1
|
Chen X, Liu H, Huang Y, Li L, Jiang X, Liu B, Li N, Zhu L, Liu C, Xiao J. FAM20B-Catalyzed Glycosylation Regulates the Chondrogenic and Osteogenic Differentiation of the Embryonic Condyle by Controlling IHH Diffusion and Release. Int J Mol Sci 2025; 26:4033. [PMID: 40362273 PMCID: PMC12071210 DOI: 10.3390/ijms26094033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Although the roles of proteoglycans (PGs) have been well documented in the development and homeostasis of the temporomandibular joint (TMJ), how the glycosaminoglycan (GAG) chains of PGs contribute to TMJ chondrogenesis and osteogenesis still requires explication. In this study, we found that FAM20B, a hexokinase essential for attaching GAG chains to the core proteins of PGs, was robustly activated in the condylar mesenchyme during TMJ development. The inactivation of Fam20b in craniofacial neural crest cells (CNCCs) dramatically reduced the synthesis and accumulation of GAG chains rather than core proteins in the condylar cartilage, which resulted in a hypoplastic condylar cartilage by severely promoting chondrocyte hypertrophy and perichondral ossification. In the condyles of Wnt1-Cre;Fam20bf/f mouse embryos, enlarged Ihh- and COL10-expressing domains indicated premature hypertrophy resulting from an attenuated IHH-PTHRP negative feedback in condylar chondrocytes, while increased osteogenic markers, canonical Wnt activity, and type-H angiogenesis verified the enhanced osteogenesis in the perichondrium. Further ex vivo investigations revealed that the loss of Fam20b decreased the domain area but increased the activity of HH signaling in the embryonic condylar mesenchyme. Moreover, the abrogation of GAG chains in heparan sulfate and chondroitin sulfate proteoglycans led to a rapid up- and then downregulation of HH signaling in condylar chondrocytes, implicating a "slow-release" manner of growth factors controlled by GAG chains. Overall, this study revealed a comprehensive role of the FAM20B-catalyzed GAG chain synthesis in the chondrogenic and osteogenic differentiation of the embryonic TMJ condyle.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Han Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Yuhong Huang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Leilei Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Xuxi Jiang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Bo Liu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Lei Zhu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
2
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
Helvacıoğlu D, Güran T. Bone Phenotype is Always Present But Androgen Excess is Less Frequently Seen in PAPSS2 Deficiency. J Clin Res Pediatr Endocrinol 2024; 16:4-10. [PMID: 38084048 PMCID: PMC10938522 DOI: 10.4274/jcrpe.galenos.2023.2023-12-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
3’-Phosphoadenosine 5’-phosphosulfate synthase 2 (PAPSS2) deficiency is a rare disorder due to biallelic pathogenic variants in the PAPSS2 gene. This disorder was first described in 1998 by Ahmad et al. and Faiyaz ul Haque et al. To date, 79 patients with PAPSS2 deficiency have been reported. The main reported features of these patients are related to bone abnormalities and clinical/biochemical androgen excess. Disproportionate short stature and symptoms associated with spondylar skeletal dysplasia are the most common clinical features that require clinical attention. Androgen excess has been described much less commonly. This review summarizes the currently published clinical, molecular, and biochemical features of patients with PAPSS2 deficiency.
Collapse
Affiliation(s)
- Didem Helvacıoğlu
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| | - Tülay Güran
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| |
Collapse
|
4
|
Xu P, Xi Y, Kim JW, Zhu J, Zhang M, Xu M, Ren S, Yang D, Ma X, Xie W. Sulfation of chondroitin and bile acids converges to antagonize Wnt/ β-catenin signaling and inhibit APC deficiency-induced gut tumorigenesis. Acta Pharm Sin B 2024; 14:1241-1256. [PMID: 38487006 PMCID: PMC10935170 DOI: 10.1016/j.apsb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 03/17/2024] Open
Abstract
Sulfation is a crucial and prevalent conjugation reaction involved in cellular processes and mammalian physiology. 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the primary enzyme to generate the universal sulfonate donor PAPS. The involvement of PAPSS2-mediated sulfation in adenomatous polyposis coli (APC) mutation-promoted colonic carcinogenesis has not been reported. Here, we showed that the expression of PAPSS2 was decreased in human colon tumors along with cancer stages, and the lower expression of PAPSS2 was correlated with poor prognosis in advanced colon cancer. Gut epithelial-specific heterozygous Apc deficient and Papss2-knockout (ApcΔgut-HetPapss2Δgut) mice were created, and the phenotypes were compared to the spontaneous intestinal tumorigenesis of ApcΔgut-Het mice. ApcΔgut-HetPapss2Δgut mice were more sensitive to gut tumorigenesis, which was mechanistically accounted for by the activation of Wnt/β-catenin signaling pathway due to the suppression of chondroitin sulfation and inhibition of the farnesoid X receptor (FXR)-transducin-like enhancer of split 3 (TLE3) gene regulatory axis. Chondroitin sulfate supplementation in ApcΔgut-HetPapss2Δgut mice alleviated intestinal tumorigenesis. In summary, we have uncovered the protective role of PAPSS2-mediated chondroitin sulfation and bile acids-FXR-TLE3 activation in the prevention of gut carcinogenesis via the antagonization of Wnt/β-catenin signaling. Chondroitin sulfate may be explored as a therapeutic agent for Papss2 deficiency-associated colonic carcinogenesis.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Melum VJ, Sáenz de Miera C, Markussen FAF, Cázarez-Márquez F, Jaeger C, Sandve SR, Simonneaux V, Hazlerigg DG, Wood SH. Hypothalamic tanycytes as mediators of maternally programmed seasonal plasticity. Curr Biol 2024; 34:632-640.e6. [PMID: 38218183 DOI: 10.1016/j.cub.2023.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/07/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
In mammals, maternal photoperiodic programming (MPP) provides a means whereby juvenile development can be matched to forthcoming seasonal environmental conditions.1,2,3,4 This phenomenon is driven by in utero effects of maternal melatonin5,6,7 on the production of thyrotropin (TSH) in the fetal pars tuberalis (PT) and consequent TSH receptor-mediated effects on tanycytes lining the 3rd ventricle of the mediobasal hypothalamus (MBH).8,9,10 Here we use LASER capture microdissection and transcriptomic profiling to show that TSH-dependent MPP controls the attributes of the ependymal region of the MBH in juvenile animals. In Siberian hamster pups gestated and raised on a long photoperiod (LP) and thereby committed to a fast trajectory for growth and reproductive maturation, the ependymal region is enriched for tanycytes bearing sensory cilia and receptors implicated in metabolic sensing. Contrastingly, in pups gestated and raised on short photoperiod (SP) and therefore following an over-wintering developmental trajectory with delayed sexual maturation, the ependymal region has fewer sensory tanycytes. Post-weaning transfer of SP-gestated pups to an intermediate photoperiod (IP), which accelerates reproductive maturation, results in a pronounced shift toward a ciliated tanycytic profile and formation of tanycytic processes. We suggest that tanycytic plasticity constitutes a mechanism to tailor metabolic development for extended survival in variable overwintering environments.
Collapse
Affiliation(s)
- Vebjørn J Melum
- Arctic seasonal timekeeping initiative (ASTI), UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, NO-9037 Tromsø, Norway; University of Strasbourg, Institute of Cellular and Integrative Neurosciences, Strasbourg 67000, France
| | - Cristina Sáenz de Miera
- University of Michigan Medical School, Department of Molecular and Integrative Physiology, Ann Arbor, MI 48109, USA
| | - Fredrik A F Markussen
- Arctic seasonal timekeeping initiative (ASTI), UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, NO-9037 Tromsø, Norway
| | - Fernando Cázarez-Márquez
- Arctic seasonal timekeeping initiative (ASTI), UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, NO-9037 Tromsø, Norway
| | - Catherine Jaeger
- University of Strasbourg, Institute of Cellular and Integrative Neurosciences, Strasbourg 67000, France
| | - Simen R Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Valérie Simonneaux
- University of Strasbourg, Institute of Cellular and Integrative Neurosciences, Strasbourg 67000, France
| | - David G Hazlerigg
- Arctic seasonal timekeeping initiative (ASTI), UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, NO-9037 Tromsø, Norway.
| | - Shona H Wood
- Arctic seasonal timekeeping initiative (ASTI), UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, NO-9037 Tromsø, Norway.
| |
Collapse
|
6
|
Koosha E, Brenna CTA, Ashique AM, Jain N, Ovens K, Koike T, Kitagawa H, Eames BF. Proteoglycan inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification. Development 2024; 151:dev201716. [PMID: 38117077 PMCID: PMC10820745 DOI: 10.1242/dev.201716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.
Collapse
Affiliation(s)
- Elham Koosha
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Connor T. A. Brenna
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Amir M. Ashique
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Niteesh Jain
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Toshiyasu Koike
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
7
|
Harish RK, Gupta M, Zöller D, Hartmann H, Gheisari A, Machate A, Hans S, Brand M. Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development 2023; 150:dev201559. [PMID: 37665167 PMCID: PMC10565248 DOI: 10.1242/dev.201559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential.
Collapse
Affiliation(s)
- Rohit Krishnan Harish
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Mansi Gupta
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Daniela Zöller
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Hella Hartmann
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- CMCB Technology Platform, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Ali Gheisari
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- CMCB Technology Platform, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Anja Machate
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Stefan Hans
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Michael Brand
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| |
Collapse
|
8
|
Calligaris M, Yang CY, Bonelli S, Spanò DP, Müller SA, Lichtenthaler SF, Troeberg L, Scilabra SD. Identification of membrane proteins regulated by ADAM15 by SUSPECS proteomics. Front Mol Biosci 2023; 10:1162504. [PMID: 37388246 PMCID: PMC10304831 DOI: 10.3389/fmolb.2023.1162504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
ADAM15 is a member of the disintegrin-metalloproteinase family of sheddases, which plays a role in several biological processes including cartilage homeostasis. In contrast with well-characterized ADAMs, such as the canonical sheddases ADAM17 and ADAM10, little is known about substrates of ADAM15 or how the enzyme exerts its biological functions. Herein, we used "surface-spanning enrichment with click-sugars (SUSPECS)" proteomics to identify ADAM15 substrates and/or proteins regulated by the proteinase at the cell surface of chondrocyte-like cells. Silencing of ADAM15 by siRNAs significantly altered membrane levels of 13 proteins, all previously not known to be regulated by ADAM15. We used orthogonal techniques to validate ADAM15 effects on 3 of these proteins which have known roles in cartilage homeostasis. This confirmed that ADAM15-silencing increased cell surface levels of the programmed cell death 1 ligand 2 (PDCD1LG2) and reduced cell surface levels of vasorin and the sulfate transporter SLC26A2 through an unknown post-translational mechanism. The increase of PDCD1LG2 by ADAM15 knockdown, a single-pass type I transmembrane protein, suggested it could be a proteinase substrate. However, shed PDCD1LG2 could not be detected even by a data-independent acquisition mass spectrometry, a highly sensitive method for identification and quantification of proteins in complex protein samples, suggesting that ADAM15 regulates PDCD1LG2 membrane levels by a mechanism different from ectodomain shedding.
