1
|
Gao F, Segbo S, Huang X, Zhou P, Ma C, Ma Y, Lin X, Bai Y, Tan W, Coulibaly D, Ouma KO, Iqbal S, Ni Z, Shi T, Gao Z. PmRGL2/PmFRL3-PmSVP Module Regulates Flowering Time in Japanese apricot (Prunus mume Sieb. et Zucc.). PLANT, CELL & ENVIRONMENT 2025; 48:3415-3430. [PMID: 39757689 DOI: 10.1111/pce.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Temperate fruit trees rely on environmental and endogenous signals to trigger dormancy release and flowering. However, the knowledge of DELLA protein PmRGL2, a Prunus mume homolog of REPRESSOR OF GA-Like 2 (RGL2), which serves as an important inhibitory factor in gibberellin (gibberellin acid [GA]) signalling, is limited related to on its regulatory effects on dormancy release and flowering. In our study, the protein-protein interaction assays showed an interaction between PmRGL2 and PmFRL3, a Prunus mume homolog of FRIGIDA-LIKE (FRL). The FRL protein regulates flowering induction by binding to chaperone proteins. To understand the transcriptional regulation of PmRGL2 in Prunus mume, in detail's we constructed a ChIP-Seq library at four key stages of flower bud development. Genome-wide analysis screened a MCM1-AGAMOUSDEFICIENS Serum Response Factor box (MADS box) protein for two SHORT VEGETATIVE PHASEs (SVPs). Genetic analysis showed that overexpressing PmSVP in Arabidopsis thaliana reduced the GA content and delayed flowering, whereas PmSVP-like overexpression increased the GA content and promoted flowering. Protein-DNA binding assays revealed that the PmRGL2/PmFRL3 protein complex promoted PmSVP transcription while repressing PmSVP-like transcription, which inhibited the flowering process. As chilling requirements increased, the PmFRL3 protein was degraded. ThePmRGL2/PmFRL3 protein complex is disrupted. With the increase in the GA content within the flower buds, the PmRGL2 protein was degraded in response to GA signalling, and the function of PmSVP-like was released. It dominated flowering, leading to this process in Prunus mume. Therefore, we propose a mechanism by which the PmRGL2/PmFRL3 protein complex responds to GA and low-temperature signalling to regulate PmSVP and PmSVP-like synergistically and thus Prunus mume flowering time.
Collapse
Affiliation(s)
- Feng Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Silas Segbo
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiao Huang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Pengyu Zhou
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chengdong Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yufan Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ximeng Lin
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yang Bai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Laboratory of Forestry Research, Xing'an League Institute of Forestry, Ulanhot, China
| | - Wei Tan
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Daouda Coulibaly
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Agricultural Sciences and Techniques-Horticulture, Rural Polytechnic Institute for Training and Applied Research (IPR/IFRA) of Katibougou, Koulikoro, Mali
| | - Kenneth Omondi Ouma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, Egerton, Kenya
| | - Shahid Iqbal
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Horticultural Science, North Florida Research and Education Center, University of Florida/IFAS, Quincy, Florida, USA
| | - Zhaojun Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
3
|
Xin X, Li P, Zhao X, Yu Y, Wang W, Jin G, Wang J, Sun L, Zhang D, Zhang F, Yu S, Su T. Temperature-dependent jumonji demethylase modulates flowering time by targeting H3K36me2/3 in Brassica rapa. Nat Commun 2024; 15:5470. [PMID: 38937441 PMCID: PMC11211497 DOI: 10.1038/s41467-024-49721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Global warming has a severe impact on the flowering time and yield of crops. Histone modifications have been well-documented for their roles in enabling plant plasticity in ambient temperature. However, the factor modulating histone modifications and their involvement in habitat adaptation have remained elusive. In this study, through genome-wide pattern analysis and quantitative-trait-locus (QTL) mapping, we reveal that BrJMJ18 is a candidate gene for a QTL regulating thermotolerance in thermotolerant B. rapa subsp. chinensis var. parachinensis (or Caixin, abbreviated to Par). BrJMJ18 encodes an H3K36me2/3 Jumonji demethylase that remodels H3K36 methylation across the genome. We demonstrate that the BrJMJ18 allele from Par (BrJMJ18Par) influences flowering time and plant growth in a temperature-dependent manner via characterizing overexpression and CRISPR/Cas9 mutant plants. We further show that overexpression of BrJMJ18Par can modulate the expression of BrFLC3, one of the five BrFLC orthologs. Furthermore, ChIP-seq and transcriptome data reveal that BrJMJ18Par can regulate chlorophyll biosynthesis under high temperatures. We also demonstrate that three amino acid mutations may account for function differences in BrJMJ18 between subspecies. Based on these findings, we propose a working model in which an H3K36me2/3 demethylase, while not affecting agronomic traits under normal conditions, can enhance resilience under heat stress in Brassica rapa.
