1
|
Choudhary I, Paudel K, Kumar R, Sharma A, Patial S, Saini Y. Airway epithelial cell-specific deletion of EGFR modulates mucoinflammatory features of cystic fibrosis-like lung disease in mice. Front Immunol 2025; 16:1493950. [PMID: 40406132 PMCID: PMC12094982 DOI: 10.3389/fimmu.2025.1493950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/09/2025] [Indexed: 05/26/2025] Open
Abstract
Mucoinflammatory lung disease in cystic fibrosis (CF) is characterized by airway surface liquid (ASL) layer dehydration and mucins hyperconcentration, which leads to airway obstruction, inflammation, bronchiectasis, and increased susceptibility to recurrent bacterial infections. Epidermal growth factor receptor (EGFR) is known to regulate airway mucous cell metaplasia (MCM) and mucins expression, but the role of EGFR pathway in the pathogenesis of CF-like lung disease remains unclear. Therefore, we hypothesized that airway epithelial cell-specific deficiency of EGFR mitigates mucoinflammatory responses in Scnn1b-transgenic (Tg+) mice that phenocopy human CF-like lung disease. To test this hypothesis, we examined the effect of airway epithelial cell-specific EGFR deficiency on the manifestation of mucoinflammatory outcomes in Tg+ mice. The airway epithelial cell-specific EGFR-deficient wild-type (WT) mice did not exhibit any obvious structural and functional defects in the lungs. The deletion of EGFR in airway epithelial cells in Tg+ mice, however, resulted in increased recruitment of neutrophils and macrophages into the lung airspaces, which was accompanied by significantly increased bronchoalveolar lavage fluid (BALF) levels of inflammatory mediators, including KC, G-CSF, MIP-2, MIP-1α, TNF-α, and MIP-1β. Additionally, as compared with the EGFR-sufficient Tg+ mice, the airway epithelial cell-specific EGFR-deficient Tg+ mice exhibited significantly increased postnatal mortality and compromised bacterial clearance. The deletion of EGFR in the airway epithelial cells of Tg+ mice resulted in an increased degree of mucus obstruction, which was associated with an increase in MCM and MUC5B production. Some of the molecular markers of type 2 inflammation, including Il13, Slc26a4, and Retnla, were significantly increased in airway epithelial cell-specific EGFR-deficient Tg+ mice versus EGFR-sufficient Tg+ mice. Taken together, our data show that EGFR deletion in the airway epithelial cells compromises postnatal survival, delays bacterial clearance, and modulates inflammatory and mucus obstruction-relevant endpoints, i.e., MCM, MUC5B production, and mucus obstruction, in Tg+ mice.
Collapse
Affiliation(s)
- Ishita Choudhary
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Kshitiz Paudel
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Rahul Kumar
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Amit Sharma
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sonika Patial
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Yogesh Saini
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
2
|
Sánchez-Cisneros LE, Frutis-Osorio MF, Ríos-Barrera LD. A tale of two tissues: Patterning of the epidermis through morphogens and their role in establishing tracheal system organization. Cells Dev 2025:203998. [PMID: 39884391 DOI: 10.1016/j.cdev.2025.203998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Throughout embryonic development, cells respond to a diverse set of signals and forces, making individual or collective decisions that drive the formation of specialized tissues. The development of these structures is tightly regulated in space and time. In recent years, the possibility that neighboring tissues influence one another's morphogenesis has been explored, as some of them develop simultaneously. We study this issue by reviewing the interactions between Drosophila epidermal and tracheal tissues in early and late stages of embryogenesis. Early in development, the epidermis emerges from the ectodermal layer. During its differentiation, epidermal cells produce morphogen gradients that influence the fundamental organization of the embryo. In this work, we analyze how molecules produced by the epidermis guide tracheal system development. Since both tissues emerge from the same germ layer and lie in close proximity all along their development, they are an excellent model for studying induction processes and tissue interactions.
Collapse
Affiliation(s)
- L E Sánchez-Cisneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - M F Frutis-Osorio
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - L D Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
3
|
Ji S, Zhou X, Hoffmann JA. Toll-mediated airway homeostasis is essential for fly survival upon injection of RasV12-GFP oncogenic cells. Cell Rep 2024; 43:113677. [PMID: 38236774 DOI: 10.1016/j.celrep.2024.113677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/08/2023] [Accepted: 01/01/2024] [Indexed: 03/02/2024] Open
Abstract
Toll signaling is well known for its pivotal role in the host response against the invasion of external pathogens. Here, we investigate the potential involvement of Toll signaling in the intersection between the host and oncogenic cells. We show that loss of myeloid differentiation factor 88 (Myd88) leads to drastic fly death after the injection of RasV12-GFP oncogenic cells. Transcriptomic analyses show that challenging flies with oncogenic cells or bacteria leads to distinct inductions of Myd88-dependent genes. We note that downregulation of Myd88 in the tracheal system accounts for fly mortality, and ectopic tracheal complementation of Myd88 rescues the survival defect in Myd88 loss-of-function mutants following RasV12-GFP injection. Further, molecular and genetic evidence indicate that Toll signaling modulates fly resistance to RasV12-GFP cells through mediating airway function in a rolled-dependent manner. Collectively, our data indicate a critical role of Toll signaling in tracheal homeostasis and host survival after the injection of oncogenic cells.
Collapse
Affiliation(s)
- Shanming Ji
- Insect Models of Innate Immunity (M3I; 9022), Institute of Molecular and Cellular Biology, CNRS, 67084 Strasbourg, France
| | - Xiaojing Zhou
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jules A Hoffmann
- Insect Models of Innate Immunity (M3I; 9022), Institute of Molecular and Cellular Biology, CNRS, 67084 Strasbourg, France; Institute for Advanced Study, University of Strasbourg, 67000 Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
4
|
Jun M, Lee YL, Zhou T, Maric M, Burke B, Park S, Low BC, Chiam KH. Subcellular Force Imbalance in Actin Bundles Induces Nuclear Repositioning and Durotaxis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43387-43402. [PMID: 37674326 DOI: 10.1021/acsami.3c07546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Durotaxis is a phenomenon in which cells migrate toward substrates of increasing stiffness. However, how cells assimilate substrate stiffness as a directional cue remains poorly understood. In this study, we experimentally show that mouse embryonic fibroblasts can discriminate between different substrate stiffnesses and develop higher traction forces at regions of the cell adhering to the stiffer pillars. In this way, the cells generate a force imbalance between adhesion sites. It is this traction force imbalance that drives durotaxis by providing directionality for cell migration. Significantly, we found that traction forces are transmitted via LINC complexes to the cell nucleus, which serves to maintain the global force imbalance. In this way, LINC complexes play an essential role in anterograde nuclear movement and durotaxis. This conclusion is supported by the fact that LINC complex-deficient cells are incapable of durotaxis and instead migrate randomly on substrates featuring a stiffness gradient.
Collapse
Affiliation(s)
- Myeongjun Jun
- Bioinformatics institute, A*STAR, Singapore 138671, Singapore
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Yin Loon Lee
- A*STAR Skin Research Laboratories, A*STAR, Singapore 138648, Singapore
| | - Tianxun Zhou
- Bioinformatics institute, A*STAR, Singapore 138671, Singapore
| | - Martina Maric
- A*STAR Skin Research Laboratories, A*STAR, Singapore 138648, Singapore
| | - Brian Burke
- A*STAR Skin Research Laboratories, A*STAR, Singapore 138648, Singapore
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Boon Chuan Low
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117558, Singapore
- NUS college, National University of Singapore, Singapore 117558, Singapore
| | - Keng-Hwee Chiam
- Bioinformatics institute, A*STAR, Singapore 138671, Singapore
| |
Collapse
|
5
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
6
|
The basement membrane controls size and integrity of the Drosophila tracheal tubes. Cell Rep 2022; 39:110734. [PMID: 35476979 DOI: 10.1016/j.celrep.2022.110734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Biological tubes are fundamental units of most metazoan organs. Their defective morphogenesis can cause malformations and pathologies. An integral component of biological tubes is the extracellular matrix, present apically (aECM) and basally (BM). Studies using the Drosophila tracheal system established an essential function for the aECM in tubulogenesis. Here, we demonstrate that the BM also plays a critical role in this process. We find that BM components are deposited in a spatial-temporal manner in the trachea. We show that laminins, core BM components, control size and shape of tracheal tubes and their topology within the embryo. At a cellular level, laminins control cell shape changes and distribution of the cortical cytoskeleton component α-spectrin. Finally, we report that the BM and aECM act independently-yet cooperatively-to control tube elongation and together to guarantee tissue integrity. Our results unravel key roles for the BM in shaping, positioning, and maintaining biological tubes.