Collapse
Affiliation(s)
- Matteo Calligaris
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Chun Y. Yang
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Simone Bonelli
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Donatella Pia Spanò
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Stephan A. Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Linda Troeberg
- Norwich Medical School, Bob Champion Research and Education Building, University of East Anglia, Norwich, United Kingdom
| | - Simone D. Scilabra
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| |
Collapse
|
9
|
Koh WS, Knudsen C, Izumikawa T, Nakato E, Grandt K, Kinoshita-Toyoda A, Toyoda H, Nakato H. Regulation of morphogen pathways by a Drosophila chondroitin sulfate proteoglycan Windpipe. J Cell Sci 2023; 136:jcs260525. [PMID: 36897575 PMCID: PMC10113886 DOI: 10.1242/jcs.260525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Morphogens provide quantitative and robust signaling systems to achieve stereotypic patterning and morphogenesis. Heparan sulfate (HS) proteoglycans (HSPGs) are key components of such regulatory feedback networks. In Drosophila, HSPGs serve as co-receptors for a number of morphogens, including Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp) and Unpaired (Upd, or Upd1). Recently, Windpipe (Wdp), a chondroitin sulfate (CS) proteoglycan (CSPG), was found to negatively regulate Upd and Hh signaling. However, the roles of Wdp, and CSPGs in general, in morphogen signaling networks are poorly understood. We found that Wdp is a major CSPG with 4-O-sulfated CS in Drosophila. Overexpression of wdp modulates Dpp and Wg signaling, showing that it is a general regulator of HS-dependent pathways. Although wdp mutant phenotypes are mild in the presence of morphogen signaling buffering systems, this mutant in the absence of Sulf1 or Dally, molecular hubs of the feedback networks, produces high levels of synthetic lethality and various severe morphological phenotypes. Our study indicates a close functional relationship between HS and CS, and identifies the CSPG Wdp as a novel component in morphogen feedback pathways.
Collapse
Affiliation(s)
- Woo Seuk Koh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Collin Knudsen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin Grandt
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Au TYK, Yip RKH, Wynn SL, Tan TY, Fu A, Geng YH, Szeto IYY, Niu B, Yip KY, Cheung MCH, Lovell-Badge R, Cheah KSE. Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog-Wnt signaling, causing campomelia. Proc Natl Acad Sci U S A 2023; 120:e2208623119. [PMID: 36584300 PMCID: PMC9910594 DOI: 10.1073/pnas.2208623119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 01/01/2023] Open
Abstract
Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous Sox9 null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous Sox9 null mutation (Sox9+/-) with the Sox9+/Y440X CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some Sox9+/Y440X mice survived, all Sox9+/- mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in Sox9+/Y440X compared with Sox9+/-. Activating Sox9Y440X specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing Sox9+/Y440X limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9Y440X failed to interact with β-catenin and was unable to suppress transactivation of Ihh in cell-based assays. We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9Y440X, cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.
Collapse
Affiliation(s)
- Tiffany Y. K. Au
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Raymond K. H. Yip
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Sarah L. Wynn
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Tiong Y. Tan
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Alex Fu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong SAR, China
| | - Yu Hong Geng
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Irene Y. Y. Szeto
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Ben Niu
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Kevin Y. Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong SAR, China
| | - Martin C. H. Cheung
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Kathryn S. E. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| |
Collapse
|
11
|
Porto SC, Rogers-DeCotes A, Schafer E, Kern CB. The adaptive response of the mandibular condyle to increased load is disrupted by ADAMTS5 deficiency. Connect Tissue Res 2023; 64:93-104. [PMID: 35913086 PMCID: PMC9852085 DOI: 10.1080/03008207.2022.2102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the impact of increased load on the temporomandibular joint (TMJ) from mice deficient in the extracellular matrix protease ADAMTS5. MATERIALS AND METHODS Wire springs exerting 0.5 N for 1 h/day for 5 days (Adamts5+/+ -n = 18; Adamts5-/- n = 19) or 0.8 N for 1 h/day for 10 days (Adamts5+/+-n = 18; Adamts5-/- n = 17) were used to increase murine TMJ load. Safranin O-staining was used to determine mandibular condylar cartilage (MCC) morphology. Chondrogenic factors Sox9 and aggrecan were immunolocalized. Microcomputed topography was employed to evaluate mineralized tissues, and Tartrate-Resistant Acid Phosphatase staining was used to quantify osteoclasts. RESULTS Increased load on the mandibular condyle of Adamts5-/- mice resulted in an increase in the hypertrophic zone of mandibular condylar cartilage (MCC) compared to normal load (NL) (P < 0.01). In the trabecular bone of the mandibular condyle, the total volume (TV), bone volume (BV), trabecular thickness (TbTh), and trabecular separation (TbSp) of the mandibular condyles in Adamts5-/- mice (n = 27) did not change significantly with increased load, compared to Adamts5+/+ (n = 38) that exhibited significant responses (TV-P < 0.05; BV-P < 0.001; TbTh-P < 0.01; TbSp-P < 0.01). The bone volume fraction (BV/TV) was significantly reduced in response to increased load in both Adamts5-/- (P < 0.05) and Adamts5+/+ mandibular condyles (P < 0.001) compared to NL. Increased load in Adamts5-/- mandibular condyles also resulted in a dramatic increase in osteoclasts compared to Adamts5-/- NL (P < 0.001) and to Adamts5+/+ with increased load (P < 01). CONCLUSION The trabeculated bone of the Adamts5-/- mandibular condyle was significantly less responsive to the increased load compared to Adamts5+/+. ADAMTS5 may be required for mechanotransduction in the trabeculated bone of the mandibular condyle.
Collapse
Affiliation(s)
- Sarah C. Porto
- Department of Health and Human Performance, College of Charleston, Charleston, SC 29424
| | - Alexandra Rogers-DeCotes
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC 29525
| | - Emmaline Schafer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC 29525
| | - Christine B. Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC 29525
| |
Collapse
|
12
|
van de Kamp JM, Bökenkamp A, Smith DEC, Wamelink MMC, Jansen EEW, Struys EA, Waisfisz Q, Verkleij M, Hartmann MF, Wang R, Wudy SA, Paganini C, Rossi A, Finken MJJ. Biallelic variants in the SLC13A1 sulfate transporter gene cause hyposulfatemia with a mild spondylo-epi-metaphyseal dysplasia. Clin Genet 2023; 103:45-52. [PMID: 36175384 PMCID: PMC10092256 DOI: 10.1111/cge.14239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
Sulfate is the fourth most abundant anion in human plasma but is not measured in clinical practice and little is known about the consequences of sulfate deficiency. Nevertheless, sulfation plays an essential role in the modulation of numerous compounds, including proteoglycans and steroids. We report the first patient with a homozygous loss-of-function variant in the SLC13A1 gene, encoding a renal and intestinal sulfate transporter, which is essential for maintaining plasma sulfate levels. The homozygous (Arg12Ter) variant in SLC13A1 was found by exome sequencing performed in a patient with unexplained skeletal dysplasia. The main clinical features were enlargement of joints and spondylo-epi-metaphyseal radiological abnormalities in early childhood, which improved with age. In addition, autistic features were noted. We found profound hyposulfatemia due to complete loss of renal sulfate reabsorption. Cholesterol sulfate was reduced. Intravenous N-acetylcysteine administration temporarily restored plasma sulfate levels. We conclude that loss of the SLC13A1 gene leads to profound hypersulfaturia and hyposulfatemia, which is mainly associated with abnormal skeletal development, possibly predisposing to degenerative bone and joint disease. The diagnosis might be easily missed and more frequent.
Collapse
Affiliation(s)
- Jiddeke M van de Kamp
- Department of Human Genetics, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Arend Bökenkamp
- Emma Children's Hospital, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Desiree E C Smith
- Department of Clinical Chemistry, Metabolic Laboratory, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mirjam M C Wamelink
- Department of Clinical Chemistry, Metabolic Laboratory, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin E W Jansen
- Department of Clinical Chemistry, Metabolic Laboratory, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eduard A Struys
- Department of Clinical Chemistry, Metabolic Laboratory, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marieke Verkleij
- Department of Pediatric Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Rong Wang
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Martijn J J Finken
- Emma Children's Hospital, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Saltarelli MA, Quarta A, Chiarelli F. Growth plate extracellular matrix defects and short stature in children. Ann Pediatr Endocrinol Metab 2022; 27:247-255. [PMID: 36567461 PMCID: PMC9816467 DOI: 10.6065/apem.2244120.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Many etiological factors causing short stature have already been identified in humans. In the last few years, the advent of new techniques for the detection of chromosomal and molecular abnormalities has made it possible to better identify patients with genetic causes of growth failure. Some of these factors directly affect the development and growth of the skeleton, since they damage the epiphyseal growth plate, where linear growth occurs, influencing chondrogenesis. In particular, defects in genes involved in the organization and function of the growth plate are responsible for several well-known conditions with short stature. These genes play a pivotal role in various mechanisms involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. In this review, we will discuss the genes involved in extracellular matrix disorders. The identification of genetic defects in linear growth failure is important for clinicians and researchers in order to improve the care of children affected by growth disorders.
