435 DOI: 10.1242/dev.178335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
It has been long appreciated that sex hormone receptors are expressed in various non-gonadal organs. However, it remains unclear how sex hormones regulate the morphogenesis of these non-gonadal organs. To address this issue, we used a male mouse model of androgen-dependent salivary gland morphogenesis. Mice with excessive cholesterol synthesis in the salivary glands exhibited defects in the maturation of granular convoluted tubules (GCTs), which is regulated through sex hormone-dependent cascades. We found that excessive cholesterol synthesis resulted in autophagy failure specifically in the duct cells of salivary glands, followed by the accumulation of NRF2, a transcription factor known as one of the specific substrates for autophagy. The accumulated NRF2 suppressed the expression of Foxa1, which forms a transcriptional complex with the androgen receptor to regulate target genes. Taken together, our results indicate that cholesterol metabolism plays a crucial role in GCT differentiation through autophagy.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Junbo Shim
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,MD Anderson Cancer Center University of Texas Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
33
|
He Z, Duan X, Zeng G. Identification of potential biomarkers and pivotal biological pathways for prostate cancer using bioinformatics analysis methods. PeerJ 2019; 7:e7872. [PMID: 31598425 PMCID: PMC6779116 DOI: 10.7717/peerj.7872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Prostate cancer (PCa) is a common urinary malignancy, whose molecular mechanism has not been fully elucidated. We aimed to screen for key genes and biological pathways related to PCa using bioinformatics method. Methods Differentially expressed genes (DEGs) were filtered out from the GSE103512 dataset and subjected to the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The protein–protein interactions (PPI) network was constructed, following by the identification of hub genes. The results of former studies were compared with ours. The relative expression levels of hub genes were examined in The Cancer Genome Atlas (TCGA) and Oncomine public databases. The University of California Santa Cruz Xena online tools were used to study whether the expression of hub genes was correlated with the survival of PCa patients from TCGA cohorts. Results Totally, 252 (186 upregulated and 66 downregulated) DEGs were identified. GO analysis enriched mainly in “oxidation-reduction process” and “positive regulation of transcription from RNA polymerase II promoter”; KEGG pathway analysis enriched mostly in “metabolic pathways” and “protein digestion and absorption.” Kallikrein-related peptidase 3, cadherin 1 (CDH1), Kallikrein-related peptidase 2 (KLK2), forkhead box A1 (FOXA1), and epithelial cell adhesion molecule (EPCAM) were identified as hub genes from the PPI network. CDH1, FOXA1, and EPCAM were validated by other relevant gene expression omnibus datasets. All hub genes were validated by both TCGA and Oncomine except KLK2. Two additional top DEGs (ABCC4 and SLPI) were found to be associated with the prognosis of PCa patients. Conclusions This study excavated the key genes and pathways in PCa, which might be biomarkers for diagnosis, prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Zihao He
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Urology, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Urology, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Urology, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou, China
| |
Collapse
|
34
|
Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play. Cancers (Basel) 2019; 11:E1405. [PMID: 31547070 PMCID: PMC6826557 DOI: 10.3390/cancers11101405] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Our understanding of neuroendocrine prostate cancer (NEPC) has assumed a new perspective in light of the recent advances in research. Although classical NEPC is rarely seen in the clinic, focal neuroendocrine trans-differentiation of prostate adenocarcinoma occurs in about 30% of advanced prostate cancer (PCa) cases, and represents a therapeutic challenge. Even though our knowledge of the mechanisms that mediate neuroendocrine differentiation (NED) is still evolving, the role of androgen deprivation therapy (ADT) as a key driver of this phenomenon is increasingly becoming evident. In this review, we discuss the molecular, cellular, and therapeutic mediators of NED, and emphasize the role of the tumor microenvironment (TME) in orchestrating the phenotype. Understanding the role of the TME in mediating NED could provide us with valuable insights into the plasticity associated with the phenotype, and reveal potential therapeutic targets against this aggressive form of PCa.
