1
|
Silberfeld A, Roe JM, Ellegood J, Lerch JP, Qiu L, Kim Y, Lee JG, Hopkins WD, Grandjean J, Ou Y, Pourquié O. Left-Right Brain-Wide Asymmetry of Neuroanatomy in the Mouse Brain. Neuroimage 2025; 307:121017. [PMID: 39798830 DOI: 10.1016/j.neuroimage.2025.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes past the left. Here, we ask whether neuroanatomical asymmetries can be observed in mice, leveraging 6 mouse neuroimaging cohorts from 5 different research groups (∼3,500 animals). We found an anterior-posterior pattern of volume asymmetry with anterior regions larger on the right and posterior regions larger on the left. This pattern appears driven by similar trends in surface area and positional asymmetries, with the results together indicating a small brain-wide twisting pattern, similar to the human cerebral petalia. Furthermore, the results show no apparent relationship to known functional asymmetries in mice, emphasizing the complexity of the structure-function relationship in brain asymmetry. Our results recapitulate and extend previous patterns of asymmetry from two published studies as well as capture well-established, bilateral male-female differences in the mouse brain as a positive control. By establishing a signature of anatomical brain asymmetry in mice, we aim to provide a foundation for future studies to probe the mechanistic underpinnings of brain asymmetry seen in humans - a feature of the brain with extremely limited understanding.
Collapse
Affiliation(s)
- Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Jacob Ellegood
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Preclinical Imaging, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lily Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jong Gwan Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - William D Hopkins
- Department of Comparative Medicine & Michale E Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, Netherlands; Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, Netherlands
| | - Yangming Ou
- Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Guichard L, Lagadec R, Michel L, Mayeur H, Fuentès M, Pain J, Heier N, Rougemont Q, Rodicio MC, Barreiro-Iglesias A, Blader P, Schubert M, Mazan S. The lamprey habenula provides an extreme example for the temporal regulation of asymmetric development. Front Cell Dev Biol 2025; 13:1528797. [PMID: 39981098 PMCID: PMC11839670 DOI: 10.3389/fcell.2025.1528797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
By their phylogenetic position and their marked epithalamic asymmetries, lampreys are relevant models for understanding the formation and evolution of this trait across vertebrates. In this study, we use a transcriptomic approach to identify novel signature markers to characterize the highly asymmetric, bipartite organization of habenulae in lampreys. Lamprey habenulae are subdivided into two complementary subdomains related, respectively, to the lateral/ventral and the medial/dorsal habenulae of jawed vertebrates: a dorsal, right-restricted subdomain and a bilateral subdomain that includes the left habenula as well as its ventral right counterpart. Analysis of the formation of the lamprey habenula at prolarval and larval stages using a combination of morphological, immunohistochemical, and in situ hybridization approaches highlights a marked asymmetric temporal regulation. The dorsal right subdomain forms and already expresses all identified signature markers in prolarval stages. In contrast, the left and ventral right subdomain appears significantly later, with the first indication of neuronal identity elaboration in these territories being observed in larval stages. As in gnathostomes, Wnt signaling may be involved in the regulation of this unique, asymmetric mode of development, since β-catenin shows asymmetric and highly dynamic nuclear distributions both in neural progenitors and differentiated neuronal precursors of the two habenular subdomains. These data confirm the importance of lampreys to unravel the developmental logic underlying the recurrence and variation of habenular asymmetries in vertebrates and pave the way for future functional analyses.
Collapse
Affiliation(s)
- Lucile Guichard
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Ronan Lagadec
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Léo Michel
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Hélène Mayeur
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Michaël Fuentès
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Jordan Pain
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Noah Heier
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Quentin Rougemont
- CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maria Celina Rodicio
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Sylvie Mazan
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| |
Collapse
|
3
|
Gobbo A, Messina A, Vallortigara G. Swimming through asymmetry: zebrafish as a model for brain and behavior lateralization. Front Behav Neurosci 2025; 19:1527572. [PMID: 39906337 PMCID: PMC11788415 DOI: 10.3389/fnbeh.2025.1527572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
The left and right sides of the brain show anatomical, neurochemical and functional differences. In the past century, brain and behavior lateralization was considered a human peculiarity associated with language and handedness. However, nowadays lateralization is known to occur among all vertebrates, from primates to fish. Fish, especially zebrafish (Danio rerio), have emerged as a crucial model for exploring the evolution and mechanisms of brain asymmetry. This review summarizes recent advances in zebrafish research on brain lateralization, highlighting how genetic tools, imaging, and transgenic methods have been used to investigate left-right asymmetries and their impact on sensory, cognitive, and social behaviors including possible links to neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | |
Collapse
|
4
|
Lanoizelet M, Michel L, Lagadec R, Mayeur H, Guichard L, Logeux V, Séverac D, Martin K, Klopp C, Marcellini S, Castillo H, Pollet N, Candal E, Debiais-Thibaud M, Boisvert C, Billoud B, Schubert M, Blader P, Mazan S. Analysis of a shark reveals ancient, Wnt-dependent, habenular asymmetries in vertebrates. Nat Commun 2024; 15:10194. [PMID: 39587074 PMCID: PMC11589584 DOI: 10.1038/s41467-024-54042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
The mode of evolution of left-right asymmetries in the vertebrate habenulae remains largely unknown. Using a transcriptomic approach, we show that in a cartilaginous fish, the catshark Scyliorhinus canicula, habenulae exhibit marked asymmetries, in both their medial and lateral components. Comparisons across vertebrates suggest that those identified in lateral habenulae reflect an ancestral gnathostome trait, partially conserved in lampreys, and independently lost in tetrapods and neopterygians. Asymmetry formation involves distinct mechanisms in the catshark lateral and medial habenulae. Medial habenulae are submitted to a marked, asymmetric temporal regulation of neurogenesis, undetectable in their lateral counterparts. Conversely, asymmetry formation in lateral habenulae results from asymmetric choices of neuronal identity in post-mitotic progenitors, a regulation dependent on the repression of Wnt signaling by Nodal on the left. Based on comparisons with the mouse and the zebrafish, we propose that habenular asymmetry formation involves a recurrent developmental logic across vertebrates, which relies on conserved, temporally regulated genetic programs sequentially shaping choices of neuronal identity on both sides and asymmetrically modified by Wnt activity.
Collapse
Affiliation(s)
- Maxence Lanoizelet
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Léo Michel
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Ronan Lagadec
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Hélène Mayeur
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Lucile Guichard
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Valentin Logeux
- Centre de Ressources Biologiques Marines, Sorbonne Université, Observatoire Océanologique, UMS 2348, Banyuls-sur-Mer, France
| | - Dany Séverac
- MGX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Kyle Martin
- UK Research and Innovation, Biotechnology and Biological Sciences Research Council, Swindon, UK
| | - Christophe Klopp
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Sylvain Marcellini
- Department of Cell Biology, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Héctor Castillo
- Department of Cell Biology, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Nicolas Pollet
- Université Paris-Saclay, CNRS, IRD, Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eva Candal
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Catherine Boisvert
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Bernard Billoud
- UMR8227, CNRS-Sorbonne Université, Station Biologique, Roscoff, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Patrick Blader
- Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|
5
|
Powell GT, Faro A, Zhao Y, Stickney H, Novellasdemunt L, Henriques P, Gestri G, White ER, Ren J, Lu W, Young RM, Hawkins TA, Cavodeassi F, Schwarz Q, Dreosti E, Raible DW, Li VSW, Wright GJ, Jones EY, Wilson SW. Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain. Science 2024; 384:573-579. [PMID: 38696577 PMCID: PMC7615972 DOI: 10.1126/science.ade6970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.
Collapse
Affiliation(s)
- Gareth T. Powell
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
| | - Ana Faro
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Heather Stickney
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
- Ambry Genetics; Aliso Viejo, CA 92656, USA
| | - Laura Novellasdemunt
- The Francis Crick Institute; London, NW1 1AT, UK
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; 08028, Barcelona, Spain
| | - Pedro Henriques
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Gaia Gestri
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | | | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Rodrigo M. Young
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor; Camino La Piramide 5750, 8580745, Santiago, Chile
| | - Thomas A. Hawkins
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Florencia Cavodeassi
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- St. George’s, University of London; London, SW17 0RE, UK
| | - Quenten Schwarz
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
| | - Elena Dreosti
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - David W. Raible
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
| | | | - Gavin J. Wright
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York; York, YO10 5DD, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Stephen W. Wilson
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| |
Collapse
|
6
|
Kajikawa E, Miki T, Takeda M, Kiyonari H, Hamada H. Left-right asymmetric expression of the Nodal-Lefty-Pitx2 module in developing turtle forebrain. Front Cell Dev Biol 2022; 10:929808. [PMID: 36340044 PMCID: PMC9634164 DOI: 10.3389/fcell.2022.929808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
The epithalamus of zebrafish shows morphological and molecular left-right (L-R) asymmetry, but such asymmetry is not apparent in tetrapods. To provide further insight into the evolutionary diversity of brain L-R asymmetry, we have now examined the developing brains of reptile embryos for expression of Nodal, Lefty, and Pitx2. Two turtle species, the Chinese softshell turtle and the red-eared slider turtle, showed left-sided expression of these three genes in the developing forebrain, with this expression occurring after Nodal expression at the lateral plate and the L-R organizer has disappeared. Nodal activity, as revealed by the detection of phosphorylated Smad2/3, was also apparent in the neural epithelium on the left side in both turtle species. In the Chinese softshell turtle, the habenula did not show apparent asymmetry in size and the parapineal organ was absent, but the expression of Kctd12 in the habenula showed a small yet reproducible asymmetry. In contrast to the turtles, L-R asymmetric expression of Nodal, Lefty, Pitx2, or Kctd12 was not detected in the developing brain of the Madagascar ground gecko. The transcriptional enhancer (ASE) responsible for the asymmetric expression of Nodal, Lefty, and Pitx2 was conserved among reptiles, including the Chinese softshell turtle and Madagascar ground gecko. Our findings suggest that Nodal, Lefty, and Pitx2 have the potential to be asymmetrically expressed in the developing brain of vertebrates, but that their expression varies even among reptiles.