Collapse
Affiliation(s)
| | - Alessia Quarta
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy,Address for correspondence: Francesco Chiarelli Department of Pediatrics, University of Chieti, Via dei Vestini, 5 Chieti, I-66100, Italy
| |
Collapse
|
14
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
15
|
Chavez DE, Gronau I, Hains T, Dikow RB, Frandsen PB, Figueiró HV, Garcez FS, Tchaicka L, de Paula RC, Rodrigues FHG, Jorge RSP, Lima ES, Songsasen N, Johnson WE, Eizirik E, Koepfli KP, Wayne RK. Comparative genomics uncovers the evolutionary history, demography, and molecular adaptations of South American canids. Proc Natl Acad Sci U S A 2022; 119:e2205986119. [PMID: 35969758 PMCID: PMC9407222 DOI: 10.1073/pnas.2205986119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The remarkable radiation of South American (SA) canids produced 10 extant species distributed across diverse habitats, including disparate forms such as the short-legged, hypercarnivorous bush dog and the long-legged, largely frugivorous maned wolf. Despite considerable research spanning nearly two centuries, many aspects of their evolutionary history remain unknown. Here, we analyzed 31 whole genomes encompassing all extant SA canid species to assess phylogenetic relationships, interspecific hybridization, historical demography, current genetic diversity, and the molecular bases of adaptations in the bush dog and maned wolf. We found that SA canids originated from a single ancestor that colonized South America 3.9 to 3.5 Mya, followed by diversification east of the Andes and then a single colonization event and radiation of Lycalopex species west of the Andes. We detected extensive historical gene flow between recently diverged lineages and observed distinct patterns of genomic diversity and demographic history in SA canids, likely induced by past climatic cycles compounded by human-induced population declines. Genome-wide scans of selection showed that disparate limb proportions in the bush dog and maned wolf may derive from mutations in genes regulating chondrocyte proliferation and enlargement. Further, frugivory in the maned wolf may have been enabled by variants in genes associated with energy intake from short-chain fatty acids. In contrast, unique genetic variants detected in the bush dog may underlie interdigital webbing and dental adaptations for hypercarnivory. Our analyses shed light on the evolution of a unique carnivoran radiation and how it was shaped by South American topography and climate change.
Collapse
Affiliation(s)
- Daniel E. Chavez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
- Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Ilan Gronau
- Efi Arazi School of Computer Science, Reichman University, Herzliya 46150, Israel
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637
| | - Rebecca B. Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560
| | - Paul B. Frandsen
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Henrique V. Figueiró
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Fabrício S. Garcez
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Ligia Tchaicka
- Rede de Biodiversidade e Biotecnologia da Amazônia, Curso de Pós-Graduação em Recursos Aquáticos e Pesca, Universidade Estadual do Maranhão, São Luis, 2016-8100, Brazil
| | - Rogério C. de Paula
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros, Instituto Chico Mendes de Conservação da Biodiversidade, 12952-011, Atibaia, Brazil
| | - Flávio H. G. Rodrigues
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rodrigo S. P. Jorge
- Centro Nacional de Avaliação da Biodiversidade e de Pesquisa e Conservação do Cerrado, Instituto Chico Mendes de Conservação da Biodiversidade, Brasilia, 70670-350, Brazil
| | - Edson S. Lima
- Private address, Nova Xavantina, MT, 78690-000, Brazil
| | - Nucharin Songsasen
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
| | - Warren E. Johnson
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
- Instituto Pró-Carnívoros, Atibaia, 12945-010, Brazil
- Instituto Nacional de Ciência e Tecnologia em Ecologia Evolução Conservação da Biodiverside, Universidade Federal de GoiásGoiânia, 74690-900, Brazil
| | - Klaus-Peter Koepfli
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| |
Collapse
|
16
|
Schwartz NB, Domowicz MS. Roles of Chondroitin Sulfate Proteoglycans as Regulators of Skeletal Development. Front Cell Dev Biol 2022; 10:745372. [PMID: 35465334 PMCID: PMC9026158 DOI: 10.3389/fcell.2022.745372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
The extracellular matrix (ECM) is critically important for most cellular processes including differentiation, morphogenesis, growth, survival and regeneration. The interplay between cells and the ECM often involves bidirectional signaling between ECM components and small molecules, i.e., growth factors, morphogens, hormones, etc., that regulate critical life processes. The ECM provides biochemical and contextual information by binding, storing, and releasing the bioactive signaling molecules, and/or mechanical information that signals from the cell membrane integrins through the cytoskeleton to the nucleus, thereby influencing cell phenotypes. Using these dynamic, reciprocal processes, cells can also remodel and reshape the ECM by degrading and re-assembling it, thereby sculpting their environments. In this review, we summarize the role of chondroitin sulfate proteoglycans as regulators of cell and tissue development using the skeletal growth plate model, with an emphasis on use of naturally occurring, or created mutants to decipher the role of proteoglycan components in signaling paradigms.
Collapse
Affiliation(s)
- Nancy B. Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- *Correspondence: Nancy B. Schwartz,
| | - Miriam S. Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Two Modulators of Skeletal Development: BMPs and Proteoglycans. J Dev Biol 2022; 10:jdb10020015. [PMID: 35466193 PMCID: PMC9036252 DOI: 10.3390/jdb10020015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists, such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs functions in cartilage maturation and osteoblast differentiation, highlighting BMP–PG interactions. We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors. This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation and bone formation.
Collapse
|
18
|
Abstract
Multiple intrinsic and extrinsic factors contribute to stem and neuronal precursor cell maintenance and/or differentiation. Proteoglycans, major residents of the stem cell microenvironment, modulate key signaling cues and are of particular importance. The complexity and diversity of the glycan structure of proteoglycans make their functional characterization a challenging task. In order to test the functional role of glycosaminoglycans (GAGs) in cell self-renewal, maintenance, and differentiation, we have taken a loss-of-function approach by developing a library of both biosynthetic and degradative enzymes to specifically remodel the ECM.
Collapse
|
19
|
Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol 2021; 9:760532. [PMID: 34917612 PMCID: PMC8669051 DOI: 10.3389/fcell.2021.760532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells maintain a subtle balance between self-renewal and differentiation under the regulatory network supported by both intracellular and extracellular components. Proteoglycans are large glycoproteins present abundantly on the cell surface and in the extracellular matrix where they play pivotal roles in facilitating signaling transduction and maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles and their functions in the regulation of stem cell homeostasis, as well as recent progress and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier or bio-active molecules in bone regeneration.
Collapse
Affiliation(s)
- Jiawen Chen
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Shenzhen Stomatology Hospital, Southern Medical University, Shenzhen, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United states
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Mizumoto S, Yamada S. An Overview of in vivo Functions of Chondroitin Sulfate and Dermatan Sulfate Revealed by Their Deficient Mice. Front Cell Dev Biol 2021; 9:764781. [PMID: 34901009 PMCID: PMC8652114 DOI: 10.3389/fcell.2021.764781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) are covalently attached to specific core proteins to form proteoglycans in their biosynthetic pathways. They are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases as well as sulfotransferases. Structural diversities of CS/DS and HS are essential for their various biological activities including cell signaling, cell proliferation, tissue morphogenesis, and interactions with a variety of growth factors as well as cytokines. Studies using mice deficient in enzymes responsible for the biosynthesis of the CS/DS and HS chains of proteoglycans have demonstrated their essential functions. Chondroitin synthase 1-deficient mice are viable, but exhibit chondrodysplasia, progression of the bifurcation of digits, delayed endochondral ossification, and reduced bone density. DS-epimerase 1-deficient mice show thicker collagen fibrils in the dermis and hypodermis, and spina bifida. These observations suggest that CS/DS are essential for skeletal development as well as the assembly of collagen fibrils in the skin, and that their respective knockout mice can be utilized as models for human genetic disorders with mutations in chondroitin synthase 1 and DS-epimerase 1. This review provides a comprehensive overview of mice deficient in CS/DS biosyntheses.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
21
|
Garcia SA, Ng VY, Iwamoto M, Enomoto-Iwamoto M. Osteochondroma Pathogenesis: Mouse Models and Mechanistic Insights into Interactions with Retinoid Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2042-2051. [PMID: 34809786 PMCID: PMC8647428 DOI: 10.1016/j.ajpath.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 05/02/2023]
Abstract
Osteochondromas are cartilage-capped tumors that arise near growing physes and are the most common benign bone tumor in children. Osteochondromas can lead to skeletal deformity, pain, loss of motion, and neurovascular compression. Currently, surgery is the only available treatment for symptomatic osteochondromas. Osteochondroma mouse models have been developed to understand the pathology and the origin of osteochondromas and develop therapeutic drugs. Several cartilage regulatory pathways have been implicated in the development of osteochondromas, such as bone morphogenetic protein, hedgehog, and WNT/β-catenin signaling. Retinoic acid receptor-γ is an important regulator of endochondral bone formation. Selective agonists for retinoic acid receptor-γ, such as palovarotene, have been investigated as drugs for inhibition of ectopic endochondral ossification, including osteochondromas. This review discusses the signaling pathways involved in osteochondroma pathogenesis and their possible interactions with the retinoid pathway.
Collapse
Affiliation(s)
- Sonia Arely Garcia
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Vincent Y Ng
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
22
|
Perez-Garcia EM, Whalen P, Gurtunca N. Novel Inactivating Homozygous PAPSS2 Mutation in Two Siblings With Disproportionate Short Stature. AACE Clin Case Rep 2021; 8:89-92. [PMID: 35415222 PMCID: PMC8984529 DOI: 10.1016/j.aace.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Background/Objective Variants in PAPSS2 (3′-phosphoadenosine 5′-phosphosulfate synthetase 2) present with varying degrees of brachyolmia (short trunk, platyspondyly, mild long-bone abnormalities). Our objective is to present the phenotype of male and female siblings with the same novel inactivating variant in PAPSS2. Case Report A Jordanian female (case 1), born to consanguineous parents, was referred at 10 years of age for short stature (SS). She had a normal laboratory workup, including normal growth hormone stimulation testing. Spinal x-rays done for clinical scoliosis revealed platyspondyly. She attained an adult height of 143.5 cm (-3 SD). Years later, her brother (case 2) was referred at 21 months of age for SS. His laboratory workup and bone age were normal. His growth velocity declined at 6 years of age, but normal growth factors did not suggest growth hormone deficiency. When he returned during puberty, disproportionate body measurements were noted. A skeletal survey revealed platyspondyly, increasing suspicion of growth plate pathology. Exome sequencing in the family revealed a homozygous variant, p.His496Pro (H496P) in PAPSS2 (NM_004670.3:c.1487A>C). Both parents carried the same variant. Discussion PAPSS2 assists with the sulfonation of dehydroepiandrosterone (DHEA) to DHEA sulfate and the sulfonation of proteoglycans in the cartilage, necessary for endochondral bone formation. PAPSS2-inactivating variants present with skeletal dysplasia and elevated DHEA levels. Conclusion This novel variant in PAPSS2 manifested with mild brachyolmia but disproportionate SS in male and female siblings. Biochemical phenotype with low circulating DHEA sulfate and high DHEA levels reflect a sulfonation defect.