Collapse
Affiliation(s)
- Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| |
Collapse
|
4
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
5
|
Baumgarten L, Pieper B, Song B, Mane S, Lempe J, Lamb J, Cooke EL, Srivastava R, Strütt S, Žanko D, Casimiro PGP, Hallab A, Cartolano M, Tattersall AD, Huettel B, Filatov DA, Pavlidis P, Neuffer B, Bazakos C, Schaefer H, Mott R, Gan X, Alonso-Blanco C, Laurent S, Tsiantis M. Pan-European study of genotypes and phenotypes in the Arabidopsis relative Cardamine hirsuta reveals how adaptation, demography, and development shape diversity patterns. PLoS Biol 2023; 21:e3002191. [PMID: 37463141 PMCID: PMC10353826 DOI: 10.1371/journal.pbio.3002191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/10/2023] [Indexed: 07/20/2023] Open
Abstract
We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.
Collapse
Affiliation(s)
- Lukas Baumgarten
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sébastien Mane
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Janne Lempe
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan Lamb
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth L. Cooke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rachita Srivastava
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stefan Strütt
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Danijela Žanko
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Asis Hallab
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maria Cartolano
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology, Crete, Greece
| | - Barbara Neuffer
- Department of Botany, University of Osnabrück, Osnabrück, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hanno Schaefer
- Department Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Mott
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Carlos Alonso-Blanco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
6
|
Chen TT, Liu H, Li YP, Yao XH, Qin W, Yan X, Wang XY, Peng BW, Zhang YJ, Shao J, Hu XY, Fu XQ, Li L, Wang YL, Tang KX. AaSEPALLATA1 integrates jasmonate and light-regulated glandular secretory trichome initiation in Artemisia annua. PLANT PHYSIOLOGY 2023; 192:1483-1497. [PMID: 36810650 PMCID: PMC10231397 DOI: 10.1093/plphys/kiad113] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 06/01/2023]
Abstract
Glandular secretory trichomes (GSTs) can secrete and store a variety of specific metabolites. By increasing GST density, valuable metabolites can be enhanced in terms of productivity. However, the comprehensive and detailed regulatory network of GST initiation still needs further investigation. By screening a complementary DNA library derived from young leaves of Artemisia annua, we identified a MADS-box transcription factor, AaSEPALLATA1 (AaSEP1), that positively regulates GST initiation. Overexpression of AaSEP1 in A. annua substantially increased GST density and artemisinin content. The HOMEODOMAIN PROTEIN 1 (AaHD1)-AaMYB16 regulatory network regulates GST initiation via the jasmonate (JA) signaling pathway. In this study, AaSEP1 enhanced the function of AaHD1 activation on downstream GST initiation gene GLANDULAR TRICHOME-SPECIFIC WRKY 2 (AaGSW2) through interaction with AaMYB16. Moreover, AaSEP1 interacted with the JA ZIM-domain 8 (AaJAZ8) and served as an important factor in JA-mediated GST initiation. We also found that AaSEP1 interacted with CONSTITUTIVE PHOTOMORPHOGENIC 1 (AaCOP1), a major repressor of light signaling. In this study, we identified a MADS-box transcription factor that is induced by JA and light signaling and that promotes the initiation of GST in A. annua.
