1
|
Moghe P, Belousov R, Ichikawa T, Iwatani C, Tsukiyama T, Erzberger A, Hiiragi T. Coupling of cell shape, matrix and tissue dynamics ensures embryonic patterning robustness. Nat Cell Biol 2025; 27:408-423. [PMID: 39966670 PMCID: PMC11906357 DOI: 10.1038/s41556-025-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/20/2024] [Indexed: 02/20/2025]
Abstract
Tissue patterning coordinates morphogenesis, cell dynamics and fate specification. Understanding how precision in patterning is robustly achieved despite inherent developmental variability during mammalian embryogenesis remains a challenge. Here, based on cell dynamics quantification and simulation, we show how salt-and-pepper epiblast and primitive endoderm (PrE) cells pattern the inner cell mass of mouse blastocysts. Coupling cell fate and dynamics, PrE cells form apical polarity-dependent actin protrusions required for RAC1-dependent migration towards the surface of the fluid cavity, where PrE cells are trapped due to decreased tension. Concomitantly, PrE cells deposit an extracellular matrix gradient, presumably breaking the tissue-level symmetry and collectively guiding their own migration. Tissue size perturbations of mouse embryos and their comparison with monkey and human blastocysts further demonstrate that the fixed proportion of PrE/epiblast cells is optimal with respect to embryo size and tissue geometry and, despite variability, ensures patterning robustness during early mammalian development.
Collapse
Grants
- The Hiiragi laboratory was supported by the EMBL, and currently by the Hubrecht Institute, the European Research Council (ERC Advanced Grant “SelforganisingEmbryo” grant agreement 742732, ERC Advanced Grant “COORDINATION” grant agreement 101055287), Stichting LSH-TKI (LSHM21020), and Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP21H05038 and JP22H05166. The Erzberger laboratory is supported by the EMBL.
- European Molecular Biology Laboratory (EMBL Heidelberg)
- MEXT | Japan Society for the Promotion of Science (JSPS)
- T.I. was supported by the JSPS Overseas Research Fellowship
- The Erzberger laboratory is supported by the EMBL.
- The Hiiragi laboratory was supported by the EMBL, and currently by the Hubrecht Institute, the European Research Council (ERC Advanced Grant “SelforganisingEmbryo” grant agreement 742732, ERC Advanced Grant “COORDINATION” grant agreement 101055287), Stichting LSH-TKI (LSHM21020), and Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP21H05038 and JP22H05166.
Collapse
Affiliation(s)
- Prachiti Moghe
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Roman Belousov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Takafumi Ichikawa
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Takashi Hiiragi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Mironov A, Fisher M, Narayanan P, Elsayed R, Karabulutoglu M, Akhtar N. Rac1 controls cell turnover and reversibility of the involution process in postpartum mammary glands. PLoS Biol 2023; 21:e3001583. [PMID: 36656812 PMCID: PMC9851507 DOI: 10.1371/journal.pbio.3001583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/11/2022] [Indexed: 01/20/2023] Open
Abstract
Cell turnover in adult tissues is essential for maintaining tissue homeostasis over a life span and for inducing the morphological changes associated with the reproductive cycle. However, the underlying mechanisms that coordinate the balance of cell death and proliferation remain unsolved. Using the mammary gland, we have discovered that Rac1 acts as a nexus to control cell turnover. Postlactational tissue regression is characterised by the death of milk secreting alveoli, but the process is reversible within the first 48 h if feeding recommences. In mice lacking epithelial Rac1, alveolar regression was delayed. This defect did not result from failed cell death but rather increased cell turnover. Fitter progenitor cells inappropriately divided, regenerating the alveoli, but cell death also concomitantly accelerated. We discovered that progenitor cell hyperproliferation was linked to nonautonomous effects of Rac1 deletion on the macrophageal niche with heightened inflammation. Moreover, loss of Rac1 impaired cell death with autophagy but switched the cell death route to apoptosis. Finally, mammary gland reversibility failed in the absence of Rac1 as the alveoli failed to recommence lactation upon resuckling.
Collapse
Affiliation(s)
- Aleksandr Mironov
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Matthew Fisher
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Priya Narayanan
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Randa Elsayed
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Melis Karabulutoglu
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Nasreen Akhtar
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Wang F, van Baal J, Ma L, Gao X, Dijkstra J, Bu D. MRCKα is a novel regulator of prolactin-induced lactogenesis in bovine mammary epithelial cells. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:319-328. [PMID: 35891685 PMCID: PMC9304597 DOI: 10.1016/j.aninu.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/18/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Myotonic dystrophy-related Cdc42-binding kinase alpha (MRCKα) is an integral component of signaling pathways controlling vital cellular processes, including cytoskeletal reorganization, cell proliferation and cell survival. In this study, we investigated the physiological role of MRCKα in milk protein and fat production in dairy cows, which requires a dynamic and strict organization of the cytoskeletal network in bovine mammary epithelial cells (BMEC). Within a selection of 9 Holstein cows, we found that both mRNA and protein expression of MRCKα in the mammary gland were upregulated during lactation and correlated positively (r > 0.89) with the mRNA and protein levels of β-casein. Similar positive correlations (r > 0.79) were found in a primary culture of BMEC stimulated with prolactin for 24 h. In these cells, silencing of MRCKα decreased basal β-casein, sterol-regulatory element binding protein (SREBP)-1 and cyclin D1 protein level, phosphorylation of mTOR, triglyceride secretion, cell number and viability-while overexpression of MRCKα displayed the reversed effect. Notably, silencing of MRCKα completely prevented the stimulatory action of prolactin on the same parameters. These data demonstrate that MRCKα is a critical mediator of prolactin-induced lactogenesis via stimulation of the mTOR/SREBP1/cyclin D1 signaling pathway.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Animal Nutrition Group, Wageningen University and Research, Wageningen, 6708, WD, the Netherlands
| | - Jürgen van Baal
- Animal Nutrition Group, Wageningen University and Research, Wageningen, 6708, WD, the Netherlands
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research, Wageningen, 6708, WD, the Netherlands
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing, 100193, China
| |
Collapse
|
4
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
5
|
Watt AP, Lefevre C, Wong CS, Nicholas KR, Sharp JA. Insulin regulates human mammosphere development and function. Cell Tissue Res 2021; 384:333-352. [PMID: 33439347 DOI: 10.1007/s00441-020-03360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Assessing the role of lactogenic hormones in human mammary gland development is limited due to issues accessing tissue samples and so development of a human in vitro three-dimensional mammosphere model with functions similar to secretory alveoli in the mammary gland can aid to overcome this shortfall. In this study, a mammosphere model has been characterised using human mammary epithelial cells grown on either mouse extracellular matrix or agarose and showed insulin is essential for formation of mammospheres. Insulin was shown to up-regulate extracellular matrix genes. Microarray analysis of these mammospheres revealed an up-regulation of differentiation, cell-cell junctions, and cytoskeleton organisation functions, suggesting mammosphere formation may be regulated through ILK signalling. Comparison of insulin and IGF-1 effects on mammosphere signalling showed that although IGF-1 could induce spherical structures, the cells did not polarise correctly as shown by the absence of up-regulation of polarisation genes and did not induce the expression of milk protein genes. This study demonstrated a major role for insulin in mammary acinar development for secretory differentiation and function indicating the potential for reduced lactational efficiency in women with obesity and gestational diabetes.