Collapse
|
7
|
Kaur B, Mukhlis Y, Natesh J, Penta D, Musthapa Meeran S. Identification of hub genes associated with EMT-induced chemoresistance in breast cancer using integrated bioinformatics analysis. Gene 2022; 809:146016. [PMID: 34655723 DOI: 10.1016/j.gene.2021.146016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Chemoresistance is one of the major challenges in the treatment of breast cancer. Recent evidence suggests that epithelial-to-mesenchymal transition (EMT) plays a critical role in not only metastasis but also in chemoresistance, hence causing tumor relapse. This study aimed to identify the hub genes associated with EMT and chemoresistance in breast cancer affecting patient/clinical survival. Commonly differentially expressed genes (DEGs) during EMT and chemoresistance in breast cancer cells were identified using publicly available datasets, GSE23655, GSE39359, GSE33146 and GSE76540. Hierarchical clustering analysis was utilized to determine the commonly DEGs expression pattern in chemoresistant (CR) breast cancer cells. GSEA revealed that EMT-related genes sets were enriched in the CR samples. Further, we found that EMT-induced breast cancer cells showed overexpression of drug efflux transporters along with resistance to chemotherapeutic drug. Pathway enrichment analysis revealed that the commonly DEGs were enriched in immunological pathways, early endosome, protein dimerization, and proteoglycans in cancer. Further, we identified eight hub genes from the protein-protein interaction (PPI) network. We validated the gene expression levels of the hub genes among TCGA breast cancer samples using UALCAN. Survival analysis for the hub genes was performed using KM plotter, which showed a worse relapse-free survival (RFS) of the hub genes among breast cancer patients. In conclusion, this study identified eight hub genes that play an important role in the pathways underlying EMT-induced chemoresistance in breast cancer and can be used as therapeutic targets after clinical validation.
Collapse
Affiliation(s)
- Bhavjot Kaur
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Yahya Mukhlis
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Dynamic adult tracheal plasticity drives stem cell adaptation to changes in intestinal homeostasis in Drosophila. Nat Cell Biol 2021; 23:485-496. [PMID: 33972729 PMCID: PMC7610788 DOI: 10.1038/s41556-021-00676-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022]
Abstract
Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here, we uncover a previously unrecognised crosstalk between adult intestinal stem cells (ISCs) in Drosophila and the vasculature-like tracheal system, which is essential for intestinal regeneration. Following damage to the intestinal epithelium, gut-derived reactive oxygen species (ROS) activate tracheal HIF-1α and bidirectional FGF/FGFR signalling, leading to reversible remodelling of gut-associated terminal tracheal cells and ISC proliferation following damage. Unexpectedly, ROS-induced adult tracheal plasticity involves downregulation of the tracheal specification factor trachealess (trh) and upregulation of IGF2 mRNA-binding protein (IGF2BP2/Imp). Our results reveal an intestine/vasculature inter-organ communication programme, which is essential to adapt stem cells response to the proliferative demands of the intestinal epithelium.
Collapse
|
9
|
Rouka E, Gourgoulianni N, Lüpold S, Hatzoglou C, Gourgoulianis K, Blanckenhorn WU, Zarogiannis SG. The Drosophila septate junctions beyond barrier function: Review of the literature, prediction of human orthologs of the SJ-related proteins and identification of protein domain families. Acta Physiol (Oxf) 2021; 231:e13527. [PMID: 32603029 DOI: 10.1111/apha.13527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
The involvement of Septate Junctions (SJs) in critical cellular functions that extend beyond their role as diffusion barriers in the epithelia and the nervous system has made the fruit fly an ideal model for the study of human diseases associated with impaired Tight Junction (TJ) function. In this study, we summarized current knowledge of the Drosophila melanogaster SJ-related proteins, focusing on their unconventional functions. Additionally, we sought to identify human orthologs of the corresponding genes as well as protein domain families. The systematic literature search was performed in PubMed and Scopus databases using relevant key terms. Orthologs were predicted using the DIOPT tool and aligned protein regions were determined from the Pfam database. 3-D models of the smooth SJ proteins were built on the Phyre2 and DMPFold protein structure prediction servers. A total of 30 proteins were identified as relatives to the SJ cellular structure. Key roles of these proteins, mainly in the regulation of morphogenetic events and cellular signalling, were highlighted. The investigation of protein domain families revealed that the SJ-related proteins contain conserved domains that are required not only for cell-cell interactions and cell polarity but also for cellular signalling and immunity. DIOPT analysis of orthologs identified novel human genes as putative functional homologs of the fruit fly SJ genes. A gap in our knowledge was identified regarding the domains that occur in the proteins encoded by eight SJ-associated genes. Future investigation of these domains is needed to provide functional information.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Chrissi Hatzoglou
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Konstantinos Gourgoulianis
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Sotirios G. Zarogiannis
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| |
Collapse
|
10
|
A Functional Analysis of the Drosophila Gene hindsight: Evidence for Positive Regulation of EGFR Signaling. G3-GENES GENOMES GENETICS 2020; 10:117-127. [PMID: 31649045 PMCID: PMC6945037 DOI: 10.1534/g3.119.400829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have investigated the relationship between the function of the gene hindsight (hnt), which is the Drosophila homolog of Ras Responsive Element Binding protein-1 (RREB-1), and the EGFR signaling pathway. We report that hnt mutant embryos are defective in EGFR signaling dependent processes, namely chordotonal organ recruitment and oenocyte specification. We also show the temperature sensitive hypomorphic allele hntpebbled is enhanced by the hypomorphic MAPK allele rolled (rl1 ). We find that hnt overexpression results in ectopic DPax2 expression within the embryonic peripheral nervous system, and we show that this effect is EGFR-dependent. Finally, we show that the canonical U-shaped embryonic lethal phenotype of hnt, which is associated with premature degeneration of the extraembyonic amnioserosa and a failure in germ band retraction, is rescued by expression of several components of the EGFR signaling pathway (sSpi, Ras85D V12 , pntP1 ) as well as the caspase inhibitor p35 Based on this collection of corroborating evidence, we suggest that an overarching function of hnt involves the positive regulation of EGFR signaling.
Collapse
|
11
|
Barriga EH, Mayor R. Adjustable viscoelasticity allows for efficient collective cell migration. Semin Cell Dev Biol 2019; 93:55-68. [PMID: 29859995 PMCID: PMC6854469 DOI: 10.1016/j.semcdb.2018.05.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022]
Abstract
Cell migration is essential for a wide range of biological processes such as embryo morphogenesis, wound healing, regeneration, and also in pathological conditions, such as cancer. In such contexts, cells are required to migrate as individual entities or as highly coordinated collectives, both of which requiring cells to respond to molecular and mechanical cues from their environment. However, whilst the function of chemical cues in cell migration is comparatively well understood, the role of tissue mechanics on cell migration is just starting to be studied. Recent studies suggest that the dynamic tuning of the viscoelasticity within a migratory cluster of cells, and the adequate elastic properties of its surrounding tissues, are essential to allow efficient collective cell migration in vivo. In this review we focus on the role of viscoelasticity in the control of collective cell migration in various cellular systems, mentioning briefly some aspects of single cell migration. We aim to provide details on how viscoelasticity of collectively migrating groups of cells and their surroundings is adjusted to ensure correct morphogenesis, wound healing, and metastasis. Finally, we attempt to show that environmental viscoelasticity triggers molecular changes within migrating clusters and that these new molecular setups modify clusters' viscoelasticity, ultimately allowing them to migrate across the challenging geometries of their microenvironment.
Collapse
Affiliation(s)
- Elias H Barriga
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, London, UK.