Collapse
Affiliation(s)
- Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan,*Correspondence: Eriko Kajikawa, ; Hiroshi Hamada,
| | | | | | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan,*Correspondence: Eriko Kajikawa, ; Hiroshi Hamada,
| |
Collapse
|
7
|
Agostini C, Bühler A, Antico Calderone A, Aadepu N, Herder C, Loosli F, Carl M. Conserved and diverged asymmetric gene expression in the brain of teleosts. Front Cell Dev Biol 2022; 10:1005776. [PMID: 36211473 PMCID: PMC9532764 DOI: 10.3389/fcell.2022.1005776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Morphological left-right brain asymmetries are universal phenomena in animals. These features have been studied for decades, but the functional relevance is often unclear. Studies from the zebrafish dorsal diencephalon on the genetics underlying the establishment and function of brain asymmetries have uncovered genes associated with the development of functional brain asymmetries. To gain further insights, comparative studies help to investigate the emergence of asymmetries and underlying genetics in connection to functional adaptation. Evolutionarily distant isogenic medaka inbred lines, that show divergence of complex traits such as morphology, physiology and behavior, are a valuable resource to investigate intra-species variations in a given trait of interest. For a detailed study of asymmetry in the medaka diencephalon we generated molecular probes of ten medaka genes that are expressed asymmetrically in the zebrafish habenulae and pineal complex. We find expression of eight genes in the corresponding brain areas of medaka with differences in the extent of left-right asymmetry compared to zebrafish. Our marker gene analysis of the diverged medaka inbred strains revealed marked inter-strain size differences of the respective expression domains in the parapineal and the habenulae, which we hypothesize may result from strain-specific gene loss. Thus, our analysis reveals both inter-species differences but also intra-species plasticity of gene expression in the teleost dorsal diencephalon. These findings are a starting point showing the potential to identify the genetics underlying the emergence and modulations of asymmetries. They are also the prerequisite to examine whether variance in habenular gene expression may cause variation of behavioral traits.
Collapse
Affiliation(s)
- Carolina Agostini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anja Bühler
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Narendar Aadepu
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Cathrin Herder
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
- *Correspondence: Felix Loosli, ; Matthias Carl,
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Felix Loosli, ; Matthias Carl,
| |
Collapse
|
8
|
Hageter J, Waalkes M, Starkey J, Copeland H, Price H, Bays L, Showman C, Laverty S, Bergeron SA, Horstick EJ. Environmental and Molecular Modulation of Motor Individuality in Larval Zebrafish. Front Behav Neurosci 2021; 15:777778. [PMID: 34938167 PMCID: PMC8685292 DOI: 10.3389/fnbeh.2021.777778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.
Collapse
Affiliation(s)
- John Hageter
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Matthew Waalkes
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Haylee Copeland
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Heather Price
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Logan Bays
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Sean Laverty
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, United States
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
9
|
Collier AD, Yasmin N, Khalizova N, Campbell S, Onoichenco A, Fam M, Albeg AS, Leibowitz SF. Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Sci Rep 2021; 11:16078. [PMID: 34373563 PMCID: PMC8352948 DOI: 10.1038/s41598-021-95707-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the hypothalamus promote reward-related behaviors including alcohol consumption and are shown in rodents and zebrafish to be stimulated by embryonic exposure to ethanol (EtOH). We used here in zebrafish three-dimensional analyses of the entire population of Hcrt neurons to examine how embryonic EtOH exposure at low-moderate concentrations (0.1% or 0.5% v/v) alters these neurons in relation to behavior. We found that EtOH in the water for 2 h (22-24 h post fertilization) increases the number of Hcrt neurons on the left but not right side of the brain through a stimulation of cell proliferation, this is accompanied by a decrease in locomotor activity under novel conditions but not after habituation, and these effects are evident in both larvae and adults indicating they are long lasting. Our analyses in adults revealed sexually dimorphic effects, with females consuming more EtOH-gelatin and exhibiting more freezing behavior along with an asymmetric increase in Hcrt neurons and males exhibiting increased aggression with no change in Hcrt. These findings suggest that a long lasting, asymmetric increase in Hcrt neurons induced by EtOH results from an asymmetric increase in proliferation specific to Hcrt and contributes to behavioral changes in females.
Collapse
Affiliation(s)
- Adam D. Collier
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Nushrat Yasmin
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Nailya Khalizova
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Samantha Campbell
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Amanda Onoichenco
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Milisia Fam
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Avi S. Albeg
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Sarah F. Leibowitz
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
10
|
Wang GT, Pan HY, Lang WH, Yu YD, Hsieh CH, Kuan YS. Three-dimensional multi-gene expression maps reveal cell fate changes associated with laterality reversal of zebrafish habenula. J Neurosci Res 2021; 99:1632-1645. [PMID: 33638209 DOI: 10.1002/jnr.24806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/09/2022]
Abstract
The conserved bilateral habenular nuclei (HA) in vertebrate diencephalon develop into compartmentalized structures containing neurons derived from different cell lineages. Despite extensive studies demonstrated that zebrafish larval HA display distinct left-right (L-R) asymmetry in gene expression and connectivity, the spatial gene expression domains were mainly obtained from two-dimensional (2D) snapshots of colorimetric RNA in situ hybridization staining which could not properly reflect different HA neuronal lineages constructed in three-dimension (3D). Combing the tyramide-based fluorescent mRNA in situ hybridization, confocal microscopy and customized imaging processing procedures, we have created spatial distribution maps of four genes for 4-day-old zebrafish and in sibling fish whose L-R asymmetry was spontaneously reversed. 3D volumetric analyses showed that ratios of cpd2, lov, ron, and nrp1a expression in L-R reversed HA were reversed according to the parapineal positions. However, the quantitative changes of gene expression in reversed larval brains do not mirror the gene expression level in the obverse larval brains. There were a total 87.78% increase in lov+ nrp1a+ and a total 12.45% decrease in lov+ ron+ double-positive neurons when the L-R asymmetry of HA was reversed. Thus, our volumetric analyses of the 3D maps indicate that changes of HA neuronal cell fates are associated with the reversal of HA laterality. These changes likely account for the behavior changes associated with HA laterality alterations.
Collapse
Affiliation(s)
- Guo-Tzau Wang
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - He-Yen Pan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Wei-Han Lang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Yuan-Ding Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C
| | - Chang-Huain Hsieh
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - Yung-Shu Kuan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan R.O.C.,Neuroscience Program, Academia Sinica, Taipei, Taiwan R.O.C
| |
Collapse
|
11
|
Bühler A, Carl M. Zebrafish Tools for Deciphering Habenular Network-Linked Mental Disorders. Biomolecules 2021; 11:biom11020324. [PMID: 33672636 PMCID: PMC7924194 DOI: 10.3390/biom11020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Everything that we think, feel or do depends on the function of neural networks in the brain. These are highly complex structures made of cells (neurons) and their interconnections (axons), which develop dependent on precisely coordinated interactions of genes. Any gene mutation can result in unwanted alterations in neural network formation and concomitant brain disorders. The habenula neural network is one of these important circuits, which has been linked to autism, schizophrenia, depression and bipolar disorder. Studies using the zebrafish have uncovered genes involved in the development of this network. Intriguingly, some of these genes have also been identified as risk genes of human brain disorders highlighting the power of this animal model to link risk genes and the affected network to human disease. But can we use the advantages of this model to identify new targets and compounds with ameliorating effects on brain dysfunction? In this review, we summarise the current knowledge on techniques to manipulate the habenula neural network to study the consequences on behavior. Moreover, we give an overview of existing behavioral test to mimic aspects of mental disorders and critically discuss the applicability of the zebrafish model in this field of research. Abstract The prevalence of patients suffering from mental disorders is substantially increasing in recent years and represents a major burden to society. The underlying causes and neuronal circuits affected are complex and difficult to unravel. Frequent disorders such as depression, schizophrenia, autism, and bipolar disorder share links to the habenular neural circuit. This conserved neurotransmitter system relays cognitive information between different brain areas steering behaviors ranging from fear and anxiety to reward, sleep, and social behaviors. Advances in the field using the zebrafish model organism have uncovered major genetic mechanisms underlying the formation of the habenular neural circuit. Some of the identified genes involved in regulating Wnt/beta-catenin signaling have previously been suggested as risk genes of human mental disorders. Hence, these studies on habenular genetics contribute to a better understanding of brain diseases. We are here summarizing how the gained knowledge on the mechanisms underlying habenular neural circuit development can be used to introduce defined manipulations into the system to study the functional behavioral consequences. We further give an overview of existing behavior assays to address phenotypes related to mental disorders and critically discuss the power but also the limits of the zebrafish model for identifying suitable targets to develop therapies.