Collapse
Affiliation(s)
- Ashalyn P Watt
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia.
| | - Christophe Lefevre
- Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, 3000, Melbourne, Australia.,Peter MacCallum Cancer Research Institute, East Melbourne, 3002, Australia
| | - Cynthia S Wong
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| | - Kevin R Nicholas
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| |
Collapse
|
6
|
Bulus N, Brown KL, Mernaugh G, Böttcher A, Dong X, Sanders CR, Pozzi A, Fässler R, Zent R. Disruption of the integrin-linked kinase (ILK) pseudokinase domain affects kidney development in mice. J Biol Chem 2021; 296:100361. [PMID: 33539921 PMCID: PMC7949147 DOI: 10.1016/j.jbc.2021.100361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Nada Bulus
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kyle L Brown
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Glenda Mernaugh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anika Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Institute of Diabetes and Regeneration Research, HelmholtzZentrum, Munich, Germany
| | - Xinyu Dong
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Veterans Affairs Hospital, Nashville, Tennessee, USA
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Veterans Affairs Hospital, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
Tian M, Qi Y, Zhang X, Wu Z, Chen J, Chen F, Guan W, Zhang S. Regulation of the JAK2-STAT5 Pathway by Signaling Molecules in the Mammary Gland. Front Cell Dev Biol 2020; 8:604896. [PMID: 33282878 PMCID: PMC7705115 DOI: 10.3389/fcell.2020.604896] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Janus kinase 2 (JAK2) and signal transducers and activators of transcription 5 (STAT5) are involved in the proliferation, differentiation, and survival of mammary gland epithelial cells. Dysregulation of JAK2-STAT5 activity invariably leads to mammary gland developmental defects and/or diseases, including breast cancer. Proper functioning of the JAK2-STAT5 signaling pathway relies on crosstalk with other signaling pathways (synergistically or antagonistically), which leads to normal biological performance. This review highlights recent progress regarding the critical components of the JAK2-STAT5 pathway and its crosstalk with G-protein coupled receptor (GPCR) signaling, PI3K-Akt signaling, growth factors, inflammatory cytokines, hormone receptors, and cell adhesion.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
9
|
Cayre S, Faraldo MM, Bardin S, Miserey-Lenkei S, Deugnier MA, Goud B. RAB6 GTPase regulates mammary secretory function by controlling the activation of STAT5. Development 2020; 147:dev.190744. [PMID: 32895290 PMCID: PMC7561474 DOI: 10.1242/dev.190744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The Golgi-associated RAB GTPases, RAB6A and RAB6A', regulate anterograde and retrograde transport pathways from and to the Golgi. In vitro, RAB6A/A' control several cellular functions including cell division, migration, adhesion and polarity. However, their role remains poorly described in vivo Here, we generated BlgCre; Rab6a F/F mice presenting a specific deletion of Rab6a in the mammary luminal secretory lineage during gestation and lactation. Rab6a loss severely impaired the differentiation, maturation and maintenance of the secretory tissue, compromising lactation. The mutant epithelium displayed a decreased activation of STAT5, a key regulator of the lactogenic process primarily governed by prolactin. Data obtained with a mammary epithelial cell line suggested that defective STAT5 activation might originate from a perturbed transport of the prolactin receptor, altering its membrane expression and signaling cascade. Despite the major functional defects observed upon Rab6a deletion, the polarized organization of the mammary epithelial bilayer was preserved. Altogether, our data reveal a crucial role for RAB6A/A' in the lactogenic function of the mammary gland and suggest that the trafficking pathways controlled by RAB6A/A' depend on cell-type specialization and tissue context.
Collapse
Affiliation(s)
- Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marisa M Faraldo
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France.,INSERM, Paris F-75013, France
| | - Sabine Bardin
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Stéphanie Miserey-Lenkei
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France .,INSERM, Paris F-75013, France
| | - Bruno Goud
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| |
Collapse
|
10
|
Zhang Y, Tang C, Span PN, Rowan AE, Aalders TW, Schalken JA, Adema GJ, Kouwer PHJ, Zegers MMP, Ansems M. Polyisocyanide Hydrogels as a Tunable Platform for Mammary Gland Organoid Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001797. [PMID: 32999851 PMCID: PMC7509700 DOI: 10.1002/advs.202001797] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 05/20/2023]
Abstract
In the last decade, organoid technology has developed as a primary research tool in basic biological and clinical research. The reliance on poorly defined animal-derived extracellular matrix, however, severely limits its application in regenerative and translational medicine. Here, a well-defined, synthetic biomimetic matrix based on polyisocyanide (PIC) hydrogels that support efficient and reproducible formation of mammary gland organoids (MGOs) in vitro is presented. Only decorated with the adhesive peptide RGD for cell binding, PIC hydrogels allow MGO formation from mammary fragments or from purified single mammary epithelial cells. The cystic organoids maintain their capacity to branch for over two months, which is a fundamental and complex feature during mammary gland development. It is found that small variations in the 3D matrix give rise to large changes in the MGO: the ratio of the main cell types in the MGO is controlled by the cell-gel interactions via the cell binding peptide density, whereas gel stiffness controls colony formation efficiency, which is indicative of the progenitor density. Simple hydrogel modifications will allow for future introduction and customization of new biophysical and biochemical parameters, making the PIC platform an ideal matrix for in depth studies into organ development and for application in disease models.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135NijmegenAJ 6525The Netherlands
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Chunling Tang
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Paul N. Span
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Tilly W. Aalders
- Experimental UrologyRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Jack A. Schalken
- Experimental UrologyRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135NijmegenAJ 6525The Netherlands
| | - Mirjam M. P. Zegers
- Department of Cell BiologyRadboud Institute for Molecular SciencesRadboud University Medical CenterGeert Grooteplein 28NijmegenGA6525The Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| |
Collapse
|
11
|
Wang P, Wu J, Wood A, Jones M, Pedley R, Li W, Ross RS, Ballestrem C, Gilmore AP, Streuli CH. Vinculins interaction with talin is essential for mammary epithelial differentiation. Sci Rep 2019; 9:18400. [PMID: 31804547 PMCID: PMC6895056 DOI: 10.1038/s41598-019-54784-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/18/2019] [Indexed: 11/08/2022] Open
Abstract
Vinculin is an essential component of cell adhesion complexes, where it regulates the strength and stability of adhesions. Whilst the role of vinculin in cell motility is well established, it remains unclear how vinculin contributes to other aspects of tissue function. Here we examine the role of vinculin in mammary epithelial cell phenotype. In these cells, correct adhesion to the extracellular matrix is essential for both the formation of polarised secretory acini and for the transcription of tissue-specific milk protein genes. We show that vinculin, through its interaction with talin, controls milk protein gene expression. However, vinculin is not required for the formation of polarised acini. This work reveals new roles for vinculin that are central to cellular differentiation, and for the ability of cells to interpret their extracellular microenvironment.
Collapse
Affiliation(s)
- Pengbo Wang
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
- CRUK Manchester Institute, Manchester, UK
| | - Jian Wu
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Amber Wood
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Matthew Jones
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Robert Pedley
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Weiping Li
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Robert S Ross
- UCSD School of Medicine, Department of Medicine, La Jolla, CA, UK
- Veterans Administration Healthcare San Diego, San Diego, CA, USA
| | - Christoph Ballestrem
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK.
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Xu W, Gulvady AC, Goreczny GJ, Olson EC, Turner CE. Paxillin-dependent regulation of apical-basal polarity in mammary gland morphogenesis. Development 2019; 146:dev.174367. [PMID: 30967426 DOI: 10.1242/dev.174367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/03/2019] [Indexed: 01/31/2023]
Abstract
Establishing apical-basal epithelial cell polarity is fundamental for mammary gland duct morphogenesis during mammalian development. While the focal adhesion adapter protein paxillin is a well-characterized regulator of mesenchymal cell adhesion signaling, F-actin cytoskeleton remodeling and single cell migration, its role in epithelial tissue organization and mammary gland morphogenesis in vivo has not been investigated. Here, using a newly developed paxillin conditional knockout mouse model with targeted ablation in the mammary epithelium, in combination with ex vivo three-dimensional organoid and acini cultures, we identify new roles for paxillin in the establishment of apical-basal epithelial cell polarity and lumen formation, as well as mammary gland duct diameter and branching. Paxillin is shown to be required for the integrity and apical positioning of the Golgi network, Par complex and the Rab11/MyoVb trafficking machinery. Paxillin depletion also resulted in reduced levels of apical acetylated microtubules, and rescue experiments with the HDAC6 inhibitor tubacin highlight the central role for paxillin-dependent regulation of HDAC6 activity and associated microtubule acetylation in controlling epithelial cell apical-basal polarity and tissue branching morphogenesis.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, 505 Irving Ave, Syracuse, NY 13210, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
13
|
Streuli CH, Meng QJ. Influence of the extracellular matrix on cell-intrinsic circadian clocks. J Cell Sci 2019; 132:jcs207498. [PMID: 30709969 DOI: 10.1242/jcs.207498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell-autonomous circadian clocks coordinate tissue homeostasis with a 24-hourly rhythm. The molecular circadian clock machinery controls tissue- and cell type-specific sets of rhythmic genes. Disruptions of clock mechanisms are linked to an increased risk of acquiring diseases, especially those associated with aging, metabolic dysfunction and cancer. Despite rapid advances in understanding the cyclic outputs of different tissue clocks, less is known about how the clocks adapt to their local niche within tissues. We have discovered that tissue stiffness regulates circadian clocks, and that this occurs in a cell-type-dependent manner. In this Review, we summarise new work linking the extracellular matrix with differential control of circadian clocks. We discuss how the changes in tissue structure and cellular microenvironment that occur throughout life may impact on the molecular control of circadian cycles. We also consider how altered clocks may have downstream impacts on the acquisition of diseases.