Collapse
Affiliation(s)
- Girijesh Kumar Patel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Natasha Chugh
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Manisha Tripathi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
35
|
FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature 2019; 571:408-412. [PMID: 31243370 PMCID: PMC6661172 DOI: 10.1038/s41586-019-1318-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 05/22/2019] [Indexed: 01/08/2023]
Abstract
Mutations in the FOXA1 transcription factor define a unique subset of prostate cancers but the functional consequences of these mutations and whether they confer gain or loss of function is unknown1-9. By annotating the FOXA1 mutation landscape from 3086 human prostate cancers, we define two hotspots in the forkhead domain: Wing2 (~50% of all mutations) and R219 (~5%), a highly conserved DNA contact residue. Clinically, Wing2 mutations are seen in adenocarcinomas at all stages, whereas R219 mutations are enriched in metastatic tumors with neuroendocrine histology. Interrogation of the biologic properties of FOXA1WT and 14 FOXA1 mutants revealed gain-of-function in mouse prostate organoid proliferation assays. 12 of these mutants, as well as FOXA1WT, promoted an exaggerated pro-luminal differentiation program whereas two different R219 mutants blocked luminal differentiation and activate a mesenchymal and neuroendocrine transcriptional program. ATAC-seq of FOXA1WT and representative Wing2 and R219 mutants revealed dramatic, mutant-specific changes in open chromatin at thousands of genomic loci, together with novel sites of FOXA1 binding and associated increases in gene expression. Of note, peaks in R219 mutant expressing cells lack the canonical core FOXA1 binding motifs (GTAAAC/T) but are enriched for a related, non-canonical motif (GTAAAG/A), which is preferentially activated by R219 mutant FOXA1 in reporter assays. Thus, FOXA1 mutations alter its normal pioneering function through perturbation of normal luminal epithelial differentiation programs, providing further support to the role of lineage plasticity in cancer progression.
Collapse
|
36
|
Parolia A, Cieslik M, Chu SC, Xiao L, Ouchi T, Zhang Y, Wang X, Vats P, Cao X, Pitchiaya S, Su F, Wang R, Feng FY, Wu YM, Lonigro RJ, Robinson DR, Chinnaiyan AM. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature 2019; 571:413-418. [PMID: 31243372 PMCID: PMC6661908 DOI: 10.1038/s41586-019-1347-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
Forkhead box A1 (FOXA1) is a pioneer transcription factor that is essential for the normal development of several endoderm-derived organs, including the prostate gland1,2. FOXA1 is frequently mutated in the hormone-receptor driven prostate, breast, bladder, and salivary gland tumors3–8. However, how FOXA1 alterations affect cancer development is unclear, with FOXA1 previously ascribed both tumor suppressive9–11 and oncogenic12–14 roles. Here we assemble an aggregate cohort of 1546 prostate cancers (PCa) and show that FOXA1 alterations fall into three distinct structural classes that diverge in clinical incidence and genetic co-alteration profiles, with a collective prevalence of 35%. Class1 activating mutations originate in early PCa without ETS/SPOP alterations, selectively recur within the Wing2-region of the DNA-binding Forkhead domain (FKHD), enable enhanced chromatin mobility and binding frequency, and strongly transactivate a luminal androgen receptor (AR) program of prostate oncogenesis. By contrast, class2 activating mutations are acquired in metastatic PCa, truncate the C-terminal domain of FOXA1, enable dominant chromatin binding by increasing DNA affinity, and through TLE3 inactivation promote WNT-pathway driven metastasis. Finally, class3 genomic rearrangements are enriched in metastatic PCa, comprise of duplications and translocations within the FOXA1 locus, and structurally reposition a conserved regulatory element, herein denoted FOXA1 Mastermind (FOXMIND), to drive overexpression of FOXA1 or other oncogenes. Our study reaffirms the central role of FOXA1 in mediating AR-driven oncogenesis, and provides mechanistic insights into how different classes of FOXA1 alterations uniquely promote PCa initiation and/or metastatic progression. Furthermore, these results have direct implications in understanding the pathobiology of other hormone-receptor driven cancers and rationalize therapeutic co-targeting of FOXA1 activity.
