1
|
Vachias C, Tourlonias C, Grelée L, Gueguen N, Renaud Y, Venugopal P, Richard G, Pouchin P, Brasset E, Mirouse V. Gap junctions allow transfer of metabolites between germ cells and somatic cells to promote germ cell growth in the Drosophila ovary. PLoS Biol 2025; 23:e3003045. [PMID: 39965028 PMCID: PMC11864552 DOI: 10.1371/journal.pbio.3003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Gap junctions allow the exchange of small molecules between cells. How this function could be used to promote cell growth is not yet fully understood. During Drosophila ovarian follicle development, germ cells, which are surrounded by epithelial somatic cells, undergo massive growth. We found that this growth depends on gap junctions between these cell populations, with a requirement for Innexin4 and Innexin2, in the germ cells and the somatic cells, respectively. Translatomic analyses revealed that somatic cells express enzymes and transporters involved in amino acid metabolism that are absent in germ cells. Among them, we identified a putative amino acid transporter required for germline growth. Its ectopic expression in the germline can partially compensate for its absence or the one of Innexin2 in somatic cells. Moreover, affecting either gap junctions or the import of some amino acids in somatic cells induces P-bodies in the germ cells, a feature usually associated with an arrest of translation. Finally, in somatic cells, innexin2 expression and gap junction assembly are regulated by the insulin receptor/PI3K kinase pathway, linking the growth of the two tissues. Overall, these results support the view that metabolic transfer through gap junction promotes cell growth and illustrate how such a mechanism can be integrated into a developmental program, coupling growth control by extrinsic systemic signals with the intrinsic coordination between cell populations.
Collapse
Affiliation(s)
- Caroline Vachias
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Camille Tourlonias
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Louis Grelée
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Nathalie Gueguen
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Parvathy Venugopal
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Graziella Richard
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Emilie Brasset
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Vincent Mirouse
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
2
|
Reimão-Pinto MM, Behrens A, Forcelloni S, Fröhlich K, Kaya S, Nedialkova DD. The dynamics and functional impact of tRNA repertoires during early embryogenesis in zebrafish. EMBO J 2024; 43:5747-5779. [PMID: 39402326 PMCID: PMC11574265 DOI: 10.1038/s44318-024-00265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024] Open
Abstract
Embryogenesis entails dramatic shifts in mRNA translation and turnover that reprogram gene expression during cellular proliferation and differentiation. Codon identity modulates mRNA stability during early vertebrate embryogenesis, but how the composition of tRNA pools is matched to translational demand is unknown. By quantitative profiling of tRNA repertoires in zebrafish embryos during the maternal-to-zygotic transition, we show that zygotic tRNA repertoires are established after the onset of gastrulation, succeeding the major wave of zygotic mRNA transcription. Maternal and zygotic tRNA pools are distinct, but their reprogramming does not result in a better match to the codon content of the zygotic transcriptome. Instead, we find that an increase in global translation at gastrulation sensitizes decoding rates to tRNA supply, thus destabilizing maternal mRNAs enriched in slowly translated codons. Translational activation and zygotic tRNA expression temporally coincide with an increase of TORC1 activity at gastrulation, which phosphorylates and inactivates the RNA polymerase III repressor Maf1a/b. Our data indicate that a switch in global translation, rather than tRNA reprogramming, determines the onset of codon-dependent maternal mRNA decay during zebrafish embryogenesis.
Collapse
Affiliation(s)
| | - Andrew Behrens
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Sergio Forcelloni
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | | | - Selay Kaya
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, 85748, Garching, Germany.
| |
Collapse
|
3
|
Raynes Y, Santiago JC, Lemieux FA, Darwin L, Rand DM. Sex, tissue, and mitochondrial interactions modify the transcriptional response to rapamycin in Drosophila. BMC Genomics 2024; 25:766. [PMID: 39107687 PMCID: PMC11304892 DOI: 10.1186/s12864-024-10647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Many common diseases exhibit uncontrolled mTOR signaling, prompting considerable interest in the therapeutic potential of mTOR inhibitors, such as rapamycin, to treat a range of conditions, including cancer, aging-related pathologies, and neurological disorders. Despite encouraging preclinical results, the success of mTOR interventions in the clinic has been limited by off-target side effects and dose-limiting toxicities. Improving clinical efficacy and mitigating side effects require a better understanding of the influence of key clinical factors, such as sex, tissue, and genomic background, on the outcomes of mTOR-targeting therapies. RESULTS We assayed gene expression with and without rapamycin exposure across three distinct body parts (head, thorax, abdomen) of D. melanogaster flies, bearing either their native melanogaster mitochondrial genome or the mitochondrial genome from a related species, D. simulans. The fully factorial RNA-seq study design revealed a large number of genes that responded to the rapamycin treatment in a sex-dependent and tissue-dependent manner, and relatively few genes with the transcriptional response to rapamycin affected by the mitochondrial background. Reanalysis of an earlier study confirmed that mitochondria can have a temporal influence on rapamycin response. CONCLUSIONS We found significant and wide-ranging effects of sex and body part, alongside a subtle, potentially time-dependent, influence of mitochondria on the transcriptional response to rapamycin. Our findings suggest a number of pathways that could be crucial for predicting potential side effects of mTOR inhibition in a particular sex or tissue. Further studies of the temporal response to rapamycin are necessary to elucidate the effects of the mitochondrial background on mTOR and its inhibition.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| | - John C Santiago
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Faye A Lemieux
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA
| | - Leah Darwin
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
| | - David M Rand
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
4
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
5
|
Nunes RD, Drummond-Barbosa D. A high-sugar diet, but not obesity, reduces female fertility in Drosophila melanogaster. Development 2023; 150:dev201769. [PMID: 37795747 PMCID: PMC10617608 DOI: 10.1242/dev.201769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Obesity is linked to reduced fertility in various species, from Drosophila to humans. Considering that obesity is often induced by changes in diet or eating behavior, it remains unclear whether obesity, diet, or both reduce fertility. Here, we show that Drosophila females on a high-sugar diet become rapidly obese and less fertile as a result of increased death of early germline cysts and vitellogenic egg chambers (or follicles). They also have high glycogen, glucose and trehalose levels and develop insulin resistance in their fat bodies (but not ovaries). By contrast, females with adipocyte-specific knockdown of the anti-obesity genes brummer or adipose are obese but have normal fertility. Remarkably, females on a high-sugar diet supplemented with a separate source of water have mostly normal fertility and glucose levels, despite persistent obesity, high glycogen and trehalose levels, and fat body insulin resistance. These findings demonstrate that a high-sugar diet affects specific processes in oogenesis independently of insulin resistance, that high glucose levels correlate with reduced fertility on a high-sugar diet, and that obesity alone does not impair fertility.
Collapse
Affiliation(s)
- Rodrigo Dutra Nunes
- Department of Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Daniela Drummond-Barbosa
- Department of Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| |
Collapse
|
6
|
Tippetts TS, Sieber MH, Solmonson A. Beyond energy and growth: the role of metabolism in developmental signaling, cell behavior and diapause. Development 2023; 150:dev201610. [PMID: 37883062 PMCID: PMC10652041 DOI: 10.1242/dev.201610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.
Collapse
Affiliation(s)
- Trevor S. Tippetts
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew H. Sieber
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Laboratory of Developmental Metabolism and Placental Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Privalova V, Labecka AM, Szlachcic E, Sikorska A, Czarnoleski M. Systemic changes in cell size throughout the body of Drosophila melanogaster associated with mutations in molecular cell cycle regulators. Sci Rep 2023; 13:7565. [PMID: 37160985 PMCID: PMC10169805 DOI: 10.1038/s41598-023-34674-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Along with different life strategies, organisms have evolved dramatic cellular composition differences. Understanding the molecular basis and fitness effects of these differences is key to elucidating the fundamental characteristics of life. TOR/insulin pathways are key regulators of cell size, but whether their activity determines cell size in a systemic or tissue-specific manner awaits exploration. To that end, we measured cells in four tissues in genetically modified Drosophila melanogaster (rictorΔ2 and Mnt1) and corresponding controls. While rictorΔ2 flies lacked the Rictor protein in TOR complex 2, downregulating the functions of this element in TOR/insulin pathways, Mnt1 flies lacked the transcriptional regulator protein Mnt, weakening the suppression of downstream signalling from TOR/insulin pathways. rictorΔ2 flies had smaller epidermal (leg and wing) and ommatidial cells and Mnt1 flies had larger cells in these tissues than the controls. Females had consistently larger cells than males in the three tissue types. In contrast, dorsal longitudinal flight muscle cells (measured only in males) were not altered by mutations. We suggest that mutations in cell cycle control pathways drive the evolution of systemic changes in cell size throughout the body, but additional mechanisms shape the cellular composition of some tissues independent of these mutations.