Collapse
Affiliation(s)
- Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Olabi S, Ucar A, Brennan K, Streuli CH. Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Res 2018; 20:128. [PMID: 30348189 PMCID: PMC6198444 DOI: 10.1186/s13058-018-1048-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Background Stem cells are precursors for all mammary epithelia, including ductal and alveolar epithelia, and myoepithelial cells. In vivo mammary epithelia reside in a tissue context and interact with their milieu via receptors such as integrins. Extracellular matrix receptors coordinate important cellular signalling platforms, of which integrins are the central architects. We have previously shown that integrins are required for mammary epithelial development and function, including survival, cell cycle, and polarity, as well as for the expression of mammary-specific genes. In the present study we looked at the role of integrins in mammary epithelial stem cell self-renewal. Methods We used an in vitro stem cell assay with primary mouse mammary epithelial cells isolated from genetically altered mice. This involved a 3D organoid assay, providing an opportunity to distinguish the stem cell- or luminal progenitor-driven organoids as structures with solid or hollow appearances, respectively. Results We demonstrate that integrins are essential for the maintenance and self-renewal of mammary epithelial stem cells. Moreover integrins activate the Rac1 signalling pathway in stem cells, which leads to the stimulation of a Wnt pathway, resulting in expression of β-catenin target genes such as Axin2 and Lef1. Conclusions Integrin/Rac signalling has a role in specifying the activation of a canonical Wnt pathway that is required for mammary epithelial stem cell self-renewal. Electronic supplementary material The online version of this article (10.1186/s13058-018-1048-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Safiah Olabi
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ahmet Ucar
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Keith Brennan
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
15
|
Fiore APZP, Ribeiro PDF, Bruni-Cardoso A. Sleeping Beauty and the Microenvironment Enchantment: Microenvironmental Regulation of the Proliferation-Quiescence Decision in Normal Tissues and in Cancer Development. Front Cell Dev Biol 2018; 6:59. [PMID: 29930939 PMCID: PMC6001001 DOI: 10.3389/fcell.2018.00059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023] Open
Abstract
Cells from prokaryota to the more complex metazoans cease proliferating at some point in their lives and enter a reversible, proliferative-dormant state termed quiescence. The appearance of quiescence in the course of evolution was essential to the acquisition of multicellular specialization and compartmentalization and is also a central aspect of tissue function and homeostasis. But what makes a cell cease proliferating even in the presence of nutrients, growth factors, and mitogens? And what makes some cells "wake up" when they should not, as is the case in cancer? Here, we summarize and discuss evidence showing how microenvironmental cues such as those originating from metabolism, extracellular matrix (ECM) composition and arrangement, neighboring cells and tissue architecture control the cellular proliferation-quiescence decision, and how this complex regulation is corrupted in cancer.
Collapse
Affiliation(s)
| | | | - Alexandre Bruni-Cardoso
- e-Signal Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Fiore APZP, Spencer VA, Mori H, Carvalho HF, Bissell MJ, Bruni-Cardoso A. Laminin-111 and the Level of Nuclear Actin Regulate Epithelial Quiescence via Exportin-6. Cell Rep 2018; 19:2102-2115. [PMID: 28591581 DOI: 10.1016/j.celrep.2017.05.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 03/19/2017] [Accepted: 05/12/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear actin (N-actin) is known to participate in the regulation of gene expression. We showed previously that N-actin levels mediate the growth and quiescence of mouse epithelial cells in response to laminin-111 (LN1), a component of the mammary basement membrane (BM). We know that BM is defective in malignant cells, and we show here that it is the LN1/N-actin pathway that is aberrant in human breast cancer cells, leading to continuous growth. Photobleaching assays revealed that N-actin exit in nonmalignant cells begins as early as 30 min after LN1 treatment. LN1 attenuates the PI3K pathway leading to upregulation of exportin-6 (XPO6) activity and shuttles actin out of the nucleus. Silencing XPO6 prevents quiescence. Malignant cells are impervious to LN1 signaling. These results shed light on the crucial role of LN1 in quiescence and differentiation and how defects in the LN1/PI3K/XPO6/N-actin axis explain the loss of tissue homeostasis and growth control that contributes to malignant progression.
Collapse
Affiliation(s)
- Ana Paula Zen Petisco Fiore
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Hidetoshi Mori
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Hernandes F Carvalho
- INFABiC - National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, SP 13083-862, Brazil; Structural and Functional Biology Department, Institute of Biology, State University of Campinas, Campinas, SP 13083-865, Brazil
| | - Mina J Bissell
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; INFABiC - National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
17
|
Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget 2018; 7:48093-48106. [PMID: 27344177 PMCID: PMC5217003 DOI: 10.18632/oncotarget.10137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
18
|
Pavuluri S, Sharp JA, Lefevre C, Nicholas KR. The Effect of Mammary Extracellular Matrix in Controlling Oral and Mammary Cancer Cells. Asian Pac J Cancer Prev 2018; 19:57-63. [PMID: 29373893 PMCID: PMC5844637 DOI: 10.22034/apjcp.2018.19.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Extracellular matrix (ECM) plays an important role in the normal physiology of tissues and progression to disease. Earlier studies and our external microarray data analysis indicated that mammary matrix from involuting tissue showed upregulation of genes involved in ECM remodeling. The present study examines the fate of mammary and oral cancer cells grown in the ECM from lactating mammary gland. Our findings show that non-tumorigenic cells, MCF10A and DOK cells did not proliferate but the tumorigenic and metastatic cells, SCC25 and MDA-MB-231, underwent apoptosis when grown on mammary ECM isolated from lactating mice. In addition, the cytokinesis marker, CEP55, was repressed in the oral and breast cancer cells. In contrast, these cells proliferated normally on mammary ECM isolated from mice undergoing involution. External microarray data analysis of mammary tissue further revealed over expression (~16 fold) of QSOX1 gene, which promotes cellular quiescence, in lactating mammary gland. A recent study has indicated that QSOX1 overexpression in breast cancer cells led to reduced proliferation and tumorigenic properties. This extracellular protein in mammary ECM may be responsible for reduced cellular proliferation. The present study has shown that ECM from lactating mammary gland can regulate signals to oral and breast cancer cells to halt cell division. This preliminary observation provided insights into the potential role of ECM factors present in lactating mammary gland as therapeutic targets to control cancer cell division. This preliminary study is an attempt to understand not only the requirement of ECM remodeling factors essential for the growth and survival of cancer cells but also the factors present in the lactation matrix that simultaneously halts cell division and selectively inhibits the growth of cancer cells.