Collapse
Affiliation(s)
- Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Shih-Chun Chu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Takahiro Ouchi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.,Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA.,Department of Urology, University of California at San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Robert J Lonigro
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA. .,Department of Pathology, University of Michigan, Ann Arbor, MI, USA. .,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA. .,Department of Urology, University of Michigan, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, Yang YA, Sridhar S, Lu X, Abdulkadir SA, Vessella RL, Morrissey C, Kuzel TM, Catalona W, Yang X, Yu J. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression. J Clin Invest 2019; 129:569-582. [PMID: 30511964 PMCID: PMC6355239 DOI: 10.1172/jci122367] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PC) progressed to castration resistance (CRPC) is a fatal disease. CRPC tumors develop resistance to new-generation antiandrogen enzalutamide through lineage plasticity, characterized by epithelial-mesenchymal transition (EMT) and a basal-like phenotype. FOXA1 is a transcription factor essential for epithelial lineage differentiation. Here, we demonstrate that FOXA1 loss leads to remarkable upregulation of transforming growth factor beta 3 (TGFB3), which encodes a ligand of the TGF-β pathway. Mechanistically, this is due to genomic occupancy of FOXA1 on an upstream enhancer of the TGFB3 gene to directly inhibit its transcription. Functionally, FOXA1 downregulation induces TGF-β signaling, EMT, and cell motility, which is effectively blocked by the TGF-β receptor I inhibitor galunisertib (LY2157299). Tissue microarray analysis confirmed reduced levels of FOXA1 protein and a concordant increase in TGF-β signaling, indicated by SMAD2 phosphorylation, in CRPC as compared with primary tumors. Importantly, combinatorial LY2157299 treatment sensitized PC cells to enzalutamide, leading to synergistic effects in inhibiting cell invasion in vitro and xenograft CRPC tumor growth and metastasis in vivo. Therefore, our study establishes FOXA1 as an important regulator of lineage plasticity mediated in part by TGF-β signaling, and supports a novel therapeutic strategy to control lineage switching and potentially extend clinical response to antiandrogen therapies.
Collapse
Affiliation(s)
- Bing Song
- Division of Hematology/Oncology, Department of Medicine, and
| | - Su-Hong Park
- Division of Hematology/Oncology, Department of Medicine, and
| | | | - Ka-wing Fong
- Division of Hematology/Oncology, Department of Medicine, and
| | - Shangze Li
- Division of Hematology/Oncology, Department of Medicine, and
| | - Yongik Lee
- Division of Hematology/Oncology, Department of Medicine, and
| | - Yeqing A. Yang
- Division of Hematology/Oncology, Department of Medicine, and
| | | | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, and
| | - Sarki A. Abdulkadir
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - William Catalona
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ximing Yang
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, and
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
38
|
Abstract
Prostate cancer development involves corruption of the normal prostate transcriptional network, following deregulated expression or mutation of key transcription factors. Here, we provide an overview of the transcription factors that are important in normal prostate homeostasis (NKX3-1, p63, androgen receptor [AR]), primary prostate cancer (ETS family members, c-MYC), castration-resistant prostate cancer (AR, FOXA1), and AR-independent castration-resistant neuroendocrine prostate cancer (RB1, p53, N-MYC). We use functional (in vitro and in vivo) as well as clinical data to discuss evidence that unveils their roles in the initiation and progression of prostate cancer, with an emphasis on results of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
Collapse
Affiliation(s)
- David P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|
39
|
Urano M, Hirai H, Tada Y, Kawakita D, Shimura T, Tsukahara K, Kano S, Ozawa H, Okami K, Sato Y, Fushimi C, Shimizu A, Takase S, Okada T, Sato H, Imanishi Y, Otsuka K, Watanabe Y, Sakai A, Ebisumoto K, Togashi T, Ueki Y, Ota H, Sato Y, Saigusa N, Nakaguro M, Hanazawa T, Nagao T. The high expression of FOXA1 is correlated with a favourable prognosis in salivary duct carcinomas: a study of 142 cases. Histopathology 2018; 73:943-952. [PMID: 29993139 DOI: 10.1111/his.13706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
AIMS Salivary duct carcinoma (SDC) is an uncommon, aggressive tumour that, histologically, resembles high-grade mammary ductal carcinoma, and is characterised by the expression of androgen receptor (AR). The androgen signalling pathway, a potential therapeutic target, can be regulated by FOXA1. This study aimed to evaluate the clinicopathological implications of FOXA1 in SDC. METHODS AND RESULTS We examined the relationship between the immunoexpression of FOXA1 and FOXA1 mutations and clinicopathological factors, including the biomarker status and clinical outcome, in 142 SDCs. FOXA1 was expressed in 128 SDCs (90.1%); the immunoexpression was heterogeneous. SDCs with a higher FOXA1 labelling index (LI) (≥20%) more frequently showed less advanced tumors on T classification (P = 0.002). FOXA1 LI was correlated positively with the AR expression value (r = 0.430, P < 0.001). PI3K and p-mTOR positivity, and intact-PTEN, were associated with a higher FOXA1 LI. Twenty-two of 121 SDCs (18.2%) harboured FOXA1 gene mutations at the flanking regions in and around the forkhead DNA binding domain; however, the given gene mutation and the expression of FOXA1 were not significantly correlated. A multivariate analysis revealed that SDCs with a higher FOXA1 LI were associated with longer overall survival and progression-free survival (P = 0.029 and 0.016, respectively). CONCLUSIONS In SDC, FOXA1, which may biologically interact with the AR and PI3K signalling pathways, is a putative biomarker that may be associated with a favourable prognosis. Further studies are needed to apply the findings to the development of targeted personalised therapy for patients with SDC.