| |
Collapse
|
12
|
Kondo T, Hayashi S. Two-step regulation of trachealess ensures tight coupling of cell fate with morphogenesis in the Drosophila trachea. eLife 2019; 8:45145. [PMID: 31439126 PMCID: PMC6707767 DOI: 10.7554/elife.45145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
During organogenesis, inductive signals cause cell differentiation and morphogenesis. However, how these phenomena are coordinated to form functional organs is poorly understood. Here, we show that cell differentiation of the Drosophila trachea is sequentially determined in two steps and that the second step is synchronous with the invagination of the epithelial sheet. The master gene trachealess is dispensable for the initiation of invagination, while it is essential for maintaining the invaginated structure, suggesting that tracheal morphogenesis and differentiation are separately induced. trachealess expression starts in bipotential tracheal/epidermal placode cells. After invagination, its expression is maintained in the invaginated cells but is extinguished in the remaining sheet cells. A trachealess cis-regulatory module that shows both tracheal enhancer activity and silencer activity in the surface epidermal sheet was identified. We propose that the coupling of trachealess expression with the invaginated structure ensures that only invaginated cells canalize robustly into the tracheal fate. Cells in developing organs have two important decisions to make: where to be and what cell type to become. If cells end up in the wrong places, they can stop an organ from working, so it is vital that one decision depends upon the other. The so-called progenitor cells responsible for forming the trachea, for example, can either become part of a flat sheet or part of a tube. The cells on the sheet need to become epidermal cells, while the cells in the tube need to become tracheal cells. Work on fruit flies found that a gene called 'trachealess' plays an important role in this process. Without it, developing flies cannot make a trachea at all. At the start of trachea development, some of the cells form thickened structures called placodes. The progenitor cells in the placodes start to divide, and the structures buckle inwards to form pockets. These pockets then lengthen into tubes. The trachealess gene codes for a protein that works as a genetic switch. It turns other genes on or off, helping the progenitor cells inside the pockets to become tracheal cells. But, it is not clear whether trachealess drives the formation of the pockets: the progenitor cells first decide what to be; or whether pocket formation tells the cells to use trachealess: the progenitor cells first decide where to be. To find out, Kondo and Hayashi imaged developing fly embryos and saw that the trachealess gene does not start pocket formation, but that it is essential to maintain the pockets. Flies without the gene managed to form pockets, but they did not last long. Looking at embryos with defects in other genes involved in pocket formation revealed why. In these flies, some of the progenitor cells using trachealess got left behind when the pockets started to form. But rather than forming pockets of their own (as they might if trachealess were driving pocket formation), they turned their trachealess gene off. Progenitor cells in the fly trachea seem to decide where to be before they decide what cell type to become. This helps to make sure that trachea cells do not form in the wrong places. A question that still remains is how do the cells know when they are inside a pocket? It is possible that the cells are sensing different mechanical forces or different chemical signals. Further research could help scientists to understand how organs form in living animals, and how they might better recreate that process in the laboratory.
Collapse
Affiliation(s)
- Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
13
|
Bossen J, Uliczka K, Steen L, Pfefferkorn R, Mai MMQ, Burkhardt L, Spohn M, Bruchhaus I, Fink C, Heine H, Roeder T. An EGFR-Induced Drosophila Lung Tumor Model Identifies Alternative Combination Treatments. Mol Cancer Ther 2019; 18:1659-1668. [PMID: 31217165 DOI: 10.1158/1535-7163.mct-19-0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer-associated mortality. Mutations in the EGFR gene are among the most important inducers of lung tumor development, but success of personalized therapies is still limited because of toxicity or developing resistances. We expressed constitutively active EGFR (EGFRCA) exclusively in the airway system of Drosophila melanogaster and performed comprehensive phenotyping. Ectopic expression of EGFRCA induced massive hyper- and metaplasia, leading to early death. We used the lethal phenotype as a readout and screened a library of FDA-approved compounds and found that among the 1,000 compounds, only the tyrosine kinase inhibitors (TKI) afatinib, gefitinib, and ibrutinib rescued lethality in a whole-animal screening approach. Furthermore, we screened the library in the presence of a subtherapeutic afatinib dose and identified bazedoxifene as a synergistically acting compound that rescues EGFR-induced lethality. Our findings highlight the potential of Drosophila-based whole-animal screening approaches not only to identify specific EGFR inhibitors but also to discover compounds that act synergistically with known TKIs. Moreover, we showed that targeting the EGFR together with STAT-signaling is a promising strategy for lung tumor treatment.
Collapse
Affiliation(s)
- Judith Bossen
- Departments of Molecular Physiology and Zoology, Kiel University, Kiel, Germany
| | - Karin Uliczka
- Research Center Borstel-Leibniz Lung Center, Priority Area Asthma and Allergy, Division of Invertebrate Models, Borstel Germany.,Research Center Borstel-Leibniz Lung Center, Priority Area Asthma and Allergy, Division of Innate Immunity, Borstel, Germany
| | - Line Steen
- Departments of Molecular Physiology and Zoology, Kiel University, Kiel, Germany
| | - Roxana Pfefferkorn
- Departments of Molecular Physiology and Zoology, Kiel University, Kiel, Germany
| | - Mandy Mong-Quyen Mai
- Research Center Borstel-Leibniz Lung Center, Priority Area Asthma and Allergy, Division of Innate Immunity, Borstel, Germany
| | - Lia Burkhardt
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Next Generation Sequencing Technology Platform, Hamburg, Germany
| | - Michael Spohn
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Next Generation Sequencing Technology Platform, Hamburg, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht Institute for Tropical Medicine, Dept. Parasitology, Hamburg, Germany
| | - Christine Fink
- Departments of Molecular Physiology and Zoology, Kiel University, Kiel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Holger Heine
- Research Center Borstel-Leibniz Lung Center, Priority Area Asthma and Allergy, Division of Innate Immunity, Borstel, Germany. .,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Thomas Roeder
- Departments of Molecular Physiology and Zoology, Kiel University, Kiel, Germany. .,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| |
Collapse
|
14
|
The role of the EGFR signaling pathway in stem cell differentiation during planarian regeneration and homeostasis. Semin Cell Dev Biol 2018; 87:45-57. [PMID: 29775660 DOI: 10.1016/j.semcdb.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
Cell signaling is essential for cells to adequately respond to their environment. One of the most evolutionarily conserved signaling pathways is that of the epidermal growth factor receptor (EGFR). Transmembrane receptors with intracellular tyrosine kinase activity are activated by the binding of their corresponding ligands. This in turn activates a wide variety of intracellular cascades and induces the up- or downregulation of target genes, leading to a specific cellular response. Freshwater planarians are an excellent model in which to study the role of cell signaling in the context of stem-cell based regeneration. Owing to the presence of a population of pluripotent stem cells called neoblasts, these animals can regenerate the entire organism from a tiny piece of the body. Here, we review the current state of knowledge of the planarian EGFR pathway. We describe the main components of the pathway and their functions in other animals, and focus in particular on receptors and ligands identified in the planarian Schmidtea mediterranea. Moreover, we summarize current data on the function of some of these components during planarian regeneration and homeostasis. We hypothesize that the EGFR pathway may act as a key regulator of the terminal differentiation of distinct populations of lineage-committed progenitors.
Collapse
|
15
|
Uechi H, Kuranaga E. Mechanisms of collective cell movement lacking a leading or free front edge in vivo. Cell Mol Life Sci 2017; 74:2709-2722. [PMID: 28243700 PMCID: PMC11107506 DOI: 10.1007/s00018-017-2489-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
16
|
Olivares-Castiñeira I, Llimargas M. EGFR controls Drosophila tracheal tube elongation by intracellular trafficking regulation. PLoS Genet 2017; 13:e1006882. [PMID: 28678789 PMCID: PMC5517075 DOI: 10.1371/journal.pgen.1006882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/19/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
Development is governed by a few conserved signalling pathways. Amongst them, the EGFR pathway is used reiteratively for organ and tissue formation, and when dysregulated can lead to cancer and metastasis. Given its relevance, identifying its downstream molecular machinery and understanding how it instructs cellular changes is crucial. Here we approach this issue in the respiratory system of Drosophila. We identify a new role for EGFR restricting the elongation of the tracheal Dorsal Trunk. We find that EGFR regulates the apical determinant Crb and the extracellular matrix regulator Serp, two factors previously known to control tube length. EGFR regulates the organisation of endosomes in which Crb and Serp proteins are loaded. Our results are consistent with a role of EGFR in regulating Retromer/WASH recycling routes. Furthermore, we provide new insights into Crb trafficking and recycling during organ formation. Our work connects cell signalling, trafficking mechanisms and morphogenesis and suggests that the regulation of cargo trafficking can be a general outcome of EGFR activation. The control of organ size and shape is a critical aspect of morphogenesis, as miss-regulation can lead to pathologies and malformations. The tracheal system of Drosophila is a good model to investigate this issue as tube size is strictly regulated. In addition, tracheal system development represents also an excellent system to study the molecular mechanisms employed by signalling pathways to instruct cells to form tubular structures. Here we describe that EGFR, which triggers one of the principal conserved pathways acting reiteratively during development and homeostasis, is required to restrict tube elongation. We find that EGFR regulates the accumulation and subcellular localisation of Crumbs and Serpentine, two factors previously known to regulate tube length. We show that Crumbs and Serpentine are loaded in common endosomes, which require EGFR for proper organisation, ensuring delivery of both cargoes to their final destination. We also report that during tracheal development the apical determinant Crumbs undergoes a complex pattern of recycling, which involves internalisation and different sorting pathways. Our analysis identifies EGFR as a hub to coordinate both cell intrinsic properties, namely Crumbs-dependant apical membrane growth, and extrinsic mechanisms, Serpentine-mediated extracellular matrix modifications, which regulate tube elongation. We suggest that the regulation of the endocytic traffic of specific cargoes could be one of the molecular mechanisms downstream of the EGFR, and therefore could regulate different morphogenetic and pathological EGFR-mediated events.