Collapse
Affiliation(s)
- Sivapriya Pavuluri
- Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, India
| | | | | | | |
Collapse
|
19
|
The adaptor SASH1 acts through NOTCH1 and its inhibitor DLK1 in a 3D model of lumenogenesis involving CEACAM1. Exp Cell Res 2017; 359:384-393. [DOI: 10.1016/j.yexcr.2017.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/02/2017] [Accepted: 08/13/2017] [Indexed: 12/21/2022]
|
20
|
Streuli CH. Integrins as architects of cell behavior. Mol Biol Cell 2017; 27:2885-8. [PMID: 27687254 PMCID: PMC5042575 DOI: 10.1091/mbc.e15-06-0369] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/04/2016] [Indexed: 11/16/2022] Open
Abstract
Integrins are cell surface receptors that bind cells to their physical external environment, linking the extracellular matrix to cell function. They are essential in the biology of all animals. In the late 1980s, we discovered that integrins are required for the ability of breast epithelia to do what they are programmed to do, which is to differentiate and make milk. Since then, integrins have been shown to control most other aspects of phenotype: to stay alive, to divide, and to move about. Integrins also provide part of the mechanism that allows cells to form tissues. Here I discuss how we discovered that integrins control mammary gland differentiation and explore the role of integrins as central architects of other aspects of cell behavior.
Collapse
Affiliation(s)
- Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
21
|
Bridgewater RE, Streuli CH, Caswell PT. Extracellular matrix promotes clathrin-dependent endocytosis of prolactin and STAT5 activation in differentiating mammary epithelial cells. Sci Rep 2017; 7:4572. [PMID: 28676702 PMCID: PMC5496899 DOI: 10.1038/s41598-017-04783-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
The hormone prolactin promotes lactational differentiation of mammary epithelial cells (MECs) via its cognate receptor and the downstream JAK2-STAT5a signalling pathway. In turn this regulates transcription of milk protein genes. Prolactin signalling depends on a cross-talk with basement membrane extracellular matrix (ECM) via β1 integrins which activate both ILK and Rac1 and are required for STAT5a activation and lactational differentiation. Endocytosis is an important regulator of signalling. It can both enhance and suppress cytokine signalling, although the role of endocytosis for prolactin signalling is not known. Here we show that clathrin-mediated endocytosis is required for ECM-dependent STAT5 activation. In the presence of ECM, prolactin is internalised via a clathrin-dependent, but caveolin-independent, route. This occurs independently from JAK2 and Rac signalling, but is required for full phosphorylation and activation of STAT5. Prolactin is internalised into early endosomes, where the master early endosome regulator Rab5b promotes STAT5 phosphorylation. These data reveal a novel role for ECM-driven endocytosis in the positive regulation of cytokine signalling.
Collapse
Affiliation(s)
- Rebecca E Bridgewater
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
22
|
Akhtar N, Li W, Mironov A, Streuli CH. Rac1 Controls Both the Secretory Function of the Mammary Gland and Its Remodeling for Successive Gestations. Dev Cell 2017; 38:522-35. [PMID: 27623383 PMCID: PMC5022528 DOI: 10.1016/j.devcel.2016.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/30/2016] [Accepted: 08/12/2016] [Indexed: 12/27/2022]
Abstract
An important feature of the mammary gland is its ability to undergo repeated morphological changes during each reproductive cycle with profound tissue expansion in pregnancy and regression in involution. However, the mechanisms that determine the tissue's cyclic regenerative capacity remain elusive. We have now discovered that Cre-Lox ablation of Rac1 in mammary epithelia causes gross enlargement of the epithelial tree and defective alveolar regeneration in a second pregnancy. Architectural defects arise because loss of Rac1 disrupts clearance in involution following the first lactation. We show that Rac1 is crucial for mammary alveolar epithelia to switch from secretion to a phagocytic mode and rapidly remove dying neighbors. Moreover, Rac1 restricts the extrusion of dying cells into the lumen, thus promoting their eradication by live phagocytic neighbors while within the epithelium. Without Rac1, residual milk and cell corpses flood the ductal network, causing gross dilation, chronic inflammation, and defective future regeneration. Rac1 is required for full secretory differentiation of the mammary gland Rac1 restricts apoptotic cell shedding into the lumen to limit inflammation Rac1 contributes to post-lactational tissue remodeling during involution Defective clearance of milk and dead cells in Rac1-null glands causes ductal bloating
Collapse
Affiliation(s)
- Nasreen Akhtar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Manchester Breast Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK; Department of Oncology and Metabolism, The Bateson Centre, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Weiping Li
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Manchester Breast Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Aleksander Mironov
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Manchester Breast Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Manchester Breast Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
23
|
Abstract
Mammary epithelial phagocytosis is critical for removal of apoptotic cells during involution, but the mechanisms governing this process are largely unknown. In this issue of Developmental Cell, Akhtar et al. (2016) provide insight into mechanisms regulating involution, demonstrating that Rac1 drives the switch from differentiation to phagocytosis in mammary epithelium.
Collapse
Affiliation(s)
- Matthew J Naylor
- School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
24
|
Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol 2017; 216:559-570. [PMID: 28174204 PMCID: PMC5350520 DOI: 10.1083/jcb.201610048] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Many embryonic organs undergo branching morphogenesis to maximize their functional epithelial surface area. Branching morphogenesis requires the coordinated interplay of multiple types of cells with the extracellular matrix (ECM). During branching morphogenesis, new branches form by "budding" or "clefting." Cell migration, proliferation, rearrangement, deformation, and ECM dynamics have varied roles in driving budding versus clefting in different organs. Elongation of the newly formed branch and final maturation of the tip involve cellular mechanisms that include cell elongation, intercalation, convergent extension, proliferation, and differentiation. New methodologies such as high-resolution live imaging, tension sensors, and force-mapping techniques are providing exciting new opportunities for future research into branching morphogenesis.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Rei Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - William P Daley
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
25
|
LPA receptor activity is basal specific and coincident with early pregnancy and involution during mammary gland postnatal development. Sci Rep 2016; 6:35810. [PMID: 27808166 PMCID: PMC5093903 DOI: 10.1038/srep35810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/06/2016] [Indexed: 01/08/2023] Open
Abstract
During pregnancy, luminal and basal epithelial cells of the adult mammary gland proliferate and differentiate resulting in remodeling of the adult gland. While pathways that control this process have been characterized in the gland as a whole, the contribution of specific cell subtypes, in particular the basal compartment, remains largely unknown. Basal cells provide structural and contractile support, however they also orchestrate the communication between the stroma and the luminal compartment at all developmental stages. Using RNA-seq, we show that basal cells are extraordinarily transcriptionally dynamic throughout pregnancy when compared to luminal cells. We identified gene expression changes that define specific basal functions acquired during development that led to the identification of novel markers. Enrichment analysis of gene sets from 24 mouse models for breast cancer pinpoint to a potential new function for insulin-like growth factor 1 (Igf1r) in the basal epithelium during lactogenesis. We establish that β-catenin signaling is activated in basal cells during early pregnancy, and demonstrate that this activity is mediated by lysophosphatidic acid receptor 3 (Lpar3). These findings identify novel pathways active during functional maturation of the adult mammary gland.
Collapse
|
26
|
Walker S, Foster F, Wood A, Owens T, Brennan K, Streuli CH, Gilmore AP. Oncogenic activation of FAK drives apoptosis suppression in a 3D-culture model of breast cancer initiation. Oncotarget 2016; 7:70336-70352. [PMID: 27611942 PMCID: PMC5342556 DOI: 10.18632/oncotarget.11856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/08/2016] [Indexed: 02/01/2023] Open
Abstract
A key hallmark of cancer cells is the loss of positional control over growth and survival. Focal adhesion kinase (FAK) is a tyrosine kinase localised at sites of integrin-mediated cell adhesion to the extracellular matrix. FAK controls a number of adhesion-dependent cellular functions, including migration, proliferation and survival. Although FAK is overexpressed and activated in metastatic tumours, where it promotes invasion, it can also be elevated in cancers that have yet to become invasive. The contribution of FAK to the early stages of tumourigenesis is not known. We have examined the effect of activating FAK in non-transformed mammary epithelial cells (MECs) to understand its role in tumour initiation. In agreement with previous studies, we find FAK activation in 2D-culture promotes proliferation, migration, and epithelial-to-mesenchymal transition. However in 3D-cultures that better resemble normal tissue morphology, mammary cells largely respond to FAK activation via suppression of apoptosis, promoting aberrant acinar morphogenesis. This is an acquired function of FAK, because endogenous FAK signalling is not required for normal morphogenesis in 3D-culture or in vivo. Thus, FAK activation may facilitate tumour initiation by causing resistance to apoptosis. We suggest that aberrant FAK activation in breast epithelia is dependent upon the tissue context in which it occurs.