Collapse
Affiliation(s)
- Makoto Urano
- Department of Diagnostic Pathology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hideaki Hirai
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yuichiro Tada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Daisuke Kawakita
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomotaka Shimura
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otolaryngology, Tokyo Medical University School of Medicine, Tokyo, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Okami
- Department of Otolaryngology-Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Yuichiro Sato
- Department of Head and Neck Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Chihiro Fushimi
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Akira Shimizu
- Department of Otolaryngology, Tokyo Medical University School of Medicine, Tokyo, Japan
| | - Soichiro Takase
- Department of Otolaryngology, Tokyo Medical University School of Medicine, Tokyo, Japan
| | - Takuro Okada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Hiroki Sato
- Department of Otolaryngology, Tokyo Medical University School of Medicine, Tokyo, Japan
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kuninori Otsuka
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Watanabe
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Sakai
- Department of Otolaryngology-Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Koji Ebisumoto
- Department of Otolaryngology-Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Takafumi Togashi
- Department of Head and Neck Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yushi Ueki
- Department of Head and Neck Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Hisayuki Ota
- Department of Head and Neck Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yukiko Sato
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Natsuki Saigusa
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Masato Nakaguro
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Toyoyuki Hanazawa
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
40
|
Zhang M, Suarez E, Vasquez JL, Nathanson L, Peterson LE, Rajapakshe K, Basil P, Weigel NL, Coarfa C, Agoulnik IU. Inositol polyphosphate 4-phosphatase type II regulation of androgen receptor activity. Oncogene 2018; 38:1121-1135. [PMID: 30228349 PMCID: PMC6377303 DOI: 10.1038/s41388-018-0498-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/05/2018] [Accepted: 08/24/2018] [Indexed: 11/18/2022]
Abstract
Activation and transcriptional reprogramming of AR in advanced prostate cancer frequently coincides with the loss of two tumor suppressors, INPP4B and PTEN, which are highly expressed in human and mouse prostate epithelium. While regulation of AR signaling by PTEN has been described by multiple groups, it is not known whether the loss of INPP4B affects AR activity. Using prostate cancer cell lines we showed that INPP4B regulates AR transcriptional activity and the oncogenic signaling pathways Akt and PKC. Analysis of gene expression in prostate cancer patient cohorts showed a positive correlation between INPP4B expression and both AR mRNA levels and AR transcriptional output. Using an Inpp4b-/- mouse model, we demonstrated that INPP4B suppresses Akt and PKC signaling pathways and modulates AR transcriptional activity in normal mouse prostate. Remarkably, PTEN protein levels and phosphorylation of S380 were the same in Inpp4b-/- and WT males, suggesting that the observed changes were due exclusively to the loss of INPP4B. Our data show that INPP4B modulates AR activity in normal prostate and its loss contributes to the AR-dependent transcriptional profile in prostate cancer.