Collapse
Affiliation(s)
- Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Sikorska
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
8
|
Ding K, Barretto EC, Johnston M, Lee B, Gallo M, Grewal SS. Transcriptome analysis of FOXO-dependent hypoxia gene expression identifies Hipk as a regulator of low oxygen tolerance in Drosophila. G3 (BETHESDA, MD.) 2022; 12:6749561. [PMID: 36200850 PMCID: PMC9713431 DOI: 10.1093/g3journal/jkac263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/16/2022] [Indexed: 12/05/2022]
Abstract
When exposed to low oxygen or hypoxia, animals must alter their metabolism and physiology to ensure proper cell-, tissue-, and whole-body level adaptations to their hypoxic environment. These alterations often involve changes in gene expression. While extensive work has emphasized the importance of the HIF-1 alpha transcription factor on controlling hypoxia gene expression, less is known about other transcriptional mechanisms. We previously identified the transcription factor FOXO as a regulator of hypoxia tolerance in Drosophila larvae and adults. Here, we use an RNA-sequencing approach to identify FOXO-dependent changes in gene expression that are associated with these tolerance effects. We found that hypoxia altered the expression of over 2,000 genes and that ∼40% of these gene expression changes required FOXO. We discovered that hypoxia exposure led to a FOXO-dependent increase in genes involved in cell signaling, such as kinases, GTPase regulators, and regulators of the Hippo/Yorkie pathway. Among these, we identified homeodomain-interacting protein kinase as being required for hypoxia survival. We also found that hypoxia suppresses the expression of genes involved in ribosome synthesis and egg production, and we showed that hypoxia suppresses tRNA synthesis and mRNA translation and reduces female fecundity. Among the downregulated genes, we discovered that FOXO was required for the suppression of many ribosomal protein genes and genes involved in oxidative phosphorylation, pointing to a role for FOXO in limiting energetically costly processes such as protein synthesis and mitochondrial activity upon hypoxic stress. This work uncovers a widespread role for FOXO in mediating hypoxia changes in gene expression.
Collapse
Affiliation(s)
- Kate Ding
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elizabeth C Barretto
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael Johnston
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marco Gallo
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
9
|
Haroon, Li YX, Ye CX, Su J, Nabi G, Su XH, Xing LX. De Novo Transcriptome Assembly and Analysis of Longevity Genes Using Subterranean Termite ( Reticulitermes chinensis) Castes. Int J Mol Sci 2022; 23:13660. [PMID: 36362447 PMCID: PMC9657995 DOI: 10.3390/ijms232113660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The longevity phenomenon is entirely controlled by the insulin signaling pathway (IIS-pathway). Both vertebrates and invertebrates have IIS-pathways that are comparable to one another, though no one has previously described de novo transcriptome assembly of IIS-pathway-associated genes in termites. In this research, we analyzed the transcriptomes of both reproductive (primary kings “PK” and queens “PQ”, secondary worker reproductive kings “SWRK” and queens “SWRQ”) and non-reproductive (male “WM” and female “WF” workers) castes of the subterranean termite Reticulitermes chinensis. The goal was to identify the genes responsible for longevity in the reproductive and non-reproductive castes. Through transcriptome analysis, we annotated 103,589,264 sequence reads and 184,436 (7G) unigenes were assembled, GC performance was measured at 43.02%, and 64,046 sequences were reported as CDs sequences. Of which 35 IIS-pathway-associated genes were identified, among 35 genes, we focused on the phosphoinositide-dependent kinase-1 (Pdk1), protein kinase B2 (akt2-a), tuberous sclerosis-2 (Tsc2), mammalian target of rapamycin (mTOR), eukaryotic translation initiation factor 4E (EIF4E) and ribosomal protein S6 (RPS6) genes. Previously these genes (Pdk1, akt2-a, mTOR, EIF4E, and RPS6) were investigated in various organisms, that regulate physiological effects, growth factors, protein translation, cell survival, proliferation, protein synthesis, cell metabolism and survival, autophagy, fecundity rate, egg size, and follicle number, although the critical reason for longevity is still unclear in the termite castes. However, based on transcriptome profiling, the IIS-pathway-associated genes could prolong the reproductive caste lifespan and health span. Therefore, the transcriptomic shreds of evidence related to IIS-pathway genes provide new insights into the maintenance and relationships between biomolecular homeostasis and remarkable longevity. Finally, we propose a strategy for future research to decrypt the hidden costs associated with termite aging in reproductive and non-reproductive castes.
Collapse
Affiliation(s)
- Haroon
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Yu-Xin Li
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Chen-Xu Ye
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Jian Su
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, 31120 Krakow, Poland
| | - Xiao-Hong Su
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Lian-Xi Xing
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| |
Collapse
|
10
|
Behri M, Teshima H, Kutsuwada K, Nakatake S, Ogihara MH, Taylor D. Production of the yolk protein precursor vitellogenin is mediated by target of rapamycin (TOR) in the soft tick Ornithodoros moubata (Acari: Argasidae). INSECT SCIENCE 2022; 29:1299-1308. [PMID: 35254737 DOI: 10.1111/1744-7917.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Initiation of vitellogenesis by blood feeding is essential for egg maturation in ticks. Nutrients derived from the blood meal are utilized by female ticks to synthesize the yolk protein precursor vitellogenin (Vg). Engorged Ornithodoros moubata ticks can synthesize Vg whether mated or virgin, thus O. moubata is an excellent model for studying the relative roles of blood feeding and mating in tick vitellogenesis. Injection of rapamycin into engorged O. moubata resulted in a reduction of ovarian growth and yolk accumulation in the oocytes of mated females. OmVg expression in the midgut and fat body and protein concentrations in the hemolymph significantly decreased in mated ticks after injection with rapamycin, indicating that inhibition of the nutrient-sensing target of rapamycin (TOR) pathway disrupts egg maturation at the levels of Vg expression and synthesis. These results suggest that the TOR-signaling pathway induces vitellogenesis in response to nutritional stimulation after a blood meal in O. moubata and is functionally independent of the mating-induced pathway.
Collapse
Affiliation(s)
- Meryem Behri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruki Teshima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keisuke Kutsuwada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shoko Nakatake
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari H Ogihara
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - DeMar Taylor
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Steenwinkel TE, Hamre KK, Werner T. The use of non-model Drosophila species to study natural variation in TOR pathway signaling. PLoS One 2022; 17:e0270436. [PMID: 36137094 PMCID: PMC9499319 DOI: 10.1371/journal.pone.0270436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Nutrition and growth are strongly linked, but not much is known about how nutrition leads to growth. To understand the connection between nutrition through the diet, growth, and proliferation, we need to study the phenotypes resulting from the activation and inhibition of central metabolic pathways. One of the most highly conserved metabolic pathways across eukaryotes is the Target of Rapamycin (TOR) pathway, whose primary role is to detect the availability of nutrients and to either induce or halt cellular growth. Here we used the model organism Drosophila melanogaster (D. mel.) and three non-model Drosophila species with different dietary needs, Drosophila guttifera (D. gut.), Drosophila deflecta (D. def.), and Drosophila tripunctata (D. tri.), to study the effects of dietary amino acid availability on fecundity and longevity. In addition, we inhibited the Target of Rapamycin (TOR) pathway, using rapamycin, to test how the inhibition interplays with the nutritional stimuli in these four fruit fly species. We hypothesized that the inhibition of the TOR pathway would reverse the phenotypes observed under conditions of overfeeding. Our results show that female fecundity increased with higher yeast availability in all four species but decreased in response to TOR inhibition. The longevity data were more varied: most species experienced an increase in median lifespan in both genders with an increase in yeast availability, while the lifespan of D. mel. females decreased. When exposed to the TOR inhibitor rapamycin, the life spans of most species decreased, except for D. tri, while we observed a major reduction in fecundity across all species. The obtained data can benefit future studies on the evolution of metabolism by showing the potential of using non-model species to track changes in metabolism. Particularly, our data show the possibility to use relatively closely related Drosophila species to gain insight on the evolution of TOR signaling.
Collapse
Affiliation(s)
- Tessa E. Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Kailee K. Hamre
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
Decades of work using various model organisms have resulted in an exciting and emerging field of oocyte maturation. High levels of insulin and active mammalian target of rapamycin signals, indicative of a good nutritional environment, and hormones such as gonadotrophin, indicative of the growth of the organism, work together to control oocyte maturation to ensure that reproduction happens at the right timing under the right conditions. In the wild, animals often face serious challenges to maintain oocyte quiescence under long-term unfavorable conditions in the absence of mates or food. Failure to maintain oocyte quiescence will result in activation of oocytes at the wrong time and thus lead to exhaustion of the oocyte pool and sterility of the organism. In this review, we discuss the shared mechanisms in oocyte quiescence and awakening and a conserved role of noradrenergic signals in maintenance of the quiescent oocyte pool under unfavorable conditions in simple model organisms.