Collapse
Affiliation(s)
- Scott Walker
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fiona Foster
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Amber Wood
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Thomas Owens
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Keith Brennan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles H. Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew P. Gilmore
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Rooney N, Wang P, Brennan K, Gilmore AP, Streuli CH. The Integrin-Mediated ILK-Parvin-αPix Signaling Axis Controls Differentiation in Mammary Epithelial Cells. J Cell Physiol 2016; 231:2408-17. [PMID: 27019299 PMCID: PMC5053222 DOI: 10.1002/jcp.25390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 02/03/2023]
Abstract
Epithelial cell adhesion to the surrounding extracellular matrix is necessary for their proper behavior and function. During pregnancy and lactation, mammary epithelial cells (MECs) receive signals from their interaction with laminin via β1‐integrin (β1‐itg) to establish apico‐basal polarity and to differentiate in response to prolactin. Downstream of β1‐itg, the scaffold protein Integrin Linked Kinase (ILK) has been identified as the key signal transducer that is required for both lactational differentiation and the establishment of apico‐basal polarity. ILK is an adaptor protein that forms the IPP complex with PINCH and Parvins, which are central to its adaptor functions. However, it is not known how ILK and its interacting partners control tissue‐specific gene expression. Expression of ILK mutants, which weaken the interaction between ILK and Parvin, revealed that Parvins have a role in mammary epithelial differentiation. This conclusion was supported by shRNA‐mediated knockdown of the Parvins. In addition, shRNA knockdown of the Parvin‐binding guanine nucleotide exchange factor αPix prevented prolactin‐induced differentiation. αPix depletion did not disrupt focal adhesions, MEC proliferation, or polarity. This suggests that αPix represents a differentiation‐specific bifurcation point in β1‐itg‐ILK adhesive signaling. In summary, this study has identified a new role for Parvin and αPix downstream of the integrin‐ILK signaling axis for MEC differentiation. J. Cell. Physiol. 231: 2408–2417, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas Rooney
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Pengbo Wang
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Keith Brennan
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew P Gilmore
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Charles H Streuli
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
Ferretti VA, Canzoneri R, Barbeito CG, Croce MV, Abba MC, Lacunza E. Spatiotemporal expression of Rhomboid domain containing 2 (Rhbdd2) during rat development. Acta Histochem 2015; 117:635-41. [PMID: 26093883 DOI: 10.1016/j.acthis.2015.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/17/2022]
Abstract
Over the last few years rhomboid genes have gained interest because of its association with cancer and neurodegenerative diseases. In previous studies, we demonstrated that human RHBDD2 is over-expressed in the advanced stages of breast and colorectal cancers, suggesting a favorable role in cell proliferation. So far little is known about the expression of RHBDD2 in other tissues and other species, and because of similarities between cancer and embryonic cells, this study focused on the evaluation of Rhbdd2 expression in embryonic and adult rat tissues. By IHC and RT-PCR, Rhbdd2 was identified in early stages of most tissues analyzed, with high expression in brain, spinal cord, kidney and embryonic skin. In adult tissues, the expression remained elevated while salivary glands became positive. Furthermore, Rhbdd2 showed a high expression in the most proliferative stages of the rat mammary gland. Indeed, similar findings were observed in the mouse mammary epithelial cell line HC11, in which Rhbdd2 resides in the Golgi apparatus, and at different stages of mouse mammary gland development. Therefore, Rhbdd2 would be implicated in embryonic and adult tissue proliferation.
Collapse
Affiliation(s)
- V A Ferretti
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - R Canzoneri
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - C G Barbeito
- Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - M V Croce
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M C Abba
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - E Lacunza
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
29
|
Nisticò P, Di Modugno F, Spada S, Bissell MJ. β1 and β4 integrins: from breast development to clinical practice. Breast Cancer Res 2015; 16:459. [PMID: 25606594 PMCID: PMC4384274 DOI: 10.1186/s13058-014-0459-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Following a highly dynamic and complex dialogue between the epithelium and the surrounding microenvironment, the mammary gland develops into a branching structure during puberty, buds during pregnancy, forms intricate polar acini during lactation and, once the babies are weaned, remodels and involutes. At every stage of menstrual and pregnancy cycles, interactions between the cells and the extracellular matrix (ECM) and homotypic and heterotypic cell–cell interactions give rise to the architecture and function of the gland at that junction. These orchestrated programs would not be possible without the important role of the ECM receptors, integrins being the prime examples. The ECM–integrin axis regulates many crucial cellular functions including survival, migration and quiescence; the imbalance in any of these processes could contribute to oncogenesis. In this review we spotlight the involvement of two prominent integrin subunits, β1 and β4 integrins, in cross-talk with tyrosine kinase receptors, and we discuss the roles of these integrin subunits in the biology of normal breast differentiation and as potential prognostic and therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Paola Nisticò
- Laboratory of Immunology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, 00144, Italy.
| | | | | | | |
Collapse
|
30
|
Yin Y, Deng X, Liu Z, Baldwin LA, Lefringhouse J, Zhang J, Hoff JT, Erfani SF, Rucker EB, O'Connor K, Liu C, Wu Y, Zhou BP, Yang XH. CD151 represses mammary gland development by maintaining the niches of progenitor cells. Cell Cycle 2015; 13:2707-22. [PMID: 25486358 DOI: 10.4161/15384101.2015.945823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tetraspanin CD151 interacts with laminin-binding integrins (i.e., α3β1, α6β1 and α6β4) and other cell surface molecules to control diverse cellular and physiological processes, ranging from cell adhesion, migration and survival to tissue architecture and homeostasis. Here, we report a novel role of CD151 in maintaining the branching morphogenesis and activity of progenitor cells during the pubertal development of mammary glands. In contrast to the disruption of laminin-binding integrins, CD151 removal in mice enhanced the tertiary branching in mammary glands by 2.4-fold and the number of terminal end buds (TEBs) by 30%, while having minimal influence on either primary or secondary ductal branching. Consistent with these morphological changes are the skewed distribution of basal/myoepithelial cells and a 3.2-fold increase in proliferating Ki67-positive cells. These novel observations suggest that CD151 impacts the branching morphogenesis of mammary glands by upregulating the activities of bipotent progenitor cells. Indeed, our subsequent analyses indicate that upon CD151 removal the proportion of CD24(Hi)CD49f(Low) progenitor cells in the mammary gland increased by 34%, and their proliferating and differentiating activities were significantly upregulated. Importantly, fibronectin, a pro-branching extracellular matrix (ECM) protein deposited underlying mammary epithelial or progenitor cells, increased by >7.2-fold. Moreover, there was a concomitant increase in the expression and nuclear distribution of Slug, a transcription factor implicated in the maintenance of mammary progenitor cell activities. Taken together, our studies demonstrate that integrin-associated CD151 represses mammary branching morphogenesis by controlling progenitor cell activities, ECM integrity and transcription program.
Collapse
Affiliation(s)
- Yuanqin Yin
- a Cancer Institute; First Affiliated Hospital ; China Medical University ; Shenyang , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Anderson LR, Owens TW, Naylor MJ. Integrins in development and cancer. Biophys Rev 2014; 6:191-202. [PMID: 28510181 PMCID: PMC5418411 DOI: 10.1007/s12551-013-0123-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 01/13/2023] Open
Abstract
The correct control of cell fate decisions is critical for metazoan development and tissue homeostasis. It is established that the integrin family of cell surface receptors regulate cell fate by mediating cell-cell and cell-extracellular matrix (ECM) interactions. However, our understanding of how the different family members control discrete aspects of cell biology, and how this varies between tissues and is temporally regulated, is still in its infancy. An emerging area of investigation aims to understand how integrins translate changes in tension in the surrounding microenvironment into biological responses. This is particularly pertinent due to changes in the mechanical properties of the ECM having been linked to diseases, such as cancer. In this review, we provide an overview of the roles integrins play in important developmental processes, such as proliferation, polarity, apoptosis, differentiation and maintenance of "stemness". We also discuss recent advances in integrin mechanobiology and highlight the involvement of integrins and aberrant ECM in cancer.