Collapse
Affiliation(s)
- Manqi Zhang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Egla Suarez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Judy L Vasquez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Leif E Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Paul Basil
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Biomolecular Science Institute, School of Integrated Science and Humanity, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
41
|
Lau CI, Yánez DC, Solanki A, Papaioannou E, Saldaña JI, Crompton T. Foxa1 and Foxa2 in thymic epithelial cells (TEC) regulate medullary TEC and regulatory T-cell maturation. J Autoimmun 2018; 93:131-138. [PMID: 30061015 PMCID: PMC6119767 DOI: 10.1016/j.jaut.2018.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 11/25/2022]
Abstract
The Foxa1 and Foxa2 transcription factors are essential for mouse development. Here we show that they are expressed in thymic epithelial cells (TEC) where they regulate TEC development and function, with important consequences for T-cell development. TEC are essential for T-cell differentiation, lineage decisions and repertoire selection. Conditional deletion of Foxa1 and Foxa2 from murine TEC led to a smaller thymus with a greater proportion of TEC and a greater ratio of medullary to cortical TEC. Cell-surface MHCI expression was increased on cortical TEC in the conditional Foxa1Foxa2 knockout thymus, and MHCII expression was reduced on both cortical and medullary TEC populations. These changes in TEC differentiation and MHC expression led to a significant reduction in thymocyte numbers, reduced positive selection of CD4+CD8+ cells to the CD4 lineage, and increased CD8 cell differentiation. Conditional deletion of Foxa1 and Foxa2 from TEC also caused an increase in the medullary TEC population, and increased expression of Aire, but lower cell surface MHCII expression on Aire-expressing mTEC, and increased production of regulatory T-cells. Thus, Foxa1 and Foxa2 in TEC promote positive selection of CD4SP T-cells and modulate regulatory T-cell production and activity, of importance to autoimmunity.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Anisha Solanki
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Eleftheria Papaioannou
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - José Ignacio Saldaña
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
42
|
Rangel N, Fortunati N, Osella-Abate S, Annaratone L, Isella C, Catalano MG, Rinella L, Metovic J, Boldorini R, Balmativola D, Ferrando P, Marano F, Cassoni P, Sapino A, Castellano I. FOXA1 and AR in invasive breast cancer: new findings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer 2018; 18:703. [PMID: 29970021 PMCID: PMC6029370 DOI: 10.1186/s12885-018-4624-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background The role of forkhead-box A1 (FOXA1) and Androgen receptor (AR) in breast cancer (BC) has been extensively studied. However, the prognostic role of their co-expression in Estrogen receptor positive (ER+) BC has not been investigated so far. The aim of the present study was thus to assess the co-expression (protein and mRNA) of FOXA1 and AR in BC patients, in order to evaluate their prognostic impact according to ER status. Methods Immunohistochemical expression of AR and FOXA1 was evaluated on 479 consecutive BC, with complete clinical-pathological and follow up data. Fresh-frozen tissues from 65 cases were available. The expression of AR and FOXA1 with ER was validated using mRNA analyses. Survival and Cox proportional hazard analyses were used to evaluate the relationship between FOXA1, AR and prognosis. Results Expression of ER, AR and FOXA1 was observed in 78, 60 and 85% of cases respectively. Most AR+ cases (97%) were also FOXA1+. The level of FOXA1 mRNA positively correlated with level of both AR mRNA (r = 0.8975; P < 0.001) and ER mRNA (r = 0.7326; P < 0.001). In ER+ BC, FOXA1 was associated with a good prognosis independently of AR expression in the three subgroups analyzed (FOXA1+/AR+; FOXA1+/AR-; FOXA1−/AR-). Multivariate analyses confirmed that FOXA1 may provide more information than AR in Disease-Free Interval (DFI) of ER+ BC patients. Conclusion Our results suggest that in BC the expression of FOXA1 is directly related to the expression of AR. Despite that, FOXA1 is found as superior predicting marker of recurrences compared to AR in ER+ BC patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4624-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nelson Rangel
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy.,Natural and Mathematical Sciences Faculty, University of the Rosario, Bogotá, Colombia
| | - Nicoletta Fortunati
- Oncological Endocrinology Unit, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Simona Osella-Abate
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | | | | | - Letizia Rinella
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Jasna Metovic
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Renzo Boldorini
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Maggiore Hospital, Novara, Italy
| | | | - Pietro Ferrando
- Division of Breast Surgery, Department of General and Specialized Surgery, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Francesca Marano
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Isabella Castellano
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy.
