1
|
Varga Z, Kagan F, Maegawa S, Nagy Á, Okendo J, Burgess SM, Weinberg ES, Varga M. Transposon insertion causes ctnnb2 transcript instability that results in the maternal effect zebrafish ichabod ( ich) mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640854. [PMID: 40093107 PMCID: PMC11908130 DOI: 10.1101/2025.02.28.640854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The maternal-effect mutation ichabod (ich) results in ventralized zebrafish embryos due to impaired induction of the dorsal canonical Wnt-signaling pathway. While previous studies linked the phenotype to reduced ctnnb2 transcript levels, the causative mutation remained unidentified. Using long-read sequencing, we discovered that the ich phenotype stems from the insertion of a non-autonomous CMC-Enhancer/Suppressor-mutator (CMC-EnSpm) transposon in the 3'UTR of the gene. Through reporter assays, we demonstrate that while wild type ctnnb2 mRNAs exhibit remarkably high stability throughout the early stages of development, the insertion of the transposon dramatically reduces transcript stability. Genome-wide mapping of the CMC-EnSpm transposons across multiple zebrafish strains also indicated ongoing transposition activity in the zebrafish genome. Our findings not only resolve the molecular basis of the ich mutation but also highlight the continuing mutagenic potential of endogenous transposons and reveal unexpected aspects of maternal transcript regulation during early zebrafish development.
Collapse
Affiliation(s)
- Zsombor Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Kagan
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shingo Maegawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Japan
| | - Ágnes Nagy
- Hungarian Defence Forces Medical Centre, Budapest, Hungary
| | - Javan Okendo
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Eric S Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
da Silva Pescador G, Baia Amaral D, Varberg JM, Zhang Y, Hao Y, Florens L, Bazzini AA. Protein profiling of zebrafish embryos unmasks regulatory layers during early embryogenesis. Cell Rep 2024; 43:114769. [PMID: 39302832 PMCID: PMC11544563 DOI: 10.1016/j.celrep.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
The maternal-to-zygotic transition is crucial in embryonic development, marked by the degradation of maternally provided mRNAs and initiation of zygotic gene expression. However, the changes occurring at the protein level during this transition remain unclear. Here, we conducted protein profiling throughout zebrafish embryogenesis using quantitative mass spectrometry, integrating transcriptomics and translatomics datasets. Our data show that, unlike RNA changes, protein changes are less dynamic. Further, increases in protein levels correlate with mRNA translation, whereas declines in protein levels do not, suggesting active protein degradation processes. Interestingly, proteins from pure zygotic genes are present at fertilization, challenging existing mRNA-based gene classifications. As a proof of concept, we utilized CRISPR-Cas13d to target znf281b mRNA, a gene whose protein significantly accumulates within the first 2 h post-fertilization, demonstrating its crucial role in development. Consequently, our protein profiling, coupled with CRISPR-Cas13d, offers a complementary approach to unraveling maternal factor function during embryonic development.
Collapse
Affiliation(s)
| | | | - Joseph M Varberg
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Yan Hao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
3
|
Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg CP. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development 2024; 151:dev202316. [PMID: 38372390 PMCID: PMC10911127 DOI: 10.1242/dev.202316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.
Collapse
Affiliation(s)
- Alexandra Schauer
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | | | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | | |
Collapse
|
4
|
Niescierowicz K, Pryszcz L, Navarrete C, Tralle E, Sulej A, Abu Nahia K, Kasprzyk ME, Misztal K, Pateria A, Pakuła A, Bochtler M, Winata C. Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish. Nat Commun 2022; 13:5520. [PMID: 36127363 PMCID: PMC9489775 DOI: 10.1038/s41467-022-33260-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Adenosine deaminases (ADARs) catalyze the deamination of adenosine to inosine, also known as A-to-I editing, in RNA. Although A-to-I editing occurs widely across animals and is well studied, new biological roles are still being discovered. Here, we study the role of A-to-I editing in early zebrafish development. We demonstrate that Adar, the zebrafish orthologue of mammalian ADAR1, is essential for establishing the antero-posterior and dorso-ventral axes and patterning. Genome-wide editing discovery reveals pervasive editing in maternal and the earliest zygotic transcripts, the majority of which occurred in the 3'-UTR. Interestingly, transcripts implicated in gastrulation as well as dorso-ventral and antero-posterior patterning are found to contain multiple editing sites. Adar knockdown or overexpression affect gene expression by 12 hpf. Analysis of adar-/- zygotic mutants further reveals that the previously described role of Adar in mammals in regulating the innate immune response is conserved in zebrafish. Our study therefore establishes distinct maternal and zygotic functions of RNA editing by Adar in embryonic patterning along the zebrafish antero-posterior and dorso-ventral axes, and in the regulation of the innate immune response, respectively.
Collapse
Affiliation(s)
| | - Leszek Pryszcz
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Cristina Navarrete
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Eugeniusz Tralle
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Marta Elżbieta Kasprzyk
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Abhishek Pateria
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrianna Pakuła
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland. .,Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
McFann SE, Shvartsman SY, Toettcher JE. Putting in the Erk: Growth factor signaling and mesoderm morphogenesis. Curr Top Dev Biol 2022; 149:263-310. [PMID: 35606058 DOI: 10.1016/bs.ctdb.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has long been known that FGF signaling contributes to mesoderm formation, a germ layer found in triploblasts that is composed of highly migratory cells that give rise to muscles and to the skeletal structures of vertebrates. FGF signaling activates several pathways in the developing mesoderm, including transient activation of the Erk pathway, which triggers mesodermal fate specification through the induction of the gene brachyury and activates morphogenetic programs that allow mesodermal cells to position themselves in the embryo. In this review, we discuss what is known about the generation and interpretation of transient Erk signaling in mesodermal tissues across species. We focus specifically on mechanisms that translate the level and duration of Erk signaling into cell fate and cell movement instructions and discuss strategies for further interrogating the role that Erk signaling dynamics play in mesodermal gastrulation and morphogenesis.