Collapse
Affiliation(s)
- Luke R Anderson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Room E212, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| |
Collapse
|
32
|
Anderson LR, Owens TW, Naylor MJ. Structural and mechanical functions of integrins. Biophys Rev 2014; 6:203-213. [PMID: 28510180 PMCID: PMC5418412 DOI: 10.1007/s12551-013-0124-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023] Open
Abstract
Integrins are ubiquitously expressed cell surface receptors that play a critical role in regulating the interaction between a cell and its microenvironment to control cell fate. These molecules are regulated either via their expression on the cell surface or through a unique bidirectional signalling mechanism. However, integrins are just the tip of the adhesome iceberg, initiating the assembly of a large range of adaptor and signalling proteins that mediate the structural and signalling functions of integrin. In this review, we summarise the structure of integrins and mechanisms by which integrin activation is controlled. The different adhesion structures formed by integrins are discussed, as well as the mechanical and structural roles integrins play during cell migration. As the function of integrin signalling can be quite varied based on cell type and context, an in depth understanding of these processes will aid our understanding of aberrant adhesion and migration, which is often associated with human pathologies such as cancer.
Collapse
Affiliation(s)
- Luke R Anderson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- The University of Sydney, Room E212, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| |
Collapse
|
33
|
Hartwell R, Lai A, Ghahary A. Modulation of extracellular matrix through keratinocyte–fibroblast crosstalk. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Glukhova MA, Streuli CH. How integrins control breast biology. Curr Opin Cell Biol 2013; 25:633-41. [PMID: 23886475 PMCID: PMC3807876 DOI: 10.1016/j.ceb.2013.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 02/07/2023]
Abstract
This article explores new ideas about how the ECM-integrin axis controls normal and malignant breast biology. We discuss the role of integrins in mammary stem cells, and how cell-matrix interactions regulate ductal and alveolar development and function. We also examine the contribution of integrins to tissue disorganisation and metastasis, and how an altered stromal and ECM tumour microenvironment affects the cancer cell niche both within primary tumours and at distant sites. Finally, we mention novel strategies for integrin-directed breast cancer treatment.
Collapse
Affiliation(s)
- Marina A Glukhova
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
35
|
Wanyonyi SS, Lefevre C, Sharp JA, Nicholas KR. The extracellular matrix regulates MaeuCath1a gene expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:289-299. [PMID: 23500515 DOI: 10.1016/j.dci.2013.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 06/01/2023]
Abstract
We have previously shown that the gene for MaeuCath1, a cathelicidin secreted in wallaby milk is alternately spliced into two variants, MaeuCath1a and MaeuCath1b which are temporally regulated in order to provide antimicrobial protection to the newborn and stimulate mammary growth, respectively. The current study investigated the extracellular matrix (ECM) for its regulatory role in MaeuCath1 gene expression. Reverse transcription qPCR using RNA isolated from mammary epithelial cells (WallMEC) cultured on ECM showed that ECM regulates MaeuCath1a gene expression in a lactation phase-dependent manner. Luciferase reporter-based assays and in silico analysis of deletion fragments of the 2245bp sequence upstream of the translation start site identified ECM-dependent positive regulatory activity in the -709 to -15 region and repressor activity in the -919 to -710 region. Electrophoretic Gel Mobility Shift Assays (EMSA) using nuclear extract from ECM-treated WallMEC showed differential band shift in the -839 to -710 region.
Collapse
Affiliation(s)
- Stephen S Wanyonyi
- Molecular and Medical Research SRC, School of Medicine, Deakin University, 75 Pigdons Rd., Waurn Ponds, 3217 VIC, Australia.
| | | | | | | |
Collapse
|
36
|
Chapa J, Bourgo RJ, Greene GL, Kulkarni S, An G. Examining the pathogenesis of breast cancer using a novel agent-based model of mammary ductal epithelium dynamics. PLoS One 2013; 8:e64091. [PMID: 23704974 PMCID: PMC3660364 DOI: 10.1371/journal.pone.0064091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023] Open
Abstract
The study of the pathogenesis of breast cancer is challenged by the long time-course of the disease process and the multi-factorial nature of generating oncogenic insults. The characterization of the longitudinal pathogenesis of malignant transformation from baseline normal breast duct epithelial dynamics may provide vital insight into the cascading systems failure that leads to breast cancer. To this end, extensive information on the baseline behavior of normal mammary epithelium and breast cancer oncogenesis was integrated into a computational model termed the Ductal Epithelium Agent-Based Model (DEABM). The DEABM is composed of computational agents that behave according to rules established from published cellular and molecular mechanisms concerning breast duct epithelial dynamics and oncogenesis. The DEABM implements DNA damage and repair, cell division, genetic inheritance and simulates the local tissue environment with hormone excretion and receptor signaling. Unrepaired DNA damage impacts the integrity of the genome within individual cells, including a set of eight representative oncogenes and tumor suppressors previously implicated in breast cancer, with subsequent consequences on successive generations of cells. The DEABM reproduced cellular population dynamics seen during the menstrual cycle and pregnancy, and demonstrated the oncogenic effect of known genetic factors associated with breast cancer, namely TP53 and Myc, in simulations spanning ∼40 years of simulated time. Simulations comparing normal to BRCA1-mutant breast tissue demonstrated rates of invasive cancer development similar to published epidemiologic data with respect to both cumulative incidence over time and estrogen-receptor status. Investigation of the modeling of ERα-positive (ER+) tumorigenesis led to a novel hypothesis implicating the transcription factor and tumor suppressor RUNX3. These data suggest that the DEABM can serve as a potentially valuable framework to augment the traditional investigatory workflow for future hypothesis generation and testing of the mechanisms of breast cancer oncogenesis.
Collapse
Affiliation(s)
- Joaquin Chapa
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Ryan J. Bourgo
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Geoffrey L. Greene
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Swati Kulkarni
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Gary An
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
37
|
Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem 2013; 288:12722-32. [PMID: 23530035 DOI: 10.1074/jbc.m112.447631] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clinically, circulating prolactin levels and density of the extracellular matrix (ECM) are individual risk factors for breast cancer. As tumors develop, the surrounding stroma responds with increased deposition and cross-linking of the collagen matrix (desmoplasia). In mouse models, prolactin promotes mammary carcinomas that resemble luminal breast cancers in women, and increased collagen density promotes tumor metastasis and progression. Although the contributions of the ECM to the physiologic actions of prolactin are increasingly understood, little is known about the functional relationship between the ECM and prolactin signaling in breast cancer. Here, we examined consequences of increased ECM stiffness on prolactin signals to luminal breast cancer cells in three-dimensional collagen I matrices in vitro. We showed that matrix stiffness potently regulates a switch in prolactin signals from physiologic to protumorigenic outcomes. Compliant matrices promoted physiological prolactin actions and activation of STAT5, whereas stiff matrices promoted protumorigenic outcomes, including increased matrix metalloproteinase-dependent invasion and collagen scaffold realignment. In stiff matrices, prolactin increased SRC family kinase-dependent phosphorylation of focal adhesion kinase (FAK) at tyrosine 925, FAK association with the mitogen-activated protein kinase mediator GRB2, and pERK1/2. Stiff matrices also increased co-localization of prolactin receptors and integrin-activated FAK, implicating altered spatial relationships. Together, these results demonstrate that ECM stiffness is a powerful regulator of the spectrum of prolactin signals and that stiff matrices and prolactin interact in a feed-forward loop in breast cancer progression. Our study is the first reported evidence of altered ECM-prolactin interactions in breast cancer, suggesting the potential for new therapeutic approaches.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
38
|
Akhtar N, Streuli CH. An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat Cell Biol 2013; 15:17-27. [PMID: 23263281 PMCID: PMC3701152 DOI: 10.1038/ncb2646] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/07/2012] [Indexed: 12/16/2022]
Abstract
The extracellular matrix has a crucial role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues; however, the underlying mechanisms remain elusive. By using Cre–Lox deletion we show that β1 integrins are required for normal mammary gland morphogenesis and lumen formation, both in vivo and in a three-dimensional primary culture model in which epithelial cells directly contact a basement membrane. Downstream of basement membrane β1 integrins, Rac1 is not involved; however, ILK is needed to polarize microtubule plus ends at the basolateral membrane and disrupting each of these components prevents lumen formation. The integrin–microtubule axis is necessary for the endocytic removal of apical proteins from the basement-membrane–cell interface and for internal Golgi positioning. We propose that this integrin signalling network controls the delivery of apical components to the correct surface and thereby governs the orientation of polarity and development of lumens.