Collapse
Affiliation(s)
- Tian-Tian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong-Peng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xing-Hao Yao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiu-Yun Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo-Wen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao-Jie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Shao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Yi Hu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Qing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Liang Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ke-Xuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Meng Q, Hou XF, Cheng H, Tan XM, Pu ZQ, Xu ZQ. IiSVP of Isatis indigotica can reduce the size and repress the development of floral organs. PLANT CELL REPORTS 2023; 42:561-574. [PMID: 36609767 DOI: 10.1007/s00299-023-02977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
IiSVP of Isatis indigotica was cloned and its expression pattern was analyzed. Ectopic expression of IiSVP in Arabidopsis could delay the flowering time and reduce the size of the floral organs. SVP (SHORT VEGETATIVE PHASE) can negatively regulate the flowering time of Arabidopsis. In the present work, the cDNA of IiSVP, an orthologous gene of AtSVP in I. indigotica, was cloned. IiSVP was highly expressed in rosette leaves, inflorescences and petals, but weakly expressed in sepals, pistils and young silicles. The results of subcellular localization showed that IiSVP was localized in nucleus. Bioinformatics analysis indicated that this protein was a MADS-box transcription factor. Constitutive expression of IiSVP in Arabidopsis thaliana resulted in decrease of the number of petals and stamens, and curly sepals were formed. In IiSVP transgenic Arabidopsis plants, obvious phenotypic variations in flowers could be observed, especially the size of the floral organs. In comparison with the wild-type plants, the size of petals, stamens and pistil in IiSVP transgenic Arabidopsis plants was decreased significantly. In some transgenic plants, the petals were wrapped by the sepals. Yeast two-hybrid experiments showed that IiSVP could form higher-order complexes with other MADS proteins, including IiSEP1, IiSEP3, IiAP1 and IiSEP4, but could not interact with IiSEP2. In this work, it was proved that the flowering process and the floral development in Arabidopsis could be affected by IiSVP from I. indigotica Fortune.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Xiao-Fang Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Hao Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Zuo-Qian Pu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| |
Collapse
|
8
|
Zhao J, Doody E, Poethig RS. Reproductive competence is regulated independently of vegetative phase change in Arabidopsis thaliana. Curr Biol 2023; 33:487-497.e2. [PMID: 36634678 PMCID: PMC9905307 DOI: 10.1016/j.cub.2022.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
A long-standing question in plant biology is how the acquisition of reproductive competence is related to the juvenile-to-adult vegetative transition. We addressed this question by examining the expression pattern and mutant phenotypes of two families of miRNAs-miR156/miR157 and miR172-that operate in the same pathway and play important roles in these processes. The phenotype of mutants deficient for miR156/miR157, miR172, and all three miRNAs demonstrated that miR156/miR157 regulate the timing of vegetative phase change but have only a minor effect on reproductive competence, whereas miR172 has a minor role in vegetative phase change but has a major effect on reproductive competence. MIR172B is directly downstream of the miR156/SPL module, but temporal variation in the level of miR156 in the shoot apex and leaf-to-leaf variation in miR156 expression in young primordia was not associated with a change in the level of miR172 in these tissues. Additionally, although miR172 levels increase from leaf to leaf later in leaf development, this variation is largely insensitive to changes in the abundance of miR156. Our results indicate that the acquisition of reproductive competence in Arabidopsis is regulated by miR172 through a mechanism that is independent of the vegetative phase change pathway.
Collapse
Affiliation(s)
- Jianfei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Doody
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Tang N, Cao Z, Wu P, Zhang X, Lou J, Liu Y, Wang Q, Hu Y, Si S, Sun X, Chen Z. Genome-wide identification, interaction of the MADS-box proteins in Zanthoxylum armatum and functional characterization of ZaMADS80 in floral development. FRONTIERS IN PLANT SCIENCE 2022; 13:1038828. [PMID: 36507394 PMCID: PMC9732391 DOI: 10.3389/fpls.2022.1038828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
As a typical dioecious species, Zanthoxylum armatum establishes apomictic reproduction, hence only female trees are cultivated. However, male and hermaphrodite flowers have recently appeared in female plants, resulting in a dramatic yield reduction. To date, the genetic basis underlying sex determination and apomixis in Z. armatum has been largely unknown. Here, we observed abortion of the stamen or carpel prior to primordium initiation, thus corroborating the potential regulation of MADS-box in sex determination. In Z. armatum, a total of 105 MADS-box genes were identified, harboring 86 MIKC-type MADSs with lack of FLC orthologues. Transcriptome analysis revealed candidate MADSs involved in floral organ identity, including ten male-biased MADSs, represented by ZaMADS92/81/75(AP3/PI-like), and twenty-six female-specified, represented by ZaMADS80/49 (STK/AGL11-like) and ZaMADS42 (AG-like). Overexpressing ZaMADS92 resulted in earlier flowering, while ZaMADS80 overexpression triggered precocious fruit set and parthenocarpy as well as dramatic modifications in floral organs. To characterize their regulatory mechanisms, a comprehensive protein-protein interaction network of the represented MADSs was constructed based on yeast two-hybrid and bimolecular fluorescence complementation assays. Compared with model plants, the protein interaction patterns in Z. armatum exhibited both conservation and divergence. ZaMADS70 (SEP3-like) interacted with ZaMADS42 and ZaMADS48 (AP3-like) but not ZaMADS40 (AP1-like), facilitating the loss of petals in Z. armatum. The ZaMADS92/ZaMADS40 heterodimer could be responsible for accelerating flowering in ZaMADS92-OX lines. Moreover, the interactions between ZaMADS80 and ZaMADS67(AGL32-like) might contribute to apomixis. This work provides new insight into the molecular mechanisms of MADS-boxes in sex organ identity in Z. armatum.