Collapse
Affiliation(s)
- Anja Bühler
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| | - Matthias Carl
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| |
Collapse
|
12
|
Miletto Petrazzini ME, Gambaretto L, Dadda M, Brennan C, Agrillo C. Are cerebral and behavioural lateralization related to anxiety-like traits in the animal model zebrafish ( Danio rerio)? Laterality 2020; 26:144-162. [PMID: 33334244 DOI: 10.1080/1357650x.2020.1854280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Brain lateralization refers to hemispheric asymmetries in functions and/or neuroanatomical structures. Functional specialization in non-human animals has been mainly inferred through observation of lateralized motor responses and sensory perception. Only in a few cases has the influence of brain asymmetries on behaviour been described. Zebrafish has rapidly become a valuable model to investigate this issue as it displays epithalamic asymmetries that have been correlated to some lateralized behaviours. Here we investigated the relation between neuroanatomical or behavioural lateralization and anxiety using a light-dark preference test in adult zebrafish. In Experiment 1, we observed how scototaxis response varied as a function of behavioural lateralization measured in the detour task as turning preference in front of a dummy predator. In Experiment 2, foxD3:GFP transgenic adult zebrafish with left or right parapineal position, were tested in the same light-dark test as fish in Experiment 1. No correlation was found between the behaviour observed in the detour test and in the scototaxis test nor between the left- and right-parapineal fish and the scototaxis response. The consistency of results obtained in both experiments indicates that neither behavioural nor neuroanatomical asymmetries are related to anxiety-related behaviours measured in the light-dark test.
Collapse
Affiliation(s)
- Maria Elena Miletto Petrazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Department of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Linda Gambaretto
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Caroline Brennan
- Department of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Wu CS, Lu YF, Liu YH, Huang CJ, Hwang SPL. Zebrafish Cdx1b modulates epithalamic asymmetry by regulating ndr2 and lft1 expression. Dev Biol 2020; 470:21-36. [PMID: 33197427 DOI: 10.1016/j.ydbio.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Nodal signaling is essential for mesoderm and endoderm formation, as well as neural plate induction and establishment of left-right asymmetry. However, the mechanisms controlling expression of Nodal pathway genes in these contexts are not fully known. Previously, we showed that Cdx1b induces expression of downstream Nodal signaling factors during early endoderm formation. In this study, we show that Cdx1b also regulates epithalamic asymmetry in zebrafish embryos by modulating expression of ndr2 and lft1. We first knocked down cdx1b with translation-blocking and splicing-blocking morpholinos (MOs). Most embryos injected with translation-blocking MOs showed absent ndr2, lft1 and pitx2c expression in the left dorsal diencephalon during segmentation and pharyngula stages accompanied by aberrant parapineal migration and habenular laterality at 72 h post fertilization (hpf). These defects were less frequent in embryos injected with splicing-blocking MO. To confirm the morphant phenotype, we next generated both zygotic (Z)cdx1b-/- and maternal zygotic (MZ)cdx1b-/- mutants by CRISPR-Cas9 mutagenesis. Expression of ndr2, lft1 and pitx2c was absent in the left dorsal diencephalon of a high proportion of MZcdx1b-/- mutants; however, aberrant dorsal diencephalic pitx2c expression patterns were observed at low frequency in Zcdx1b-/- mutant embryos. Correspondingly, dysregulated parapineal migration and habenular laterality were also observed in MZcdx1b-/- mutant embryos at 72 hpf. On the other hand, Kupffer's vesicle cilia length and number, expression pattern of spaw in the lateral plate mesoderm and pitx2c in the gut as well as left-right patterning of various visceral organs were not altered in MZcdx1b-/- mutants compared to wild-type embryos. Chromatin immunoprecipitation revealed that Cdx1b directly regulates ndr2 and lft1 expression. Furthermore, injection of cdx1b-vivo MO1 but not cdx1b-vivo 4 mm MO1 in the forebrain ventricle at 18 hpf significantly downregulated lft1 expression in the left dorsal diencephalon at 23-24 s stages. Together, our results suggest that Cdx1b regulates transcription of ndr2 and lft1 to maintain proper Nodal activity in the dorsal diencephalon and epithalamic asymmetry in zebrafish embryos.
Collapse
Affiliation(s)
- Chun-Shiu Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Fen Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Hsiu Liu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-Jen Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Ping L Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan; Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
14
|
Transient Nodal Signaling in Left Precursors Coordinates Opposed Asymmetries Shaping the Heart Loop. Dev Cell 2020; 55:413-431.e6. [PMID: 33171097 DOI: 10.1016/j.devcel.2020.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
The secreted factor Nodal, known as a major left determinant, is associated with severe heart defects. Yet, it has been unclear how it regulates asymmetric morphogenesis such as heart looping, which align cardiac chambers to establish the double blood circulation. Here, we report that Nodal is transiently active in precursors of the mouse heart tube poles, before looping. In conditional mutants, we show that Nodal is not required to initiate asymmetric morphogenesis. We provide evidence of a heart-specific random generator of asymmetry that is independent of Nodal. Using 3D quantifications and simulations, we demonstrate that Nodal functions as a bias of this mechanism: it is required to amplify and coordinate opposed left-right asymmetries at the heart tube poles, thus generating a robust helical shape. We identify downstream effectors of Nodal signaling, regulating asymmetries in cell proliferation, differentiation, and extracellular matrix composition. Our study uncovers how Nodal regulates asymmetric organogenesis.
Collapse
|
15
|
Miletto Petrazzini ME, Sovrano VA, Vallortigara G, Messina A. Brain and Behavioral Asymmetry: A Lesson From Fish. Front Neuroanat 2020; 14:11. [PMID: 32273841 PMCID: PMC7113390 DOI: 10.3389/fnana.2020.00011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/05/2020] [Indexed: 11/27/2022] Open
Abstract
It is widely acknowledged that the left and right hemispheres of human brains display both anatomical and functional asymmetries. For more than a century, brain and behavioral lateralization have been considered a uniquely human feature linked to language and handedness. However, over the past decades this idea has been challenged by an increasing number of studies describing structural asymmetries and lateralized behaviors in non-human species extending from primates to fish. Evidence suggesting that a similar pattern of brain lateralization occurs in all vertebrates, humans included, has allowed the emergence of different model systems to investigate the development of brain asymmetries and their impact on behavior. Among animal models, fish have contributed much to the research on lateralization as several fish species exhibit lateralized behaviors. For instance, behavioral studies have shown that the advantages of having an asymmetric brain, such as the ability of simultaneously processing different information and perform parallel tasks compensate the potential costs associated with poor integration of information between the two hemispheres thus helping to better understand the possible evolutionary significance of lateralization. However, these studies inferred how the two sides of the brains are differentially specialized by measuring the differences in the behavioral responses but did not allow to directly investigate the relation between anatomical and functional asymmetries. With respect to this issue, in recent years zebrafish has become a powerful model to address lateralization at different level of complexity, from genes to neural circuitry and behavior. The possibility of combining genetic manipulation of brain asymmetries with cutting-edge in vivo imaging technique and behavioral tests makes the zebrafish a valuable model to investigate the phylogeny and ontogeny of brain lateralization and its relevance for normal brain function and behavior.
Collapse
Affiliation(s)
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | | | - Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
16
|
Guglielmi L, Bühler A, Moro E, Argenton F, Poggi L, Carl M. Temporal control of Wnt signaling is required for habenular neuron diversity and brain asymmetry. Development 2020; 147:147/6/dev182865. [PMID: 32179574 DOI: 10.1242/dev.182865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Precise temporal coordination of signaling processes is pivotal for cellular differentiation during embryonic development. A vast number of secreted molecules are produced and released by cells and tissues, and travel in the extracellular space. Whether they induce a signaling pathway and instruct cell fate, however, depends on a complex network of regulatory mechanisms, which are often not well understood. The conserved bilateral left-right asymmetrically formed habenulae of the zebrafish are an excellent model for investigating how signaling control facilitates the generation of defined neuronal populations. Wnt signaling is required for habenular neuron type specification, asymmetry and axonal connectivity. The temporal regulation of this pathway and the players involved have, however, have remained unclear. We find that tightly regulated temporal restriction of Wnt signaling activity in habenular precursor cells is crucial for the diversity and asymmetry of habenular neuron populations. We suggest a feedback mechanism whereby the tumor suppressor Wnt inhibitory factor Wif1 controls the Wnt dynamics in the environment of habenular precursor cells. This mechanism might be common to other cell types, including tumor cells.