Collapse
Affiliation(s)
- Nasreen Akhtar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M139PT, UK.
| | | |
Collapse
|
39
|
Assembly and disassembly of cell matrix adhesions. Curr Opin Cell Biol 2012; 24:569-81. [DOI: 10.1016/j.ceb.2012.06.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/12/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
|
40
|
Abstract
The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche.
Collapse
Affiliation(s)
- Pengfei Lu
- Breakthrough Breast Cancer Research Unit, University of Manchester, Manchester M20 4BX, England, UK
| | | | | |
Collapse
|
41
|
Raymond K, Faraldo MM, Deugnier MA, Glukhova MA. Integrins in mammary development. Semin Cell Dev Biol 2012; 23:599-605. [PMID: 22430758 DOI: 10.1016/j.semcdb.2012.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 01/11/2023]
Abstract
Integrins are ubiquitously expressed major cell surface receptors for extracellular matrix. Integrin interaction with their extracellular ligands triggers activation of the intracellular signaling pathways that control cell shape, motility, proliferation, survival, cell-type-specific gene expression. In this review, we summarize recent studies analyzing contribution of integrins to the control of the mammary morphogenesis and differentiation, function and maintenance of mammary stem and progenitor cells and resume the data from mouse models revealing the contribution of the integrin-mediated signaling to mammary tumorigenesis.
Collapse
Affiliation(s)
- Karine Raymond
- Institut Curie, Centre de Recherche, Paris, F-75248, France
| | | | | | | |
Collapse
|
42
|
Du JY, Chen MC, Hsu TC, Wang JH, Brackenbury L, Lin TH, Wu YY, Yang Z, Streuli CH, Lee YJ. The RhoA-Rok-myosin II pathway is involved in extracellular matrix-mediated regulation of prolactin signaling in mammary epithelial cells. J Cell Physiol 2012; 227:1553-60. [PMID: 21678418 PMCID: PMC3675639 DOI: 10.1002/jcp.22886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mammary epithelial cells (MECs), prolactin-induced signaling and gene expression requires integrin-mediated cell adhesion to basement membrane (BM). In the absence of proper cell-BM interactions, for example, culturing cells on collagen-coated plastic dishes, signal propagation is substantially impaired. Here we demonstrate that the RhoA-Rok-myosin II pathway accounts for the ineffectiveness of prolactin signaling in MECs cultured on collagen I. Under these culture conditions, the RhoA pathway is activated, leading to downregulation of prolactin receptor expression and reduced prolactin signaling. Enforced activation of RhoA in MECs cultured on BM suppresses prolactin receptor levels, and prevents prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. Overexpression of dominant negative RhoA in MECs cultured on collagen I, or inhibiting Rok activity, increases prolactin receptor expression, and enhances prolactin signaling. In addition, inhibition of myosin II ATPase activity by blebbistatin also exerts a beneficial effect on prolactin receptor expression and prolactin signaling, suggesting that tension exerted by the collagen substratum, in collaboration with the RhoA-Rok-myosin II pathway, contributes to the failure of prolactin signaling. Furthermore, MECs cultured on laminin-coated plastic have similar morphology and response to prolactin as those cultured on collagen I. They display high levels of RhoA activity and are inefficient in prolactin signaling, stressing the importance of matrix stiffness in signal transduction. Our results reveal that RhoA has a central role in determining the fate decisions of MECs in response to cell-matrix interactions.
Collapse
Affiliation(s)
- Jyun-Yi Du
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pozzi A, Zent R. Extracellular matrix receptors in branched organs. Curr Opin Cell Biol 2011; 23:547-53. [PMID: 21561755 PMCID: PMC3181278 DOI: 10.1016/j.ceb.2011.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
Organ branching morphogenesis is a complex process that requires many coordinated cell functions, including cell migration, proliferation, and polarization. This process is regulated at numerous levels, including spatial and temporal expression of transcription factors and their regulators; growth factors and their receptors; as well as cell-cell and cell-extracellular matrix interactions. Integrins and dystroglycan are transmembrane receptors that control both the adhesion of cells to matrix components as well as transduction of signaling coming from and directed to the matrix. In this article we review current advances defining the roles of these receptors in branching morphogenesis focusing on the major epithelial cell derived structures in mammals, namely salivary gland, mammary gland, lung, pancreas, and kidney.
Collapse
Affiliation(s)
- Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center and Veterans Affairs Hospital, Nashville, TN 37232, USA
| | | |
Collapse
|
44
|
Keely PJ. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia 2011; 16:205-19. [PMID: 21822945 PMCID: PMC3885166 DOI: 10.1007/s10911-011-9226-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/19/2011] [Indexed: 12/21/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is necessary for development of the mammary gland, and to maintain the normal architecture and function of the gland. Cells adhere to the ECM via the integrin family of trans-membrane receptors, which signal to control mammary-specific gene expression and regulate cell proliferation and survival. During tumor formation, the ECM is extensively remodeled and signaling through integrins is altered such that cells become proliferative and invasive. A key regulator of whether integrin-mediated adhesion will promote tumor suppression or tumor formation is the stiffness of the stromal ECM. The normal mammary gland is typically surrounded by a loose collagenous stroma. An increase in the deposition of collagen and other stromal components is associated with mammographic density, which is one of the greatest risk factors for developing breast carcinoma. Several groups have demonstrated that increased stromal ECM density results in a matrix that is stiffer. Cells sense the stiffness of their surrounding ECM by Rho-mediated contraction of the actin-myosin cytoskeleton. If the surrounding ECM is stiffer than the cell's ability to contract it, then the tensile forces that result are able to drive the clustering of integrins and assemble adhesion signaling complexes. The result is subsequent activation of signaling pathways including FAK, ERK, and PI3K that drive cell proliferation and survival. In contrast, focal complexes are not formed in a compliant matrix, and activation of FAK and pERK is diminished, resulting in control of proliferation. Signaling from FAK moreover regulates p53 and miR-200 members, which control apoptosis and epithelial phenotype, such that a compliant matrix is predicted to promote normal mammary gland architecture and suppress tumor formation.
Collapse
Affiliation(s)
- Patricia J Keely
- Department of Cell and Regenerative Biology, Laboratory for Cellular and Molecular Biology, & Laboratory for Optical and Computational Instrumentation, University of Wisconsin, 227D Bock Laboratories, 1525 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
45
|
Abstract
Integrin-linked kinase (ILK) is a highly evolutionarily conserved intracellular protein that was originally identified as an integrin-interacting protein, and extensive genetic and biochemical studies have shown that ILK expression is vital during both embryonic development and tissue homeostasis. At the cellular and tissue levels, ILK regulates signaling pathways for cell adhesion-mediated cell survival (anoikis), apoptosis, proliferation and mitosis, migration, invasion, and vascularization and tumor angiogenesis. ILK also has central roles in cardiac and smooth-muscle contractility, and ILK dysregulation causes cardiomyopathies in humans. ILK protein levels are increased in several human cancers and often the expression level predicts poor patient outcome. Abundant evidence has accumulated suggesting that, of the diverse functions of ILK, some may require kinase activity whereas others depend on protein-protein interactions and are, therefore, independent of kinase activity. However, the past several years have seen an ongoing debate about whether ILK indeed functions as a protein serine/threonine kinase. This debate centers on the atypical protein kinase domain of ILK, which lacks some amino-acid residues thought to be essential for phosphotransferase activity. However, similar deficiencies are present in the catalytic domains of other kinases now known to possess protein kinase activity. Numerous studies have shown that ILK phosphorylates peptide substrates in vitro, corresponding to ILK-mediated phosphorylations in intact cells, and a recent report characterizing in vitro phosphotransferase activity of highly purified, full-length ILK, accompanied by detailed enzyme kinetic analyses, shows that, at least in vitro, ILK is a bona fide protein kinase. However, several genetic studies suggest that, not all biological functions of ILK require kinase activity, and that it can function as an adaptor/scaffold protein. Here, we review evidence for and against ILK being an active kinase, and provide a framework for strategies to further analyze the kinase and adaptor functions of ILK in different cellular contexts.