Collapse
Affiliation(s)
- E. Melissa Perez-Garcia
- Division of Pediatric Endocrinology, University of South Alabama, Mobile, Alabama
- Address correspondence to Dr E. Melissa Perez-Garcia, Division of Pediatric Endocrinology, 1601 Center St, Suite 1S, Mobile, AL 36604.
| | - Philip Whalen
- Section on Growth and Development, National Institute of Child Health and Development, NIH, Bethesda, Maryland
| | - Nursen Gurtunca
- Division of Pediatric Endocrinology and diabetes, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Kingma SDK, Jonckheere AI. MPS I: Early diagnosis, bone disease and treatment, where are we now? J Inherit Metab Dis 2021; 44:1289-1310. [PMID: 34480380 DOI: 10.1002/jimd.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by α-L-iduronidase deficiency. Patients present with a broad spectrum of disease severity ranging from the most severe phenotype (Hurler) with devastating neurocognitive decline, bone disease and early death to intermediate (Hurler-Scheie) and more attenuated (Scheie) phenotypes, with a normal life expectancy. The most severely affected patients are preferably treated with hematopoietic stem cell transplantation, which halts the neurocognitive decline. Patients with more attenuated phenotypes are treated with enzyme replacement therapy. There are several challenges to be met in the treatment of MPS I patients. First, to optimize outcome, early recognition of the disease and clinical phenotype is needed to guide decisions on therapeutic strategies. Second, there is thus far no effective treatment available for MPS I bone disease. The pathophysiological mechanisms behind bone disease are largely unknown, limiting the development of effective therapeutic strategies. This article is a state of the art that comprehensively discusses three of the most urgent open issues in MPS I: early diagnosis of MPS I patients, pathophysiology of MPS I bone disease, and emerging therapeutic strategies for MPS I bone disease.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| | - An I Jonckheere
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| |
Collapse
|
24
|
Dadousis C, Somavilla A, Ilska JJ, Johnsson M, Batista L, Mellanby RJ, Headon D, Gottardo P, Whalen A, Wilson D, Dunn IC, Gorjanc G, Kranis A, Hickey JM. A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens. Genet Sel Evol 2021; 53:70. [PMID: 34496773 PMCID: PMC8424881 DOI: 10.1186/s12711-021-00663-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Body weight (BW) is an economically important trait in the broiler (meat-type chickens) industry. Under the assumption of polygenicity, a "large" number of genes with "small" effects is expected to control BW. To detect such effects, a large sample size is required in genome-wide association studies (GWAS). Our objective was to conduct a GWAS for BW measured at 35 days of age with a large sample size. METHODS The GWAS included 137,343 broilers spanning 15 pedigree generations and 392,295 imputed single nucleotide polymorphisms (SNPs). A false discovery rate of 1% was adopted to account for multiple testing when declaring significant SNPs. A Bayesian ridge regression model was implemented, using AlphaBayes, to estimate the contribution to the total genetic variance of each region harbouring significant SNPs (1 Mb up/downstream) and the combined regions harbouring non-significant SNPs. RESULTS GWAS revealed 25 genomic regions harbouring 96 significant SNPs on 13 Gallus gallus autosomes (GGA1 to 4, 8, 10 to 15, 19 and 27), with the strongest associations on GGA4 at 65.67-66.31 Mb (Galgal4 assembly). The association of these regions points to several strong candidate genes including: (i) growth factors (GGA1, 4, 8, 13 and 14); (ii) leptin receptor overlapping transcript (LEPROT)/leptin receptor (LEPR) locus (GGA8), and the STAT3/STAT5B locus (GGA27), in connection with the JAK/STAT signalling pathway; (iii) T-box gene (TBX3/TBX5) on GGA15 and CHST11 (GGA1), which are both related to heart/skeleton development); and (iv) PLAG1 (GGA2). Combined together, these 25 genomic regions explained ~ 30% of the total genetic variance. The region harbouring significant SNPs that explained the largest portion of the total genetic variance (4.37%) was on GGA4 (~ 65.67-66.31 Mb). CONCLUSIONS To the best of our knowledge, this is the largest GWAS that has been conducted for BW in chicken to date. In spite of the identified regions, which showed a strong association with BW, the high proportion of genetic variance attributed to regions harbouring non-significant SNPs supports the hypothesis that the genetic architecture of BW35 is polygenic and complex. Our results also suggest that a large sample size will be required for future GWAS of BW35.
Collapse
Affiliation(s)
| | | | - Joanna J. Ilska
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Martin Johnsson
- The Roslin Institute, University of Edinburgh, Midlothian, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lorena Batista
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Denis Headon
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Paolo Gottardo
- Italian Brown Breeders Association, Loc. Ferlina 204, 37012 Bussolengo, Italy
| | - Andrew Whalen
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - David Wilson
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Ian C. Dunn
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Gregor Gorjanc
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Andreas Kranis
- The Roslin Institute, University of Edinburgh, Midlothian, UK
- Aviagen Ltd, Midlothian, UK
| | - John M. Hickey
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
25
|
Vaahtomeri K, Moussion C, Hauschild R, Sixt M. Shape and Function of Interstitial Chemokine CCL21 Gradients Are Independent of Heparan Sulfates Produced by Lymphatic Endothelium. Front Immunol 2021; 12:630002. [PMID: 33717158 PMCID: PMC7946817 DOI: 10.3389/fimmu.2021.630002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
Gradients of chemokines and growth factors guide migrating cells and morphogenetic processes. Migration of antigen-presenting dendritic cells from the interstitium into the lymphatic system is dependent on chemokine CCL21, which is secreted by endothelial cells of the lymphatic capillary, binds heparan sulfates and forms gradients decaying into the interstitium. Despite the importance of CCL21 gradients, and chemokine gradients in general, the mechanisms of gradient formation are unclear. Studies on fibroblast growth factors have shown that limited diffusion is crucial for gradient formation. Here, we used the mouse dermis as a model tissue to address the necessity of CCL21 anchoring to lymphatic capillary heparan sulfates in the formation of interstitial CCL21 gradients. Surprisingly, the absence of lymphatic endothelial heparan sulfates resulted only in a modest decrease of CCL21 levels at the lymphatic capillaries and did neither affect interstitial CCL21 gradient shape nor dendritic cell migration toward lymphatic capillaries. Thus, heparan sulfates at the level of the lymphatic endothelium are dispensable for the formation of a functional CCL21 gradient.
Collapse
Affiliation(s)
- Kari Vaahtomeri
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Wihuri Research Institute and Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Christine Moussion
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
26
|
Hayashi S, Matsubara T, Fukuda K, Maeda T, Funahashi K, Hashimoto M, Kamenaga T, Takashima Y, Kuroda R. A genome-wide association study identifying the SNPs predictive of rapid joint destruction in patients with rheumatoid arthritis. Biomed Rep 2021; 14:31. [PMID: 33585033 PMCID: PMC7873586 DOI: 10.3892/br.2021.1407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease leading to joint destruction. The aim of the present study was to identify the genomic factors predictive of susceptibility to joint destruction in patients with RA by performing a genome-wide association study of genetic variants, including single nucleotide polymorphisms (SNPs). The study sample included 228 patients with a diagnosis of RA in the past 5 years. Patients were classified into rapid (total Sharp score/years of RA, ≥50) and slow (total Sharp score/years of RA, <50) joint destruction groups for analysis. The association between the genome-wide SNP analysis and joint destruction was evaluated. The following SNPs were strongly associated with rapid radiographic joint destruction: rs2295926 (P<1x10-7), belonging to the N-acetylgalactosaminyltransferase 12 (GALNT12) gene and rs11958855 (P<1x10-6), belonging to the KCNN2 gene (associated with the potassium calcium-activated channel subfamily). The identification of genetic predictors of rapid joint destruction in RA (GALNT12 and KCNN2) may provide information regarding potential therapeutic targets, and this information may be used to assist in the management RA disease progression, thereby improving the functional outcomes for patients.
Collapse
Affiliation(s)
- Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Tsukasa Matsubara
- Department of Orthopaedic Surgery, Matsubara Mayflower Hospital, Kato, Hyogo 673-1462, Japan
| | - Koji Fukuda
- Department of Orthopaedic Surgery, Matsubara Mayflower Hospital, Kato, Hyogo 673-1462, Japan
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Keiko Funahashi
- Research Institute of Joint Diseases, Kobe, Hyogo 650-0004, Japan
| | - Marowa Hashimoto
- Research Institute of Joint Diseases, Kobe, Hyogo 650-0004, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
27
|
Kitazawa K, Nadanaka S, Kadomatsu K, Kitagawa H. Chondroitin 6-sulfate represses keratinocyte proliferation in mouse skin, which is associated with psoriasis. Commun Biol 2021; 4:114. [PMID: 33495490 PMCID: PMC7835381 DOI: 10.1038/s42003-020-01618-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Chondroitin sulfates are implicated in epidermal biology, but functional significance of chondroitin sulfates remains unclear. Here, we report that chondroitin 6-sulfate is important for the maintenance of epidermal homeostasis. Mice deficient in chondroitin 6-O-sulfotransferase-1 (C6st-1), which is involved in biosynthesis of chondroitin 6-sulfate, exhibited keratinocyte hyperproliferation and impaired skin permeability barrier function. Chondroitin 6-sulfate directly interacted with the EGF receptor and negatively controlled ligand-induced EGF receptor signaling. Normal function of hyperproliferative C6st-1-knockout mouse-derived keratinocytes was rescued by treatment with exogenous chondroitin 6-sulfate. Epidermal hyperplasia, induced using imiquimod, was more severe in C6st-1-knockout mice than in C6st-1 wild-type mice. Taken together, these findings indicate that chondroitin 6-sulfate represses keratinocyte proliferation in normal skin, and that the expression level of C6st-1 may be associated with susceptibility to psoriasis.