Collapse
Affiliation(s)
- Luca Guglielmi
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, 68167 Mannheim, Germany.
| | - Anja Bühler
- University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), 38123 Trento, Italy.
| | - Enrico Moro
- University of Padova, Department of Molecular Medicine, 35121 Padova, Italy
| | | | - Lucia Poggi
- University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), 38123 Trento, Italy.
| | - Matthias Carl
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, 68167 Mannheim, Germany. ,University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), 38123 Trento, Italy.
| |
Collapse
|
17
|
Liu J, Zhu C, Ning G, Yang L, Cao Y, Huang S, Wang Q. Chemokine signaling links cell-cycle progression and cilia formation for left-right symmetry breaking. PLoS Biol 2019; 17:e3000203. [PMID: 31430272 PMCID: PMC6716676 DOI: 10.1371/journal.pbio.3000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/30/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022] Open
Abstract
Zebrafish dorsal forerunner cells (DFCs) undergo vigorous proliferation during epiboly and then exit the cell cycle to generate Kupffer's vesicle (KV), a ciliated organ necessary for establishing left-right (L-R) asymmetry. DFC proliferation defects are often accompanied by impaired cilia elongation in KV, but the functional and molecular interaction between cell-cycle progression and cilia formation remains unknown. Here, we show that chemokine receptor Cxcr4a is required for L-R laterality by controlling DFC proliferation and KV ciliogenesis. Functional analysis revealed that Cxcr4a accelerates G1/S transition in DFCs and stabilizes forkhead box j1a (Foxj1a), a master regulator of motile cilia, by stimulating Cyclin D1 expression through extracellular regulated MAP kinase (ERK) 1/2 signaling. Mechanistically, Cyclin D1-cyclin-dependent kinase (CDK) 4/6 drives G1/S transition during DFC proliferation and phosphorylates Foxj1a, thereby disrupting its association with proteasome 26S subunit, non-ATPase 4b (Psmd4b), a 19S regulatory subunit. This prevents the ubiquitin (Ub)-independent proteasomal degradation of Foxj1a. Our study uncovers a role for Cxcr4 signaling in L-R patterning and provides fundamental insights into the molecular linkage between cell-cycle progression and ciliogenesis.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengke Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, College of Animal Science in Rongchang Campus, Southwest University, Chongqing, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liping Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China
- * E-mail: (SH); (QW)
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SH); (QW)
| |
Collapse
|
18
|
Lekk I, Duboc V, Faro A, Nicolaou S, Blader P, Wilson SW. Sox1a mediates the ability of the parapineal to impart habenular left-right asymmetry. eLife 2019; 8:47376. [PMID: 31373552 PMCID: PMC6677535 DOI: 10.7554/elife.47376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Left-right asymmetries in the zebrafish habenular nuclei are dependent upon the formation of the parapineal, a unilateral group of neurons that arise from the medially positioned pineal complex. In this study, we show that both the left and right habenula are competent to adopt left-type molecular character and efferent connectivity upon the presence of only a few parapineal cells. This ability to impart left-sided character is lost in parapineal cells lacking Sox1a function, despite the normal specification of the parapineal itself. Precisely timed laser ablation experiments demonstrate that the parapineal influences neurogenesis in the left habenula at early developmental stages as well as neurotransmitter phenotype and efferent connectivity during subsequent stages of habenular differentiation. These results reveal a tight coordination between the formation of the unilateral parapineal nucleus and emergence of asymmetric habenulae, ensuring that appropriate lateralised character is propagated within left and right-sided circuitry.
Collapse
Affiliation(s)
- Ingrid Lekk
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Véronique Duboc
- Centre de Biologie Intégrative (FR 3743), Centre de Biologie du Développement (UMR5547), Université de Toulouse, CNRS, Toulouse, France.,Université Côte d'Azur, CHU, Inserm, CNRS, IRCAN, Nice, France
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephanos Nicolaou
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Patrick Blader
- Centre de Biologie Intégrative (FR 3743), Centre de Biologie du Développement (UMR5547), Université de Toulouse, CNRS, Toulouse, France
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
19
|
Alfonso S, Blanc M, Joassard L, Keiter SH, Munschy C, Loizeau V, Bégout ML, Cousin X. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:29-38. [PMID: 30605867 DOI: 10.1016/j.aquatox.2018.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants extensively used during the 20th century and still present in aquatic environments despite their ban. Effects of exposure to these compounds over generations are poorly documented. Therefore, our aims were to characterize behavioral responses and underlying molecular mechanisms in zebrafish exposed to an environmentally relevant mixture of PCBs and PBDEs as well as in four unexposed offspring generations. Zebrafish (F0) were chronically exposed from the first meal onward to a diet spiked with a mixture containing 22 PCB and 7 PBDE congeners in proportions and concentrations reflecting environmental situations (ΣPCBs = 1991 and ΣPBDEs = 411 ng/g). Four offspring generations (F1 to F4) were obtained from this F0 and were not further exposed. Behavior was assessed at both larval and adult stages. Mechanisms related to behavioral defects (habenula maturation and c-fos transcription) and methylation (dnmts transcription) were monitored in larvae. Exposed adult F0 as well as F1 and F3 adults displayed no behavioral change while F2 expressed anxiety-like behavior. Larval behavior was also disrupted, i.e. hyperactive after light to dark transition in F1 or hypoactive in F2, F3 and F4. Behavioral disruptions may be related to defect in habenula maturation (observed in F1) and change in c-fos transcription (observed in F1 and F2). Transcription of the gene encoding DNA methyltransferase (dnmt3ba) was also modified in all generations. Our results lead us to hypothesize that chronic dietary exposure to an environmentally relevant mixture of PCB and PBDE triggers multigenerational and transgenerational molecular and behavioral disruptions in a vertebrate model.
Collapse
Affiliation(s)
- Sébastien Alfonso
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France; UMR MARBEC, Ifremer, IRD, UM2, CNRS, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, F-34250, Palavas-les-Flots, France.
| | - Mélanie Blanc
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France; Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Lucette Joassard
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Catherine Munschy
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, Rue de l'Ile d'Yeu, BP 21105, F-44311, Nantes, Cedex 3, France
| | - Véronique Loizeau
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, ZI Pointe du Diable, CS 10070, F-29280, Plouzané, France
| | - Marie-Laure Bégout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France
| | - Xavier Cousin
- UMR MARBEC, Ifremer, IRD, UM2, CNRS, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, F-34250, Palavas-les-Flots, France; Inra, UMR GABI, Inra, AgroParisTech, Domaine de Vilvert, Batiment 231, F-78350 Jouy-en-Josas, France
| |
Collapse
|
20
|
de Kovel CGF, Lisgo SN, Fisher SE, Francks C. Subtle left-right asymmetry of gene expression profiles in embryonic and foetal human brains. Sci Rep 2018; 8:12606. [PMID: 30181561 PMCID: PMC6123426 DOI: 10.1038/s41598-018-29496-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Left-right laterality is an important aspect of human -and in fact all vertebrate- brain organization for which the genetic basis is poorly understood. Using RNA sequencing data we contrasted gene expression in left- and right-sided samples from several structures of the anterior central nervous systems of post mortem human embryos and foetuses. While few individual genes stood out as significantly lateralized, most structures showed evidence of laterality of their overall transcriptomic profiles. These left-right differences showed overlap with age-dependent changes in expression, indicating lateralized maturation rates, but not consistently in left-right orientation over all structures. Brain asymmetry may therefore originate in multiple locations, or if there is a single origin, it is earlier than 5 weeks post conception, with structure-specific lateralized processes already underway by this age. This pattern is broadly consistent with the weak correlations reported between various aspects of adult brain laterality, such as language dominance and handedness.
Collapse
Affiliation(s)
- Carolien G F de Kovel
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Steven N Lisgo
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Neurogenetic asymmetries in the catshark developing habenulae: mechanistic and evolutionary implications. Sci Rep 2018; 8:4616. [PMID: 29545638 PMCID: PMC5854604 DOI: 10.1038/s41598-018-22851-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/01/2018] [Indexed: 12/25/2022] Open
Abstract
Analysis of the establishment of epithalamic asymmetry in two non-conventional model organisms, a cartilaginous fish and a lamprey, has suggested that an essential role of Nodal signalling, likely to be ancestral in vertebrates, may have been largely lost in zebrafish. In order to decipher the cellular mechanisms underlying this divergence, we have characterised neurogenetic asymmetries during habenular development in the catshark Scyliorhinus canicula and addressed the mechanism involved in this process. As in zebrafish, neuronal differentiation starts earlier on the left side in the catshark habenulae, suggesting the conservation of a temporal regulation of neurogenesis. At later stages, marked, Alk4/5/7 dependent, size asymmetries having no clear counterparts in zebrafish also develop in neural progenitor territories, with a larger size of the proliferative, pseudostratified neuroepithelium, in the right habenula relative to the left one, but a higher cell number on the left of a more lateral, later formed population of neural progenitors. These data show that mechanisms resulting in an asymmetric, preferential maintenance of neural progenitors act both in the left and the right habenulae, on different cell populations. Such mechanisms may provide a substrate for quantitative variations accounting for the variability in size and laterality of habenular asymmetries across vertebrates.