Collapse
Affiliation(s)
- Jeongho Kim
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Young-Jai You
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Abstract
Metabolism has been studied mainly in cultured cells or at the level of whole tissues or whole organisms in vivo. Consequently, our understanding of metabolic heterogeneity among cells within tissues is limited, particularly when it comes to rare cells with biologically distinct properties, such as stem cells. Stem cell function, tissue regeneration and cancer suppression are all metabolically regulated, although it is not yet clear whether there are metabolic mechanisms unique to stem cells that regulate their activity and function. Recent work has, however, provided evidence that stem cells do have a metabolic signature that is distinct from that of restricted progenitors and that metabolic changes influence tissue homeostasis and regeneration. Stem cell maintenance throughout life in many tissues depends upon minimizing anabolic pathway activation and cell division. Consequently, stem cell activation by tissue injury is associated with changes in mitochondrial function, lysosome activity and lipid metabolism, potentially at the cost of eroding self-renewal potential. Stem cell metabolism is also regulated by the environment: stem cells metabolically interact with other cells in their niches and are able to sense and adapt to dietary changes. The accelerating understanding of stem cell metabolism is revealing new aspects of tissue homeostasis with the potential to promote tissue regeneration and cancer suppression.
Collapse
|
14
|
Alves AN, Sgrò CM, Piper MDW, Mirth CK. Target of Rapamycin Drives Unequal Responses to Essential Amino Acid Depletion for Egg Laying in Drosophila Melanogaster. Front Cell Dev Biol 2022; 10:822685. [PMID: 35252188 PMCID: PMC8888975 DOI: 10.3389/fcell.2022.822685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
Nutrition shapes a broad range of life-history traits, ultimately impacting animal fitness. A key fitness-related trait, female fecundity is well known to change as a function of diet. In particular, the availability of dietary protein is one of the main drivers of egg production, and in the absence of essential amino acids egg laying declines. However, it is unclear whether all essential amino acids have the same impact on phenotypes like fecundity. Using a holidic diet, we fed adult female Drosophila melanogaster diets that contained all necessary nutrients except one of the 10 essential amino acids and assessed the effects on egg production. For most essential amino acids, depleting a single amino acid induced as rapid a decline in egg production as when there were no amino acids in the diet. However, when either methionine or histidine were excluded from the diet, egg production declined more slowly. Next, we tested whether GCN2 and TOR mediated this difference in response across amino acids. While mutations in GCN2 did not eliminate the differences in the rates of decline in egg laying among amino acid drop-out diets, we found that inhibiting TOR signalling caused egg laying to decline rapidly for all drop-out diets. TOR signalling does this by regulating the yolk-forming stages of egg chamber development. Our results suggest that amino acids differ in their ability to induce signalling via the TOR pathway. This is important because if phenotypes differ in sensitivity to individual amino acids, this generates the potential for mismatches between the output of a pathway and the animal's true nutritional status.
Collapse
|
15
|
Russell SA, Laws KM, Bashaw GJ. Frazzled/Dcc acts independently of Netrin to promote germline survival during Drosophila oogenesis. Development 2021; 148:dev199762. [PMID: 34910816 PMCID: PMC8722396 DOI: 10.1242/dev.199762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.
Collapse
Affiliation(s)
| | - Kaitlin M. Laws
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Dorogova NV, Zubkova AE, Fedorova ЕV, Bolobolova ЕU, Baricheva ЕМ. [Lack of GAGA protein in Trl mutants causes massive cell death in Drosophila spermatogenesis and oogenesis]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:292-300. [PMID: 34901726 PMCID: PMC8627872 DOI: 10.18699/vj21.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/26/2022] Open
Abstract
Белок дрозофилы GAGA (GAF) является фактором эпигенетической регуляции транскрипции
большой группы генов с широким разнообразием клеточных функций. GAF кодируется геном Trithorax-like
(Trl), который экспрессируется в различных органах и тканях на всех стадиях онтогенеза дрозофилы. Мутации этого гена вызывают множественные нарушения развития. В предыдущих работах мы показали, что этот
белок необходим для развития половой системы как самцов, так и самок дрозофилы. Снижение экспрессии
гена Trl приводило ко множественным нарушениям спермато- и оогенеза. Одно из значительных нарушений было связано с массовой деградацией и потерей клеток зародышевого пути, что позволило предположить, что этот белок вовлечен в регуляцию клеточной гибели. В представленной работе мы провели более
детальное цитологическое исследование, чтобы определить, какой тип гибели клеток зародышевого пути
характерен для Trl-мутантов, и происходят ли нарушения или изменения этого процесса по сравнению с
нормой. Полученные результаты показали, что недостаток белка GAF вызывает массовую гибель клеток зародышевого пути как у самок, так и самцов дрозофилы, но проявляется эта гибель в зависимости от пола
по-разному. У самок, мутантных по гену Trl, фенотипически этот процесс не отличается от нормы и в гибнущих яйцевых камерах выявлены признаки апоптоза и аутофагии клеток зародышевого пути. У самцов, мутантных по гену Trl, в отличие от самок, не обнаружены признаки апоптоза. У самцов мутации Trl индуцируют
массовую гибель клеток через аутофагию, что не характерно для сперматогенеза дрозофилы и не описано
ранее ни в норме, ни у мутаций по другим генам. Таким образом, недостаток GAF у мутантов Trl приводит
к усилению апоптотической и аутофагической гибели клеток зародышевого пути. Эктопическая клеточная
гибель и атрофия зародышевой линии, вероятно, связаны с нарушением экспрессии генов-мишеней GAGAфактора, среди которых есть гены, регулирующие как апоптоз, так и аутофагию.
Collapse
Affiliation(s)
- N V Dorogova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A E Zubkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - Е V Fedorova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Е U Bolobolova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Е М Baricheva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Nguyen B, Dinh H, Morimoto J, Ponton F. Sex-specific effects of the microbiota on adult carbohydrate intake and body composition in a polyphagous fly. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104308. [PMID: 34474015 DOI: 10.1016/j.jinsphys.2021.104308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The microbiota influences hosts' health and fitness. However, the extent to which the microbiota affects host' foraging decisions and related life history traits remains to be fully understood. Our study explored the effects of microbiota manipulation on foraging preference and phenotypic traits of larval and adult stages of the polyphagous fruit fly Bactrocera tryoni, one of the main horticultural pests in Australia. We generated three treatments: control (non-treated microbiota), axenic (removed microbiota), and reinoculation (individuals which had their microbiota removed then re-introduced). Our results confirmed that axenic larvae and immature (i.e., newly emerged 0 day-old, sexually-immature) adults were lighter than control and reinoculated individuals. Interestingly, we found a sex-specific effect of the microbiota manipulation on carbohydrate intake and body composition of 10 day-old mature adults. Axenic males ate less carbohydrate, and had lower body weight and total body fat relative to control and reinoculated males. Conversely, axenic females ate more carbohydrate than control and reinoculated ones, although body weight and lipid reserves were similar across treatments. Axenic females produced fewer eggs than control and reinoculated females. Our findings corroborate the far-reaching effects of microbiota in insects found in previous studies and show, for the first time, a sex-specific effect of microbiota on feeding behaviour in flies. Our results underscore the dynamic relationship between the microbiota and the host with the reinoculation of microbes restoring some traits that were affected in axenic individuals.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Hue Dinh
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Juliano Morimoto
- School of Biological Sciences, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, United Kingdom
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
18
|
Villa-Fombuena G, Lobo-Pecellín M, Marín-Menguiano M, Rojas-Ríos P, González-Reyes A. Live imaging of the Drosophila ovarian niche shows spectrosome and centrosome dynamics during asymmetric germline stem cell division. Development 2021; 148:271223. [PMID: 34370012 PMCID: PMC8489027 DOI: 10.1242/dev.199716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022]
Abstract
Drosophila female germline stem cells (GSCs) are found inside the cellular niche at the tip of the ovary. They undergo asymmetric divisions to renew the stem cell lineage and to produce sibling cystoblasts that will in turn enter differentiation. GSCs and cystoblasts contain spectrosomes, membranous structures essential for orientation of the mitotic spindle and that, particularly in GSCs, change shape depending on the cell cycle phase. Using live imaging and a fusion protein of GFP and the spectrosome component Par-1, we follow the complete spectrosome cycle throughout GSC division and quantify the relative duration of the different spectrosome shapes. We also determine that the Par-1 kinase shuttles between the spectrosome and the cytoplasm during mitosis and observe the continuous addition of new material to the GSC and cystoblast spectrosomes. Next, we use the Fly-FUCCI tool to define, in live and fixed tissues, that GSCs have a shorter G1 compared with the G2 phase. The observation of centrosomes in dividing GSCs allowed us to determine that centrosomes separate very early in G1, before centriole duplication. Furthermore, we show that the anterior centrosome associates with the spectrosome only during mitosis and that, upon mitotic spindle assembly, it translocates to the cell cortex, where it remains anchored until centrosome separation. Finally, we demonstrate that the asymmetric division of GSCs is not an intrinsic property of these cells, as the spectrosome of GSC-like cells located outside of the niche can divide symmetrically. Thus, GSCs display unique properties during division, a behaviour influenced by the surrounding niche. Summary: Imaging of live Drosophila germline stem cells in the ovarian niche reveals their asymmetric division and centrosome behaviour, whereas tumorous stem cells divide symmetrically.