Collapse
Affiliation(s)
- Sarah E McFann
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
6
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Rogers KW, ElGamacy M, Jordan BM, Müller P. Optogenetic investigation of BMP target gene expression diversity. eLife 2020; 9:58641. [PMID: 33174840 PMCID: PMC7728441 DOI: 10.7554/elife.58641] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling molecules activate distinct patterns of gene expression to coordinate embryogenesis, but how spatiotemporal expression diversity is generated is an open question. In zebrafish, a BMP signaling gradient patterns the dorsal-ventral axis. We systematically identified target genes responding to BMP and found that they have diverse spatiotemporal expression patterns. Transcriptional responses to optogenetically delivered high- and low-amplitude BMP signaling pulses indicate that spatiotemporal expression is not fully defined by different BMP signaling activation thresholds. Additionally, we observed negligible correlations between spatiotemporal expression and transcription kinetics for the majority of analyzed genes in response to BMP signaling pulses. In contrast, spatial differences between BMP target genes largely collapsed when FGF and Nodal signaling were inhibited. Our results suggest that, similar to other patterning systems, combinatorial signaling is likely to be a major driver of spatial diversity in BMP-dependent gene expression in zebrafish.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Mohammad ElGamacy
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.,Heliopolis Biotechnology Ltd, London, United Kingdom
| | - Benjamin M Jordan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
10
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
11
|
In vivo targeted single-nucleotide editing in zebrafish. Sci Rep 2018; 8:11423. [PMID: 30061715 PMCID: PMC6065354 DOI: 10.1038/s41598-018-29794-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022] Open
Abstract
To date, several genome editing technologies have been developed and are widely utilized in many fields of biology. Most of these technologies, if not all, use nucleases to create DNA double-strand breaks (DSBs), raising the potential risk of cell death and/or oncogenic transformation. The risks hinder their therapeutic applications in humans. Here, we show that in vivo targeted single-nucleotide editing in zebrafish, a vertebrate model organism, can be successfully accomplished with the Target-AID system, which involves deamination of a targeted cytidine to create a nucleotide substitution from cytosine to thymine after replication. Application of the system to two zebrafish genes, chordin (chd) and one-eyed pinhead (oep), successfully introduced premature stop codons (TAG or TAA) in the targeted genomic loci. The modifications were heritable and faithfully produced phenocopies of well-known homozygous mutants of each gene. These results demonstrate for the first time that the Target-AID system can create heritable nucleotide substitutions in vivo in a programmable manner, in vertebrates, namely zebrafish.
Collapse
|
12
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
13
|
Zebrafish Models of Rare Hereditary Pediatric Diseases. Diseases 2018; 6:diseases6020043. [PMID: 29789451 PMCID: PMC6023479 DOI: 10.3390/diseases6020043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in sequencing technologies have made it significantly easier to find the genetic roots of rare hereditary pediatric diseases. These novel methods are not panaceas, however, and they often give ambiguous results, highlighting multiple possible causative mutations in affected patients. Furthermore, even when the mapping results are unambiguous, the affected gene might be of unknown function. In these cases, understanding how a particular genotype can result in a phenotype also needs carefully designed experimental work. Model organism genetics can offer a straightforward experimental setup for hypothesis testing. Containing orthologs for over 80% of the genes involved in human diseases, zebrafish (Danio rerio) has emerged as one of the top disease models over the past decade. A plethora of genetic tools makes it easy to create mutations in almost any gene of the zebrafish genome and these mutant strains can be used in high-throughput preclinical screens for active molecules. As this small vertebrate species offers several other advantages as well, its popularity in biomedical research is bound to increase, with “aquarium to bedside” drug development pipelines taking a more prevalent role in the near future.
Collapse
|
14
|
Zinski J, Bu Y, Wang X, Dou W, Umulis D, Mullins MC. Systems biology derived source-sink mechanism of BMP gradient formation. eLife 2017; 6:22199. [PMID: 28826472 PMCID: PMC5590806 DOI: 10.7554/elife.22199] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. Before an animal is born, a protein called BMP plays a key role in establishing the difference between the front and the back of the animal. Cells nearer the front of the embryo contain higher amounts of the BMP protein, whilst cells nearer the back have progressively lower levels of BMP. This gradient of BMP ‘concentration’ affects the identity of the cells, with the level of BMP in each cell dictating what parts of the body are made where. The prevailing view among scientists is that the BMP gradient is created by an opposing gradient of another protein called Chordin, which is found at high levels at the back of the embryo and lower levels near the front. Chordin inhibits BMP and the interaction between the two proteins establishes the gradients that create order across the embryo. Zinski et al. used computer models to investigate how the BMP gradient is created. Several possibilities were considered, including the effect of Chordin. Comparing the models to precise experimental measurements of BMP activity in zebrafish embryos suggested that a different mechanism known as a source-sink model, rather than the opposing Chordin gradient, may be responsible for the pattern of BMP found in the embryo. In this model, the BMP is produced at the front of the embryo and moves towards the back end by diffusion. At the back of the embryo, BMP is mopped up by Chordin, resulting in a constant gradient of BMP along the embryo. Many other processes that control how animals grow and develop rely on the formation of similar protein gradients, so these findings may also apply to other aspects of animal development. Understanding how animals grow and develop may help researchers to develop strategies to regrow tissues and organs in human patients.