Collapse
|
22
|
Soukup V, Mrstakova S, Kozmik Z. Asymmetric pitx2 expression in medaka epithalamus is regulated by nodal signaling through an intronic enhancer. Dev Genes Evol 2018; 228:131-139. [PMID: 29663064 DOI: 10.1007/s00427-018-0611-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/03/2018] [Indexed: 12/23/2022]
Abstract
The epithalamic region of fishes shows prominent left-right asymmetries that are executed by nodal signaling upstream of the asymmetry-determining transcription factor pitx2. Previous reports have identified that nodal controls the left-sided pitx2 expression in the lateral plate mesoderm through an enhancer present in the last intron of this gene. However, whether similar regulation occurs also in the case of epithalamic asymmetry is currently unresolved. Here, we address some of the cis-regulatory information that control asymmetric pitx2 expression in epithalamus by presenting a Tg(pitx2:EGFP) 116-17 transgenic medaka model, which expresses enhanced green fluorescent protein (EGFP) under control of an intronic enhancer. We show that this transgene recapitulates epithalamic expression of the endogenous pitx2 and that it responds to nodal signaling inhibition. Further, we identify that three foxh1-binding sites present in this enhancer modulate expression of the transgene and that the second site is absolutely necessary for the left-sided epithalamic expression while the other two sites may have subtler regulative roles. We provide evidence that left-sided epithalamic pitx2 expression is controlled through an enhancer present in the last intron of this gene and that the regulatory logic underlying asymmetric pitx2 expression is shared between epithalamic and lateral plate mesoderm regions.
Collapse
Affiliation(s)
- Vladimir Soukup
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44, Prague, Czech Republic.
| | - Simona Mrstakova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
23
|
Signore IA, Palma K, Concha ML. Nodal signalling and asymmetry of the nervous system. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0401. [PMID: 27821531 DOI: 10.1098/rstb.2015.0401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 11/12/2022] Open
Abstract
The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left-right asymmetry of the nervous system.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Iskra A Signore
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
| | - Karina Palma
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
| | - Miguel L Concha
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile .,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
24
|
Roberson S, Halpern ME. Development and connectivity of the habenular nuclei. Semin Cell Dev Biol 2017; 78:107-115. [PMID: 29107475 PMCID: PMC5920772 DOI: 10.1016/j.semcdb.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/09/2017] [Indexed: 10/17/2022]
Abstract
Accumulating evidence has reinforced that the habenular region of the vertebrate dorsal forebrain is an essential integrating center, and a region strongly implicated in neurological disorders and addiction. Despite the important and diverse neuromodulatory roles the habenular nuclei play, their development has been understudied. The emphasis of this review is on the dorsal habenular nuclei of zebrafish, homologous to the medial nuclei of mammals, as recent work has revealed new information about the signaling pathways that regulate their formation. Additionally, the zebrafish dorsal habenulae have become a valuable model for probing how left-right differences are established in a vertebrate brain. Sonic hedgehog, fibroblast growth factors and Wingless-INT proteins are all involved in the generation of progenitor cells and ultimately, along with Notch signaling, influence habenular neurogenesis and left-right asymmetry. Intriguingly, a genetic network has emerged that leads to the differentiation of dorsal habenular neurons and, through localized chemokine signaling, directs the posterior outgrowth of their newly emerging axons towards their postsynaptic target, the midbrain interpeduncular nucleus.
Collapse
Affiliation(s)
- Sara Roberson
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marnie E Halpern
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
25
|
Alqadah A, Hsieh YW, Morrissey ZD, Chuang CF. Asymmetric development of the nervous system. Dev Dyn 2017; 247:124-137. [PMID: 28940676 DOI: 10.1002/dvdy.24595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022] Open
Abstract
The human nervous system consists of seemingly symmetric left and right halves. However, closer observation of the brain reveals anatomical and functional lateralization. Defects in brain asymmetry correlate with several neurological disorders, yet our understanding of the mechanisms used to establish lateralization in the human central nervous system is extremely limited. Here, we review left-right asymmetries within the nervous system of humans and several model organisms, including rodents, Zebrafish, chickens, Xenopus, Drosophila, and the nematode Caenorhabditis elegans. Comparing and contrasting mechanisms used to develop left-right asymmetry in the nervous system can provide insight into how the human brain is lateralized. Developmental Dynamics 247:124-137, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Zachery D Morrissey
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Boutet A. The evolution of asymmetric photosensitive structures in metazoans and the Nodal connection. Mech Dev 2017; 147:49-60. [PMID: 28986126 DOI: 10.1016/j.mod.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023]
Abstract
Asymmetries are observed in a great number of taxa in metazoans. More particularly, functional lateralization and neuroanatomical asymmetries within the central nervous system have been a matter of intense research for at least two hundred years. While asymmetries of some paired structures/organs (e.g. eyes, ears, kidneys, legs, arms) constitute random deviations from a pure bilateral symmetry, brain asymmetries such as those observed in the cortex and epithalamus are directional. This means that molecular and anatomical features located on one side of a given structure are observed in most individuals. For instance, in humans, the neuronal tract connecting the language areas is enlarged in the left hemisphere. When asymmetries are fixed, their molecular mechanisms can be studied using mutants displaying different phenotypes: left or right isomerism of the structure, reversed asymmetry or random asymmetry. Our understanding of asymmetry in the nervous system has been widely enriched thanks to the characterization of mutants affecting epithalamus asymmetry. Furthermore, two decades ago, pioneering studies revealed that a specific morphogen, Nodal, active only on one side of the embryo during development is an important molecule in asymmetry patterning. In this review, I have gathered important data bringing insight into the origin and evolution of epithalamus asymmetry and the role of Nodal in metazoans. After a short introduction on brain asymmetries (chapter I), I secondly focus on the molecular and anatomical characteristics of the epithalamus in vertebrates and explore some functional aspects such as its photosensitive ability related to the pineal complex (chapter II). Third, I discuss homology relationship of the parapineal organ among vertebrates (chapter III). Fourth, I discuss the possible origin of the epithalamus, presenting cells displaying photosensitive properties and/or asymmetry in the anterior part of the body in non-vertebrates (chapter IV). Finally, I report Nodal signaling expression data and functional experiments performed in different metazoan groups (chapter V).
Collapse
Affiliation(s)
- Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique, F-29688 Roscoff, France.
| |
Collapse
|
27
|
The molecular mechanisms controlling morphogenesis and wiring of the habenula. Pharmacol Biochem Behav 2017; 162:29-37. [PMID: 28843424 DOI: 10.1016/j.pbb.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022]
Abstract
The habenula is an evolutionarily conserved brain region comprising bilaterally paired nuclei that plays a key role in processing reward information and mediating aversive responses to negative stimuli. An important aspect underlying habenula function is relaying information between forebrain and mid- and hindbrain areas. This is mediated by its complex organization into multiple subdomains and corresponding complexity in circuit organization. Additionally, in many species habenular nuclei display left-right differences at the anatomical and functional level. In order to ensure proper functional organization of habenular circuitry, sophisticated molecular programs control the morphogenesis and wiring of the habenula during development. Knowledge of how these mechanisms shape the habenula is crucial for obtaining a complete understanding of this brain region and can provide invaluable tools to study habenula evolution and function. In this review we will discuss how these molecular mechanisms pattern the early embryonic nervous system and control the formation of the habenula, how they shape its asymmetric organization, and how these mechanisms ensure proper wiring of the habenular circuit. Finally, we will address unexplored aspects of habenula development and how these may direct future research.
Collapse
|
28
|
Fore S, Palumbo F, Pelgrims R, Yaksi E. Information processing in the vertebrate habenula. Semin Cell Dev Biol 2017; 78:130-139. [PMID: 28797836 DOI: 10.1016/j.semcdb.2017.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/12/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
The habenula is a brain region that has gained increasing popularity over the recent years due to its role in processing value-related and experience-dependent information with a strong link to depression, addiction, sleep and social interactions. This small diencephalic nucleus is proposed to act as a multimodal hub or a switchboard, where inputs from different brain regions converge. These diverse inputs to the habenula carry information about the sensory world and the animal's internal state, such as reward expectation or mood. However, it is not clear how these diverse habenular inputs interact with each other and how such interactions contribute to the function of habenular circuits in regulating behavioral responses in various tasks and contexts. In this review, we aim to discuss how information processing in habenular circuits, can contribute to specific behavioral programs that are attributed to the habenula.
Collapse
Affiliation(s)
- Stephanie Fore
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway
| | - Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway
| | - Robbrecht Pelgrims
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway.
| |
Collapse
|
29
|
Roberson S, Halpern ME. Convergence of signaling pathways underlying habenular formation and axonal outgrowth in zebrafish. Development 2017; 144:2652-2662. [PMID: 28619821 DOI: 10.1242/dev.147751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/07/2017] [Indexed: 12/20/2022]
Abstract
The habenular nuclei are a conserved integrating center in the vertebrate epithalamus, where they modulate diverse behaviors. Despite their importance, our understanding of habenular development is incomplete. Time-lapse imaging and fate mapping demonstrate that the dorsal habenulae (dHb) of zebrafish are derived from dbx1b-expressing (dbx1b+ ) progenitors, which transition into cxcr4b-expressing neuronal precursors. The precursors give rise to differentiated neurons, the axons of which innervate the midbrain interpeduncular nucleus (IPN). Formation of the dbx1b+ progenitor population relies on the activity of the Shh, Wnt and Fgf signaling pathways. Wnt and Fgf function additively to generate dHb progenitors. Surprisingly, Wnt signaling also negatively regulates fgf8a, confining expression to a discrete dorsal diencephalic domain. Moreover, the Wnt and Fgf pathways have opposing roles in transcriptional regulation of components of the Cxcr4-chemokine signaling pathway. The chemokine pathway, in turn, directs the posterior outgrowth of dHb efferents toward the IPN and, when disrupted, results in ectopic, anteriorly directed axonal projections. The results define a signaling network underlying the generation of dHb neurons and connectivity with their midbrain target.