| |
Collapse
|
43
|
Abstract
The prostate is a male exocrine gland that secretes components of the seminal fluid. In men, prostate tumors are one of the most prevalent cancers. Studies on the development of the prostate have given a better understanding of the processes and genes that are important in the formation of this organ and have provided insights into the mechanisms of prostate tumorigenesis. These developmental studies have provided evidence that some of the genes and signaling pathways involved in development are reactivated or deregulated during prostate cancer. The prostate goes through a number of different stages during organogenesis, which include organ specification, epithelial budding, branching morphogenesis, canalization, and cytodifferentiation. During development, these processes are tightly regulated, many of which are controlled by the male hormone androgens. The majority of prostate tumors remain hormone regulated, and antiandrogen therapy is a first-line therapy, highlighting the important link between prostate organogenesis and cancer. In this review, we describe some of the data on genes that have important roles during prostate development that also have strong evidence linking them to prostate cancer.
Collapse
Affiliation(s)
- Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
44
|
The molecular functions of hepatocyte nuclear factors - In and beyond the liver. J Hepatol 2018; 68:1033-1048. [PMID: 29175243 DOI: 10.1016/j.jhep.2017.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions.
Collapse
|
45
|
Copeland BT, Pal SK, Bolton EC, Jones JO. The androgen receptor malignancy shift in prostate cancer. Prostate 2018; 78:521-531. [PMID: 29473182 DOI: 10.1002/pros.23497] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Androgens and the androgen receptor (AR) are necessary for the development, function, and homeostatic growth regulation of the prostate gland. However, once prostate cells are transformed, the AR is necessary for the proliferation and survival of the malignant cells. This change in AR function appears to occur in nearly every prostate cancer. We have termed this the AR malignancy shift. METHODS In this review, we summarize the current knowledge of the AR malignancy shift, including the DNA-binding patterns that define the shift, the transcriptome changes associated with the shift, the putative drivers of the shift, and its clinical implications. RESULTS In benign prostate epithelial cells, the AR primarily binds consensus AR binding sites. In carcinoma cells, the AR cistrome is dramatically altered, as the AR associates with FOXA1 and HOXB13 motifs, among others. This shift leads to the transcription of genes associated with a malignant phenotype. In model systems, some mutations commonly found in localized prostate cancer can alter the AR cistrome, consistent with the AR malignancy shift. Current evidence suggests that the AR malignancy shift is necessary but not sufficient for transformation of prostate epithelial cells. CONCLUSIONS Reinterpretation of prostate cancer genomic classification systems in light of the AR malignancy shift may improve our ability to predict clinical outcomes and treat patients appropriately. Identifying and targeting the molecular factors that contribute to the AR malignancy shift is not trivial but by doing so, we may be able to develop new strategies for the treatment or prevention of prostate cancer.
Collapse
Affiliation(s)
- Ben T Copeland
- Department of Medical Oncology, City of Hope National Cancer Center, Duarte, California
| | - Sumanta K Pal
- Department of Medical Oncology, City of Hope National Cancer Center, Duarte, California
| | - Eric C Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jeremy O Jones
- Department of Medical Oncology, City of Hope National Cancer Center, Duarte, California
| |
Collapse
|
46
|
Xiao L, Feng Q, Zhang Z, Wang F, Lydon JP, Ittmann MM, Xin L, Mitsiades N, He B. The essential role of GATA transcription factors in adult murine prostate. Oncotarget 2018; 7:47891-47903. [PMID: 27374105 PMCID: PMC5216986 DOI: 10.18632/oncotarget.10294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 01/20/2023] Open
Abstract
GATA transcription factors are essential in mammalian cell lineage determination and have a critical role in cancer development. In cultured prostate cancer cells, GATA2 coordinates with androgen receptor (AR) to regulate gene transcription. In the murine prostate, among six GATA members, GATA2 and GATA3 are expressed. Immunofluorescence staining revealed that both GATA factors predominantly localize in the nuclei of luminal epithelial cells. The pioneer factor FoxA1 is exclusively detected in the luminal cells, whereas AR is detected in both luminal and basal cells. Using genetic engineering, we generated prostate-specific GATA2 and GATA3 knockout (KO) mice. Ablation of single GATA gene had marginal effect on prostate morphology and AR target gene expression, likely due to their genetic compensation. Double KO mice exhibited PIN III to IV lesions, but decreased prostate to body weight ratio, altered AR target gene expression, and expansion of p63-positive basal cells. However, deletion of GATA2 and GATA3 did not reduce the mRNA or protein levels of AR or FoxA1, indicating that GATA factors are not required for AR or FoxA1 expression in adult prostate. Surprisingly, GATA2 and GATA3 exhibit minimal expression in the ventral prostatic (VP) lobe. In contrast, FoxA1 and AR expression levels in VP are at least as high as those in anterior prostatic (AP) and dorsal-lateral prostatic (DLP) lobes. Together, our results indicate that GATA2 and GATA3 are essential for adult murine prostate function and in vivo AR signaling, and the lack of the GATA factor expression in the VP suggests a fundamental difference between VP and other prostatic lobes.