Collapse
Affiliation(s)
- Gema Villa-Fombuena
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - María Lobo-Pecellín
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Miriam Marín-Menguiano
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Patricia Rojas-Ríos
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| |
Collapse
|
19
|
Weaver LN, Drummond-Barbosa D. Hormone receptor 4 is required in muscles and distinct ovarian cell types to regulate specific steps of Drosophila oogenesis. Development 2021; 148:dev.198663. [PMID: 33547134 DOI: 10.1242/dev.198663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
The conserved nuclear receptor superfamily has crucial roles in many processes, including reproduction. Nuclear receptors with known roles in oogenesis have been studied mostly in the context of their ovary-intrinsic requirement. Recent studies in Drosophila, however, have begun to reveal new roles of nuclear receptor signaling in peripheral tissues in controlling reproduction. Here, we identified Hormone receptor 4 (Hr4) as an oogenesis regulator required in the ovary and muscles. Global Hr4 knockdown leads to increased germline stem cell (GSC) loss, reduced GSC proliferation, early germline cyst death, slowed follicle growth and vitellogenic follicle degeneration. Tissue-specific knockdown experiments uncovered ovary-intrinsic and peripheral tissue requirements for Hr4 In the ovary, Hr4 is required in the niche for GSC proliferation and in the germline for GSC maintenance. Hr4 functions in muscles to promote GSC maintenance and follicle growth. The specific tissues that require Hr4 for survival of early germline cysts and vitellogenic follicles remain unidentified. These results add to the few examples of muscles controlling gametogenesis and expand our understanding of the complexity of nuclear receptor regulation of various aspects of oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Dorogova NV, Galimova YA, Bolobolova EU, Baricheva EM, Fedorova SA. Loss of Drosophila E3 Ubiquitin Ligase Hyd Promotes Extra Mitosis in Germline Cysts and Massive Cell Death During Oogenesis. Front Cell Dev Biol 2020; 8:600868. [PMID: 33240894 PMCID: PMC7680892 DOI: 10.3389/fcell.2020.600868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
The Drosophila hyperplastic disc (hyd) gene is the ortholog of mammalian tumor suppressor EDD, which is implicated in a wide variety of cellular processes, and its regulation is impaired in various tumors. It is a member of the highly conserved HECT family of E3 ubiquitin ligases, which directly attach ubiquitin to targeted substrates. In early works, it was shown that Drosophila Hyd may be a tumor suppressor because it is involved in the control of imaginal-disc cell proliferation and growth. In this study, we demonstrated that Hyd is also important for the regulation of female germ cell proliferation and that its depletion leads to additional germline cell mitoses. Furthermore, we revealed a previously unknown Hyd function associated with the maintenance of germ cells' viability. A reduction in hyd expression by either mutations or RNA interference resulted in large-scale germ cell death at different stages of oogenesis. Thus, the analysis of phenotypes arising from the hyd deficiency points to Hyd's role in the regulation of germline metabolic processes during oogenesis.
Collapse
Affiliation(s)
- Natalia V Dorogova
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Yuliya A Galimova
- Department of the Regulation of Genetic Processes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Elena Us Bolobolova
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Elina M Baricheva
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Svetlana A Fedorova
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| |
Collapse
|
21
|
Molecular basis of reproductive senescence: insights from model organisms. J Assist Reprod Genet 2020; 38:17-32. [PMID: 33006069 DOI: 10.1007/s10815-020-01959-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Reproductive decline due to parental age has become a major barrier to fertility as couples have delayed having offspring into their thirties and forties. Advanced parental age is also associated with increased incidence of neurological and cardiovascular disease in offspring. Thus, elucidating the etiology of reproductive decline is of clinical importance. METHODS Deciphering the underlying processes that drive reproductive decline is particularly challenging in women in whom a discrete oocyte pool is established during embryogenesis and may remain dormant for tens of years. Instead, our understanding of the processes that drive reproductive senescence has emerged from studies in model organisms, both vertebrate and invertebrate, that are the focus of this literature review. CONCLUSIONS Studies of reproductive aging in model organisms not only have revealed the detrimental cellular changes that occur with age but also are helping identify major regulator proteins controlling them. Here, we discuss what we have learned from model organisms with respect to the molecular mechanisms that maintain both genome integrity and oocyte quality.
Collapse
|
22
|
Kumar T, Blondel L, Extavour CG. Topology-driven protein-protein interaction network analysis detects genetic sub-networks regulating reproductive capacity. eLife 2020; 9:54082. [PMID: 32901612 PMCID: PMC7550192 DOI: 10.7554/elife.54082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding the genetic regulation of organ structure is a fundamental problem in developmental biology. Here, we use egg-producing structures of insect ovaries, called ovarioles, to deduce systems-level gene regulatory relationships from quantitative functional genetic analysis. We previously showed that Hippo signalling, a conserved regulator of animal organ size, regulates ovariole number in Drosophila melanogaster. To comprehensively determine how Hippo signalling interacts with other pathways in this regulation, we screened all known signalling pathway genes, and identified Hpo-dependent and Hpo-independent signalling requirements. Network analysis of known protein-protein interactions among screen results identified independent gene regulatory sub-networks regulating one or both of ovariole number and egg laying. These sub-networks predict involvement of previously uncharacterised genes with higher accuracy than the original candidate screen. This shows that network analysis combining functional genetic and large-scale interaction data can predict function of novel genes regulating development.
Collapse
Affiliation(s)
- Tarun Kumar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Leo Blondel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
23
|
Han B, Zhang T, Feng Y, Liu X, Zhang L, Chen H, Zeng F, Wang M, Liu C, Li Y, Cui J, Li Z, Mao J. Two insulin receptors coordinate oogenesis and oviposition via two pathways in the green lacewing, Chrysopa pallens. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104049. [PMID: 32199917 DOI: 10.1016/j.jinsphys.2020.104049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Insulin signalling in insects, as in mammals, regulates various physiological functions, such as reproduction. However, the molecular mechanism by which insulin signals orchestrate ovarian stem cell proliferation, vitellogenesis, and oviposition remains elusive. Here, we investigate the functions of the phosphoinositide 3-kinase (PI3K)-serine/threonine kinase (Akt) pathway, GTPase Ras/mitogen-activated protein kinase (MAPK) pathway, and their downstream messengers in a natural predator, Chrysopa pallens, by the RNAi method. When C. pallens vitellogenin gene 1 (CpVg1) expression was knocked down, the follicle maturation was arrested and total fecundity was reduced. Silencing C. pallens insulin receptor 1 (CpInR1) suppressed Vg transcription and reduced egg mass and hatching rate. Depletion of C. pallens insulin receptor 2 (CpInR2) transcripts lowered Vg transcript level, hampered ovarian development and decreased reproductive output. Knockdown of C. pallens Akt (CpAkt) and C. pallens extracellular-signal-regulated kinase (Cperk) caused phenotypes similar to those caused by knockdown of CpInR2. Disruption of C. pallens transcription factor forkhead box O (CpFoxO) expression caused no significant effects on ovarian development, but sharply impaired total fecundity. Interference with the expression of C. pallens target of rapamycin (CpTor) gene and C. pallens cAMP-response element binding protein (CpCreb) gene led to a down-regulation of Vg transcription, blocking of ovariole growth, and decrease in egg quality. These results suggested the two CpInRs orchestrate oogenesis and oviposition via two signalling pathways to guarantee natural reproduction in the green lacewing, C. pallens.