Collapse
Affiliation(s)
- Sara Roberson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Marnie E Halpern
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA .,Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| |
Collapse
|
30
|
Trulioff A, Ermakov A, Malashichev Y. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases. Genes (Basel) 2017; 8:genes8020048. [PMID: 28125008 PMCID: PMC5333037 DOI: 10.3390/genes8020048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022] Open
Abstract
Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry.
Collapse
Affiliation(s)
- Andrey Trulioff
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
| | - Alexander Ermakov
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| | - Yegor Malashichev
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| |
Collapse
|
31
|
Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting. Curr Biol 2017; 27:270-278. [PMID: 28065605 DOI: 10.1016/j.cub.2016.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/07/2016] [Accepted: 11/16/2016] [Indexed: 01/19/2023]
Abstract
Most neuronal populations form on both the left and right sides of the brain. Their efferent axons appear to grow synchronously along similar pathways on each side, although the neurons or their environment often differ between the two hemispheres [1-4]. How this coordination is controlled has received little attention. Frequently, neurons establish interhemispheric connections, which can function to integrate information between brain hemispheres (e.g., [5]). Such commissures form very early, suggesting their potential developmental role in coordinating ipsilateral axon navigation during embryonic development [4]. To address the temporal-spatial control of bilateral axon growth, we applied long-term time-lapse imaging to visualize the formation of the conserved left-right asymmetric habenular neural circuit in the developing zebrafish embryo [6]. Although habenular neurons are born at different times across brain hemispheres [7], we found that elongation of habenular axons occurs synchronously. The initiation of axon extension is not controlled within the habenular network itself but through an early developing proximal diencephalic network. The commissural neurons of this network influence habenular axons both ipsilaterally and contralaterally. Their unilateral absence impairs commissure formation and coordinated habenular axon elongation and causes their subsequent arrest on both sides of the brain. Thus, habenular neural circuit formation depends on a second intersecting commissural network, which facilitates the exchange of information between hemispheres required for ipsilaterally projecting habenular axons. This mechanism of network formation may well apply to other circuits, and has only remained undiscovered due to technical limitations.
Collapse
|
32
|
Duboué ER, Halpern ME. Genetic and Transgenic Approaches to Study Zebrafish Brain Asymmetry and Lateralized Behavior. LATERALIZED BRAIN FUNCTIONS 2017. [DOI: 10.1007/978-1-4939-6725-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
33
|
Signore IA, Concha ML. Heterochrony and Morphological Variation of Epithalamic Asymmetry. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:157-164. [PMID: 27659033 DOI: 10.1002/jez.b.22698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 06/23/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022]
Abstract
Heterochrony is one proposed mechanism to explain how morphological variation and novelty arise during evolution. To experimentally approach heterochrony in a comprehensive manner, we must consider all three aspects of developmental time (sequence, timing, duration). This task is only possible in developmental models that allow the acquisition of high-quality temporal data in the context of normalized developmental time. Here we propose that epithalamic asymmetry of teleosts is one such model. Comparative studies among related teleost species have revealed heterochronic shifts in the timing of ontogenic events leading to the development of epithalamic asymmetry. Such temporal changes involve neural structures critical for tissue-tissue interactions underlying the generation of asymmetry and are concurrent with the appearance of morphological differences in the pattern of asymmetry between species. Based on these findings, we hypothesize that interspecies variation of epithalamic asymmetry results from changes in the timing of tissue-tissue interactions critical for the establishment of asymmetry during ontogeny. Importantly, this hypothesis can be tested by systematic comparative approaches among teleosts species based on normalized developmental time, combined with experimental manipulation of epithalamic asymmetry development.
Collapse
Affiliation(s)
- Iskra A Signore
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia, Santiago, Chile
| | - Miguel L Concha
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
34
|
Halluin C, Madelaine R, Naye F, Peers B, Roussigné M, Blader P. Habenular Neurogenesis in Zebrafish Is Regulated by a Hedgehog, Pax6 Proneural Gene Cascade. PLoS One 2016; 11:e0158210. [PMID: 27387288 PMCID: PMC4936704 DOI: 10.1371/journal.pone.0158210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 06/13/2016] [Indexed: 11/19/2022] Open
Abstract
The habenulae are highly conserved nuclei in the dorsal diencephalon that connect the forebrain to the midbrain and hindbrain. These nuclei have been implicated in a broad variety of behaviours in humans, primates, rodents and zebrafish. Despite this, the molecular mechanisms that control the genesis and differentiation of neural progenitors in the habenulae remain relatively unknown. We have previously shown that, in zebrafish, the timing of habenular neurogenesis is left-right asymmetric and that in the absence of Nodal signalling this asymmetry is lost. Here, we show that habenular neurogenesis requires the homeobox transcription factor Pax6a and the redundant action of two proneural bHLH factors, Neurog1 and Neurod4. We present evidence that Hedgehog signalling is required for the expression of pax6a, which is in turn necessary for the expression of neurog1 and neurod4. Finally, we demonstrate by pharmacological inhibition that Hedgehog signalling is required continuously during habenular neurogenesis and by cell transplantation experiments that pathway activation is required cell autonomously. Our data sheds light on the mechanism underlying habenular development that may provide insights into how Nodal signalling imposes asymmetry on the timing of habenular neurogenesis.
Collapse
Affiliation(s)
- Caroline Halluin
- Université de Toulouse III, UPS, Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, CBD UMR 5547, F-31062 Toulouse, France
- Stanford University, School of Medicine, 269–279 Campus Drive, Stanford, CA 94305, United States of America
| | - Romain Madelaine
- Université de Toulouse III, UPS, Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, CBD UMR 5547, F-31062 Toulouse, France
- Stanford University, School of Medicine, 269–279 Campus Drive, Stanford, CA 94305, United States of America
| | - François Naye
- Unit of Molecular Biology and Genetic Engineering, University of Liège, GIGA-R, B34, Avenue de l'Hôpital 1, B-4000 Liège, Belgium
| | - Bernard Peers
- Unit of Molecular Biology and Genetic Engineering, University of Liège, GIGA-R, B34, Avenue de l'Hôpital 1, B-4000 Liège, Belgium
| | - Myriam Roussigné
- Université de Toulouse III, UPS, Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, CBD UMR 5547, F-31062 Toulouse, France
- * E-mail: (MR); (PB)
| | - Patrick Blader
- Université de Toulouse III, UPS, Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, CBD UMR 5547, F-31062 Toulouse, France
- * E-mail: (MR); (PB)
| |
Collapse
|
35
|
Khuansuwan S, Clanton JA, Dean BJ, Patton JG, Gamse JT. A transcription factor network controls cell migration and fate decisions in the developing zebrafish pineal complex. Development 2016; 143:2641-50. [PMID: 27317804 PMCID: PMC4958332 DOI: 10.1242/dev.131680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/02/2016] [Indexed: 11/20/2022]
Abstract
The zebrafish pineal complex consists of four cell types (rod and cone photoreceptors, projection neurons and parapineal neurons) that are derived from a single pineal complex anlage. After specification, parapineal neurons migrate unilaterally away from the rest of the pineal complex whereas rods, cones and projection neurons are non-migratory. The transcription factor Tbx2b is important for both the correct number and migration of parapineal neurons. We find that two additional transcription factors, Flh and Nr2e3, negatively regulate parapineal formation. Flh induces non-migratory neuron fates and limits the extent of parapineal specification, in part by activation of Nr2e3 expression. Tbx2b is positively regulated by Flh, but opposes Flh action during specification of parapineal neurons. Loss of parapineal neuron specification in Tbx2b-deficient embryos can be partially rescued by loss of Nr2e3 or Flh function; however, parapineal migration absolutely requires Tbx2b activity. We conclude that cell specification and migration in the pineal complex are regulated by a network of at least three transcription factors. Summary: Cell fate specification and migration in the zebrafish pineal complex are regulated by a network of at least three transcription factors: Tbx2b, Flh and Nr2e3.
Collapse
Affiliation(s)
- Sataree Khuansuwan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua A Clanton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Benjamin J Dean
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua T Gamse
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
36
|
Robinson KJ, Hurd PL, Read S, Crespi BJ. The PCSK6 gene is associated with handedness, the autism spectrum, and magical ideation in a non-clinical population. Neuropsychologia 2016; 84:205-12. [PMID: 26921480 DOI: 10.1016/j.neuropsychologia.2016.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Abstract
Common polymorphisms in the gene PCSK6, whose protein product mediates the development of brain and body asymmetry through the NODAL pathway, have recently been associated with handedness in three studies, making it a key candidate gene for understanding the developmental and expression of human lateralization. We tested the hypothesis that the PCSK6 VNTR polymorphism rs1053972 influences the expression of handedness and aspects of dimensional schizotypy and autism. For a sample of 709 healthy individuals, rs1053972 genotype was significantly associated with categorical measures of handedness, and with dimensional handedness in subsets of the population with high schizotypy and magical ideation or a lack of strong right-handedness. Both findings showed evidence of stronger or exclusive effects among females, compared to males. Genotypes of PCSK6 also showed significant sex-limited associations with magical ideation, a component of positive schizotypal cognition measured using the Schizotypal Personality Questionnaire, and total autism score, measured using the Autism Spectrum Quotient. These results partially replicate previous studies on effects of PCSK6 rs1053972 genetic variation on handedness phenotypes, link the PCSK6 gene with the dimensional expression of neurodevelopmental conditions in healthy individuals, and show that associations of this gene with handedness and psychological phenotypes exhibit evidence of sex-limited effects.