Collapse
Affiliation(s)
- Lijuan Xiao
- Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fen Wang
- The Center for Cancer and Stem Cell Biology, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Veterans Affairs Medical Center, US Department of Veterans Affairs, Houston, TX, USA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicholas Mitsiades
- Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bin He
- Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
47
|
Zhao J, Zhao Y, Wang L, Zhang J, Karnes RJ, Kohli M, Wang G, Huang H. Alterations of androgen receptor-regulated enhancer RNAs (eRNAs) contribute to enzalutamide resistance in castration-resistant prostate cancer. Oncotarget 2018; 7:38551-38565. [PMID: 27221037 PMCID: PMC5122410 DOI: 10.18632/oncotarget.9535] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022] Open
Abstract
Enzalutamide is a second-generation anti-androgen for treatment of castration-resistant prostate cancer (CPRC). It prolongs survival of CRPC patients, but its overall survival benefit is relatively modest (4.8 months) and by 24 months most patients progress on enzalutamide. To date, however, the molecular mechanisms underlying enzalutamide resistance remain elusive. Herein, we report enzalutamide treatment-induced alterations of androgen receptor (AR)-regulated enhancer RNAs (AR-eRNAs) and their roles in enzalutamide-resistant growth and survival of CRPC cells. AR chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) and RNA-seq analyses revealed that 188 and 227 AR-eRNAs were differentially expressed in enzalutamide-resistant LNCaP and C4-2 cells, respectively. The AR-eRNAs upregulated in C4-2 cells and downregulated in LNCaP cells were selected through meta-analysis. Expression of AR-eRNAs and related mRNAs in the loci of FTO, LUZP2, MARC1 and NCAM2 were further verified by real-time RT-PCR. Silencing of LUZP2 inhibited, but silencing of MARC1 increased the growth of enzalutamide-resistant C4-2 cells. Intriguingly, meta-analysis showed that expression of LUZP2 mRNA increased in primary tumors compared to normal prostate tissues, but decreased again in metastatic CRPC. Our findings suggest that eRNA alteration profiling is a viable new approach to identify functional gene loci that may not only contribute to enzalutamide-resistant growth of CRPC, but also serve as new targets for CRPC therapy.
Collapse
Affiliation(s)
- Jingwen Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
48
|
Wu Y, Peng Y, Wu M, Zhang W, Zhang M, Xie R, Zhang P, Bai Y, Zhao J, Li A, Nan Q, Chen Y, Ren Y, Liu S, Wang J. Oncogene FOXK1 enhances invasion of colorectal carcinoma by inducing epithelial-mesenchymal transition. Oncotarget 2018; 7:51150-51162. [PMID: 27223064 PMCID: PMC5239465 DOI: 10.18632/oncotarget.9457] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 04/06/2016] [Indexed: 01/10/2023] Open
Abstract
Transcriptional factor FOXK1 is a member of the FOX family, involved in the cell growth and metabolism. The higher expression of FOXK1 leads to a variety of diseases and may play an important role in the development of various tumors. However, the role of FOXK1 in the progression of colorectal cancer (CRC) remains unknown. We demonstrated that FOXK1 was overexpressed in 16 types of solid tumor tissues via tissue multi-array (TMA). We found that FOXK1 induced elevated expressions and transactivities of five major oncogenes in CRC. Moreover, the elevated expression of FOXK1 was showed to be correlated with tumor progression and was a significant predictor of overall survival in CRC patients. Furthermore, it was showed that the depletion of FOXK1 expression could inhibit the migratory and invasive abilities of CRC cells. In contrast, ectopic expression of FOXK1 elicited the opposite effects on these phenotypes in vitro. FOXK1 promoted tumor metastasis through EMT program induction. In addition, TGF-β1 induced FOXK1 expression in a time-dependent pattern and the knockdown of FOXK1 inhibited TGF-β1-induced EMT. In vivo, higher expression of FOXK1 promotes CRC cell invasion and metastasis, and induces EMT in CRC as well. Alltogether, it was concluded that the higher expression of FOXK1 could indicate a poor prognosis in CRC patients since that FOXK1 induces EMT and promotes CRC cell invasion in vitro and in vivo.