Collapse
Affiliation(s)
- Joseph Zinski
- Department of Cell and DevelopmentalBiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Ye Bu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - Xu Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - Wei Dou
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - David Umulis
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, United States
| | - Mary C Mullins
- Department of Cell and DevelopmentalBiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| |
Collapse
|
15
|
Tanaka S, Hosokawa H, Weinberg ES, Maegawa S. Chordin and dickkopf-1b are essential for the formation of head structures through activation of the FGF signaling pathway in zebrafish. Dev Biol 2017; 424:189-197. [PMID: 28259755 DOI: 10.1016/j.ydbio.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
The ability of the Spemann organizer to induce dorsal axis formation is dependent on downstream factors of the maternal Wnt/β-catenin signaling pathway. The fibroblast growth factor (FGF) signaling pathway has been identified as one of the downstream components of the maternal Wnt/β-catenin signaling pathway. The ability of the FGF signaling pathway to induce the formation of a dorsal axis with a complete head structure requires chordin (chd) expression; however, the molecular mechanisms involved in this developmental process, due to activation of FGF signaling, remain unclear. In this study, we showed that activation of the FGF signaling pathway induced the formation of complete head structures through the expression of chd and dickkopf-1b (dkk1b). Using the organizer-deficient maternal mutant, ichabod, we identified dkk1b as a novel downstream factor in the FGF signaling pathway. We also demonstrate that dkk1b expression is necessary, after activation of the FGF signaling pathway, to induce neuroectoderm patterning along the anteroposterior (AP) axis and for formation of complete head structures. Co-injection of chd and dkk1b mRNA resulted in the formation of a dorsal axis with a complete head structure in ichabod embryos, confirming the role of these factors in this developmental process. Unexpectedly, we found that chd induced dkk1b expression in ichabod embryos at the shield stage. However, chd failed to maintain dkk1b expression levels in cells of the shield and, subsequently, in the cells of the prechordal plate after mid-gastrula stage. In contrast, activation of the FGF signaling pathway maintained the dkk1b expression from the beginning of gastrulation to early somitogenesis. In conclusion, activation of the FGF signaling pathway induces the formation of a dorsal axis with a complete head structure through the expression of chd and subsequent maintenance of dkk1b expression levels.
Collapse
Affiliation(s)
- Shingo Tanaka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Eric S Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shingo Maegawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Xiong C, Liu X, Meng A. The Kinase Activity-deficient Isoform of the Protein Araf Antagonizes Ras/Mitogen-activated Protein Kinase (Ras/MAPK) Signaling in the Zebrafish Embryo. J Biol Chem 2015; 290:25512-21. [PMID: 26306042 PMCID: PMC4646197 DOI: 10.1074/jbc.m115.676726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/23/2015] [Indexed: 11/06/2022] Open
Abstract
Raf kinases are important components of the Ras-Raf-Mek-Erk pathway and also cross-talk with other signaling pathways. Araf kinase has been demonstrated to inhibit TGF-β/Smad2 signaling by directly phosphorylating and accelerating degradation of activated Smad2. In this study, we show that the araf gene expresses in zebrafish embryos to produce a shorter transcript variant, araf-tv2, in addition to the full-length variant araf-tv1. araf-tv2 is predicted to encode a C-terminally truncated peptide without the kinase activity domain. Araf-tv2 can physically associate with Araf-tv1 but does not antagonize the inhibitory effect of Araf-tv1 on TGF-β/Smad2 signaling. Instead, Araf-tv2 interacts strongly with Kras and Nras, ultimately blocking MAPK activation by these Ras proteins. In zebrafish embryos, overexpression of araf-tv2 is sufficient to inhibit Fgf/Ras-promoted Erk activation, mesodermal induction, dorsal development, and neuroectodermal posteriorization. Therefore, different isoforms of Araf may participate in similar developmental processes but by regulating different signaling pathways.
Collapse
Affiliation(s)
- Cong Xiong
- From the State-Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 10084, China
| | - Xingfeng Liu
- From the State-Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 10084, China
| | - Anming Meng
- From the State-Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 10084, China
| |
Collapse
|
17
|
Lin KY, Kao SH, Lai CM, Chen CT, Wu CY, Hsu HJ, Wang WD. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3. J Biol Chem 2015; 290:29808-19. [PMID: 26475862 DOI: 10.1074/jbc.m115.669309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/06/2022] Open
Abstract
Wnt/β-catenin signaling controls various cell fates in metazoan development, and its dysregulation is often associated with cancer formation. However, regulations of this signaling pathway are not completely understood. Here, we report that Lzap, a tumor suppressor, controls nuclear translocation of β-catenin. In zebrafish embryos disruption of lzap increases the expression of chordin (chd), which encodes a bone morphogenetic protein (BMP) antagonist that is localized in prospective dorsal cells and promotes dorsal fates. Consistently, lzap-deficient embryos with attenuated BMP signaling are dorsalized, which can be rescued by overexpression of zebrafish lzap or bmp2b or human LZAP. The expansion of chd expression in embryos lacking lzap is due to the accumulation of nuclear β-catenin in ventral cells, in which β-catenin is usually degraded. Furthermore, the activity of GSK3, a master regulator of β-catenin degradation, is suppressed in lzap-deficient embryos via inhibitory phosphorylation. Finally, we also report that a similar regulatory axis is also likely to be present in a human tongue carcinoma cell line, SAS. Our results reveal that Lzap is a novel regulator of GSK3 for the maintenance of ventral cell properties and may prevent carcinogenesis via the regulation of β-catenin degradation.
Collapse
Affiliation(s)
- Kun-Yang Lin
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, Department of BioAgricultural Science, National Chiayi University, Chiayi 60004, Taiwan, and
| | - Shih-Han Kao
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chun-Ming Lai
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
| | - Ciao-Ting Chen
- Department of BioAgricultural Science, National Chiayi University, Chiayi 60004, Taiwan, and
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan
| | - Hwei-Jan Hsu
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan,
| | - Wen-Der Wang
- Department of BioAgricultural Science, National Chiayi University, Chiayi 60004, Taiwan, and
| |
Collapse
|
18
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
19
|
Varga M, Sass M, Papp D, Takács-Vellai K, Kobolak J, Dinnyés A, Klionsky DJ, Vellai T. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ 2013; 21:547-56. [PMID: 24317199 DOI: 10.1038/cdd.2013.175] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022] Open
Abstract
Regeneration is the ability of multicellular organisms to replace damaged tissues and regrow lost body parts. This process relies on cell fate transformation that involves changes in gene expression as well as in the composition of the cytoplasmic compartment, and exhibits a characteristic age-related decline. Here, we present evidence that genetic and pharmacological inhibition of autophagy - a lysosome-mediated self-degradation process of eukaryotic cells, which has been implicated in extensive cellular remodelling and aging - impairs the regeneration of amputated caudal fins in the zebrafish (Danio rerio). Thus, autophagy is required for injury-induced tissue renewal. We further show that upregulation of autophagy in the regeneration zone occurs downstream of mitogen-activated protein kinase/extracellular signal-regulated kinase signalling to protect cells from undergoing apoptosis and enable cytosolic restructuring underlying terminal cell fate determination. This novel cellular function of the autophagic process in regeneration implies that the role of cellular self-digestion in differentiation and tissue patterning is more fundamental than previously thought.