Collapse
Affiliation(s)
- Ivette Olivares-Castiñeira
- Developmental Biology Department, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Marta Llimargas
- Developmental Biology Department, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
17
|
Epidermal Growth Factor Pathway Signaling in Drosophila Embryogenesis: Tools for Understanding Cancer. Cancers (Basel) 2017; 9:cancers9020016. [PMID: 28178204 PMCID: PMC5332939 DOI: 10.3390/cancers9020016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
EGF signaling is a well-known oncogenic pathway in animals. It is also a key developmental pathway regulating terminal and dorsal-ventral patterning along with many other aspects of embryogenesis. In this review, we focus on the diverse roles for the EGF pathway in Drosophila embryogenesis. We review the existing body of evidence concerning EGF signaling in Drosophila embryogenesis focusing on current uncertainties in the field and areas for future study. This review provides a foundation for utilizing the Drosophila model system for research into EGF effects on cancer.
Collapse
|
18
|
Abstract
During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective.
Collapse
Affiliation(s)
- Elena Scarpa
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
19
|
Barberán S, Fraguas S, Cebrià F. The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis. Development 2016; 143:2089-102. [PMID: 27122174 DOI: 10.1242/dev.131995] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/12/2016] [Indexed: 12/19/2022]
Abstract
The planarian Schmidtea mediterranea maintains and regenerates all its adult tissues through the proliferation and differentiation of a single population of pluripotent adult stem cells (ASCs) called neoblasts. Despite recent advances, the mechanisms regulating ASC differentiation into mature cell types are poorly understood. Here, we show that silencing of the planarian EGF receptor egfr-1 by RNA interference (RNAi) impairs gut progenitor differentiation into mature cells, compromising gut regeneration and maintenance. We identify a new putative EGF ligand, nrg-1, the silencing of which phenocopies the defects observed in egfr-1(RNAi) animals. These findings indicate that egfr-1 and nrg-1 promote gut progenitor differentiation, and are thus essential for normal cell turnover and regeneration in the planarian gut. Our study demonstrates that the EGFR signaling pathway is an important regulator of ASC differentiation in planarians.
Collapse
Affiliation(s)
- Sara Barberán
- Department of Genetics, Faculty of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 643, Edifici Prevosti, Planta 1, Barcelona, Catalunya 08028, Spain
| | - Susanna Fraguas
- Department of Genetics, Faculty of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 643, Edifici Prevosti, Planta 1, Barcelona, Catalunya 08028, Spain
| | - Francesc Cebrià
- Department of Genetics, Faculty of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 643, Edifici Prevosti, Planta 1, Barcelona, Catalunya 08028, Spain
| |
Collapse
|
20
|
Guidance of subcellular tubulogenesis by actin under the control of a synaptotagmin-like protein and Moesin. Nat Commun 2015; 5:3036. [PMID: 24413568 PMCID: PMC3945880 DOI: 10.1038/ncomms4036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/29/2013] [Indexed: 02/05/2023] Open
Abstract
Apical membranes in many polarized epithelial cells show specialized morphological adaptations that fulfil distinct physiological functions. The air-transporting tubules of Drosophila tracheal terminal cells represent an extreme case of membrane specialization. Here we show that Bitesize (Btsz), a synaptotagmin-like protein family member, is needed for luminal membrane morphogenesis. Unlike in multicellular tubes and other epithelia, where it influences apical integrity by affecting adherens junctions, Btsz here acts at a distance from junctions. Localized at the luminal membrane through its tandem C2 domain, it recruits activated Moesin. Both proteins are needed for the integrity of the actin cytoskeleton at the luminal membrane, but not for other pools of F-actin in the cell, nor do actin-dependent processes at the outer membrane, such as filopodial activity or membrane growth depend on Btsz. Btsz and Moesin guide luminal membrane morphogenesis through organizing actin and allowing the incorporation of membrane containing the apical determinant Crumbs. The terminal branches of the Drosophila tracheal network have intracellular tubules that grow through elongation of membrane invaginations. Here, the authors identify the synaptotagmin-like protein Bitesize as a regulator of actin-dependent luminal membrane morphogenesis.
Collapse
|
21
|
Tamada M, Zallen JA. Square Cell Packing in the Drosophila Embryo through Spatiotemporally Regulated EGF Receptor Signaling. Dev Cell 2015; 35:151-61. [PMID: 26506305 PMCID: PMC4939091 DOI: 10.1016/j.devcel.2015.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/11/2015] [Accepted: 09/23/2015] [Indexed: 01/05/2023]
Abstract
Cells display dynamic and diverse morphologies during development, but the strategies by which differentiated tissues achieve precise shapes and patterns are not well understood. Here we identify a developmental program that generates a highly ordered square cell grid in the Drosophila embryo through sequential and spatially regulated cell alignment, oriented cell division, and apicobasal cell elongation. The basic leucine zipper transcriptional regulator Cnc is necessary and sufficient to produce a square cell grid in the presence of a midline signal provided by the EGF receptor ligand Spitz. Spitz orients cell divisions through a Pins/LGN-dependent spindle-positioning mechanism and controls cell shape and alignment through a transcriptional pathway that requires the Pointed ETS domain protein. These results identify a strategy for producing ordered square cell packing configurations in epithelia and reveal a molecular mechanism by which organized tissue structure is generated through spatiotemporally regulated responses to EGF receptor activation.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
22
|
Ukken FP, Aprill I, JayaNandanan N, Leptin M. Slik and the receptor tyrosine kinase Breathless mediate localized activation of Moesin in terminal tracheal cells. PLoS One 2014; 9:e103323. [PMID: 25061859 PMCID: PMC4111555 DOI: 10.1371/journal.pone.0103323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/01/2014] [Indexed: 11/21/2022] Open
Abstract
A key element in the regulation of subcellular branching and tube morphogenesis of the Drosophila tracheal system is the organization of the actin cytoskeleton by the ERM protein Moesin. Activation of Moesin within specific subdomains of cells, critical for its interaction with actin, is a tightly controlled process and involves regulatory inputs from membrane proteins, kinases and phosphatases. The kinases that activate Moesin in tracheal cells are not known. Here we show that the Sterile-20 like kinase Slik, enriched at the luminal membrane, is necessary for the activation of Moesin at the luminal membrane and regulates branching and subcellular tube morphogenesis of terminal cells. Our results reveal the FGF-receptor Breathless as an additional necessary cue for the activation of Moesin in terminal cells. Breathless-mediated activation of Moesin is independent of the canonical MAP kinase pathway.
Collapse
Affiliation(s)
| | - Imola Aprill
- Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - N. JayaNandanan
- Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (NJ); (ML)
| | - Maria Leptin
- Institute of Genetics, University of Cologne, Cologne, Germany
- Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (NJ); (ML)
| |
Collapse
|
23
|
Iordanou E, Chandran RR, Yang Y, Essak M, Blackstone N, Jiang L. The novel Smad protein Expansion regulates the receptor tyrosine kinase pathway to control Drosophila tracheal tube size. Dev Biol 2014; 393:93-108. [PMID: 24973580 DOI: 10.1016/j.ydbio.2014.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/01/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Tubes with distinct shapes and sizes are critical for the proper function of many tubular organs. Here we describe a unique phenotype caused by the loss of a novel, evolutionarily-conserved, Drosophila Smad-like protein, Expansion. In expansion mutants, unicellular and intracellular tracheal branches develop bubble-like cysts with enlarged apical membranes. Cysts in unicellular tubes are enlargements of the apical lumen, whereas cysts in intracellular tubes are cytoplasmic vacuole-like compartments. The cyst phenotype in expansion mutants is similar to, but weaker than, that observed in double mutants of Drosophila type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. Ptp4E and Ptp10D negatively regulate the receptor tyrosine kinase (RTK) pathways, especially epithelial growth factor receptor (EGFR) and fibroblast growth factor receptor/breathless (FGFR, Btl) signaling to maintain the proper size of unicellular and intracellular tubes. We show Exp genetically interacts with RTK signaling, the downstream targets of RPTPs. Cyst size and number in expansion mutants is enhanced by increased RTK signaling and suppressed by reduced RTK signaling. Genetic interaction studies strongly suggest that Exp negatively regulates RTK (EGFR, Btl) signaling to ensure proper tube sizes. Smad proteins generally function as intermediate components of the transforming growth factor-β (TGF-β, DPP) signaling pathway. However, no obvious genetic interaction between expansion and TGF-β (DPP) signaling was observed. Therefore, Expansion does not function as a typical Smad protein. The expansion phenotype demonstrates a novel role for Smad-like proteins in epithelial tube formation.