Collapse
Affiliation(s)
- Kazuyuki Kitazawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe, 658-8558, Japan
| | - Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe, 658-8558, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe, 658-8558, Japan.
| |
Collapse
|
28
|
Faienza MF, Chiarito M, Brunetti G, D'Amato G. Growth plate gene involment and isolated short stature. Endocrine 2021; 71:28-34. [PMID: 32504378 DOI: 10.1007/s12020-020-02362-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Short stature is a common clinical presentation, thus it is widely accepted that it is a polygenic trait. However, genome wide association and next generation sequencing studies have recently challenged this view, suggesting that many of the children classified as idiopathic short stature could instead have monogenic defects. Linear growth is determined primarily by chondrogenesis at the growth plate. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is perfectly coordinated by complex networks of local paracrine and endocrine factors. Alterations in genes which control growth plate development can explain a large number of cases of isolated short stature, allowing an etiological diagnosis. METHODS/RESULTS We reviewed recent data on the genetic alterations in fundamental cellular processes, paracrine signaling, and cartilage matrix formation associated with impaired growth plate chondrogenesis. In particular we focused on growth plate gene involvement in nonsyndromic short stature. CONCLUSIONS The identification of genetic basis of growth failure will have a significant impact on the care of children affected with short stature.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Mariangela Chiarito
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari "A. Moro", Bari, Italy
| | | |
Collapse
|
29
|
Jiang Z, Byers S, Casal ML, Smith LJ. Failures of Endochondral Ossification in the Mucopolysaccharidoses. Curr Osteoporos Rep 2020; 18:759-773. [PMID: 33064251 PMCID: PMC7736118 DOI: 10.1007/s11914-020-00626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders characterized by abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. MPS patients frequently exhibit failures of endochondral ossification during postnatal growth leading to skeletal deformity and short stature. In this review, we outline the current understanding of the cellular and molecular mechanisms underlying failures of endochondral ossification in MPS and discuss associated treatment challenges and opportunities. RECENT FINDINGS Studies in MPS patients and animal models have demonstrated that skeletal cells and tissues exhibit significantly elevated GAG storage from early in postnatal life and that this is associated with impaired cartilage-to-bone conversion in primary and secondary ossification centers, and growth plate dysfunction. Recent studies have begun to elucidate the underlying cellular and molecular mechanisms, including impaired chondrocyte proliferation and hypertrophy, diminished growth factor signaling, disrupted cell cycle progression, impaired autophagy, and increased cell stress and apoptosis. Current treatments such as hematopoietic stem cell transplantation and enzyme replacement therapy fail to normalize endochondral ossification in MPS. Emerging treatments including gene therapy and small molecule-based approaches hold significant promise in this regard. Failures of endochondral ossification contribute to skeletal deformity and short stature in MPS patients, increasing mortality and reducing quality of life. Early intervention is crucial for effective treatment, and there is a critical need for new approaches that normalize endochondral ossification by directly targeting affected cells and signaling pathways.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Jiang Z, Derrick-Roberts AL, Byers S. Altered IHH signaling contributes to reduced chondrocyte proliferation in the growth plate of MPS VII mice. Mol Genet Metab Rep 2020; 25:100668. [PMID: 33117654 PMCID: PMC7582094 DOI: 10.1016/j.ymgmr.2020.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 10/29/2022] Open
Abstract
Bone elongation is driven by chondrocyte proliferation and hypertrophy in the growth plate. Both processes are modulated by multiple signaling pathways including the Indian Hedgehog (IHH) signaling pathway. Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders characterized by accumulation of glycosaminoglycans (GAGs) in multiple tissues and organs, leading to a range of clinical symptoms including bone shortening through mechanisms that are not fully understood. Using MPS VII mice, we previously observed a reduction in the number of proliferating and hypertrophic chondrocytes and a reduced gene expression of Ihh in the tibial growth plate. We further demonstrate here that IHH secretion by MPS VII chondrocytes was reduced both in vitro and in vivo. While normal chondrocytes showed no response to exogenous IHH, proliferation of MPS VII chondrocytes was stimulated in response to exogenous IHH in vitro. This was accompanied by an elevated gene expression of patched receptor (Ptch1). The results from this study suggested that reduced proliferation in MPS VII growth plate may be partially due to dysfunction of the IHH signaling pathway.
Collapse
Affiliation(s)
- Zhirui Jiang
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Ainslie L.K. Derrick-Roberts
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
| | - Sharon Byers
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
31
|
Bosakova M, Abraham SP, Nita A, Hruba E, Buchtova M, Taylor SP, Duran I, Martin J, Svozilova K, Barta T, Varecha M, Balek L, Kohoutek J, Radaszkiewicz T, Pusapati GV, Bryja V, Rush ET, Thiffault I, Nickerson DA, Bamshad MJ, University of Washington Center for Mendelian Genomics, Rohatgi R, Cohn DH, Krakow D, Krejci P. Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling. EMBO Mol Med 2020; 12:e11739. [PMID: 33200460 PMCID: PMC7645380 DOI: 10.15252/emmm.201911739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss-of-function mutations in the gene encoding adrenergic receptor kinase 1 (ADRBK1 or GRK2). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia-based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co-receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.
Collapse
Affiliation(s)
- Michaela Bosakova
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Sara P Abraham
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Alexandru Nita
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Eva Hruba
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - S Paige Taylor
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Ivan Duran
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Jorge Martin
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Katerina Svozilova
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Tomas Barta
- Department of Histology and EmbryologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Miroslav Varecha
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Lukas Balek
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | | | - Tomasz Radaszkiewicz
- Institute of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Ganesh V Pusapati
- Department of BiochemistryStanford UniversityPalo AltoCAUSA
- Department of MedicineStanford UniversityPalo AltoCAUSA
| | - Vitezslav Bryja
- Institute of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Eric T Rush
- Children's Mercy Kansas City, Center for Pediatric Genomic MedicineKansas CityMOUSA
- Department of PediatricsUniversity of MissouriKansas CityMOUSA
| | - Isabelle Thiffault
- Children's Mercy Kansas City, Center for Pediatric Genomic MedicineKansas CityMOUSA
- Department of PediatricsUniversity of MissouriKansas CityMOUSA
| | | | - Michael J Bamshad
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
- Department of PediatricsUniversity of WashingtonSeattleWAUSA
- Division of Genetic MedicineSeattle Children's HospitalSeattleWAUSA
| | | | - Rajat Rohatgi
- Department of BiochemistryStanford UniversityPalo AltoCAUSA
- Department of MedicineStanford UniversityPalo AltoCAUSA
| | - Daniel H Cohn
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Molecular Cell and Developmental BiologyUniversity of California at Los AngelesLos AngelesCAUSA
| | - Deborah Krakow
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Human GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Obstetrics and GynecologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Pavel Krejci
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| |
Collapse
|
32
|
Melrose J. Perlecan, a modular instructive proteoglycan with diverse functional properties. Int J Biochem Cell Biol 2020; 128:105849. [PMID: 32947020 DOI: 10.1016/j.biocel.2020.105849] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/30/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
This study reviewed some new aspects of the modular proteoglycan perlecan, a colossal proteoglycan with a 467 kDa core protein and five distinct functional domains. Perlecan is a heparan sulphate proteoglycan that transiently displays native CS sulphation motifs 4-C-3 and 7-D-4 during tissue morphogenesis these are expressed by progenitor cell populations during tissue development. Perlecan is susceptible to fragmentation by proteases during tissue development and in pathological tissues particularly in domains IV and V. The fragmentation pattern of domain IV has been suggested as a means of grading prostate cancer. Domain V of perlecan is of interest due to its interactive properties with integrin α5β1 that promotes pericyte migration enhancing PDGF-BB-induced phosphorylation of PDGFRβ, Src homology region 2 domain-containing phosphatase-2, and focal adhesion kinase supporting the repair of the blood brain barrier following ischaemic stroke. Fragments of domain V can also interact with α2β1 integrin disrupting tube formation by endothelial cells. LG1-LG2, LG3 fragments can antagonise VEGFR2, and α2β1 integrin interactions preventing angiogenesis by endothelial cells. These domain V fragments are of interest as potential anti-tumour agents. Perlecan attached to the luminal surfaces of endothelial cells in blood vessels acts as a flow sensor that signals back to endothelial and smooth muscle cells to regulate vascular tone and blood pressure. Perlecan also acts as a flow sensor in the lacuno-canalicular space regulating osteocytes and bone homeostasis. Along with its biomechanical regulatory properties in cartilaginous tissues this further extends the functional repertoire of this amazingly diverse functional proteoglycan.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Sydney Medical School, Northern, The University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
33
|
Wang Y, Ping L, Luan X, Chen Y, Fan X, Li L, Liu Y, Wang P, Zhang S, Zhang B, Chen X. A Mutation in VWA1, Encoding von Willebrand Factor A Domain-Containing Protein 1, Is Associated With Hemifacial Microsomia. Front Cell Dev Biol 2020; 8:571004. [PMID: 33015062 PMCID: PMC7509151 DOI: 10.3389/fcell.2020.571004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background Hemifacial microsomia (HFM) is a type of rare congenital syndrome caused by developmental disorders of the first and second pharyngeal arches that occurs in one out of 5,600 live births. There are significant gaps in our knowledge of the pathogenic genes underlying this syndrome. Methods Whole exome sequencing (WES) was performed on five patients, one asymptomatic carrier, and two marry-in members of a five-generation pedigree. Structure of WARP (product of VWA1) was predicted using the Phyre2 web portal. In situ hybridization and vwa1-knockdown/knockout studies in zebrafish using morpholino and CRISPR/Cas9 techniques were performed. Cartilage staining and immunofluorescence were carried out. Results Through WES and a set of filtration, we identified a c.G905A:p.R302Q point mutation in a novel candidate pathogenic gene, VWA1. The Phyre2 web portal predicted alterations in secondary and tertiary structures of WARP, indicating changes in its function as well. Predictions of protein-to-protein interactions in five pathways related to craniofacial development revealed possible interactions with four proteins in the FGF pathway. Knockdown/knockout studies of the zebrafish revealed deformities of pharyngeal cartilage. A decrease of the proliferation of cranial neural crest cells (CNCCs) and alteration of the structure of pharyngeal chondrocytes were observed in the morphants as well. Conclusion Our data suggest that a mutation in VWA1 is functionally linked to HFM through suppression of CNCC proliferation and disruption of the organization of pharyngeal chondrocytes.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Otolaryngology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Ping
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Luan
- School of Medicine, Tsinghua University, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yushan Chen
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianyan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yaping Liu
- Department of Medical Genetics and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyang Zhang
- School of Medicine, Tsinghua University, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
35
|
Biochemical characteristics of the chondrocyte-enriched SNORC protein and its transcriptional regulation by SOX9. Sci Rep 2020; 10:7790. [PMID: 32385306 PMCID: PMC7210984 DOI: 10.1038/s41598-020-64640-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/16/2020] [Indexed: 11/08/2022] Open
Abstract
Snorc (Small NOvel Rich in Cartilage) has been identified as a chondrocyte-specific gene in the mouse. Yet little is known about the SNORC protein biochemical properties, and mechanistically how the gene is regulated transcriptionally in a tissue-specific manner. The goals of the present study were to shed light on those important aspects. The chondrocyte nature of Snorc expression was confirmed in mouse and rat tissues, in differentiated (day 7) ATDC5, and in RCS cells where it was constitutive. Topological mapping and biochemical analysis brought experimental evidences that SNORC is a type I protein carrying a chondroitin sulfate (CS) attached to serine 44. The anomalous migration of SNORC on SDS-PAGE was due to its primary polypeptide features, suggesting no additional post-translational modifications apart from the CS glycosaminoglycan. A highly conserved SOX9-binding enhancer located in intron 1 was necessary to drive transcription of Snorc in the mouse, rat, and human. The enhancer was active independently of orientation and whether located in a heterologous promoter or intron. Crispr-mediated inactivation of the enhancer in RCS cells caused reduction of Snorc. Transgenic mice carrying the intronic multimerized enhancer drove high expression of a βGeo reporter in chondrocytes, but not in the hypertrophic zone. Altogether these data confirmed the chondrocyte-specific nature of Snorc and revealed dependency on the intronic enhancer binding of SOX9 for transcription.