Collapse
Affiliation(s)
- M Varga
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - M Sass
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - D Papp
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - K Takács-Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - J Kobolak
- BioTalentum Ltd., H-2100, Gödöllő, Hungary
| | - A Dinnyés
- BioTalentum Ltd., H-2100, Gödöllő, Hungary
| | - D J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - T Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
20
|
Full transcriptome analysis of early dorsoventral patterning in zebrafish. PLoS One 2013; 8:e70053. [PMID: 23922899 PMCID: PMC3726443 DOI: 10.1371/journal.pone.0070053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway.
Collapse
|
21
|
Ramel MC, Hill CS. The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Dev Biol 2013; 378:170-82. [PMID: 23499658 PMCID: PMC3899928 DOI: 10.1016/j.ydbio.2013.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/26/2022]
Abstract
In the early zebrafish embryo, a ventral to dorsal gradient of bone morphogenetic protein (BMP) activity is established, which is essential for the specification of cell fates along this axis. To visualise and mechanistically determine how this BMP activity gradient forms, we have used a transgenic zebrafish line that expresses monomeric red fluorescent protein (mRFP) under the control of well-characterised BMP responsive elements. We demonstrate that mRFP expression in this line faithfully reports BMP and GDF signalling at both early and late stages of development. Taking advantage of the unstable nature of mRFP transcripts, we use in situ hybridisation to reveal the dynamic spatio-temporal pattern of BMP activity and establish the timing and sequence of events that lead to the formation of the BMP activity gradient. We show that the BMP transcriptional activity gradient is established between 30% and 40% epiboly stages and that it is preceded by graded mRNA expression of the BMP ligands. Both Dharma and FGF signalling contribute to graded bmp transcription during these early stages and it is subsequently maintained through autocrine BMP signalling. We show that BMP2B protein is also expressed in a gradient as early as blastula stages, but do not find any evidence of diffusion of this BMP to generate the BMP transcriptional activity gradient. Thus, in contrast to diffusion/transport-based models of BMP gradient formation in Drosophila, our results indicate that the establishment of the BMP activity gradient in early zebrafish embryos is determined by graded expression of the BMP ligands.
Collapse
Affiliation(s)
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| |
Collapse
|
22
|
Hashiguchi M, Mullins MC. Anteroposterior and dorsoventral patterning are coordinated by an identical patterning clock. Development 2013; 140:1970-80. [PMID: 23536566 DOI: 10.1242/dev.088104] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Establishment of the body plan in vertebrates depends on the temporally coordinated patterning of tissues along the body axes. We have previously shown that dorsoventral (DV) tissues are temporally patterned progressively from anterior to posterior by a BMP signaling pathway. Here we report that DV patterning along the zebrafish anteroposterior (AP) axis is temporally coordinated with AP patterning by an identical patterning clock. We altered AP patterning by inhibiting or activating FGF, Wnt or retinoic acid signaling combined with inhibition of BMP signaling at a series of developmental time points, which revealed that the temporal progression of DV patterning is directly coordinated with AP patterning. We investigated how these signaling pathways are integrated and suggest a model for how DV and AP patterning are temporally coordinated. It has been shown that in Xenopus dorsal tissues FGF and Wnt signaling quell BMP signaling by degrading phosphorylated (P) Smad1/5, the BMP pathway signal transducer, via phosphorylation of the Smad1/5 linker region. We show that in zebrafish FGF/MAPK, but not Wnt/GSK3, phosphorylation of the Smad1/5 linker region localizes to a ventral vegetal gastrula region that could coordinate DV patterning with AP patterning ventrally without degrading P-Smad1/5. Furthermore, we demonstrate that alteration of the MAPK phosphorylation sites in the Smad5 linker causes precocious patterning of DV tissues along the AP axis during gastrulation. Thus, DV and AP patterning are intimately coordinated to allow cells to acquire both positional and temporal information simultaneously.
Collapse
Affiliation(s)
- Megumi Hashiguchi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
23
|
Kuo CL, Lam CM, Hewitt JE, Scotting PJ. Formation of the embryonic organizer is restricted by the competitive influences of Fgf signaling and the SoxB1 transcription factors. PLoS One 2013; 8:e57698. [PMID: 23469052 PMCID: PMC3585176 DOI: 10.1371/journal.pone.0057698] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
The organizer is one of the earliest structures to be established during vertebrate development and is crucial to subsequent patterning of the embryo. We have previously shown that the SoxB1 transcription factor, Sox3, plays a central role as a transcriptional repressor of zebrafish organizer gene expression. Recent data suggest that Fgf signaling has a positive influence on organizer formation, but its role remains to be fully elucidated. In order to better understand how Fgf signaling fits into the complex regulatory network that determines when and where the organizer forms, the relationship between the positive effects of Fgf signaling and the repressive effects of the SoxB1 factors must be resolved. This study demonstrates that both fgf3 and fgf8 are required for expression of the organizer genes, gsc and chd, and that SoxB1 factors (Sox3, and the zebrafish specific factors, Sox19a and Sox19b) can repress the expression of both fgf3 and fgf8. However, we also find that these SoxB1 factors inhibit the expression of gsc and chd independently of their repression of fgf expression. We show that ectopic expression of organizer genes induced solely by the inhibition of SoxB1 function is dependent upon the activation of fgf expression. These data allow us to describe a comprehensive signaling network in which the SoxB1 factors restrict organizer formation by inhibiting Fgf, Nodal and Wnt signaling, as well as independently repressing the targets of that signaling. The organizer therefore forms only where Nodal-induced Fgf signaling overlaps with Wnt signaling and the SoxB1 proteins are absent.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
| | - Chi Man Lam
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
| | - Jane E. Hewitt
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
| | - Paul J. Scotting
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Abstract
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
25
|
Benyumov AO, Hergert P, Herrera J, Peterson M, Henke C, Bitterman PB. A novel zebrafish embryo xenotransplantation model to study primary human fibroblast motility in health and disease. Zebrafish 2012; 9:38-43. [PMID: 22356695 DOI: 10.1089/zeb.2011.0705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fibroblasts have a central role in the maintenance of tissue homeostasis and repair after injury. Currently, there are no tractable, cost-effective model systems for studying the biology of human fibroblasts in vivo. Here we demonstrate that primary human fibroblasts survive transplantation into zebrafish embryos. Transplanted cells migrate and proliferate, but do not integrate into host tissues. We used this system to study the intrinsic motility of lung fibroblasts from a prototype fibrotic lung disease, idiopathic pulmonary fibrosis (IPF). IPF fibroblasts displayed a significantly higher level of motility than did fibroblasts from nonfibrotic lungs. This is the first in vivo examination of primary human lung fibroblast motility in health and disease using zebrafish models.