Collapse
Affiliation(s)
- Ekaterini Iordanou
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Rachana R Chandran
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Yonghua Yang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Mina Essak
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Nicholas Blackstone
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
24
|
O'Keefe DD, Gonzalez-Niño E, Edgar BA, Curtiss J. Discontinuities in Rap1 activity determine epithelial cell morphology within the developing wing of Drosophila. Dev Biol 2012; 369:223-34. [PMID: 22776378 DOI: 10.1016/j.ydbio.2012.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 05/31/2012] [Accepted: 06/28/2012] [Indexed: 11/28/2022]
Abstract
Mechanisms that govern cell-fate specification within developing epithelia have been intensely investigated, with many of the critical intercellular signaling pathways identified, and well characterized. Much less is known, however, about downstream events that drive the morphological differentiation of these cells, once their fate has been determined. In the Drosophila wing-blade epithelium, two cell types predominate: vein and intervein. After cell proliferation is complete and adhesive cell-cell contacts have been refined, the vast majority of intervein cells adopt a hexagonal morphology. Within vein territories, however, cell-shape refinement results in trapezoids. Signaling events that differentiate between vein and intervein cell fates are well understood, but the genetic pathways underlying vein/intervein cyto-architectural differences remain largely undescribed. We show here that the Rap1 GTPase plays a critical role in determining cell-type-specific morphologies within the developing wing epithelium. Rap1, together with its effector Canoe, promotes symmetric distribution of the adhesion molecule DE-cadherin about the apicolateral circumference of epithelial cells. We provide evidence that in presumptive vein tissue Rap1/Canoe activity is down-regulated, resulting in adhesive asymmetries and non-hexagonal cell morphologies. In particular Canoe levels are reduced in vein cells as they morphologically differentiate. We also demonstrate that over-expression of Rap1 disrupts vein formation both in the developing epithelium and the adult wing blade. Therefore, vein/intervein morphological differences result, at least in part, from the patterned regulation of Rap1 activity.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
25
|
Jeon M, Scott MP, Zinn K. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila. Biol Open 2012; 1:548-58. [PMID: 23213447 PMCID: PMC3509443 DOI: 10.1242/bio.2012471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.
Collapse
Affiliation(s)
- Mili Jeon
- Division of Biology 114-96, California Institute of Technology , 1200 East California Boulevard, Pasadena, CA 91125 , USA ; Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, 318 Campus Drive, Stanford University School of Medicine , Palo Alto, CA 94305 , USA
| | | | | |
Collapse
|
26
|
Hashimoto S, Nakano H, Suguta Y, Irie S, Jianhua L, Katyal SL. Exogenous fibroblast growth factor-10 induces cystic lung development with altered target gene expression in the presence of heparin in cultures of embryonic rat lung. Pathobiology 2012; 79:127-43. [PMID: 22261751 DOI: 10.1159/000334839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/01/2011] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Signaling by fibroblast growth factor (FGF) receptor (FGFR) 2IIIb regulates branching morphogenesis in the mammalian lung. FGFR2IIIb is primarily expressed in epithelial cells, whereas its ligands, FGF-10 and keratinocyte growth factor (KGF; FGF-7), are expressed in mesenchymal cells. FGF-10 null mice lack lungs, whereas KGF null animals have normal lung development, indicating that FGF-10 regulates lung branching morphogenesis. In this study, we determined the effects of FGF-10 on lung branching morphogenesis and accompanying gene expression in cultures of embryonic rat lungs. METHODS Embryonic day 14 rat lungs were cultured with FGF-10 (0-250 ng/ml) in the absence or presence of heparin (30 ng/ml) for 4 days. Gene expression profiles were analyzed by Affymetrix microchip array including pathway analysis. Some of these genes, functionally important in FGF-10 signaling, were further analyzed by Northern blot, real-time PCR, in situ hybridization and immunohistochemistry. RESULTS Exogenous FGF-10 inhibited branching and induced cystic lung growth only in cultures containing heparin. In total, 252 upregulated genes and 164 downregulated genes were identified, and these included Spry1 (Sprouty-1), Spry2 (Sprouty-2), Spred-1, Bmp4 (bone morphogenetic protein-4, BMP-4), Shh (sonic hedgehog, SHH), Pthlh (parathyroid hormone-related protein, PTHrP), Dusp6 (MAP kinase phosphatase-3, MKP-3) and Clic4 (chloride intracellular channel-4, CLIC-4) among the upregulated genes and Igf1 (insulin-like growth factor-1, IGF-1), Tcf21 (POD), Gyg1 (glycogenin 1), Sparc (secreted protein acidic and rich in cysteine, SPARC), Pcolce (procollagen C-endopeptidase enhancer protein, Pro CEP) and Lox (lysyl oxidase) among the downregulated genes. Gsk3β and Wnt2, which are involved in canonical Wnt signaling, were up- and downregulated, respectively. CONCLUSIONS Unlike FGF-7, FGF-10 effects on lung branching morphogenesis are heparin-dependent. Sprouty-2, BMP-4, SHH, IGF-1, SPARC and POD are known to regulate branching morphogenesis; however, potential roles of CLIC-4 and MKP-3 in lung branching morphogenesis remain to be investigated. FGF-10 may also function in regulating branching morphogenesis or inducing cystic lung growth by inhibiting Wnt2/β-catenin signaling.
Collapse
Affiliation(s)
- Shuichi Hashimoto
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pa., USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Drosophila represents a paradigm for the analysis of the cellular, molecular and genetic mechanisms of development and is an ideal model system to study the contribution of Adherens Junctions (AJs) and their major components, cadherins, to morphogenesis. The combination of different techniques and approaches has allowed researchers to identify the requirements of these epithelial junctions in vivo in the context of a whole organism. The functional analysis of mutants for AJ core components, particularly for Drosophila DE-cadherin, has shown that AJs play critical roles in virtually all stages of development. For instance, AJs maintain tissue integrity while allowing the remodelling and homeostasis of many tissues. They control cell shape, contribute to cell polarity, facilitate cell-cell recognition during cell sorting, orient cell divisions, or regulate cell rearrangements, among other activities. Remarkably, these activities require a very fine control of the organisation and turnover of AJs during development. In addition, AJs engage in diverse and complex interactions with the cytoskeleton, signalling networks, intracellular trafficking machinery or polarity cues to perform these functions. Here, by summarising the requirements of AJs and cadherins during Drosophila morphogenesis, we illustrate the capital contribution of this model system to our knowledge of the mechanisms and biology of AJs.
Collapse
Affiliation(s)
- Annalisa Letizia
- Developmental Biology, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona Baldiri Reixac 10-12, 08028, Barcelona, Spain,
| | | |
Collapse
|
28
|
Rotstein B, Molnar D, Adryan B, Llimargas M. Tramtrack is genetically upstream of genes controlling tracheal tube size in Drosophila. PLoS One 2011; 6:e28985. [PMID: 22216153 PMCID: PMC3245245 DOI: 10.1371/journal.pone.0028985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
The Drosophila transcription factor Tramtrack (Ttk) is involved in a wide range of developmental decisions, ranging from early embryonic patterning to differentiation processes in organogenesis. Given the wide spectrum of functions and pleiotropic effects that hinder a comprehensive characterisation, many of the tissue specific functions of this transcription factor are only poorly understood. We recently discovered multiple roles of Ttk in the development of the tracheal system on the morphogenetic level. Here, we sought to identify some of the underlying genetic components that are responsible for the tracheal phenotypes of Ttk mutants. We therefore profiled gene expression changes after Ttk loss- and gain-of-function in whole embryos and cell populations enriched for tracheal cells. The analysis of the transcriptomes revealed widespread changes in gene expression. Interestingly, one of the most prominent gene classes that showed significant opposing responses to loss- and gain-of-function was annotated with functions in chitin metabolism, along with additional genes that are linked to cellular responses, which are impaired in ttk mutants. The expression changes of these genes were validated by quantitative real-time PCR and further functional analysis of these candidate genes and other genes also expected to control tracheal tube size revealed at least a partial explanation of Ttk's role in tube size regulation. The computational analysis of our tissue-specific gene expression data highlighted the sensitivity of the approach and revealed an interesting set of novel putatively tracheal genes.
Collapse
Affiliation(s)
- Barbara Rotstein
- Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain
| | - David Molnar
- Department of Genetics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Boris Adryan
- Department of Genetics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (BA); (ML)
| | - Marta Llimargas
- Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain
- * E-mail: (BA); (ML)
| |
Collapse
|
29
|
Friedman AA, Tucker G, Singh R, Yan D, Vinayagam A, Hu Y, Binari R, Hong P, Sun X, Porto M, Pacifico S, Murali T, Finley RL, Asara JM, Berger B, Perrimon N. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. Sci Signal 2011; 4:rs10. [PMID: 22028469 DOI: 10.1126/scisignal.2002029] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.