Collapse
|
36
|
Paganini C, Gramegna Tota C, Superti-Furga A, Rossi A. Skeletal Dysplasias Caused by Sulfation Defects. Int J Mol Sci 2020; 21:ijms21082710. [PMID: 32295296 PMCID: PMC7216085 DOI: 10.3390/ijms21082710] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022] Open
Abstract
Proteoglycans (PGs) are macromolecules present on the cell surface and in the extracellular matrix that confer specific mechanical, biochemical, and physical properties to tissues. Sulfate groups present on glycosaminoglycans, linear polysaccharide chains attached to PG core proteins, are fundamental for correct PG functions. Indeed, through the negative charge of sulfate groups, PGs interact with extracellular matrix molecules and bind growth factors regulating tissue structure and cell behavior. The maintenance of correct sulfate metabolism is important in tissue development and function, particularly in cartilage where PGs are fundamental and abundant components of the extracellular matrix. In chondrocytes, the main sulfate source is the extracellular space, then sulfate is taken up and activated in the cytosol to the universal sulfate donor to be used in sulfotransferase reactions. Alteration in each step of sulfate metabolism can affect macromolecular sulfation, leading to the onset of diseases that affect mainly cartilage and bone. This review presents a panoramic view of skeletal dysplasias caused by mutations in genes encoding for transporters or enzymes involved in macromolecular sulfation. Future research in this field will contribute to the understanding of the disease pathogenesis, allowing the development of targeted therapies aimed at alleviating, preventing, or modifying the disease progression.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
| | - Chiara Gramegna Tota
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
- Correspondence:
| |
Collapse
|
37
|
Bachvarova V, Dierker T, Esko J, Hoffmann D, Kjellen L, Vortkamp A. Chondrocytes respond to an altered heparan sulfate composition with distinct changes of heparan sulfate structure and increased levels of chondroitin sulfate. Matrix Biol 2020; 93:43-59. [PMID: 32201365 DOI: 10.1016/j.matbio.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/27/2023]
Abstract
Heparan sulfate (HS) regulates the activity of many signaling molecules critical for the development of endochondral bones. Even so, mice with a genetically altered HS metabolism display a relatively mild skeletal phenotype compared to the defects observed in other tissues and organs pointing to a reduced HS dependency of growth-factor signaling in chondrocytes. To understand this difference, we have investigated the glycosaminoglycan (GAG) composition in two mouse lines that produce either reduced levels of HS (Ext1gt/gt mice) or HS lacking 2-O-sulfation (Hs2st1-/- mice). Analysis by RPIP-HPLC revealed an increased level of sulfated disaccarides not affected by the mutation in both mouse lines indicating that chondrocytes attempt to restore a critical level of sulfation. In addition, in both mutant lines we also detected significantly elevated levels of CS. Size exclusion chromatography further demonstrated that Ext1gt/gt mutants produce more but shorter CS chains, while the CS chains produced by (Hs2st1-/- mice) mutants are of similar length to that of wild type littermates indicating that chondrocytes produce more rather than longer CS chains. Expression analysis revealed an upregulation of aggrecan, which likely carries most of the additionally produced CS. Together the results of this study demonstrate for the first time that not only a reduced HS synthesis but also an altered HS structure leads to increased levels of CS in mammalian tissues. Furthermore, as chondrocytes produce 100-fold more CS than HS the increased CS levels point to an active, precursor-independent mechanism that senses the quality of HS in a vast excess of CS. Interestingly, reducing the level of cell surface CS by chondroitinase treatment leads to reduced Bmp2 induced Smad1/5/9 phosphorylation. In addition, Erk phosphorylation is increased independent of Fgf18 treatment indicating that both, HS and CS, affect growth factor signaling in chondrocytes in distinct manners.
Collapse
Affiliation(s)
- Velina Bachvarova
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr 1-5,45117 Essen, Germany.
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, and Science for Life Laboratory, Uppsala University, Box 582, Uppsala, Sweden.
| | - Jeffrey Esko
- Department of Cellular and Molecular Medicine, UCSD, United States.
| | - Daniel Hoffmann
- Department of Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Germany.
| | - Lena Kjellen
- Department of Medical Biochemistry and Microbiology, and Science for Life Laboratory, Uppsala University, Box 582, Uppsala, Sweden.
| | - Andrea Vortkamp
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr 1-5,45117 Essen, Germany.
| |
Collapse
|
38
|
Lei J, Yan S, Zhou Y, Wang L, Zhang J, Guo X, Lammi MJ, Han J, Qu C. Abnormal expression of chondroitin sulfate sulfotransferases in the articular cartilage of pediatric patients with Kashin-Beck disease. Histochem Cell Biol 2020; 153:153-164. [PMID: 31845005 DOI: 10.1007/s00418-019-01833-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
The objective of this study is to investigate the expression of enzymes involved in the sulfation of articular cartilage from proximal metacarpophalangeal (PMC) joint cartilage and distal metacarpophalangeal (DMC) joint cartilage in children with Kashin-Beck disease (KBD). The finger cartilage samples of PMC and DMC were collected from KBD and normal children aged 5-14 years old. Hematoxylin and eosin staining as well as immunohistochemical staining were used to observe the morphology and quantitate the expression of carbohydrate sulfotransferase 3 (CHST-3), carbohydrate sulfotransferase 12 (CHST-12), carbohydrate sulfotransferase 13 (CHST-13), uronyl 2-O-sulfotransferase (UST), and aggrecan. In the results, the numbers of chondrocyte decreased in all three zones of PMC and DMC in the KBD group. Less positive staining cells for CHST-3, CHST-12, CHST-13, UST, and aggrecan were observed in almost all three zones of PMC and DMC in KBD. The positive staining cell rates of CHST-12 were higher in superficial and middle zones of PMC and DMC in KBD, and a significantly higher rate of CHST-13 was observed only in superficial zone of PMC in KBD. In conclusion, the abnormal expression of chondroitin sulfate sulfotransferases in chondrocytes of KBD children may provide an explanation for the cartilage damage, and provide therapeutic targets for the treatment.
Collapse
Affiliation(s)
- Jian Lei
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
| | - Siqi Yan
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, P. R. China
- Department of Ophthalmology, The First Affiliated Hospital, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yuan Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
| | - Liyun Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, P. R. China
| | - Jinghua Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
- Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden
| | - Jing Han
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, P. R. China.
| | - Chengjuan Qu
- Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
39
|
Jiang Z, Derrick-Roberts ALK, Reichstein C, Byers S. Cell cycle progression is disrupted in murine MPS VII growth plate leading to reduced chondrocyte proliferation and transition to hypertrophy. Bone 2020; 132:115195. [PMID: 31863960 DOI: 10.1016/j.bone.2019.115195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023]
Abstract
Endochondral bone growth is abnormal in 6 of the 11 types of mucopolysaccharidoses (MPS) disorders; resulting in short stature, reduced size of the thoracic cavity and compromised manual dexterity. Current therapies for MPS have had a limited effect on bone growth and to improve these therapies or develop adjunct approaches requires an understanding of the underlying basis of abnormal bone growth in MPS. The MPS VII mouse model replicates the reduction in long bone and vertebral length observed in human MPS. Using this model we have shown that the growth plate is elongated but contains fewer chondrocytes in the proliferative and hypertrophic zones. Endochondral bone growth is in part regulated by entry and exit from the cell cycle by growth plate chondrocytes. More MPS VII chondrocytes were positive for Ki67, a marker for active phases of the cell cycle, suggesting that more MPS VII chondrocytes were in the cell cycle. The number of cells positive for phosphorylated histone H3 was significantly reduced in MPS VII chondrocytes, suggesting fewer MPS VII chondrocytes progressed to mitotic division. While MPS VII HZ chondrocytes continued to express cyclin D1 and more cells were positive for E2F1 and phos pRb than normal, fewer MPS VII HZ chondrocytes were positive for p57kip2 a marker of terminal differentiation, suggesting fewer MPS VII chondrocytes were able to exit the cell cycle. In addition, multiple markers typical of PZ to HZ transition were not downregulated in MPS VII, in particular Sox9, Pthrpr and Wnt5a. These findings are consistent with MPS VII growth plates elongating at a slower rate than normal due to a delay in progression through the cell cycle, in particular the transition between G1 and S phases, leading to both reduced cell division and transition to the hypertrophic phenotype.