Collapse
Affiliation(s)
- Alexey O Benyumov
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.
Collapse
Affiliation(s)
- Yvette G Langdon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
27
|
Belting HG, Wendik B, Lunde K, Leichsenring M, Mössner R, Driever W, Onichtchouk D. Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol 2011; 356:323-36. [PMID: 21621531 DOI: 10.1016/j.ydbio.2011.05.660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/18/2022]
Abstract
Pou5f1/Oct-4 in mice is required for maintenance of embryonic pluripotent cell populations. Zebrafish pou5f1 maternal-zygotic mutant embryos (spiel ohne grenzen; MZspg) lack endoderm and have gastrulation and dorsoventral patterning defects. A contribution of Pou5f1 to the control of bmp2b, bmp4 and vox expression has been suggested, however the mechanisms remained unclear and are investigated in detail here. Low-level overexpression of a Pou5f1-VP16 activator fusion protein can rescue dorsalization in MZspg mutants, indicating that Pou5f1 acts as a transcriptional activator during dorsoventral patterning. Overexpression of larger quantities of Pou5f1-VP16 can ventralize wild-type embryos, while overexpression of a Pou5f1-En repressor fusion protein can dorsalize embryos. Lack of Pou5f1 causes a transient upregulation of fgf8a expression after mid-blastula transition, providing a mechanism for delayed activation of bmp2b in MZspg embryos. Overexpression of the Pou5f1-En repressor induces fgf8, suggesting an indirect mechanism of Pou5f1 control of fgf8a expression. Transcription of vox is strongly activated by Pou5f1-VP16 even when translation of zygotically expressed transcripts is experimentally inhibited by cycloheximide. In contrast, bmp2b and bmp4 are not activated under these conditions. We show that Pou5f1 binds to phylogenetically conserved Oct/Pou5f1 sites in the vox promoter, both in vivo (ChIP) and in vitro. Our data reveals a set of direct and indirect interactions of Pou5f1 with the BMP dorsoventral patterning network that serve to fine-tune dorsoventral patterning mechanisms and coordinate patterning with developmental timing.
Collapse
Affiliation(s)
- Heinz-Georg Belting
- Developmental Biology, Faculty of Biology, University of Freiburg, Hauptstrasse 1, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Varga M, Maegawa S, Weinberg ES. Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer. BMC DEVELOPMENTAL BIOLOGY 2011; 11:26. [PMID: 21575247 PMCID: PMC3120780 DOI: 10.1186/1471-213x-11-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/16/2011] [Indexed: 11/10/2022]
Abstract
Background The embryonic organizer (i.e., Spemann organizer) has a pivotal role in the establishment of the dorsoventral (DV) axis through the coordination of BMP signaling. However, as impaired organizer function also results in anterior and posterior truncations, it is of interest to determine if proper anteroposterior (AP) pattern can be obtained even in the absence of early organizer signaling. Results Using the ventralized, maternal effect ichabod (ich) mutant, and by inhibiting BMP signaling in ich embryos, we provide conclusive evidence that AP patterning is independent of the organizer in zebrafish, and is governed by TGFβ, FGF, and Wnt signals emanating from the germ-ring. The expression patterns of neurectodermal markers in embryos with impaired BMP signaling show that the directionality of such signals is oriented along the animal-vegetal axis, which is essentially concordant with the AP axis. In addition, we find that in embryos inhibited in both Wnt and BMP signaling, the AP pattern of such markers is unchanged from that of the normal untreated embryo. These embryos develop radially organized trunk and head tissues, with an outer neurectodermal layer containing diffusely positioned neuronal precursors. Such organization is reflective of the presumed eumetazoan ancestor and might provide clues for the evolution of centralization in the nervous system. Conclusions Using a zebrafish mutant deficient in the induction of the embryonic organizer, we demonstrate that the AP patterning of the neuroectoderm during gastrulation is independent of DV patterning. Our results provide further support for Nieuwkoop's "two step model" of embryonic induction. We also show that the zebrafish embryo can form a radial diffuse neural sheath in the absence of both BMP signaling and the early organizer.
Collapse
Affiliation(s)
- Máté Varga
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, USA.
| | | | | |
Collapse
|
29
|
Shih YH, Kuo CL, Hirst CS, Dee CT, Liu YR, Laghari ZA, Scotting PJ. SoxB1 transcription factors restrict organizer gene expression by repressing multiple events downstream of Wnt signalling. Development 2010; 137:2671-81. [PMID: 20610482 DOI: 10.1242/dev.054130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Formation of the organizer is one of the most central patterning events in vertebrate development. Organizer-derived signals are responsible for establishing the CNS and patterning the dorsal ventral axis. The mechanisms promoting organizer formation are known to involve cooperation between Nodal and Wnt signalling. However, the organizer forms in a very restricted region, suggesting the presence of mechanisms that repress its formation. Here, we show in zebrafish that the transcription factor Sox3 represses multiple steps in the signalling events that lead to organizer formation. Although beta-catenin, Bozozok and Squint are known to play major roles in establishing the dorsal organizer in vertebrate embryos, overexpression of any of these is insufficient to induce robust expression of markers of the organizer in ectopic positions in the animal pole, where Sox3 is strongly expressed. We show that a dominant-negative nuclear localisation mutant of Sox3 can cause ectopic expression of organizer genes via a mechanism that activates all of these earlier factors, resulting in later axis duplication including major bifurcations of the CNS. We also find that the related SoxB1 factor, Sox19b, can act redundantly with Sox3 in these effects. It therefore seems that the broad expression of these SoxB1 genes throughout the early epiblast and their subsequent restriction to the ectoderm is a primary regulator of when and where the organizer forms.