Collapse
Affiliation(s)
- Adam A Friedman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Micchelli CA. The origin of intestinal stem cells in Drosophila. Dev Dyn 2011; 241:85-91. [PMID: 21972080 DOI: 10.1002/dvdy.22759] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 11/08/2022] Open
Abstract
Renewing tissues in the adult organism such as the gastrointestinal (GI) epithelium depend on stem cells for epithelial maintenance and repair. Yet, little is known about the developmental origins of adult stem cells and their niches. Studies of Drosophila adult midgut precursors (AMPs), a population of endodermal progenitors, demonstrate that adult intestinal stem cells (ISCs) arise from the AMP lineage and provide insight into the stepwise process by which the adult midgut epithelium is established during development. Here, I review the current literature on AMPs, where local, inductive and long-range humoral signals have been found to control progenitor cell behavior. Future studies will be necessary to determine the precise mechanism by which adult intestinal stem cells are established in the endodermal lineage.
Collapse
Affiliation(s)
- Craig A Micchelli
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
31
|
Choi W, Jung KC, Nelson KS, Bhat MA, Beitel GJ, Peifer M, Fanning AS. The single Drosophila ZO-1 protein Polychaetoid regulates embryonic morphogenesis in coordination with Canoe/afadin and Enabled. Mol Biol Cell 2011; 22:2010-30. [PMID: 21508316 PMCID: PMC3113767 DOI: 10.1091/mbc.e10-12-1014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Analysis of the function of the fly ZO-1 homologue Polychaetoid shows that it is not essential for junctional assembly or maintenance but does play an important role in embryonic morphogenesis. The data suggest that it works with Canoe/afadin and the actin regulator Enabled to regulate actin anchoring at junctions. Adherens and tight junctions play key roles in assembling epithelia and maintaining barriers. In cell culture zonula occludens (ZO)–family proteins are important for assembly/maturation of both tight and adherens junctions (AJs). Genetic studies suggest that ZO proteins are important during normal development, but interpretation of mouse and fly studies is limited by genetic redundancy and/or a lack of null alleles. We generated null alleles of the single Drosophila ZO protein Polychaetoid (Pyd). Most embryos lacking Pyd die with striking defects in morphogenesis of embryonic epithelia including the epidermis, segmental grooves, and tracheal system. Pyd loss does not dramatically affect AJ protein localization or initial localization of actin and myosin during dorsal closure. However, Pyd loss does affect several cell behaviors that drive dorsal closure. The defects, which include segmental grooves that fail to retract, a disrupted leading edge actin cable, and reduced zippering as leading edges meet, closely resemble defects in canoe zygotic null mutants and in embryos lacking the actin regulator Enabled (Ena), suggesting that these proteins act together. Canoe (Cno) and Pyd are required for proper Ena localization during dorsal closure, and strong genetic interactions suggest that Cno, Pyd, and Ena act together in regulating or anchoring the actin cytoskeleton during dorsal closure.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Laplante C, Paul SM, Beitel GJ, Nilson LA. Echinoid regulates tracheal morphology and fusion cell fate in Drosophila. Dev Dyn 2011; 239:2509-19. [PMID: 20730906 DOI: 10.1002/dvdy.22386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Morphogenesis of the Drosophila embryonic trachea involves a stereotyped pattern of epithelial tube branching and fusion. Here, we report unexpected phenotypes resulting from maternal and zygotic (M/Z) loss of the homophilic cell adhesion molecule Echinoid (Ed), as well as the subcellular localization of Ed in the trachea. ed(M/Z) embryos have convoluted trachea reminiscent of septate junction (SJ) and luminal matrix mutants. However, Ed does not localize to SJs, and ed(M/Z) embryos have intact SJs and show normal luminal accumulation of the matrix-modifying protein Vermiform. Surprisingly, tracheal length is not increased in ed(M/Z) mutants, but a previously undescribed combination of reduced intersegmental spacing and deep epidermal grooves produces a convoluted tracheal phenotype. In addition, ed(M/Z) mutants have unique fusion defects involving supernumerary fusion cells, ectopic fusion events and atypical branch breaks. Tracheal-specific expression of Ed rescues these fusion defects, indicating that Ed acts in trachea to control fusion cell fate.
Collapse
|
33
|
Buchon N, Broderick NA, Kuraishi T, Lemaitre B. Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 2010; 8:152. [PMID: 21176204 PMCID: PMC3022776 DOI: 10.1186/1741-7007-8-152] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/22/2010] [Indexed: 12/30/2022] Open
Abstract
Background Gut homeostasis is central to whole organism health, and its disruption is associated with a broad range of pathologies. Following damage, complex physiological events are required in the gut to maintain proper homeostasis. Previously, we demonstrated that ingestion of a nonlethal pathogen, Erwinia carotovora carotovora 15, induces a massive increase in stem cell proliferation in the gut of Drosophila. However, the precise cellular events that occur following infection have not been quantitatively described, nor do we understand the interaction between multiple pathways that have been implicated in epithelium renewal. Results To understand the process of infection and epithelium renewal in more detail, we performed a quantitative analysis of several cellular and morphological characteristics of the gut. We observed that the gut of adult Drosophila undergoes a dynamic remodeling in response to bacterial infection. This remodeling coordinates the synthesis of new enterocytes, their proper morphogenesis and the elimination of damaged cells through delamination and anoikis. We demonstrate that one signaling pathway, the epidermal growth factor receptor (EGFR) pathway, is key to controlling each of these steps through distinct functions in intestinal stem cells and enterocytes. The EGFR pathway is activated by the EGF ligands, Spitz, Keren and Vein, the latter being induced in the surrounding visceral muscles in part under the control of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Additionally, the EGFR pathway synergizes with the JAK/STAT pathway in stem cells to promote their proliferation. Finally, we show that the EGFR pathway contributes to gut morphogenesis through its activity in enterocytes and is required to properly coordinate the delamination and anoikis of damaged cells. This function of the EGFR pathway in enterocytes is key to maintaining homeostasis, as flies lacking EGFR are highly susceptible to infection. Conclusions This study demonstrates that restoration of normal gut morphology following bacterial infection is a more complex phenomenon than previously described. Maintenance of gut homeostasis requires the coordination of stem cell proliferation and differentiation, with the incorporation and morphogenesis of new cells and the expulsion of damaged enterocytes. We show that one signaling pathway, the EGFR pathway, is central to all these stages, and its activation at multiple steps could synchronize the complex cellular events leading to gut repair and homeostasis.
Collapse
Affiliation(s)
- Nicolas Buchon
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
34
|
Letizia A, Sotillos S, Campuzano S, Llimargas M. Regulated Crb accumulation controls apical constriction and invagination in Drosophila tracheal cells. J Cell Sci 2010; 124:240-51. [PMID: 21172808 DOI: 10.1242/jcs.073601] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many epithelial tissues undergo extensive remodelling during morphogenesis. How their epithelial features, such as apicobasal polarity or adhesion, are maintained and remodelled and how adhesion and polarity proteins contribute to morphogenesis are two important questions in development. Here, we approach these issues by investigating the role of the apical determinant protein Crumbs (Crb) during the morphogenesis of the embryonic Drosophila tracheal system. Crb accumulates differentially throughout tracheal development and is required for different tracheal events. The earliest requirement for Crb is for tracheal invagination, which is preceded by an enhanced accumulation of Crb in the invagination domain. There, Crb, acting in parallel with the epidermal growth factor receptor (Egfr) pathway, is required for tracheal cell apical constriction and for organising an actomyosin complex, which we propose is mediated by Crb recruitment of moesin (Moe). The ability of a Crb isoform unable to rescue polarity in crb mutants to otherwise rescue their invagination phenotype, and the converse inability of a FERM-binding domain mutant Crb to rescue faulty invagination, support our hypothesis that it is the absence of Crb-dependent Moe enrichment, and not the polarity defect, that mainly underlies the crb invagination phenotype. This hypothesis is supported by the phenotype of lethal giant larvae (lgl); crb double mutants. These results unveil a link between Crb and the organisation of the actin cytoskeleton during morphogenesis.
Collapse
Affiliation(s)
- Annalisa Letizia
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
35
|
Schottenfeld J, Song Y, Ghabrial AS. Tube continued: morphogenesis of the Drosophila tracheal system. Curr Opin Cell Biol 2010; 22:633-9. [PMID: 20739171 PMCID: PMC2948593 DOI: 10.1016/j.ceb.2010.07.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/07/2023]
Abstract
The Drosophila respiratory organ (tracheal system) consists of epithelial tubes, the morphogenesis of which is controlled by distinct sets of signaling pathways and transcription factors. The downstream events controlling tube formation and shape are only now beginning to be identified. Here we review recent insight into the communication between neighboring tracheal cells, their interactions with the surrounding matrix, and the impact of these processes on tube morphogenesis. We focus on cell-cell interactions that drive rearrangement of cells within the epithelium and that are essential for maintenance of epithelial integrity, and also on cell-matrix interactions that play key roles in determining and maintaining the size and shape of tube lumens.