Collapse
Affiliation(s)
- Yao Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meiyan Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenjing Zhang
- Department of Medical Oncology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, 650032, China
| | - Mengnan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruyi Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pei Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinjun Zhao
- Department of Rheumatism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qingzhen Nan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuexin Ren
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
49
|
Jin HJ, Jung S, DebRoy AR, Davuluri RV. Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer. Oncotarget 2018; 7:54616-54626. [PMID: 27409348 PMCID: PMC5338917 DOI: 10.18632/oncotarget.10520] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the second most common solid tumor for cancer related deaths in American men. Genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with the increased risk of PCa. Because most of the susceptibility SNPs are located in noncoding regions, little is known about their functional mechanisms. We hypothesize that functional SNPs reside in cell type-specific regulatory elements that mediate the binding of critical transcription factors (TFs), which in turn result in changes in target gene expression. Using PCa-specific functional genomics data, here we identify 38 regulatory candidate SNPs and their target genes in PCa. Through risk analysis by incorporating gene expression and clinical data, we identify 6 target genes (ZG16B, ANKRD5, RERE, FAM96B, NAALADL2 and GTPBP10) as significant predictors of PCa biochemical recurrence. In addition, 5 SNPs (rs2659051, rs10936845, rs9925556, rs6057110 and rs2742624) are selected for experimental validation using Chromatin immunoprecipitation (ChIP), dual-luciferase reporter assay in LNCaP cells, showing allele-specific enhancer activity. Furthermore, we delete the rs2742624-containing region using CRISPR/Cas9 genome editing and observe the drastic downregulation of its target gene UPK3A. Taken together, our results illustrate that this new methodology can be applied to identify regulatory SNPs and their target genes that likely impact PCa risk. We suggest that similar studies can be performed to characterize regulatory variants in other diseases.
Collapse
Affiliation(s)
- Hong-Jian Jin
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Segun Jung
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Auditi R DebRoy
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ramana V Davuluri
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
50
|
Chang HJ, Shin HS, Kim TH, Yoo JY, Teasley HE, Zhao JJ, Ha UH, Jeong JW. Pik3ca is required for mouse uterine gland development and pregnancy. PLoS One 2018; 13:e0191433. [PMID: 29346447 PMCID: PMC5773209 DOI: 10.1371/journal.pone.0191433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT signaling pathway plays a critical role in the maintenance of equilibrium between cell survival and apoptosis. The Pik3ca gene is mutated in a range of human cancers. It has been found to be oncogenic, and mutations lead to constitutive activation of the PI3K/AKT pathway. The expression patterns of PIK3CA proteins in the uterus of mice during early pregnancy indicate that it may play a role in the regulation of glandular epithelial cells, which is required to support uterine receptivity. To further investigate the role of Pik3ca in uterine function, Pik3ca was conditionally ablated only in the PGR-positive cells (Pgrcre/+Pik3caf/f; Pik3cad/d). A defect of uterine gland development and decidualization led to subfertility observed in Pik3cad/d mice. Pik3cad/d mice showed significantly decreased uterine weight compared to Pik3caf/f mice. Interestingly, a significant decrease of gland numbers were detected in Pik3cad/d mice compared to control mice. In addition, we found a decrease of Foxa2 expression, which is a known uterine gland marker in Pik3cad/d mice. Furthermore, the excessive proliferation of endometrial epithelial cells was observed in Pik3cad/d mice. Our studies suggest that Pik3ca has a critical role in uterine gland development and female fertility.
Collapse
Affiliation(s)
- Hye Jin Chang
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States of America
- Health Promotion Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hee Sung Shin
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States of America
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States of America
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States of America
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna E. Teasley
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States of America
- Department of Biology, Kalamazoo College, Kalamazoo, MI, United States of America
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
- * E-mail: (JWJ); (UHH)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States of America
- * E-mail: (JWJ); (UHH)
| |
Collapse
|