Collapse
Affiliation(s)
- Yu-Huan Shih
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Synthetic and nonnatural oligonucleotides have been used extensively to interrogate gene function in zebrafish. In this review, we survey the capabilities and limitations of various oligonucleotide-based technologies for perturbing RNA function and tracking RNA expression. We also examine recent strategies for achieving spatiotemporal control of oligonucleotide function, particularly light-gated technologies that exploit the optical transparency of zebrafish embryos.
Collapse
Affiliation(s)
- Ilya A Shestopalov
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
31
|
Cruz C, Maegawa S, Weinberg ES, Wilson SW, Dawid IB, Kudoh T. Induction and patterning of trunk and tail neural ectoderm by the homeobox gene eve1 in zebrafish embryos. Proc Natl Acad Sci U S A 2010; 107:3564-9. [PMID: 20142486 PMCID: PMC2840505 DOI: 10.1073/pnas.1000389107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In vertebrates, Evx homeodomain transcription factor-encoding genes are expressed in the posterior region during embryonic development, and overexpression experiments have revealed roles in tail development in fish and frogs. We analyzed the molecular mechanisms of posterior neural development and axis formation regulated by eve1. We show that eve1 is involved in establishing trunk and tail neural ectoderm by two independent mechanisms: First, eve1 posteriorizes neural ectoderm via induction of aldh1a2, which encodes an enzyme that synthesizes retinoic acid; second, eve1 is involved in neural induction in the posterior ectoderm by attenuating BMP expression. Further, eve1 can restore trunk neural tube formation in the organizer-deficient ichabod(-/-) mutant. We conclude that eve1 is crucial for the organization of the antero-posterior and dorso-ventral axis in the gastrula ectoderm and also has trunk- and tail-promoting activity.
Collapse
Affiliation(s)
- Carlos Cruz
- School of Biosciences, University of Exeter, Devon EX4 4SP, United Kingdom
| | - Shingo Maegawa
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric S. Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; and
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Tetsuhiro Kudoh
- School of Biosciences, University of Exeter, Devon EX4 4SP, United Kingdom
| |
Collapse
|
32
|
Setdb2 restricts dorsal organizer territory and regulates left-right asymmetry through suppressing fgf8 activity. Proc Natl Acad Sci U S A 2010; 107:2521-6. [PMID: 20133783 DOI: 10.1073/pnas.0914396107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dorsal organizer formation is one of the most critical steps in early embryonic development. Several genes and signaling pathways that positively regulate the dorsal organizer development have been identified; however, little is known about the factor(s) that negatively regulates the organizer formation. Here, we show that Setdb2, a SET domain-containing protein possessing potential histone H3K9 methyltransferase activity, restricts dorsal organizer development and regulates left-right asymmetry by suppressing fibroblast growth factor 8 (fgf8) expression. Knockdown of Setdb2 results in a massive expansion of dorsal organizer markers floating head (flh), goosecoid (gsc), and chordin (chd), as well as a significant increase of fgf8, but not fgf4 mRNAs. Consequently, disrupted midline patterning and resultant randomization of left-right asymmetry are observed in Setdb2-deficient embryos. These characteristic changes induced by Setdb2 deficiency can be nearly corrected by either overexpression of a dominant-negative fgf receptor or knockdown of fgf8, suggesting an essential role for Setdb2-Fgf8 signaling in restricting dorsal organizer territory and regulating left-right asymmetry. These results provide unique evidence that a SET domain-containing protein potentially involved in the epigenetic control negatively regulates dorsal organizer formation during early embryonic development.
Collapse
|
33
|
Wills AE, Choi VM, Bennett MJ, Khokha MK, Harland RM. BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. Dev Biol 2009; 337:335-50. [PMID: 19913009 DOI: 10.1016/j.ydbio.2009.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 01/30/2023]
Abstract
In ectodermal explants from Xenopus embryos, inhibition of BMP signaling is sufficient for neural induction, leading to the idea that neural fate is the default state in the ectoderm. Many of these experiments assayed the action of BMP antagonists on animal caps, which are relatively naïve explants of prospective ectoderm, and different results have led to debate regarding both the mechanism of neural induction and the appropriateness of animal caps as an assay system. Here we address whether BMP antagonists are only able to induce neural fates in pre-patterned explants, and the extent to which neural induction requires FGF signaling. We suggest that some discrepancies in conclusion depend on the interpretations of sox gene expression, which we show not only marks definitive neural tissue, but also tissue that is not yet committed to neural fates. Part of the early sox2 domain requires FGF signaling, but in the absence of organizer signaling, this domain reverts to epidermal fates. We also reinforce the evidence that ectodermal explants are naïve, and that explants that lack any dorsal prepattern are readily neuralized by BMP antagonists, even when FGF signaling is inhibited.
Collapse
Affiliation(s)
- Andrea E Wills
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
34
|
Viktorin G, Chiuchitu C, Rissler M, Varga ZM, Westerfield M. Emx3 is required for the differentiation of dorsal telencephalic neurons. Dev Dyn 2009; 238:1984-98. [PMID: 19650145 PMCID: PMC2975037 DOI: 10.1002/dvdy.22031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
emx3 is first expressed in prospective telencephalic cells at the anterior border of the zebrafish neural plate. Knockdown of Emx3 function by morpholino reduces the expression of markers specific to dorsal telencephalon, and impairs axon tract formation. Rescue of both early and late markers requires low-level expression of emx3 at the one- or two-somite stage. Higher emx3 expression levels cause dorsal telencephalic markers to expand ventrally, which points to a possible role of emx3 in specifying dorsal telencephalon and a potential new function for Wnt/beta-catenin pathway activation. In contrast to mice, where Emx2 plays a major role in dorsal telencephalic development, knockdown of zebrafish Emx2 apparently does not affect telencephalic development. Similarly, Emx1 knockdown has little effect. Previously, emx3 was thought to be fish-specific. However, we found all three emx orthologs in Xenopus tropicalis and opossum (Monodelphis domestica) genomes, indicating that emx3 was present in an ancestral tetrapod genome.