Collapse
Affiliation(s)
- Ning Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhengyan Cao
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Peiyin Wu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xian Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Juan Lou
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yanni Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Biology and Food Engineering, Chongqing Three Georges University, Chongqing, China
| | - Qiyao Wang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yang Hu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Shuo Si
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xiaofan Sun
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zexiong Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
10
|
Mattioli R, Francioso A, Trovato M. Proline Affects Flowering Time in Arabidopsis by Modulating FLC Expression: A Clue of Epigenetic Regulation? PLANTS 2022; 11:plants11182348. [PMID: 36145748 PMCID: PMC9505445 DOI: 10.3390/plants11182348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The recent finding that proline-induced root elongation is mediated by reactive oxygen species (ROS) prompted us to re-evaluate other developmental processes modulated by proline, such as flowering time. By controlling the cellular redox status and the ROS distribution, proline could potentially affect the expression of transcriptional factors subjected to epigenetic regulation, such as FLOWERING LOCUS C (FLC). Accordingly, we investigated the effect of proline on flowering time in more detail by analyzing the relative expression of the main flowering time genes in p5cs1 p5cs2/P5CS2 proline-deficient mutants and found a significant upregulation of FLC expression. Moreover, proline-deficient mutants exhibited an adult vegetative phase shorter than wild-type samples, with a trichome distribution reminiscent of plants with high FLC expression. In addition, the vernalization-induced downregulation of FLC abolished the flowering delay of p5cs1 p5cs2/P5CS2, and mutants homozygous for p5cs1 and flc-7 and heterozygous for P5CS2 flowered as early as the flc-7 parental mutant, indicating that FLC acts downstream of P5CS1/P5CS2 and is necessary for proline-modulated flowering. The overall data indicate that the effects of proline on flowering time are mediated by FLC.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Francioso
- Instituto Universitario de Bio-Orgánica Antonio González, 38200 San Cristóbal de La Laguna, Spain
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-2411
| |
Collapse
|
11
|
Doody E, Zha Y, He J, Poethig RS. The genetic basis of natural variation in the timing of vegetative phase change in Arabidopsis thaliana. Development 2022; 149:275256. [PMID: 35502761 DOI: 10.1242/dev.200321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
The juvenile-to-adult transition in plants is known as vegetative phase change and is marked by changes in the expression of leaf traits in response to a decrease in the level of miR156 and miR157. To determine whether this is the only mechanism of vegetative phase change, we measured the appearance of phase-specific leaf traits in 70 natural accessions of Arabidopsis thaliana. We found that leaf shape was poorly correlated with abaxial trichome production (two adult traits), that variation in these traits was not necessarily correlated with the level of miR156, and that there was little to no correlation between the appearance of adult-specific vegetative traits and flowering time. We identified eight quantitative trait loci controlling phase-specific vegetative traits from a cross between the Columbia (Col-0) and Shakdara (Sha) accessions. Only one of these quantitative trait loci includes genes known to regulate vegetative phase change (MIR156A and TOE1), which were expressed at levels consistent with the precocious phenotype of Sha. Our results suggest that vegetative phase change is regulated both by the miR156/SPL module and by genes specific to different vegetative traits, and that natural variation in vegetative phase change can arise from either source.