Collapse
Affiliation(s)
- Benfeng Han
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tingting Zhang
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yanjiao Feng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaopin Liu
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lisheng Zhang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyin Chen
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fanrong Zeng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengqing Wang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenxi Liu
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuyan Li
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Jianjun Mao
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
24
|
Rust K, Nystul T. Signal transduction in the early Drosophila follicle stem cell lineage. CURRENT OPINION IN INSECT SCIENCE 2020; 37:39-48. [PMID: 32087562 PMCID: PMC7155752 DOI: 10.1016/j.cois.2019.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 05/08/2023]
Abstract
The follicle stem cell (FSC) lineage in the Drosophila ovary is a highly informative model of in vivo epithelial stem cell biology. Studies over the past 30 years have identified roles for every major signaling pathway in the early FSC lineage. These pathways regulate a wide variety of cell behaviors, including self-renewal, proliferation, survival and differentiation. Studies of cell signaling in the follicle epithelium have provided new insights into how these cell behaviors are coordinated within an epithelial stem cell lineage and how signaling pathways interact with each other in the native, in vivo context of a living tissue. Here, we review these studies, with a particular focus on how these pathways specify differences between the FSCs and their daughter cells. We also describe common themes that have emerged from these studies, and highlight new research directions that have been made possible by the detailed understanding of the follicle epithelium.
Collapse
|
25
|
Lin KY, Hsu HJ. Regulation of adult female germline stem cells by nutrient-responsive signaling. CURRENT OPINION IN INSECT SCIENCE 2020; 37:16-22. [PMID: 32070932 DOI: 10.1016/j.cois.2019.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Insect oogenesis is greatly affected by nutrient availability. When nutrients are abundant, oocytes are rapidly generated, but the process is slowed to conserve energy under nutrient-deficient conditions. To properly allocate limited resources toward oogenesis, systemic factors coordinate the behavioral response of ovarian germline stem cells (GSCs) to nutritional inputs by acting on the GSC itself, GSC supporting cells (the niche), or the adipose tissue surrounding the ovary. In this review, we describe current knowledge of the Drosophila ovarian GSC-niche-adipocyte system and major nutrient sensing pathways (insulin/IGF signaling, TOR signaling, and GCN2-dependent amino acid sensing) that intrinsically or extrinsically regulate GSC responses to nutrient signals.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
26
|
Insulin-dependent Non-canonical Activation of Notch in Drosophila: A Story of Notch-Induced Muscle Stem Cell Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:131-144. [PMID: 32072503 DOI: 10.1007/978-3-030-36422-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch plays multiple roles both in development and in adult tissue homeostasis. Notch was first identified in Drosophila in which it has then been extensively studied. Among the flag-ship Notch functions we could mention its capacity to keep precursor and stem cells in a nondifferentiated state but also its ability to activate cell proliferation that in some contexts could led to cancer. In general, both these functions involve, canonical, ligand-dependent Notch activation. However, a ligand-independent Notch activation has also been described in a few cellular contexts. Here, we focus on one of such contexts, Drosophila muscle stem cells, called AMPs, and discuss how insulin-dependent noncanonical activation of Notch pushes quiescent AMPs to proliferation.
Collapse
|
27
|
Wei Y, Bettedi L, Ting CY, Kim K, Zhang Y, Cai J, Lilly MA. The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila. eLife 2019; 8:e42149. [PMID: 31650955 PMCID: PMC6834368 DOI: 10.7554/elife.42149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/13/2019] [Indexed: 01/18/2023] Open
Abstract
The TORC1 regulator GATOR1/SEACIT controls meiotic entry and early meiotic events in yeast. However, how metabolic pathways influence meiotic progression in metazoans remains poorly understood. Here we examine the role of the TORC1 regulators GATOR1 and GATOR2 in the response to meiotic double-stranded breaks (DSB) during Drosophila oogenesis. We find that in mutants of the GATOR2 component mio, meiotic DSBs trigger the constitutive downregulation of TORC1 activity and a permanent arrest in oocyte growth. Conversely, in GATOR1 mutants, high TORC1 activity results in the delayed repair of meiotic DSBs and the hyperactivation of p53. Unexpectedly, we found that GATOR1 inhibits retrotransposon expression in the presence of meiotic DSBs in a pathway that functions in parallel to p53. Thus, our studies have revealed a link between oocyte metabolism, the repair of meiotic DSBs and retrotransposon expression.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Lucia Bettedi
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chun-Yuan Ting
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kuikwon Kim
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yingbiao Zhang
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jiadong Cai
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mary A Lilly
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
28
|
Basar MA, Williamson K, Roy SD, Finger DS, Ables ET, Duttaroy A. Spargel/dPGC-1 is essential for oogenesis and nutrient-mediated ovarian growth in Drosophila. Dev Biol 2019; 454:97-107. [PMID: 31251895 DOI: 10.1016/j.ydbio.2019.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
Dietary proteins are crucial for oogenesis. The Target of Rapamycin (TOR) is a major nutrient sensor controlling organismal growth and fertility, but the downstream effectors of TOR signaling remain largely uncharacterized. We previously identified Drosophila Spargel/dPGC-1 as a terminal effector of the TOR-TSC pathway, and now report that Spargel connects nutrition to oogenesis. We found that Spargel is expressed predominantly in the ovaries of adult flies, and germline spargel knockdown inhibits cyst growth, ultimately leading to egg chamber degeneration and female sterility. In situ staining demonstrated nuclear localization of Spargel in the nurse cells and follicle cells of the ovariole. Furthermore, Spargel/dPGC-1 expression is influenced by dietary yeast concentration and TOR signaling, suggesting Spargel/dPGC-1 might transmit nutrient-mediated signals into ovarian growth. We propose that potentiating Spargel/dPGC-1 expression in the ovary is instrumental in nutrient-mediated regulation of oogenesis.
Collapse
Affiliation(s)
- Mohammed Abul Basar
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA
| | - Kishana Williamson
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA
| | - Swagota D Roy
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA
| | - Danielle S Finger
- Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, Greenville, NC, 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, Greenville, NC, 27858, USA
| | - Atanu Duttaroy
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA.
| |
Collapse
|
29
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
30
|
Zhang Y, Xu C. G allele of rs7853346 polymorphism in PTENP1 enhances the proliferation of multiple myeloma cancer stem cells by promoting the expression of PTENP1 and its downstream signaling molecules. J Cell Biochem 2019; 120:19738-19748. [PMID: 31338886 DOI: 10.1002/jcb.29280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yehua Zhang
- Department of Hematology, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Changqing Xu
- Emergency Department, Xingtai Third Hospital, Xingtai, Hebei, China
| |
Collapse
|
31
|
Teixeira FK, Lehmann R. Translational Control during Developmental Transitions. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032987. [PMID: 30082467 DOI: 10.1101/cshperspect.a032987] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The many steps of gene expression, from the transcription of a gene to the production of its protein product, are well understood. Yet, transcriptional regulation has been the focal point for the study of gene expression during development. However, quantitative studies reveal that messenger RNA (mRNA) levels are not necessarily good predictors of the respective proteins' levels in a cell. This discrepancy is, at least in part, the result of developmentally regulated, translational mechanisms that control the spatiotemporal regulation of gene expression. In this review, we focus on translational regulatory mechanisms mediating global transitions in gene expression: the shift from the maternal to the embryonic developmental program in the early embryo and the switch from the self-renewal of stem cells to differentiation in the adult.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
32
|
Sênos Demarco R, Uyemura BS, D'Alterio C, Jones DL. Mitochondrial fusion regulates lipid homeostasis and stem cell maintenance in the Drosophila testis. Nat Cell Biol 2019; 21:710-720. [PMID: 31160709 DOI: 10.1038/s41556-019-0332-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
The capacity of stem cells to self-renew or differentiate has been attributed to distinct metabolic states. A genetic screen targeting regulators of mitochondrial dynamics revealed that mitochondrial fusion is required for the maintenance of male germline stem cells (GSCs) in Drosophila melanogaster. Depletion of Mitofusin (dMfn) or Opa1 led to dysfunctional mitochondria, activation of Target of rapamycin (TOR) and a marked accumulation of lipid droplets. Enhancement of lipid utilization by the mitochondria attenuated TOR activation and rescued the loss of GSCs that was caused by inhibition of mitochondrial fusion. Moreover, constitutive activation of the TOR-pathway target and lipogenesis factor Sterol regulatory element binding protein (SREBP) also resulted in GSC loss, whereas inhibition of SREBP rescued GSC loss triggered by depletion of dMfn. Our findings highlight a critical role for mitochondrial fusion and lipid homeostasis in GSC maintenance, providing insight into the potential impact of mitochondrial and metabolic diseases on the function of stem and/or germ cells.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradley S Uyemura
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cecilia D'Alterio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - D Leanne Jones