Collapse
|
46
|
Spencer VA, Costes S, Inman JL, Xu R, Chen J, Hendzel MJ, Bissell MJ. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J Cell Sci 2011; 124:123-32. [PMID: 21172822 DOI: 10.1242/jcs.073197] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Functional differentiation is orchestrated by precise growth-regulatory controls conveyed by the tissue microenvironment. Cues from laminin 111 (LN1) lower transcription and suppress mammary epithelial cell growth in culture, but how LN1 induces quiescence is unknown. Recent literature points to involvement of nuclear β-actin in transcriptional regulation. Here, we show that quiescence induced by growth factor withdrawal, or LN1 addition, rapidly decreases nuclear β-actin. LN1, but not other extracellular matrix (ECM) molecules, decreases the levels of nuclear β-actin and destabilizes RNA polymerase (RNA Pol) II and III binding to transcription sites, leading to a dramatic drop in transcription and DNA synthesis. Constitutive overexpression of globular β-actin in the nucleus reverses the effect of LN1 on transcription and RNA Pol II association and prevents the cells from becoming quiescent in the presence of LN1. The physiological relevance of our findings was verified by identifying a clear spatial separation of LN1 and β-actin in developing mammary end buds. These data indicate a novel role for nuclear β-actin in growth arrest of epithelial cells and underscore the importance of the integrity of the basement membrane in homeostasis.
Collapse
Affiliation(s)
- Virginia A Spencer
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977R225A, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Rooney N, Streuli CH. How integrins control mammary epithelial differentiation: a possible role for the ILK-PINCH-Parvin complex. FEBS Lett 2011; 585:1663-72. [PMID: 21570968 DOI: 10.1016/j.febslet.2011.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 01/15/2023]
Abstract
Differentiation into tissue-specific cell types occurs in response to numerous external signals. Integrins impart signals from the extracellular matrix microenvironment that are required for cell differentiation. However, the precise cytoplasmic transducers of these signals are yet to be understood properly. In lactating mammary epithelial cells, integrin-linked kinase has been identified as an indispensable integrin-signalling adaptor that enables the activation of Rac1, which is necessary for prolactin-induced milk protein expression. Here we use examples from various tissues to summarise possible mechanisms by which ILK and its binding partners PINCH and Parvin (ILK-PINCH-Parvin complex) could be required for Rac activation and mammary epithelial differentiation.
Collapse
Affiliation(s)
- Nicholas Rooney
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and Manchester Breast Centre, University of Manchester, Manchester, UK
| | | |
Collapse
|
48
|
Faralli JA, Newman JR, Sheibani N, Dedhar S, Peters DM. Integrin-linked kinase regulates integrin signaling in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2011; 52:1684-92. [PMID: 21071740 DOI: 10.1167/iovs.10-6397] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether integrin-linked kinase (ILK) controls the organization of the actin cytoskeleton in the trabecular meshwork (TM) by regulating integrin co-signaling. METHODS The cell binding domain and the Heparin II (Hep II) domain of fibronectin were used to activate α5β1 and α4β1 integrin signaling, respectively, in differentiated human TM (HTM) cells. The role of ILK was determined using either ILK small interfering RNA (siRNA) to knockout ILK expression or the ILK inhibitors, KP392 and QLT0267. The knockdown of ILK expression was verified by Western blot analysis. The presence of actin stress fibers and focal adhesions was determined by labeling cultures with phalloidin and anti-talin or ILK antibodies, respectively. RESULTS Cell spreading in differentiated HTM cells required ILK, since ILK siRNA and the ILK inhibitors significantly reduced cell spreading, actin polymerization, and the localization of talin and ILK in focal adhesions (FAs). Both cell spreading and the localization of talin and ILK to FAs in differentiated HTM cells could be rescued by inducing α4β1 integrin signaling with a recombinant Hep II domain of fibronectin, even though α4β1 integrins were not found in FAs. In the absence of ILK inhibition, the Hep II domain had minimal effect on α5β1 integrin-mediated spreading. CONCLUSIONS This study suggests that cooperative α5β1/α4β1 integrin signaling may be regulated by ILK trans-dominantly and that alterations in ILK activity may affect actin cytoskeleton organization and contractility in the TM.
Collapse
Affiliation(s)
- Jennifer A Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
49
|
Xu R, Spencer VA, Groesser DL, Bissell MJ. Laminin regulates PI3K basal localization and activation to sustain STAT5 activation. Cell Cycle 2010; 9:4315-22. [PMID: 20980837 DOI: 10.4161/cc.9.21.13578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) is a key regulator of tissue morphogenesis and functional differentiation in the mammary gland. We showed recently that laminin-111 (LN1) together with prolactin induces β-casein expression in mammary epithelial cells (MECs) by sustaining STAT5 activation. Others have shown that Rac1 is required for integrin-mediated STAT5 activation, but molecules upstream of Rac1 remain to be elucidated. Here, we show that exposure to three-dimensional (3D) laminin-rich ECM (LrECM) gels changes the localization of phosphoinositide 3-kinase (PI3K) in MECs from diffuse to basal accompanied with the activation of PI3K-Rac1 signaling pathway. We show by co-immunoprecipitation that Rac1 associates with STAT5, and that LrECM treatment enhances this interaction. Blocking PI3K with LY294002 inhibits LrECM-dependent Rac1 activation, attenuates sustained STAT5 phosphorylation and blocks β-casein gene transcription. These results indicate that PI3K is a key mediator of the LN1-induced signaling cascade which controls the activity of transcription factors essential for tissue-specific gene expression.
Collapse
Affiliation(s)
- Ren Xu
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, USA.
| | | | | | | |
Collapse
|
50
|
Leonoudakis D, Singh M, Mohajer R, Mohajer P, Fata JE, Campbell KP, Muschler JL. Dystroglycan controls signaling of multiple hormones through modulation of STAT5 activity. J Cell Sci 2010; 123:3683-92. [PMID: 20940259 DOI: 10.1242/jcs.070680] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Receptors for basement membrane (BM) proteins, including dystroglycan (DG), coordinate tissue development and function by mechanisms that are only partially defined. To further elucidate these mechanisms, we generated a conditional knockout of DG in the epithelial compartment of the mouse mammary gland. Deletion of DG caused an inhibition of mammary epithelial outgrowth and a failure of lactation. Surprisingly, loss of DG in vivo did not disrupt normal tissue architecture or BM formation, even though cultured Dag1-null epithelial cells failed to assemble laminin-111 at the cell surface. The absence of DG was, however, associated with a marked loss in activity of signal transducer and activator of transcription 5 (STAT5). Loss of DG perturbed STAT5 signaling induced by either prolactin or growth hormone. We found that DG regulates signaling by both hormones in a manner that is dependent on laminin-111 binding, but independent of the DG cytoplasmic domain, suggesting that it acts via a co-receptor mechanism reliant on DG-mediated laminin assembly. These results demonstrate a requirement for DG in the growth and function of a mammalian epithelial tissue in vivo. Moreover, we reveal a selective role for DG in the control of multiple STAT5-dependent hormone signaling pathways, with implications for numerous diseases in which DG function is compromised.
Collapse
Affiliation(s)
- Dmitri Leonoudakis
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | | | | | | | | | | | | |
Collapse
|