Collapse
Affiliation(s)
- Jodi Schottenfeld
- Department of Cell & Developmental Biology, 1214 BRBII/III, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
36
|
Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 2010; 19:296-306. [PMID: 20708591 PMCID: PMC2941037 DOI: 10.1016/j.devcel.2010.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Details of the mechanisms that determine the shape and positioning of organs in the body cavity remain largely obscure. We show that stereotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule cells and results from enhanced sensitivity to guidance signals by targeted matrix deposition. VEGF/PDGF ligands from the tubules attract hemocytes, which secrete components of the basement membrane to ensheath them. Collagen IV sensitizes tubule cells to localized BMP guidance cues. Signaling results in pathway activation in a subset of tubule cells that lead outgrowth through the body cavity. Failure of hemocyte migration, loss of collagen IV, or abrogation of BMP signaling results in tubule misrouting and defective organ shape and positioning. Such regulated interplay between cell-cell and cell-matrix interactions is likely to have wide relevance in organogenesis and congenital disease.
Collapse
|
37
|
Szuplewski S, Fraisse-Véron I, George H, Terracol R. vrille is required to ensure tracheal integrity in Drosophila embryo. Dev Growth Differ 2010; 52:409-18. [DOI: 10.1111/j.1440-169x.2010.01186.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Maurel-Zaffran C, Pradel J, Graba Y. Reiterative use of signalling pathways controls multiple cellular events during Drosophila posterior spiracle organogenesis. Dev Biol 2010; 343:18-27. [PMID: 20403348 DOI: 10.1016/j.ydbio.2010.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 03/07/2010] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
Abstract
Organogenesis proceeds in multiple steps and events that need to be coordinated in time and space. Yet the genetic and molecular control of such coordination remains poorly understood. In this study we have investigated the contribution of three signalling pathways, Wnt/Wingless (Wg), Hedgehog (Hh), and epidermal growth factor receptor (EGFR), to posterior spiracle morphogenesis, an organ that forms under Abdominal-B (AbdB) control in the eighth abdominal segment. Using targeted signalling inactivation, we show that these pathways are reiteratively used to control multiple cellular events during posterior spiracle organogenesis, including cell survival and maintenance of cell polarity and adhesion required for tissue integrity. We propose that the reiterative use of the Wg, Hh, and EGFR signalling pathways serves to coordinate in time and space the sequential deployment of events that collectively allow proper organogenesis.
Collapse
Affiliation(s)
- Corinne Maurel-Zaffran
- Institut de Biologie du Développement de Marseille Luminy, IBDML, CNRS, Université de la Méditerranée, Parc Scientifique de Luminy, Case 907 13288 Marseille Cedex 09, France.
| | | | | |
Collapse
|
39
|
Jeon M, Zinn K. Receptor tyrosine phosphatases control tracheal tube geometries through negative regulation of Egfr signaling. Development 2009; 136:3121-9. [PMID: 19675131 DOI: 10.1242/dev.033597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of epithelial tubes with defined shapes and sizes is essential for organ development. We describe a unique tracheal tubulogenesis phenotype caused by loss of both Drosophila type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. Ptp4E is the only widely expressed Drosophila RPTP, and is the last of the six fly RPTPs to be genetically characterized. We recently isolated mutations in Ptp4E, and discovered that, although Ptp4E null mutants have no detectable phenotypes, double mutants lacking both Ptp4E and Ptp10D display synthetic lethality at hatching owing to respiratory failure. In these double mutants, unicellular and terminal tracheal branches develop large bubble-like cysts that selectively incorporate apical cell surface markers. Cysts in unicellular branches are enlargements of the lumen that are sealed by adherens junctions, whereas cysts in terminal branches are cytoplasmic vacuoles. Cyst size and number are increased by tracheal expression of activated Egfr tyrosine kinase, and decreased by reducing Egfr levels. Ptp10D forms a complex with Egfr in transfected cells. Downregulation of Egfr signaling by the RPTPs is required for the construction of tubular lumens, whether extracellular or intracellular, by cells that undergo remodeling during branch morphogenesis. The Ptp4E Ptp10D phenotype represents the first evidence of an essential role for RPTPs in epithelial organ development. These findings might be relevant to organ development and disease in mammals, because PTPRJ (DEP-1), an ortholog of Ptp4E/Ptp10D, interacts with the hepatocyte growth factor receptor tyrosine kinase. PTPRJ corresponds to the murine Scc1 (suppressor of colon cancer) gene.
Collapse
Affiliation(s)
- Mili Jeon
- Broad Center, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
40
|
O'Keefe DD, Gonzalez-Niño E, Burnett M, Dylla L, Lambeth SM, Licon E, Amesoli C, Edgar BA, Curtiss J. Rap1 maintains adhesion between cells to affect Egfr signaling and planar cell polarity in Drosophila. Dev Biol 2009; 333:143-60. [PMID: 19576205 DOI: 10.1016/j.ydbio.2009.06.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 06/06/2009] [Accepted: 06/23/2009] [Indexed: 11/19/2022]
Abstract
The small GTPase Rap1 affects cell adhesion and cell motility in numerous developmental contexts. Loss of Rap1 in the Drosophila wing epithelium disrupts adherens junction localization, causing mutant cells to disperse, and dramatically alters epithelial cell shape. While the adhesive consequences of Rap1 inactivation have been well described in this system, the effects on cell signaling, cell fate specification, and tissue differentiation are not known. Here we demonstrate that Egfr-dependent cell types are lost from Rap1 mutant tissue as an indirect consequence of DE-cadherin mislocalization. Cells lacking Rap1 in the developing wing and eye are capable of responding to an Egfr signal, indicating that Rap1 is not required for Egfr/Ras/MAPK signal transduction. Instead, Rap1 regulates adhesive contacts necessary for maintenance of Egfr signaling between cells, and differentiation of wing veins and photoreceptors. Rap1 is also necessary for planar cell polarity in these tissues. Wing hair alignment and ommatidial rotation, functional readouts of planar cell polarity in the wing and eye respectively, are both affected in Rap1 mutant tissue. Finally, we show that Rap1 acts through the effector Canoe to regulate these developmental processes.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiang H, Edgar BA. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 2009; 136:483-93. [PMID: 19141677 PMCID: PMC2687592 DOI: 10.1242/dev.026955] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2008] [Indexed: 11/20/2022]
Abstract
In holometabolous insects, the adult appendages and internal organs form anew from larval progenitor cells during metamorphosis. As described here, the adult Drosophila midgut, including intestinal stem cells (ISCs), develops from adult midgut progenitor cells (AMPs) that proliferate during larval development in two phases. Dividing AMPs first disperse, but later proliferate within distinct islands, forming large cell clusters that eventually fuse during metamorphosis to make the adult midgut epithelium. We find that signaling through the EGFR/RAS/MAPK pathway is necessary and limiting for AMP proliferation. Midgut visceral muscle produces a weak EGFR ligand, Vein, which is required for early AMP proliferation. Two stronger EGFR ligands, Spitz and Keren, are expressed by the AMPs themselves and provide an additional, autocrine mitogenic stimulus to the AMPs during late larval stages.
Collapse
Affiliation(s)
- Huaqi Jiang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle, WA 98109, USA
| | | |
Collapse
|
42
|
Shaye DD, Casanova J, Llimargas M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat Cell Biol 2008; 10:964-70. [PMID: 18641639 DOI: 10.1038/ncb1756] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 05/27/2008] [Indexed: 11/09/2022]
Abstract
Through intercalation, a fundamental mechanism underlying elongation during morphogenesis, epithelial cells exchange places in a spatially oriented manner. Epithelial cells are tightly coupled through distinct intercellular junctions, including adherens junctions. Whether trafficking-mediated regulation of adhesion through adherens junctions modulates intercalation in vivo remains controversial. In Drosophila melanogaster, cells in most branches intercalate during tracheal development. However, Wingless (Wg)-promoted expression of the transcription factor Spalt (Sal) in the dorsal trunk inhibits intercalation by an unknown mechanism. Here we have examined the role of trafficking in tracheal intercalation and show that it requires endocytosis, whereas it is opposed by Rab11-mediated recycling in the dorsal trunk. Subapical Rab11 accumulation is enhanced by sal and elevated Rab11-mediated recycling occurs in the dorsal trunk, suggesting that upregulation of Rab11 is one way in which sal inhibits intercalation. We found that dRip11, which regulates Rab11 localization and function, is regulated by sal and can modulate intercalation. Finally, we provide evidence that levels of E-cadherin (DE-cad), an adherens junction component and Rab11-compartment cargo, are dynamically regulated by trafficking during tracheal development, and that such regulation modulates intercalation. Our work suggests a mechanism by which trafficking of adhesion molecules regulates intercalation, and shows how this mechanism can be modulated in vivo to influence cell behaviour.