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Valzania L, Mattee MT, Strand MR, Brown MR. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways. Dev Biol 2019; 454:85-95. [PMID: 31153832 DOI: 10.1016/j.ydbio.2019.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Most mosquitoes, including Aedes aegypti, only produce eggs after blood feeding on a vertebrate host. Oogenesis in A. aegypti consists of a pre-vitellogenic stage before blood feeding and a vitellogenic stage after blood feeding. Primary egg chambers remain developmentally arrested during the pre-vitellogenic stage but complete oogenesis to form mature eggs during the vitellogenic stage. In contrast, the signaling factors that maintain primary egg chambers in pre-vitellogenic arrest or that activate vitellogenic growth are largely unclear. Prior studies showed that A. aegypti females release insulin-like peptide 3 (ILP3) and ovary ecdysteroidogenic hormone (OEH) from brain neurosecretory cells after blood feeding. Here, we report that primary egg chambers exit pre-vitellogenic arrest by 8 h post-blood meal as evidenced by proliferation of follicle cells, endoreplication of nurse cells, and formation of cytoophidia. Ex vivo assays showed that ILP3 and OEH stimulate primary egg chambers to exit pre-vitellogenic arrest in the presence of nutrients but not in their absence. Characterization of associated pathways indicated that activation of insulin/insulin growth factor signaling (IIS) by ILP3 or OEH inactivated glycogen synthase kinase 3 (GSK3) via phosphorylation by phosphorylated Akt. GSK3 inactivation correlated with accumulation of the basic helix-loop-helix transcription factor Max and primary egg chambers exiting pre-vitellogenic arrest. Direct inhibition of GSK3 by CHIR-99021 also stimulated Myc/Max accumulation and primary egg chambers exiting pre-vitellogenic arrest. Collectively, our results identify GSK3 as a key factor in regulating the pre- and vitellogenic stages of oogenesis in A. aegypti.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Melissa T Mattee
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
34
|
Benitez M, Tatapudy S, Liu Y, Barber DL, Nystul TG. Drosophila anion exchanger 2 is required for proper ovary development and oogenesis. Dev Biol 2019; 452:127-133. [PMID: 31071312 DOI: 10.1016/j.ydbio.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/22/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Understanding how cell fate decisions are regulated is a central question in stem cell biology. Recent studies have demonstrated that intracellular pH (pHi) dynamics contribute to this process. Indeed, the pHi of cells within a tissue is not simply a consequence of chemical reactions in the cytoplasm and other cellular activity, but is actively maintained at a specific setpoint in each cell type. We found previously that the pHi of cells in the follicle stem cell (FSC) lineage in the Drosophila ovary increases progressively during differentiation from an average of 6.8 in the FSCs, to 7.0 in newly produced daughter cells, to 7.3 in more differentiated cells. Two major regulators of pHi in this lineage are Drosophila sodium-proton exchanger 2 (dNhe2) and a previously uncharacterized gene, CG8177, that is homologous to mammalian anion exchanger 2 (AE2). Based on this homology, we named the gene anion exchanger 2 (ae2). Here, we generated null alleles of ae2 and found that homozygous mutant flies are viable but have severe defects in ovary development and adult oogenesis. Specifically, we find that ae2 null flies have smaller ovaries, reduced fertility, and impaired follicle formation. In addition, we find that the follicle formation defect can be suppressed by a decrease in dNhe2 copy number and enhanced by the overexpression of dNhe2, suggesting that this phenotype is due to the dysregulation of pHi. These findings support the emerging idea that pHi dynamics regulate cell fate decisions and our studies provide new genetic tools to investigate the mechanisms by which this occurs.
Collapse
Affiliation(s)
- Marimar Benitez
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, USA
| | - Sumitra Tatapudy
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, USA
| | - Yi Liu
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, USA
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Todd G Nystul
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, USA.
| |
Collapse
|
35
|
Jeong EB, Jeong SS, Cho E, Kim EY. Makorin 1 is required for Drosophila oogenesis by regulating insulin/Tor signaling. PLoS One 2019; 14:e0215688. [PMID: 31009498 PMCID: PMC6476528 DOI: 10.1371/journal.pone.0215688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
Reproduction is a process that is extremely sensitive to changes in nutritional status. The nutritional control of oogenesis via insulin signaling has been reported; however, the mechanism underlying its sensitivity and tissue specificity has not been elucidated. Here, we determined that Drosophila Makorin RING finger protein 1 gene (Mkrn1) functions in the metabolic regulation of oogenesis. Mkrn1 was endogenously expressed at high levels in ovaries and Mkrn1 knockout resulted in female sterility. Mkrn1-null egg chambers were previtellogenic without egg production. FLP-FRT mosaic analysis revealed that Mkrn1 is essential in germline cells, but not follicle cells, for ovarian function. As well, AKT phosphorylation via insulin signaling was greatly reduced in the germline cells, but not the follicle cells, of the mutant clones in the ovaries. Furthermore, protein-rich diet elevated Mkrn1 protein levels, without increased mRNA levels. The p-AKT and p-S6K levels, downstream targets of insulin/Tor signaling, were significantly increased by a nutrient-rich diet in wild-type ovaries whereas those were low in Mkrn1exS compared to wild-type ovaries. Taken together, our results suggest that nutrient availability upregulates the Mkrn1 protein, which acts as a positive regulator of insulin signaling to confer sensitivity and tissue specificity in the ovaries for proper oogenesis based on nutritional status.
Collapse
Affiliation(s)
- Eui Beom Jeong
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
| | - Seong Su Jeong
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
| | - Eunjoo Cho
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- * E-mail: (EYK); (EC)
| | - Eun Young Kim
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- * E-mail: (EYK); (EC)
| |
Collapse
|
36
|
Mirth CK, Nogueira Alves A, Piper MD. Turning food into eggs: insights from nutritional biology and developmental physiology of Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 31:49-57. [PMID: 31109673 DOI: 10.1016/j.cois.2018.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
Nutrition plays a central role in fecundity, regulating the onset of reproductive maturity, egg production, and the survival and health of offspring from insects to humans. Although decades of research have worked to uncover how nutrition mediates these effects, it has proven difficult to disentangle the relative role of nutrients as the raw material for egg and offspring development versus their role in stimulating endocrine cascades necessary to drive development. This has been further complicated by the fact that both nutrients and the signalling cascades they regulate interact in complex ways to control fecundity. Separating the two effects becomes important when trying to understand how fecundity is regulated, and in devising strategies to offset the negative effects of nutrition on reproductive health. In this review, we use the extensive literature on egg development in the fruit fly Drosophila melanogaster to explore how the nutrients from food provide the building blocks and stimulate signalling cascades necessary for making an egg.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia.
| | - André Nogueira Alves
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew Dw Piper
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
37
|
Zhao S, Fortier TM, Baehrecke EH. Autophagy Promotes Tumor-like Stem Cell Niche Occupancy. Curr Biol 2018; 28:3056-3064.e3. [PMID: 30270184 DOI: 10.1016/j.cub.2018.07.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
Abstract
Adult stem cells usually reside in specialized niche microenvironments. Accumulating evidence indicates that competitive niche occupancy favors stem cells with oncogenic mutations, also known as tumor-like stem cells. However, the mechanisms that regulate tumor-like stem cell niche occupancy are largely unknown. Here, we use Drosophila ovarian germline stem cells as a model and use bam mutant cells as tumor-like stem cells. Interestingly, we find that autophagy is low in wild-type stem cells but elevated in bam mutant stem cells. Significantly, autophagy is required for niche occupancy by bam mutant stem cells. Although loss of either atg6 or Fip200 alone in stem cells does not impact their competitiveness, loss of these conserved regulators of autophagy decreases bam mutant stem cell niche occupancy. In addition, starvation enhances the competition of bam mutant stem cells for niche occupancy in an autophagy-dependent manner. Of note, loss of autophagy slows the cell cycle of bam mutant stem cells and does not influence stem cell death. In contrast to canonical epithelial cell competition, loss of regulators of tissue growth, either the insulin receptor or cyclin-dependent kinase 2 function, influences the competition of bam mutant stem cells for niche occupancy. Additionally, autophagy promotes the tumor-like growth of bam mutant ovaries. Autophagy is known to be induced in a wide variety of tumors. Therefore, these results suggest that specifically targeting autophagy in tumor-like stem cells has potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Shaowei Zhao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
38
|
Singh T, Lee EH, Hartman TR, Ruiz-Whalen DM, O'Reilly AM. Opposing Action of Hedgehog and Insulin Signaling Balances Proliferation and Autophagy to Determine Follicle Stem Cell Lifespan. Dev Cell 2018; 46:720-734.e6. [PMID: 30197240 PMCID: PMC6159899 DOI: 10.1016/j.devcel.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Egg production declines with age in many species, a process linked with stem cell loss. Diet-dependent signaling has emerged as critical for stem cell maintenance during aging. Follicle stem cells (FSCs) in the Drosophila ovary are exquisitely responsive to diet-induced signals including Hedgehog (Hh) and insulin-IGF signaling (IIS), entering quiescence in the absence of nutrients and initiating proliferation rapidly upon feeding. Although highly proliferative FSCs generally exhibit an extended lifespan, we find that constitutive Hh signaling drives FSC loss and premature sterility despite high proliferative rates. This occurs due to Hh-mediated induction of autophagy in FSCs via a Ptc-dependent, Smo-independent mechanism. Hh-dependent autophagy increases during aging, triggering FSC loss and consequent reproductive arrest. IIS is necessary and sufficient to suppress Hh-induced autophagy, promoting a stable proliferative state. These results suggest that opposing action of diet-responsive IIS and Hh signals determine reproductive lifespan by modulating the proliferation-autophagy balance in FSCs during aging.