Collapse
Affiliation(s)
- Kelsey J Robinson
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Peter L Hurd
- Department of Psychology, and Centre for Neuroscience, University of Alberta, 116 St. and 85 Avenue, Edmonton, Alberta, Canada T6G 2R3.
| | - Silven Read
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6.
| |
Collapse
|
37
|
Trulioff AS, Malashichev YB, Ermakov AS. Artificial inversion of the left–right visceral asymmetry in vertebrates: Conceptual approaches and experimental solutions. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415060090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Kuan YS, Roberson S, Akitake CM, Fortuno L, Gamse J, Moens C, Halpern ME. Distinct requirements for Wntless in habenular development. Dev Biol 2015; 406:117-128. [PMID: 26116173 PMCID: PMC4639407 DOI: 10.1016/j.ydbio.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 01/24/2023]
Abstract
Secreted Wnt proteins play pivotal roles in development, including regulation of cell proliferation, differentiation, progenitor maintenance and tissue patterning. The transmembrane protein Wntless (Wls) is necessary for secretion of most Wnts and essential for effective Wnt signaling. During a mutagenesis screen to identify genes important for development of the habenular nuclei in the dorsal forebrain, we isolated a mutation in the sole wls gene of zebrafish and confirmed its identity with a second, independent allele. Early embryonic development appears normal in homozygous wls mutants, but they later lack the ventral habenular nuclei, form smaller dorsal habenulae and otic vesicles, have truncated jaw and fin cartilages and lack swim bladders. Activation of a reporter for β-catenin-dependent transcription is decreased in wls mutants, indicative of impaired signaling by the canonical Wnt pathway, and expression of Wnt-responsive genes is reduced in the dorsal diencephalon. Wnt signaling was previously implicated in patterning of the zebrafish brain and in the generation of left-right (L-R) differences between the bilaterally paired dorsal habenular nuclei. Outside of the epithalamic region, development of the brain is largely normal in wls mutants and, despite their reduced size, the dorsal habenulae retain L-R asymmetry. We find that homozygous wls mutants show a reduction in two cell populations that contribute to the presumptive dorsal habenulae. The results support distinct temporal requirements for Wls in habenular development and reveal a new role for Wnt signaling in the regulation of dorsal habenular progenitors.
Collapse
Affiliation(s)
- Yung-Shu Kuan
- Department of Embryology, Carnegie Institution for Science, USA
| | - Sara Roberson
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Courtney M. Akitake
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Lea Fortuno
- Department of Embryology, Carnegie Institution for Science, USA
| | - Joshua Gamse
- Department of Biological Sciences, Vanderbilt University, USA
| | - Cecilia Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Marnie E. Halpern
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| |
Collapse
|
39
|
Abstract
Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.
Collapse
Affiliation(s)
- Véronique Duboc
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| | - Pascale Dufourcq
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| | - Patrick Blader
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| | - Myriam Roussigné
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| |
Collapse
|
40
|
The ancestral role of nodal signalling in breaking L/R symmetry in the vertebrate forebrain. Nat Commun 2015; 6:6686. [DOI: 10.1038/ncomms7686] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/19/2015] [Indexed: 12/25/2022] Open
|
41
|
Dean BJ, Erdogan B, Gamse JT, Wu SY. Dbx1b defines the dorsal habenular progenitor domain in the zebrafish epithalamus. Neural Dev 2014; 9:20. [PMID: 25212830 PMCID: PMC4164515 DOI: 10.1186/1749-8104-9-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/01/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The conserved habenular nuclei function as a relay system connecting the forebrain with the brain stem. They play crucial roles in various cognitive behaviors by modulating cholinergic, dopaminergic and serotonergic activities. Despite the renewed interest in this conserved forebrain region because of its importance in regulating aversion and reward behaviors, the formation of the habenular nuclei during embryogenesis is poorly understood due to their small size and deep location in the brain, as well as the lack of known markers for habenular progenitors. In zebrafish, the bilateral habenular nuclei are subdivided into dorsal and ventral compartments, are particularly large and found on the dorsal surface of the brain, which facilitates the study of their development. RESULTS Here we examine the expression of a homeodomain transcription factor, dbx1b, and its potential to serve as an early molecular marker of dorsal habenular progenitors. Detailed spatiotemporal expression profiles demonstrate that the expression domain of dbx1b correlates with the presumptive habenular region, and dbx1b-expressing cells are proliferative along the ventricle. A lineage-tracing experiment using the Cre-lox system confirms that all or almost all dorsal habenular neurons are derived from dbx1b-expressing cells. In addition, mutant analysis and pharmacological treatments demonstrate that both initiation and maintenance of dbx1b expression requires precise regulation by fibroblast growth factor (FGF) signaling. CONCLUSIONS We provide clear evidence in support of dbx1b marking the progenitor populations that give rise to the dorsal habenulae. In addition, the expression of dbx1b in the dorsal diencephalon is tightly controlled by FGF signaling.
Collapse
Affiliation(s)
| | | | | | - Shu-Yu Wu
- Department of Biological Sciences, Vanderbilt University, Box 351634 Station B, Nashville, TN 37235-1634, USA.
| |
Collapse
|
42
|
Hüsken U, Stickney HL, Gestri G, Bianco IH, Faro A, Young RM, Roussigne M, Hawkins TA, Beretta CA, Brinkmann I, Paolini A, Jacinto R, Albadri S, Dreosti E, Tsalavouta M, Schwarz Q, Cavodeassi F, Barth AK, Wen L, Zhang B, Blader P, Yaksi E, Poggi L, Zigman M, Lin S, Wilson SW, Carl M. Tcf7l2 is required for left-right asymmetric differentiation of habenular neurons. Curr Biol 2014; 24:2217-27. [PMID: 25201686 PMCID: PMC4194317 DOI: 10.1016/j.cub.2014.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 06/11/2014] [Accepted: 08/02/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although left-right asymmetries are common features of nervous systems, their developmental bases are largely unknown. In the zebrafish epithalamus, dorsal habenular neurons adopt medial (dHbm) and lateral (dHbl) subnuclear character at very different frequencies on the left and right sides. The left-sided parapineal promotes the elaboration of dHbl character in the left habenula, albeit by an unknown mechanism. Likewise, the genetic pathways acting within habenular neurons to control their asymmetric differentiated character are unknown. RESULTS In a forward genetic screen for mutations that result in loss of habenular asymmetry, we identified two mutant alleles of tcf7l2, a gene that encodes a transcriptional regulator of Wnt signaling. In tcf7l2 mutants, most neurons on both sides differentiate with dHbl identity. Consequently, the habenulae develop symmetrically, with both sides adopting a pronounced leftward character. Tcf7l2 acts cell automously in nascent equipotential neurons, and on the right side, it promotes dHbm and suppresses dHbl differentiation. On the left, the parapineal prevents this Tcf7l2-dependent process, thereby promoting dHbl differentiation. CONCLUSIONS Tcf7l2 is essential for lateralized fate selection by habenular neurons that can differentiate along two alternative pathways, thereby leading to major neural circuit asymmetries.
Collapse
Affiliation(s)
- Ulrike Hüsken
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Heather L Stickney
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Myriam Roussigne
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Centre de Biologie du Développement (CDB), UPS, Université de Toulouse, 118 Route de Narbonne, 31062, France; CNRS, CDB UMR 5547, 31062 Toulouse, France
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Carlo A Beretta
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Irena Brinkmann
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Alessio Paolini
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Raquel Jacinto
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Shahad Albadri
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Elena Dreosti
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Neuroelectronics Research Flanders, 3001 Leuven, Belgium
| | - Matina Tsalavouta
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Quenten Schwarz
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anukampa K Barth
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lu Wen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Patrick Blader
- Centre de Biologie du Développement (CDB), UPS, Université de Toulouse, 118 Route de Narbonne, 31062, France; CNRS, CDB UMR 5547, 31062 Toulouse, France
| | - Emre Yaksi
- Neuroelectronics Research Flanders, 3001 Leuven, Belgium; Vlaams Instituut voor Biotechnologie, 3001 Leuven, Belgium; KU Leuven, 3001 Leuven, Belgium
| | - Lucia Poggi
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Mihaela Zigman
- Department of Molecular Evolution and Genomics, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Shuo Lin
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, 621 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Matthias Carl
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany.
| |
Collapse
|
43
|
deCarvalho TN, Subedi A, Rock J, Harfe BD, Thisse C, Thisse B, Halpern ME, Hong E. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish. Genesis 2014; 52:636-55. [PMID: 24753112 DOI: 10.1002/dvg.22785] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/11/2022]
Abstract
The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity, and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. Although many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions.