Collapse
Affiliation(s)
- Zhirui Jiang
- School of Bioscience, The University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.
| | - Ainslie L K Derrick-Roberts
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Clare Reichstein
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- School of Bioscience, The University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
40
|
Takemura M, Noborn F, Nilsson J, Bowden N, Nakato E, Baker S, Su TY, Larson G, Nakato H. Chondroitin sulfate proteoglycan Windpipe modulates Hedgehog signaling in Drosophila. Mol Biol Cell 2020; 31:813-824. [PMID: 32049582 PMCID: PMC7185963 DOI: 10.1091/mbc.e19-06-0327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proteoglycans, a class of carbohydrate-modified proteins, often modulate growth factor signaling on the cell surface. However, the molecular mechanism by which proteoglycans regulate signal transduction is largely unknown. In this study, using a recently developed glycoproteomic method, we found that Windpipe (Wdp) is a novel chondroitin sulfate proteoglycan (CSPG) in Drosophila. Wdp is a single-pass transmembrane protein with leucin-rich repeat (LRR) motifs and bears three CS sugar chain attachment sites in the extracellular domain. Here we show that Wdp modulates the Hedgehog (Hh) pathway. In the wing disc, overexpression of wdp inhibits Hh signaling, which is dependent on its CS chains and the LRR motifs. The wdp null mutant flies show a specific defect (supernumerary scutellar bristles) known to be caused by Hh overexpression. RNA interference knockdown and mutant clone analyses showed that loss of wdp leads to the up-regulation of Hh signaling. Altogether, our study demonstrates a novel role of CSPGs in regulating Hh signaling.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Fredrik Noborn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Nanako Bowden
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Sarah Baker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Tsu-Yi Su
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
41
|
Yu J, Yang T, Dai J, Wang X. Histopathological features of condylar hyperplasia and condylar Osteochondroma: a comparison study. Orphanet J Rare Dis 2019; 14:293. [PMID: 31842965 PMCID: PMC6916444 DOI: 10.1186/s13023-019-1272-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 12/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Both mandibular condylar hyperplasia and condylar osteochondroma can lead to maxillofacial skeletal asymmetry and malocclusion, although they exhibit different biological behavior. This study attempted to compare the histological features of mandibular condylar hyperplasia and condylar osteochondroma using hematoxylin-and-eosin (H&E) staining, and immunohistochemistry staining of PCNA and EXT1 with quantitative analysis method. Results The H&E staining showed that condylar hyperplasia and condylar osteochondroma could be divided into four histological types and exhibited features of different endochondral ossification stages. There was evidence of a thicker cartilage cap in condylar osteochondroma as compared condylar hyperplasia (P = 0.018). The percentage of bone formation in condylar osteochondroma was larger than was found in condylar hyperplasia (P = 0.04). Immunohistochemical staining showed that PCNA was mainly located in the undifferentiated mesenchymal layer and the hypertrophic cartilage layer, and there were more PCNA positive cells in the condylar osteochondroma (P = 0.007). EXT1 was mainly expressed in the cartilage layer, and there was also a higher positive rate of EXT1 in condylar osteochondroma (P = 0.0366). The thicker cartilage cap, higher bone formation rate and higher PCNA positive rate indicated a higher rate of proliferative activity in condylar osteochondroma. The more significant positive rate of EXT1 in condylar osteochondroma implied differential biological characteristic as compared to condylar hyperplasia. Conclusions These features might be useful in histopathologically distinguishing condylar hyperplasia and osteochondroma.
Collapse
Affiliation(s)
- Jingshuang Yu
- Department of Oral and Craniomaxillofacial Surgery, Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 20011, People's Republic of China
| | - Tong Yang
- Department of Oral and Craniomaxillofacial Surgery, Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 20011, People's Republic of China.,Shanghai LinkedCare Information Technology Co., Ltd, Shanghai, People's Republic of China
| | - Jiewen Dai
- Department of Oral and Craniomaxillofacial Surgery, Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 20011, People's Republic of China.
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Surgery, Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 20011, People's Republic of China.
| |
Collapse
|
42
|
Zheng C, Lin X, Liu H, Lu W, Xu X, Wang D, Gao B, Wang C, Zhou J, Fan J, Hu Y, Jie Q, Chen D, Yang L, Luo Z. Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis. FASEB J 2019; 34:720-734. [PMID: 31914611 DOI: 10.1096/fj.201901040rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
Confusion persists over pathogenesis of spondylolysis. To confirm pathogenicity of the previously identified causative mutation of spondylolysis and investigate the genetic etiology, we generate a new mouse line harboring D673V mutation in the Slc26a2 gene. D673V mutation induces delayed endochondral ossification characterized by transiently reduced chondrocyte proliferation in mice at the early postnatal stage. Adult D673V homozygotes exhibit dysplastic isthmus and reduced bone volume of the dorsal vertebra resembling the detached vertebral bony structure when spondylolysis occurs, including the postzygopophysis, vertebral arch, and spinous process, which causes biomechanical alterations around the isthmic region of L4-5 vertebrae indicated by finite element analysis. Consistently, partial ablation of Slc26a2 in vertebral skeletal cells using Col1a1-Cre; Slc26a2 fl/fl mouse line recapitulates a similar but worsened vertebral phenotype featured by lamellar isthmus. In addition, when reaching late adulthood, D673V homozygotes develop an evident bone-loss phenotype and show impaired osteogenesis. These findings support a multifactorial etiology, involving congenitally predisposed isthmic conditions, altered biomechanics, and age-dependent bone loss, which leads to SLC26A2-related spondylolysis.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xisheng Lin
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - He Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weiguang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Cheng Wang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Jinru Zhou
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yaqian Hu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Jie
- Department of Orthopedic Surgery, Hong Hui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
43
|
Guo Y, Zhou Y, Yan S, Qu C, Wang L, Guo X, Han J. Decreased Expression of CHST-12, CHST-13, and UST in the Proximal Interphalangeal Joint Cartilage of School-Age Children with Kashin-Beck Disease: an Endemic Osteoarthritis in China Caused by Selenium Deficiency. Biol Trace Elem Res 2019; 191:276-285. [PMID: 30661165 DOI: 10.1007/s12011-019-1642-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023]
Abstract
The objective of this study is to investigate changes in the expression of enzymes involved in chondroitin sulfate (CS) sulfation in distal articular surface of proximal interphalangeal joint isolated from school-age children patients with Kashin-Beck disease (KBD), using normal children as controls. Articular cartilage samples were collected from four normal and four KBD children (7-12 years old), and these children were assigned to control and KBD groups. Hematoxylin and eosin (H&E), toluidine blue (TB), and immunohistochemical (IHC) stainings were utilized to evaluate changes in joint pathology and expression of enzymes involved in CS sulfation, including carbohydrate sulfotransferase 12 (CHST-12), carbohydrate sulfotransferase 13 (CHST-13), and uronyl 2-O-sulfotransferase (UST). The correspondence results were examined by semi-quantitative analysis. Compared with the control group, the KBD group showed the following: a significant decrease of total chondrocytes in superficial, middle, and deep layers and deposition of sulfated glycosaminoglycans in extracellular matrix of KBD cartilage were observed; positive staining chondrocytes of CHST-12, CHST-13, and UST were significantly less in superficial zone of KBD cartilage; and CHST-13 positive staining chondrocytes was reduced in deep zone of KBD cartilage. In contrast, the positive staining rates of CHST-12, CHST-13, and UST in KBD were significantly higher than those in the control group. The decreased expression of these enzymes and the physiologic compensatory reaction may be the signs of early-stage KBD. The alterations of CS structure modifying sulfotransferases in finger articular cartilage might play an important role in the onset and pathogenesis of school-age KBD children.
Collapse
Affiliation(s)
- Yijie Guo
- Key laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yuan Zhou
- Key laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Siqi Yan
- Department of Ophthalmology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chengjuan Qu
- Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden
| | - Liyun Wang
- Key laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
- College of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiong Guo
- Key laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing Han
- Key laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
- College of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, Guangzhou, People's Republic of China.
| |
Collapse
|
44
|
Paganini C, Costantini R, Superti-Furga A, Rossi A. Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view. FEBS J 2019; 286:3008-3032. [PMID: 31286677 DOI: 10.1111/febs.14984] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides that constitute the carbohydrate moiety covalently attached to the protein core of proteoglycans, macromolecules present on the cell surface and in the extracellular matrix. Several genetic disorders of bone and connective tissue are caused by mutations in genes encoding for glycosyltransferases, sulfotransferases and transporters that are responsible for the synthesis of sulfated GAGs. Phenotypically, these disorders all reflect alterations in crucial biological functions of GAGs in the development, growth and homoeostasis of cartilage and bone. To date, up to 27 different skeletal phenotypes have been linked to mutations in 23 genes encoding for proteins involved in GAG biosynthesis. This review focuses on recent genetic, molecular and biochemical studies of bone and connective tissue disorders caused by GAG synthesis defects. These insights and future research in the field will provide a deeper understanding of the molecular pathogenesis of these disorders and will pave the way for developing common therapeutic strategies that might be targeted to a range of individual phenotypes.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| |
Collapse
|
45
|
Yue S, Whalen P, Jee YH. Genetic regulation of linear growth. Ann Pediatr Endocrinol Metab 2019; 24:2-14. [PMID: 30943674 PMCID: PMC6449614 DOI: 10.6065/apem.2019.24.1.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Linear growth occurs at the growth plate. Therefore, genetic defects that interfere with the normal function of the growth plate can cause linear growth disorders. Many genetic causes of growth disorders have already been identified in humans. However, recent genome-wide approaches have broadened our knowledge of the mechanisms of linear growth, not only providing novel monogenic causes of growth disorders but also revealing single nucleotide polymorphisms in genes that affect height in the general population. The genes identified as causative of linear growth disorders are heterogeneous, playing a role in various growth-regulating mechanisms including those involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. Understanding the underlying genetic defects in linear growth is important for clinicians and researchers in order to provide proper diagnoses, management, and genetic counseling, as well as to develop better treatment approaches for children with growth disorders.