Collapse
Affiliation(s)
- Daniel D Shaye
- Institut de Biologia Molecular de Barcelona-CSIC, C/Baldiri Reixac 10, 08028 Barcelona, Spain
| | | | | |
Collapse
|
43
|
Affolter M, Caussinus E. Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development 2008; 135:2055-64. [PMID: 18480161 DOI: 10.1242/dev.014498] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our understanding of the molecular control of morphological processes has increased tremendously over recent years through the development and use of high resolution in vivo imaging approaches, which have enabled cell behaviour to be linked to molecular functions. Here we review how such approaches have furthered our understanding of tracheal branching morphogenesis in Drosophila, during which the control of cell invagination, migration, competition and rearrangement is accompanied by the sequential secretion and resorption of proteins into the apical luminal space, a vital step in the elaboration of the trachea's complex tubular network. We also discuss the similarities and differences between flies and vertebrates in branched organ formation that are becoming apparent from these studies.
Collapse
Affiliation(s)
- Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
44
|
Schiedlmeier B, Santos AC, Ribeiro A, Moncaut N, Lesinski D, Auer H, Kornacker K, Ostertag W, Baum C, Mallo M, Klump H. HOXB4's road map to stem cell expansion. Proc Natl Acad Sci U S A 2007; 104:16952-7. [PMID: 17940039 PMCID: PMC2040480 DOI: 10.1073/pnas.0703082104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Indexed: 01/22/2023] Open
Abstract
Homeodomain-containing transcription factors are important regulators of stem cell behavior. HOXB4 mediates expansion of adult and embryo-derived hematopoietic stem cells (HSCs) when expressed ectopically. To define the underlying molecular mechanisms, we performed gene expression profiling in combination with subsequent functional analysis with enriched adult HSCs and embryonic derivatives expressing inducible HOXB4. Thereby, we identified a set of overlapping genes that likely represent "universal" targets of HOXB4. A substantial number of loci are involved in signaling pathways important for controlling self-renewal, maintenance, and differentiation of stem cells. Functional assays performed on selected pathways confirmed the biological coherence of the array results. HOXB4 activity protected adult HSCs from the detrimental effects mediated by the proinflammatory cytokine TNF-alpha. This protection likely contributes to the competitive repopulation advantage of HOXB4-expressing HSCs observed in vivo. The concept of TNF-alpha inhibition may also prove beneficial for patients undergoing bone marrow transplantation. Furthermore, we demonstrate that HOXB4 activity and FGF signaling are intertwined. HOXB4-mediated expansion of adult and ES cell-derived HSCs was enhanced by specific and complete inhibition of FGF receptors. In contrast, the expanding activity of HOXB4 on hematopoietic progenitors in day 4-6 embryoid bodies was blunted in the presence of basic FGF (FGF2), indicating a dominant negative effect of FGF signaling on the earliest hematopoietic cells. In summary, our results strongly suggest that HOXB4 modulates the response of HSCs to multiple extrinsic signals in a concerted manner, thereby shifting the balance toward stem cell self-renewal.
Collapse
Affiliation(s)
- Bernhard Schiedlmeier
- *Department of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse1, 30625 Hannover, Germany
| | | | - Ana Ribeiro
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | | | - Dietrich Lesinski
- *Department of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse1, 30625 Hannover, Germany
| | - Herbert Auer
- Columbus Children's Research Institute, Columbus, OH 43210; and
| | - Karl Kornacker
- Division of Sensory Biophysics, Ohio State University, Columbus, OH 43205
| | - Wolfram Ostertag
- *Department of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse1, 30625 Hannover, Germany
| | - Christopher Baum
- *Department of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse1, 30625 Hannover, Germany
| | - Moises Mallo
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Hannes Klump
- *Department of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse1, 30625 Hannover, Germany
| |
Collapse
|
45
|
Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:770-93. [PMID: 18028872 DOI: 10.1016/j.bbamem.2007.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 12/21/2022]
Abstract
Development of tight junctions and cell polarity in epithelial cells requires a complex cellular machinery to execute an internal program in response to ambient cues. Tight junctions, a product of this machinery, can act as gates of the paracellular pathway, fences that keep the identity of plasma membrane domains, bridges that communicate neighboring cells. The polarization internal program and machinery are conserved in yeast, worms, flies and mammals, and in cell types as different as epithelia, neurons and lymphocytes. Polarization and tight junctions are dynamic features that change during development, in response to physiological and pharmacological challenges and in pathological situations like infection.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, AP 14-740, México D.F. 07000, México.
| | | | | | | | | |
Collapse
|
46
|
O’Keefe DD, Prober DA, Moyle PS, Rickoll WL, Edgar BA. Egfr/Ras signaling regulates DE-cadherin/Shotgun localization to control vein morphogenesis in the Drosophila wing. Dev Biol 2007; 311:25-39. [PMID: 17888420 PMCID: PMC2128780 DOI: 10.1016/j.ydbio.2007.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 12/31/2022]
Abstract
Egfr/Ras signaling promotes vein cell fate specification in the developing Drosophila wing. While the importance of Ras signaling in vein determination has been extensively documented, the mechanisms linking Ras activity to vein differentiation remain unclear. We found that Ras signaling regulates both the levels and subcellular localization of the cell adhesion molecule DE-cadherin/Shotgun (Shg) in the differentiating wing epithelium. High Ras activity in presumptive vein cells directs the apical localization of Shg containing adherens junctions, whereas low Ras activity in intervein cells allows Shg to relocalize basally. These alterations in Shg-mediated adhesion control cell shape changes that are essential for vein morphogenesis. While Decapentaplegic (Dpp) acts downstream of Ras to maintain vein cell identity in the pupal wing, our results indicate that Ras controls Shg localization via a Dpp-independent mechanism. Ras, therefore, regulates both the transcriptional responses necessary for vein cell identity, and the cell adhesive changes that determine vein and intervein cell morphology.
Collapse
Affiliation(s)
- David D. O’Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - David A. Prober
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | | | | | - Bruce A. Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Corresponding author: , phone: (206) 667-4185, FAX: (206) 667-3308
| |
Collapse
|
47
|
Baer MM, Bilstein A, Leptin M. A clonal genetic screen for mutants causing defects in larval tracheal morphogenesis in Drosophila. Genetics 2007; 176:2279-91. [PMID: 17603107 PMCID: PMC1950631 DOI: 10.1534/genetics.107.074088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The initial establishment of the tracheal network in the Drosophila embryo is beginning to be understood in great detail, both in its genetic control cascades and in its cell biological events. By contrast, the vast expansion of the system during larval growth, with its extensive ramification of preexisting tracheal branches, has been analyzed less well. The mutant phenotypes of many genes involved in this process are probably not easy to reveal, as these genes may be required for other functions at earlier developmental stages. We therefore conducted a screen for defects in individual clonal homozygous mutant cells in the tracheal network of heterozygous larvae using the mosaic analysis with a repressible cell marker (MARCM) system to generate marked, recombinant mitotic clones. We describe the identification of a set of mutants with distinct phenotypic effects. In particular we found a range of defects in terminal cells, including failure in lumen formation and reduced or extensive branching. Other mutations affect cell growth, cell shape, and cell migration.
Collapse
Affiliation(s)
- Magdalena M Baer
- Institute of Genetics, University of Cologne, Zülpicher Strasse 47, D-50674 Cologne, Germany
| | | | | |
Collapse
|
48
|
Casanova J. The emergence of shape: notions from the study of the Drosophila tracheal system. EMBO Rep 2007; 8:335-9. [PMID: 17401407 PMCID: PMC1852757 DOI: 10.1038/sj.embor.7400942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/05/2007] [Indexed: 11/09/2022] Open
Abstract
The generation of bodies and body parts with specific shapes and sizes has been a longstanding issue in biology. Morphogenesis in general and organogenesis in particular are complex events that involve global changes in cell populations in terms of their proliferation, migration, differentiation and shape. Recent studies have begun to address how these synchronized changes are controlled by the genes that specify cell fate and by the ability of cells to respond to extracellular cues. In particular, a notable shift in this research has occurred owing to the ability to address these issues in the context of the whole organism. For such studies, the Drosophila tracheal system has proven to be a particularly appropriate model. Here, my aim is to highlight some ideas that have arisen through our studies, and those from other groups, of Drosophila tracheal development. Rather than providing an objective review of the features of tracheal development, I intend to discuss some selected notions that I think are relevant to the question of shape generation.
Collapse
Affiliation(s)
- Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Institut de Recerca Biomèdica, Carrer Josep Samitier 1-5, 08028, Barcelona, Spain.
| |
Collapse
|