Collapse
Affiliation(s)
- Tanu Singh
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19111, USA
| | - Eric H Lee
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tiffiney R Hartman
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Dara M Ruiz-Whalen
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Alana M O'Reilly
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
39
|
Haller S, Kapuria S, Riley RR, O'Leary MN, Schreiber KH, Andersen JK, Melov S, Que J, Rando TA, Rock J, Kennedy BK, Rodgers JT, Jasper H. mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance. Cell Stem Cell 2018; 21:806-818.e5. [PMID: 29220665 DOI: 10.1016/j.stem.2017.11.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
The balance between self-renewal and differentiation ensures long-term maintenance of stem cell (SC) pools in regenerating epithelial tissues. This balance is challenged during periods of high regenerative pressure and is often compromised in aged animals. Here, we show that target of rapamycin (TOR) signaling is a key regulator of SC loss during repeated regenerative episodes. In response to regenerative stimuli, SCs in the intestinal epithelium of the fly and in the tracheal epithelium of mice exhibit transient activation of TOR signaling. Although this activation is required for SCs to rapidly proliferate in response to damage, repeated rounds of damage lead to SC loss. Consistently, age-related SC loss in the mouse trachea and in muscle can be prevented by pharmacologic or genetic inhibition, respectively, of mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight an evolutionarily conserved role of TOR signaling in SC function and identify repeated rounds of mTORC1 activation as a driver of age-related SC decline.
Collapse
Affiliation(s)
- Samantha Haller
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Subir Kapuria
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Rebeccah R Riley
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Monique N O'Leary
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Mount Holyoke College, South Hadley, MA 01075, USA
| | - Katherine H Schreiber
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; University of Michigan, Ann Arbor, MI 48109, USA
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Simon Melov
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Thomas A Rando
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jason Rock
- Department of Anatomy, UCSF School of Medicine, San Francisco, CA 94117, USA
| | - Brian K Kennedy
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Joseph T Rodgers
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94304, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, USC, Los Angeles, CA 90033, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Leibniz Institute on Aging, Fritz Lipmann Institute, Jena 07745, Germany.
| |
Collapse
|
40
|
Weaver LN, Drummond-Barbosa D. Maintenance of Proper Germline Stem Cell Number Requires Adipocyte Collagen in Adult Drosophila Females. Genetics 2018; 209:1155-1166. [PMID: 29884747 PMCID: PMC6063239 DOI: 10.1534/genetics.118.301137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in specialized niches and are regulated by a variety of physiological inputs. Adipocytes influence whole-body physiology and stem cell lineages; however, the molecular mechanisms linking adipocytes to stem cells are poorly understood. Here, we report that collagen IV produced in adipocytes is transported to the ovary to maintain proper germline stem cell (GSC) number in adult Drosophila females. Adipocyte-derived collagen IV acts through β-integrin signaling to maintain normal levels of E-cadherin at the niche, thereby ensuring proper adhesion to GSCs. These findings demonstrate that extracellular matrix components produced in adipocytes can be transported to and incorporated into an established adult tissue to influence stem cell number.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
41
|
Ng AYE, Peralta KRG, Pek JW. Germline Stem Cell Heterogeneity Supports Homeostasis in Drosophila. Stem Cell Reports 2018; 11:13-21. [PMID: 29887366 PMCID: PMC6066994 DOI: 10.1016/j.stemcr.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
Adult and embryonic stem cells exhibit fluctuating gene expression; however, the biological significance of stem cell heterogeneity is not well understood. We show that, in Drosophila, female germline stem cells (GSCs) exhibit heterogeneous expression of a GSC differentiation-promoting factor Regena (Rga). The Drosophila homolog of human SON, dsn, is required to maintain GSC heterogeneity by suppressing sustained high levels of Rga. Reducing the expression of Rga in dsn mutants restores GSC heterogeneity and self-renewal. Thus, GSC heterogeneity is linked to GSC homeostasis. Female germline stem cells have heterogeneous Rga expression dsn suppresses rga transcription and maintains heterogeneity dsn maintains germline stem cells Lowering rga restores heterogeneity and suppresses dsn phenotypes
Collapse
Affiliation(s)
- Amanda Yunn Ee Ng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | | | - Jun Wei Pek
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore.
| |
Collapse
|
42
|
Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Dev Biol 2018; 440:31-39. [PMID: 29729259 DOI: 10.1016/j.ydbio.2018.04.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Tissue-specific stem cells are tied to the nutritional and physiological environment of adult organisms. Adipocytes have key endocrine and nutrient-sensing roles and have emerged as major players in relaying dietary information to regulate other organs. For example, previous studies in Drosophila melanogaster revealed that amino acid sensing as well as diet-dependent metabolic pathways function in adipocytes to influence the maintenance of female germline stem cells (GSCs). How nutrient-sensing pathways acting within adipocytes influence adult stem cell lineages, however, is just beginning to be elucidated. Here, we report that insulin/insulin-like growth factor signaling in adipocytes promotes GSC maintenance, early germline cyst survival, and vitellogenesis. Further, adipocytes use distinct mechanisms downstream of insulin receptor activation to control these aspects of oogenesis, all of which are independent of FOXO. We find that GSC maintenance is modulated by Akt1 through GSK-3β, early germline cyst survival is downstream of adipocyte Akt1 but independent of GSK-3β, and vitellogenesis is regulated through an Akt1-independent pathway in adipocytes. These results indicate that, in addition to employing different types of nutrient sensing, adipocytes can use distinct axes of a single nutrient-sensing pathway to regulate multiple stages of the GSC lineage in the ovary.
Collapse
|
43
|
Kang D, Wang D, Xu J, Quan C, Guo X, Wang H, Luo J, Yang Z, Chen S, Chen J. The InR/Akt/TORC1 Growth-Promoting Signaling Negatively Regulates JAK/STAT Activity and Migratory Cell Fate during Morphogenesis. Dev Cell 2018; 44:524-531.e5. [DOI: 10.1016/j.devcel.2018.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/06/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
44
|
Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol 2018; 217:93-106. [PMID: 29074705 PMCID: PMC5748989 DOI: 10.1083/jcb.201707168] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022] Open
Abstract
Nutrients are necessary for life, as they are a crucial requirement for biological processes including reproduction, somatic growth, and tissue maintenance. Therefore, signaling systems involved in detecting and interpreting nutrient or energy levels-most notably, the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway, mechanistic target of rapamycin (mTOR), and adenosine monophosphate-activated protein kinase (AMPK)-play important roles in regulating physiological decisions to reproduce, grow, and age. In this review, we discuss the connections between reproductive senescence and somatic aging and give an overview of the involvement of nutrient-sensing pathways in controlling both reproductive function and lifespan. Although the molecular mechanisms that affect these processes can be influenced by distinct tissue-, temporal-, and pathway-specific signaling events, the progression of reproductive aging and somatic aging is systemically coordinated by integrated nutrient-sensing signaling pathways regulating somatic tissue maintenance in conjunction with reproductive capacity.