Collapse
Affiliation(s)
- Gudrun Viktorin
- Institute of Developmental Biology, University of Freiburg, Freiburg, Germany
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Christina Chiuchitu
- Institute of Developmental Biology, University of Freiburg, Freiburg, Germany
| | - Michael Rissler
- Institute of Developmental Biology, University of Freiburg, Freiburg, Germany
| | - Zoltán M. Varga
- Institute of Developmental Biology, University of Freiburg, Freiburg, Germany
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
35
|
Lea R, Papalopulu N, Amaya E, Dorey K. Temporal and spatial expression of FGF ligands and receptors during Xenopus development. Dev Dyn 2009; 238:1467-79. [PMID: 19322767 PMCID: PMC3737481 DOI: 10.1002/dvdy.21913] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor (FGF) signalling plays a major role during early vertebrate development. It is involved in the specification of the mesoderm, control of morphogenetic movements, patterning of the anterior-posterior axis, and neural induction. In mammals, 22 FGF ligands have been identified, which can be grouped into seven subfamilies according to their sequence homology and function. We have cloned 17 fgf genes from Xenopus tropicalis and have analysed their temporal expression by RT-PCR and spatial expression by whole mount in situ hybridisation at key developmental stages. It reveals the diverse expression pattern of fgf genes during early embryonic development. Furthermore, our analysis shows the transient nature of expression of several fgfs in a number of embryonic tissues. This study constitutes the most comprehensive description of the temporal and spatial expression pattern of fgf ligands and receptors during vertebrate development to date. Developmental Dynamics 238:1467-1479, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Robert Lea
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Nancy Papalopulu
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Enrique Amaya
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Karel Dorey
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
36
|
Abstract
Astrocytes, the most abundant glial cell type in the brain, provide metabolic and trophic support to neurons and modulate synaptic activity. In response to a brain injury, astrocytes proliferate and become hypertrophic with an increased expression of intermediate filament proteins. This process is collectively referred to as reactive astrocytosis. Lipocalin 2 (lcn2) is a member of the lipocalin family that binds to small hydrophobic molecules. We propose that lcn2 is an autocrine mediator of reactive astrocytosis based on the multiple roles of lcn2 in the regulation of cell death, morphology, and migration of astrocytes. lcn2 expression and secretion increased after inflammatory stimulation in cultured astrocytes. Forced expression of lcn2 or treatment with LCN2 protein increased the sensitivity of astrocytes to cytotoxic stimuli. Iron and BIM (Bcl-2-interacting mediator of cell death) proteins were involved in the cytotoxic sensitization process. LCN2 protein induced upregulation of glial fibrillary acidic protein (GFAP), cell migration, and morphological changes similar to characteristic phenotypic changes termed reactive astrocytosis. The lcn2-induced phenotypic changes of astrocytes occurred through a Rho-ROCK (Rho kinase)-GFAP pathway, which was positively regulated by nitric oxide and cGMP. In zebrafishes, forced expression of rat lcn2 gene increased the number and thickness of cellular processes in GFAP-expressing radial glia cells, suggesting that lcn2 expression in glia cells plays an important role in vivo. Our results suggest that lcn2 acts in an autocrine manner to induce cell death sensitization and morphological changes in astrocytes under inflammatory conditions and that these phenotypic changes may be the basis of reactive astrocytosis in vivo.
Collapse
|
37
|
Olivares GH, Carrasco H, Aroca F, Carvallo L, Segovia F, Larraín J. Syndecan-1 regulates BMP signaling and dorso-ventral patterning of the ectoderm during early Xenopus development. Dev Biol 2009; 329:338-49. [PMID: 19303002 DOI: 10.1016/j.ydbio.2009.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Extracellular regulation of growth factor signaling is a key event for embryonic patterning. Heparan sulfate proteoglycans (HSPG) are among the molecules that regulate this signaling during embryonic development. Here we study the function of syndecan1 (Syn1), a cell-surface HSPG expressed in the non-neural ectoderm during early development of Xenopus embryos. Overexpression of Xenopus Syn1 (xSyn1) mRNA is sufficient to reduce BMP signaling, induce chordin expression and rescue dorso-ventral patterning in ventralized embryos. Experiments using chordin morpholinos established that xSyn1 mRNA can inhibit BMP signaling in the absence of chordin. Knockdown of xSyn1 resulted in a reduction of BMP signaling and expansion of the neural plate with the concomitant reduction of the non-neural ectoderm. Overexpression of xSyn1 mRNA in xSyn1 morphant embryos resulted in a biphasic effect, with BMP being inhibited at high concentrations and activated at low concentrations of xSyn1. Interestingly, the function of xSyn1 on dorso-ventral patterning and BMP signaling is specific for this HSPG. In summary, we report that xSyn1 regulates dorso-ventral patterning of the ectoderm through modulation of BMP signaling.
Collapse
Affiliation(s)
- Gonzalo H Olivares
- Center for Aging and Regeneration, Center for Cell Regulation and Pathology, MIFAB, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
38
|
Hashiguchi M, Shinya M, Tokumoto M, Sakai N. Nodal/Bozozok-independent induction of the dorsal organizer by zebrafish cell lines. Dev Biol 2008; 321:387-96. [DOI: 10.1016/j.ydbio.2008.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 11/25/2022]
|
39
|
Fletcher RB, Harland RM. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus. Dev Dyn 2008; 237:1243-54. [PMID: 18386826 PMCID: PMC3000043 DOI: 10.1002/dvdy.21517] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
FGF signaling is important for the formation of mesoderm in vertebrates, and when it is perturbed in Xenopus, most trunk and tail mesoderm fails to form. Here we have further dissected the activities of FGF in patterning the embryo by addressing its inductive and maintenance roles. We show that FGF signaling is necessary for the establishment of xbra expression in addition to its well-characterized role in maintaining xbra expression. The role of FGF signaling in organizer formation is not clear in Xenopus. We find that FGF signaling is essential for the initial specification of paraxial mesoderm but not for activation of several pan-mesodermal and most organizer genes; however, early FGF signaling is necessary for the maintenance of organizer gene expression into the neurula stage. Inhibition of FGF signaling prevents VegT activation of specific mesodermal transcripts. These findings illuminate how FGF signaling contributes to the establishment of distinct types of mesoderm.