Collapse
Affiliation(s)
- Tagide N deCarvalho
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Garric L, Ronsin B, Roussigné M, Booton S, Gamse JT, Dufourcq P, Blader P. Pitx2c ensures habenular asymmetry by restricting parapineal cell number. Development 2014; 141:1572-9. [PMID: 24598158 DOI: 10.1242/dev.100305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Left-right (L/R) asymmetries in the brain are thought to underlie lateralised cognitive functions. Understanding how neuroanatomical asymmetries are established has been achieved through the study of the zebrafish epithalamus. Morphological symmetry in the epithalamus is broken by leftward migration of the parapineal, which is required for the subsequent elaboration of left habenular identity; the habenular nuclei flank the midline and show L/R asymmetries in marker expression and connectivity. The Nodal target pitx2c is expressed in the left epithalamus, but nothing is known about its role during the establishment of asymmetry in the brain. We show that abrogating Pitx2c function leads to the right habenula adopting aspects of left character, and to an increase in parapineal cell numbers. Parapineal ablation in Pitx2c loss of function results in right habenular isomerism, indicating that the parapineal is required for the left character detected in the right habenula in this context. Partial parapineal ablation in the absence of Pitx2c, however, reduces the number of parapineal cells to wild-type levels and restores habenular asymmetry. We provide evidence suggesting that antagonism between Nodal and Pitx2c activities sets an upper limit on parapineal cell numbers. We conclude that restricting parapineal cell number is crucial for the correct elaboration of epithalamic asymmetry.
Collapse
Affiliation(s)
- Laurence Garric
- Université de Toulouse, UPS, Centre de Biologie du Développement (CBD), 118 route de Narbonne, F-31062 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Chatterjee M, Guo Q, Weber S, Scholpp S, Li JY. Pax6 regulates the formation of the habenular nuclei by controlling the temporospatial expression of Shh in the diencephalon in vertebrates. BMC Biol 2014; 12:13. [PMID: 24528677 PMCID: PMC3996077 DOI: 10.1186/1741-7007-12-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/11/2014] [Indexed: 12/02/2022] Open
Abstract
Background The habenula and the thalamus are two critical nodes in the forebrain circuitry and they connect the midbrain and the cerebral cortex in vertebrates. The habenula is derived from the epithalamus and rests dorsally to the thalamus. Both epithalamus and thalamus arise from a single diencephalon segment called prosomere (p)2. Shh is expressed in the ventral midline of the neural tube and in the mid-diencephalic organizer (MDO) at the zona limitans intrathalamica between thalamus and prethalamus. Acting as a morphogen, Shh plays an important role in regulating cell proliferation and survival in the diencephalon and thalamic patterning. The molecular regulation of the MDO Shh expression and the potential role of Shh in development of the habenula remain largely unclear. Results We show that deleting paired-box and homeobox-containing gene Pax6 results in precocious and expanded expression of Shh in the prospective MDO in fish and mice, whereas gain-of-function of pax6 inhibits MDO shh expression in fish. Using gene expression and genetic fate mapping, we have characterized the expression of molecular markers that demarcate the progenitors and precursors of habenular neurons. We show that the thalamic domain is shifted dorsally and the epithalamus is missing in the alar plate of p2 in the Pax6 mutant mouse. Conversely, the epithalamus is expanded ventrally at the expense of the thalamus in mouse embryos with reduced Shh activity. Significantly, attenuating Shh signaling largely rescues the patterning of p2 and restores the epithalamus in Pax6 mouse mutants, suggesting that Shh acts downstream of Pax6 in controlling the formation of the habenula. Similar to that found in the mouse, we show that pax6 controls the formation of the epithalamus mostly via the regulation of MDO shh expression in zebrafish. Conclusions Our findings demonstrate that Pax6 has an evolutionarily conserved function in establishing the temporospatial expression of Shh in the MDO in vertebrates. Furthermore, Shh mediates Pax6 function in regulating the partition of the p2 domain into the epithalamus and thalamus.
Collapse
Affiliation(s)
| | | | | | - Steffen Scholpp
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06030-6403, USA.
| | | |
Collapse
|
46
|
Dreosti E, Vendrell Llopis N, Carl M, Yaksi E, Wilson SW. Left-right asymmetry is required for the habenulae to respond to both visual and olfactory stimuli. Curr Biol 2014; 24:440-5. [PMID: 24508167 PMCID: PMC3969106 DOI: 10.1016/j.cub.2014.01.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 01/11/2023]
Abstract
Left-right asymmetries are most likely a universal feature of bilaterian nervous systems and may serve to increase neural capacity by specializing equivalent structures on left and right sides for distinct roles [1]. However, little is known about how asymmetries are encoded within vertebrate neural circuits and how lateralization influences processing of information in the brain. Consequently, it remains unclear the extent to which lateralization of the nervous system is important for normal cognitive and other brain functions and whether defects in lateralization contribute to neurological deficits [2]. Here we show that sensory responses to light and odor are lateralized in larval zebrafish habenulae and that loss of brain asymmetry leads to concomitant loss of responsiveness to either visual or olfactory stimuli. We find that in wild-type zebrafish, most habenular neurons responding to light are present on the left, whereas neurons responding to odor are more frequent on the right. Manipulations that reverse the direction of brain asymmetry reverse the functional properties of habenular neurons, whereas manipulations that generate either double-left- or double-right-sided brains lead to loss of habenular responsiveness to either odor or light, respectively. Our results indicate that loss of brain lateralization has significant consequences upon sensory processing and circuit function. Habenular neuron responses to light and odor stimuli are lateralized Lateralized habenular light responses depend upon the eyes Loss of brain asymmetry leads to a loss of either light or odor responses
Collapse
Affiliation(s)
- Elena Dreosti
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; NERF, Kapeldreef 75, 3001 Leuven, Belgium.
| | - Nuria Vendrell Llopis
- NERF, Kapeldreef 75, 3001 Leuven, Belgium; KU Leuven, Kapeldreef 75, 3001 Leuven, Belgium
| | - Matthias Carl
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Molecular Biology, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Emre Yaksi
- NERF, Kapeldreef 75, 3001 Leuven, Belgium; KU Leuven, Kapeldreef 75, 3001 Leuven, Belgium; VIB, Kapeldreef 75, 3001 Leuven, Belgium.
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
47
|
Pavlou S, Astell K, Kasioulis I, Gakovic M, Baldock R, van Heyningen V, Coutinho P. Pleiotropic effects of Sox2 during the development of the zebrafish epithalamus. PLoS One 2014; 9:e87546. [PMID: 24498133 PMCID: PMC3909122 DOI: 10.1371/journal.pone.0087546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/26/2013] [Indexed: 12/01/2022] Open
Abstract
The zebrafish epithalamus is part of the diencephalon and encompasses three major components: the pineal, the parapineal and the habenular nuclei. Using sox2 knockdown, we show here that this key transcriptional regulator has pleiotropic effects during the development of these structures. Sox2 negatively regulates pineal neurogenesis. Also, Sox2 is identified as the unknown factor responsible for pineal photoreceptor prepatterning and performs this function independently of the BMP signaling. The correct levels of sox2 are critical for the functionally important asymmetrical positioning of the parapineal organ and for the migration of parapineal cells as a coherent structure. Deviations from this strict control result in defects associated with abnormal habenular laterality, which we have documented and quantified in sox2 morphants.
Collapse
Affiliation(s)
- Sofia Pavlou
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katy Astell
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioannis Kasioulis
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Milica Gakovic
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Baldock
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro Coutinho
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Wu SY, de Borsetti NH, Bain EJ, Bulow CR, Gamse JT. Mediator subunit 12 coordinates intrinsic and extrinsic control of epithalamic development. Dev Biol 2014; 385:13-22. [DOI: 10.1016/j.ydbio.2013.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/01/2013] [Accepted: 10/23/2013] [Indexed: 12/22/2022]
|
49
|
Handedness: A neurogenetic shift of perspective. Neurosci Biobehav Rev 2013; 37:2788-93. [DOI: 10.1016/j.neubiorev.2013.09.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 02/01/2023]
|
50
|
Colombo A, Palma K, Armijo L, Mione M, Signore IA, Morales C, Guerrero N, Meynard MM, Pérez R, Suazo J, Marcelain K, Briones L, Härtel S, Wilson SW, Concha ML. Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth. Development 2013; 140:3997-4007. [PMID: 24046318 PMCID: PMC3775416 DOI: 10.1242/dev.091934] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although progress has been made in resolving the genetic pathways that specify neuronal asymmetries in the brain, little is known about genes that mediate the development of structural asymmetries between neurons on left and right. In this study, we identify daam1a as an asymmetric component of the signalling pathways leading to asymmetric morphogenesis of the habenulae in zebrafish. Daam1a is a member of the Formin family of actin-binding proteins and the extent of Daam1a expression in habenular neuron dendrites mirrors the asymmetric growth of habenular neuropil between left and right. Local loss and gain of Daam1a function affects neither cell number nor subtype organisation but leads to a decrease or increase of neuropil, respectively. Daam1a therefore plays a key role in the asymmetric growth of habenular neuropil downstream of the pathways that specify asymmetric cellular domains in the habenulae. In addition, Daam1a mediates the development of habenular efferent connectivity as local loss and gain of Daam1a function impairs or enhances, respectively, the growth of habenular neuron terminals in the interpeduncular nucleus. Abrogation of Daam1a disrupts the growth of both dendritic and axonal processes and results in disorganised filamentous actin and α-tubulin. Our results indicate that Daam1a plays a key role in asymmetric habenular morphogenesis mediating the growth of dendritic and axonal processes in dorsal habenular neurons.
Collapse
Affiliation(s)
- Alicia Colombo
- Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|