Collapse
Affiliation(s)
- Shanna Yue
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Philip Whalen
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Youn Hee Jee
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA,Address for correspondence: Youn Hee Jee, MD Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA Tel: +1-301-435-5834 Fax: +1-301-402-0574 E-mail:
| |
Collapse
|
46
|
Alberton P, Dugonitsch HC, Hartmann B, Li P, Farkas Z, Saller MM, Clausen-Schaumann H, Aszodi A. Aggrecan Hypomorphism Compromises Articular Cartilage Biomechanical Properties and Is Associated with Increased Incidence of Spontaneous Osteoarthritis. Int J Mol Sci 2019; 20:ijms20051008. [PMID: 30813547 PMCID: PMC6429589 DOI: 10.3390/ijms20051008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 01/02/2023] Open
Abstract
The gene encoding the proteoglycan aggrecan (Agc1) is abundantly expressed in cartilage during development and adulthood, and the loss or diminished deposition of the protein results in a wide range of skeletal malformations. Furthermore, aggrecan degradation is a hallmark of cartilage degeneration occurring in osteoarthritis. In the present study, we investigated the consequences of a partial loss of aggrecan in the postnatal skeleton and in the articular cartilage of adult mice. We took advantage of the previously described Agc1tm(IRES-CreERT2) mouse line, which allows for conditional and timely-regulated deletion of floxed, cartilage-expressed genes. As previously reported, the introduction of the CreERT2 cassette in the 3’UTR causes a disruption of the normal expression of Agc1 resulting in a hypomorphic deposition of the protein. In homozygous mice, we observed a dwarf phenotype, which persisted throughout adulthood supporting the evidence that reduced aggrecan amount impairs skeletal growth. Homozygous mice exhibited reduced proteoglycan staining of the articular cartilage at 6 and 12 months of age, increased stiffening of the extracellular matrix at six months, and developed severe cartilage erosion by 12 months. The osteoarthritis in the hypomorph mice was not accompanied by increased expression of catabolic enzymes and matrix degradation neoepitopes. These findings suggest that the degeneration found in homozygous mice is likely due to the compromised mechanical properties of the cartilage tissue upon aggrecan reduction.
Collapse
Affiliation(s)
- Paolo Alberton
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
| | - Hans Christian Dugonitsch
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Bastian Hartmann
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany.
| | - Ping Li
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Zsuzsanna Farkas
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Maximilian Michael Saller
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany.
| | - Attila Aszodi
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
| |
Collapse
|
47
|
Zheng C, Lin X, Xu X, Wang C, Zhou J, Gao B, Fan J, Lu W, Hu Y, Jie Q, Luo Z, Yang L. Suppressing UPR-dependent overactivation of FGFR3 signaling ameliorates SLC26A2-deficient chondrodysplasias. EBioMedicine 2019; 40:695-709. [PMID: 30685387 PMCID: PMC6413327 DOI: 10.1016/j.ebiom.2019.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mutations in the SLC26A2 gene cause a spectrum of currently incurable human chondrodysplasias. However, genotype-phenotype relationships of SLC26A2-deficient chondrodysplasias are still perplexing and thus stunt therapeutic development. Methods To investigate the causative role of SLC26A2 deficiency in chondrodysplasias and confirm its skeleton-specific pathology, we generated and analyzed slc26a2−/− and Col2a1-Cre; slc26a2fl/fl mice. The therapeutic effect of NVP-BGJ398, an FGFR inhibitor, was tested with both explant cultures and timed pregnant females. Findings Two lethal forms of human SLC26A2-related chondrodysplasias, achondrogenesis type IB (ACG1B) and atelosteogenesis type II (AO2), are phenocopied by slc26a2−/− mice. Unexpectedly, slc26a2−/− chondrocytes are defective for collagen secretion, exhibiting intracellular retention and compromised extracellular deposition of ColII and ColIX. As a consequence, the ATF6 arm of the unfolded protein response (UPR) is preferentially triggered to overactivate FGFR3 signaling by inducing excessive FGFR3 in slc26a2−/− chondrocytes. Consistently, suppressing FGFR3 signaling by blocking either FGFR3 or phosphorylation of the downstream effector favors the recovery of slc26a2−/− cartilage cultures from impaired growth and unbalanced cell proliferation and apoptosis. Moreover, administration of an FGFR inhibitor to pregnant females shows therapeutic effects on pathological features in slc26a2−/− newborns. Finally, we confirm the skeleton-specific lethality and pathology of global SLC26A2 deletion through analyzing the Col2a1-Cre; slc26a2fl/fl mouse line. Interpretation Our study unveils a previously unrecognized pathogenic mechanism underlying ACG1B and AO2, and supports suppression of FGFR3 signaling as a promising therapeutic approach for SLC26A2-related chondrodysplasias. Fund This work was supported by National Natural Science Foundation of China (81871743, 81730065 and 81772377).
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xisheng Lin
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Cheng Wang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Jinru Zhou
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weiguang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yaqian Hu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Jie
- Department of Orthopedic Surgery, HongHui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Medical Research Institute, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
48
|
Andrews S, Cheng A, Stevens H, Logun MT, Webb R, Jordan E, Xia B, Karumbaiah L, Guldberg RE, Stice S. Chondroitin Sulfate Glycosaminoglycan Scaffolds for Cell and Recombinant Protein-Based Bone Regeneration. Stem Cells Transl Med 2019; 8:575-585. [PMID: 30666821 PMCID: PMC6525555 DOI: 10.1002/sctm.18-0141] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023] Open
Abstract
Bone morphogenetic protein 2 (BMP‐2)‐loaded collagen sponges remain the clinical standard for treatment of large bone defects when there is insufficient autograft, despite associated complications. Recent efforts to negate comorbidities have included biomaterials and gene therapy approaches to extend the duration of BMP‐2 release and activity. In this study, we compared the collagen sponge clinical standard to chondroitin sulfate glycosaminoglycan (CS‐GAG) scaffolds as a delivery vehicle for recombinant human BMP‐2 (rhBMP‐2) and rhBMP‐2 expression via human BMP‐2 gene inserted into mesenchymal stem cells (BMP‐2 MSC). We demonstrated extended release of rhBMP‐2 from CS‐GAG scaffolds compared to their collagen sponge counterparts, and further extended release from CS‐GAG gels seeded with BMP‐2 MSC. When used to treat a challenging critically sized femoral defect model in rats, both rhBMP‐2 and BMP‐2 MSC in CS‐GAG induced comparable bone formation to the rhBMP‐2 in collagen sponge, as measured by bone volume, strength, and stiffness. We conclude that CS‐GAG scaffolds are a promising delivery vehicle for controlling the release of rhBMP‐2 and to mediate the repair of critically sized segmental bone defects. stem cells translational medicine2019;8:575–585
Collapse
Affiliation(s)
- Seth Andrews
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Albert Cheng
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hazel Stevens
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Meghan T Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Biomedical Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Robin Webb
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Erin Jordan
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Boao Xia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Department of ADS, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Steven Stice
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Department of ADS, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
49
|
Dubail J, Huber C, Chantepie S, Sonntag S, Tüysüz B, Mihci E, Gordon CT, Steichen-Gersdorf E, Amiel J, Nur B, Stolte-Dijkstra I, van Eerde AM, van Gassen KL, Breugem CC, Stegmann A, Lekszas C, Maroofian R, Karimiani EG, Bruneel A, Seta N, Munnich A, Papy-Garcia D, De La Dure-Molla M, Cormier-Daire V. SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun 2018; 9:3087. [PMID: 30082715 PMCID: PMC6078967 DOI: 10.1038/s41467-018-05191-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7−/− mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7−/− mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development. The majority of skeletal dysplasia are caused by pathogenic variants in genes required for glycosaminoglycan (GAG) metabolism. Here, Dubail et al. identify genetic variants in the solute carrier family protein SLC10A7 in families with skeletal dysplasia and amelogenesis imperfecta that disrupt GAG synthesis.
Collapse
Affiliation(s)
- Johanne Dubail
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Céline Huber
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Sandrine Chantepie
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | | | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Ercan Mihci
- Akdeniz University Paediatric Genetic Deaprtment, 07059 Antalya, Turkey
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | | | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Banu Nur
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Irene Stolte-Dijkstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands
| | - Albertien M van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Koen L van Gassen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Corstiaan C Breugem
- Division of Paediatric Plastic Surgery, Wilhelmina Children´s Hopsital, 3584 Utrecht, The Netherlands
| | - Alexander Stegmann
- Department of Human Genetics, Radboud University Medical Center, 6525 Nijmegen, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, 6202 Maastricht, The Netherlands
| | - Caroline Lekszas
- Institute of Human Genetics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK.,Next Generation Genetic Clinic, 9175954353 Mashhad, Iran.,Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, 9198613636 Mashhad, Iran
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Nathalie Seta
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Arnold Munnich
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Dulce Papy-Garcia
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | - Muriel De La Dure-Molla
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.,Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, INSERM UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-Paris, 75006 Paris, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.
| |
Collapse
|
50
|
Hayes AJ, Smith SM, Caterson B, Melrose J. Concise Review: Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3, and 3-B-3(-) Chondroitin Sulfate Motifs Are Morphogenetic Markers of Tissue Development. Stem Cells 2018; 36:1475-1486. [PMID: 29893019 PMCID: PMC6381390 DOI: 10.1002/stem.2860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 01/02/2023]
Abstract
This study reviewed the occurrence of chondroitin sulfate (CS) motifs 4-C-3, 7-D-4, and 3-B-3(-), which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulfation motifs 7-D-4, 4-C-3, and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. Stem Cells 2018;36:1475-1486.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Susan M Smith
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, New South Wales, Australia
| | - Bruce Caterson
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|