Collapse
Affiliation(s)
| | - Richard M. Harland
- Department of Molecular & Cell Biology, Center for Integrative Genomics, University of California, Berkeley. 571 LSA, #3200, Berkeley, CA 94720-3200
| |
Collapse
|
40
|
Krens SFG, Corredor-Adámez M, He S, Snaar-Jagalska BE, Spaink HP. ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis. BMC Genomics 2008; 9:196. [PMID: 18442396 PMCID: PMC2390552 DOI: 10.1186/1471-2164-9-196] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/28/2008] [Indexed: 11/20/2022] Open
Abstract
Background The MAPK signaling proteins are involved in many eukaryotic cellular processes and signaling networks. However, specific functions of most of these proteins in vertebrate development remain elusive because of potential redundancies. For instance, the upstream activation pathways for ERK1 and ERK2 are highly similar, and also many of their known downstream targets are common. In contrast, mice and zebrafish studies indicate distinct roles for both ERKs in cellular proliferation, oncogenic transformation and development. A major bottleneck for further studies is that relatively little is known of in vivo downstream signaling specific for these kinases. Results Microarray based gene expression profiling of ERK1 and ERK2 knockdown zebrafish embryos at various stages of early embryogenesis resulted in specific gene expression signature sets that showed pronounced differences in gene ontology analyses. In order to predict functions of these genes, zebrafish specific in silico signaling pathways involved in early embryogenesis were constructed using the GenMAPP program. The obtained transcriptome signatures were analyzed in the BMP, FGF, Nodal and Wnt pathways. Predicted downstream effects of ERK1 and ERK2 knockdown treatments on key pathways responsible for mesendoderm development were confirmed by whole mount in situ hybridization experiments. Conclusion The gene ontology analyses showed that ERK1 and ERK2 target common and distinct gene sets, confirming the difference in knockdown phenotypes and diverse roles for these kinases during embryogenesis. For ERK1 we identified specific genes involved in dorsal-ventral patterning and subsequent embryonic cell migration. For ERK2 we identified genes involved in cell-migration, mesendoderm differentiation and patterning. The specific function of ERK2 in the initiation, maintenance and patterning of mesoderm and endoderm formation was biologically confirmed.
Collapse
Affiliation(s)
- S F Gabby Krens
- Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 3:481-95. [PMID: 18377228 DOI: 10.1089/zeb.2006.3.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Verkade H, Heath JK. Wnt signaling mediates diverse developmental processes in zebrafish. Methods Mol Biol 2008; 469:225-51. [PMID: 19109714 DOI: 10.1007/978-1-60327-469-2_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A combination of forward and reverse genetic approaches in zebrafish has revealed novel roles for canonical Wnt and Wnt/PCP signaling during vertebrate development. Forward genetics in zebrafish provides an exceptionally powerful tool to assign roles in vertebrate developmental processes to novel genes, as well as elucidating novel roles played by known genes. This has indeed turned out to be the case for components of the canonical Wnt signaling pathway. Non-canonical Wnt signaling in the zebrafish is also currently a topic of great interest, due to the identified roles of this pathway in processes requiring the integration of cell polarity and cell movement, such as the directed migration movements that drive the narrowing and lengthening (convergence and extension) of the embryo during early development.
Collapse
Affiliation(s)
- Heather Verkade
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
43
|
Varga M, Maegawa S, Bellipanni G, Weinberg ES. Chordin expression, mediated by Nodal and FGF signaling, is restricted by redundant function of two beta-catenins in the zebrafish embryo. Mech Dev 2007; 124:775-91. [PMID: 17686615 PMCID: PMC2156153 DOI: 10.1016/j.mod.2007.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 12/13/2022]
Abstract
Using embryos transgenic for the TOP-GFP reporter, we show that the two zebrafish beta-catenins have different roles in the organizer and germ-ring regions of the embryo. beta-Catenin-activated transcription in the prospective organizer region specifically requires beta-catenin-2, whereas the ventrolateral domain of activated transcription is abolished only when both beta-catenins are inhibited. chordin expression during zebrafish gastrulation has been previously shown in both axial and paraxial domains, but is excluded from ventrolateral domains. We show that this gene is expressed in paraxial territories adjacent to the domain of ventrolateral beta-catenin-activated transcription, with only slight overlap, consistent with the now well-known inhibitory effects of Wnt8 on dorsal gene expression. Eliminating both Wnt8/beta-catenin signaling and organizer activity by inhibition of expression of the two beta-catenins results in massive ectopic circumferential expression of chordin and later, by formation of a distinctive embryonic phenotype ('ciuffo') that expresses trunk and anterior neural markers with correct relative anteroposterior patterning. We show that chordin expression is required for this neural gene expression. The Nodal gene squint has been shown to be necessary for optimal expression of chordin and is sufficient in some contexts for its expression. However, chordin is not normally expressed in the ventrolateral germ-ring despite robust expression of squint in this domain. We show the ectopic circumferential expression of chordin and other dorsal genes to be completely dependent on Nodal and FGF signaling, and to be independent of a functional organizer. We propose that whereas the axial domain of chordin expression is formed by cells that are derived from the organizer, the paraxial domain is the result of axial-derived anti-Wnt signals, which relieve the repression that otherwise is set by the Wnt8/beta-catenin/vox,vent pathway on latent germ-ring Nodal/FGF-activated expression.
Collapse
Affiliation(s)
| | - Shingo Maegawa
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Eric S. Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Tang X, Maegawa S, Weinberg ES, Dmochowski IJ. Regulating gene expression in zebrafish embryos using light-activated, negatively charged peptide nucleic acids. J Am Chem Soc 2007; 129:11000-1. [PMID: 17711280 DOI: 10.1021/ja073723s] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- XinJing Tang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|