Collapse
Affiliation(s)
- Nicole M Templeman
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| |
Collapse
|
45
|
Differential regulation of spermatogenic process by Lkb1 isoforms in mouse testis. Cell Death Dis 2017; 8:e3121. [PMID: 29022902 PMCID: PMC5682689 DOI: 10.1038/cddis.2017.527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/28/2017] [Accepted: 09/04/2017] [Indexed: 01/27/2023]
Abstract
Liver serine/threonine kinase B1 (LKB1) is a tumor suppressor associated with the pathogenesis of Peutz-Jeghers syndrome. Affected males are at increased risk of developing Sertoli cell tumors and display defective spermatogenesis. Male mice lacking the short isoform (Lkb1S) of Lkb1 were sterile and exhibited abnormal spermiogenesis. In addition to the short isoform, the long isoform of Lkb1 (Lkb1L) is also expressed in testis; however, the requirement of the long isoform for fertility and the functional difference between the isoforms remain unknown. Herein, different from the spermiation failure reported in Lkb1S knockout mice, conditional deletion (cKO) of both isoforms of Lkb1 in germ cells resulted in male sterility stemming from defects in acrosome formation, as well as nuclear elongation and condensation during spermatid differentiation. Additionally, cKO mice showed a progressive germ cell loss that was never reported in mice with Lkb1S deletion. Further experiments revealed that the defect resulted from the failure of spermatogonial stem/progenitor cells (SPCs) maintenance. Although increased mTORC1 activity in postnatal cKO testes was consistent with a tendency toward germline stem cell differentiation, in vivo inhibition of the pathway by rapamycin treatment failed to rescue the phenotype. Concurrently, we detected a significant reduction of mitochondrial activity in Lkb1deficient SPCs. The results suggest that the regulation of LKB1 on SPCs' maintenance is associated with mitochondrial functions but not through the mTOR signaling pathway. In summary, our study supports different roles of Lkb1 isoforms in spermatogenesis with Lkb1L directing SPCs maintenance, and Lkb1L and Lkb1S coordinately regulating spermatid differentiation.
Collapse
|
46
|
Artoni F, Kreipke RE, Palmeira O, Dixon C, Goldberg Z, Ruohola-Baker H. Loss of foxo rescues stem cell aging in Drosophila germ line. eLife 2017; 6:27842. [PMID: 28925355 PMCID: PMC5644957 DOI: 10.7554/elife.27842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
Aging stem cells lose the capacity to properly respond to injury and regenerate their residing tissues. Here, we utilized the ability of Drosophila melanogaster germline stem cells (GSCs) to survive exposure to low doses of ionizing radiation (IR) as a model of adult stem cell injury and identified a regeneration defect in aging GSCs: while aging GSCs survive exposure to IR, they fail to reenter the cell cycle and regenerate the germline in a timely manner. Mechanistically, we identify foxo and mTOR homologue, Tor as important regulators of GSC quiescence following exposure to ionizing radiation. foxo is required for entry in quiescence, while Tor is essential for cell cycle reentry. Importantly, we further show that the lack of regeneration in aging germ line stem cells after IR can be rescued by loss of foxo. Stem cells are unspecialized cells that have the unique ability to replace dead cells and repair damaged tissues. To give rise to new cells, stem cells need to divide. This process, known as the cell cycle, includes several stages and is regulated by many different genes. For example, in many organisms, a gene called foxo helps cells respond to stress and to regulate the cell cycle and cell death. Defects in this gene have been linked to age-related diseases, such as cancer and Alzheimer’s disease. Previous research has shown that foxo can also regulate Tor – a gene that helps cells to divide and grow. As we age, stem cells become less efficient at regenerating tissues, especially after exposure to toxins and radiation. However, until now, it was not known how stem cells control their division after injury and during aging, and what role these two genes play in injured and aging stem cells. Now, Artoni, Kreipke et al. used germline stem cells from fly ovaries to investigate how young and old stem cells respond to injury. In young flies, foxo paused the cell cycle of the damaged stem cells. After 24 hours, Tor was able to overcome the action of foxo, and the stem cells resumed dividing and regenerating the damaged tissue. However, in old stem cells, foxo and Tor were misregulated and the stem cells could not restart dividing or repairing tissue after injury. When the levels of foxo in old stem cells were experimentally reduced, their ability to regenerate the tissue was restored. These discoveries provide new insights into how stem cells respond to injury and suggest that stem cell aging may be a reversible process. A next step will be to investigate why foxo and Tor are misregulated during aging and how these two genes interact with each another. In future, this could help develop new anti-aging therapies that can restore the body’s natural ability to repair itself following injury. Moreover, since cancer cells can become resistant to conventional cancer treatment by withdrawing from the cell cycle, developing new treatments that target foxo and Tor could help beat cancer and prevent its reoccurrence.
Collapse
Affiliation(s)
- Filippo Artoni
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| | - Rebecca E Kreipke
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| | - Ondina Palmeira
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States.,Nucleus of Multidisciplinary Research, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
| | - Connor Dixon
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| | - Zachary Goldberg
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| |
Collapse
|
47
|
Mensah LB, Goberdhan DCI, Wilson C. mTORC1 signalling mediates PI3K-dependent large lipid droplet accumulation in Drosophila ovarian nurse cells. Biol Open 2017; 6:563-570. [PMID: 28302666 PMCID: PMC5450313 DOI: 10.1242/bio.022210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Insulin and insulin-like growth factor signalling (IIS), which is primarily mediated by the PI3-kinase (PI3K)/PTEN/Akt kinase signalling cassette, is a highly evolutionarily conserved pathway involved in co-ordinating growth, development, ageing and nutrient homeostasis with dietary intake. It controls transcriptional regulators, in addition to promoting signalling by mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), which stimulates biosynthesis of proteins and other macromolecules, and drives organismal growth. Previous studies in nutrient-storing germline nurse cells of the Drosophila ovary showed that a cytoplasmic pool of activated phosphorylated Akt (pAkt) controlled by Pten, an antagonist of IIS, cell-autonomously regulates accumulation of large lipid droplets in these cells at late stages of oogenesis. Here, we show that the large lipid droplet phenotype induced by Pten mutation is strongly suppressed when mTor function is removed. Furthermore, nurse cells lacking either Tsc1 or Tsc2, which negatively regulate mTORC1 activity, also accumulate large lipid droplets via a mechanism involving Rheb, the downstream G-protein target of TSC2, which positively regulates mTORC1. We conclude that elevated IIS/mTORC1 signalling is both necessary and sufficient to induce large lipid droplet formation in late-stage nurse cells, suggesting roles for this pathway in aspects of lipid droplet biogenesis, in addition to control of lipid metabolism.
Collapse
Affiliation(s)
- Lawrence B Mensah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
48
|
Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, Elias AP, Itskov PM, Piper MDW, Ribeiro C. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 2017; 15:e2000862. [PMID: 28441450 PMCID: PMC5404834 DOI: 10.1371/journal.pbio.2000862] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.
Collapse
Affiliation(s)
- Ricardo Leitão-Gonçalves
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Patrícia Francisco
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Gabriela Tondolo Fioreze
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Margarida Anjos
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Célia Baltazar
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Paula Elias
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pavel M. Itskov
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Matthew D. W. Piper
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
49
|
Hsu HJ, Drummond-Barbosa D. A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines. Gene Expr Patterns 2017; 23-24:13-21. [PMID: 28093350 DOI: 10.1016/j.gep.2017.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/06/2017] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
Abstract
The effect of diet on reproduction is well documented in a large number of organisms; however, much remains to be learned about the molecular mechanisms underlying this connection. The Drosophila ovary has a well described, fast and largely reversible response to diet. Ovarian stem cells and their progeny proliferate and grow faster on a yeast-rich diet than on a yeast-free (poor) diet, and death of early germline cysts, degeneration of early vitellogenic follicles and partial block in ovulation further contribute to the ∼60-fold decrease in egg laying observed on a poor diet. Multiple diet-dependent factors, including insulin-like peptides, the steroid ecdysone, the nutrient sensor Target of Rapamycin, AMP-dependent kinase, and adipocyte factors mediate this complex response. Here, we describe the results of a visual screen using a collection of green fluorescent protein (GFP) protein trap lines to identify additional factors potentially involved in this response. In each GFP protein trap line, an artificial GFP exon is fused in frame to an endogenous protein, such that the GFP fusion pattern parallels the levels and subcellular localization of the corresponding native protein. We identified 53 GFP-tagged proteins that exhibit changes in levels and/or subcellular localization in the ovary at 12-16 hours after switching females from rich to poor diets, suggesting them as potential candidates for future functional studies.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
50
|
Laws KM, Drummond-Barbosa D. Control of Germline Stem Cell Lineages by Diet and Physiology. Results Probl Cell Differ 2017; 59:67-99. [PMID: 28247046 DOI: 10.1007/978-3-319-44820-6_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tight coupling of reproduction to environmental factors and physiological status is key to long-term species survival. In particular, highly conserved pathways modulate germline stem cell lineages according to nutrient availability. This chapter focuses on recent in vivo studies in genetic model organisms that shed light on how diet-dependent signals control the proliferation, maintenance, and survival of adult germline stem cells and their progeny. These signaling pathways can operate intrinsically in the germ line, modulate the niche, or act through intermediate organs to influence stem cells and their differentiating progeny. In addition to illustrating the extent of dietary regulation of reproduction, findings from these studies have implications for fertility during aging or disease states.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|