Collapse
Affiliation(s)
- Erin Doody
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuqi Zha
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jia He
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Mas-Gómez J, Cantín CM, Moreno MÁ, Martínez-García PJ. Genetic Diversity and Genome-Wide Association Study of Morphological and Quality Traits in Peach Using Two Spanish Peach Germplasm Collections. FRONTIERS IN PLANT SCIENCE 2022; 13:854770. [PMID: 35386674 PMCID: PMC8979248 DOI: 10.3389/fpls.2022.854770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Peach [Prunus persica (L.) Batsch] is one of the most important stone fruits species in world production. Spanish peach production is currently the second largest in the world and the available cultivars in Spain includes a great source of genetic diversity with variability in fruit quality traits and postharvest disorders tolerance. In order to explore the genetic diversity and single nucleotide polymorphism (SNP)-trait associations in the Spanish germplasm, the new peach 18K SNP v2 array was used to genotype 287 accessions belonging to the two National Peach Germplasm Collections placed at the Agrifood Research and Technology Centre of Aragon (CITA) and at the Experimental Station of Aula Dei (EEAD)-CSIC. The high density of the new SNP array allowed the identification of 30 groups of synonymies, which had not been identified before using low-density markers. In addition, a possible large-scale molecular event in 'Starcrest', a sport of 'Springcrest', was detected showing a possible chromosome replacement of a 13.5 Mb region. Previous suggestions about Spanish diversification regions agreed with our genetic diversity and linkage disequilibrium (LD) decay results using high-density markers. A genome-wide association study (GWAS) detected 34 significant SNP-trait association with the type of leaf glands (TLG), fruit hairiness (FH), and flesh texture (FT). The impact of the significant SNPs was studied with SnpEff. Candidate genes encode several important family proteins involved in trichome formation and powdery mildew resistance (linked to TLG in peach). The genetic distance among cultivars obtained, together with SNP-trait associations found, provide new knowledge for marker-assisted selection and crossing approaches in peach breeding programmes.
Collapse
Affiliation(s)
- Jorge Mas-Gómez
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Celia M. Cantín
- Department of Pomology, Experimental Station of Aula Dei-CSIC, Spanish National Research Council, Zaragoza, Spain
- Department of Horticulture, Agrifood Research and Technology Centre of Aragon, Zaragoza, Spain
| | - María Ángeles Moreno
- Department of Pomology, Experimental Station of Aula Dei-CSIC, Spanish National Research Council, Zaragoza, Spain
| | - Pedro J. Martínez-García
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
13
|
Chávez-Hernández EC, Quiroz S, García-Ponce B, Álvarez-Buylla ER. The flowering transition pathways converge into a complex gene regulatory network that underlies the phase changes of the shoot apical meristem in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:852047. [PMID: 36017258 PMCID: PMC9396034 DOI: 10.3389/fpls.2022.852047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/04/2022] [Indexed: 05/08/2023]
Abstract
Post-embryonic plant development is characterized by a period of vegetative growth during which a combination of intrinsic and extrinsic signals triggers the transition to the reproductive phase. To understand how different flowering inducing and repressing signals are associated with phase transitions of the Shoot Apical Meristem (SAM), we incorporated available data into a dynamic gene regulatory network model for Arabidopsis thaliana. This Flowering Transition Gene Regulatory Network (FT-GRN) formally constitutes a dynamic system-level mechanism based on more than three decades of experimental data on flowering. We provide novel experimental data on the regulatory interactions of one of its twenty-three components: a MADS-box transcription factor XAANTAL2 (XAL2). These data complement the information regarding flowering transition under short days and provides an example of the type of questions that can be addressed by the FT-GRN. The resulting FT-GRN is highly connected and integrates developmental, hormonal, and environmental signals that affect developmental transitions at the SAM. The FT-GRN is a dynamic multi-stable Boolean system, with 223 possible initial states, yet it converges into only 32 attractors. The latter are coherent with the expression profiles of the FT-GRN components that have been experimentally described for the developmental stages of the SAM. Furthermore, the attractors are also highly robust to initial states and to simulated perturbations of the interaction functions. The model recovered the meristem phenotypes of previously described single mutants. We also analyzed the attractors landscape that emerges from the postulated FT-GRN, uncovering which set of signals or components are critical for reproductive competence and the time-order transitions observed in the SAM. Finally, in the context of such GRN, the role of XAL2 under short-day conditions could be understood. Therefore, this model constitutes a robust biological module and the first multi-stable, dynamical systems biology mechanism that integrates the genetic flowering pathways to explain SAM phase transitions.
Collapse
Affiliation(s)
- Elva C. Chávez-Hernández
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stella Quiroz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Berenice García-Ponce,
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Elena R. Álvarez-Buylla,
| |
Collapse
|
14
|
Helal MMU, Gill RA, Tang M, Yang L, Hu M, Yang L, Xie M, Zhao C, Cheng X, Zhang Y, Zhang X, Liu S. SNP- and Haplotype-Based GWAS of Flowering-Related Traits in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112475. [PMID: 34834840 PMCID: PMC8619824 DOI: 10.3390/plants10112475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
Traits related to flowering time are the most promising agronomic traits that directly impact the seed yield and oil quality of rapeseed (Brassica napus L.). Developing early flowering and maturity rapeseed varieties is an important breeding objective in B. napus. Many studies have reported on days to flowering, but few have reported on budding, bolting, and the interval between bolting and DTF. Therefore, elucidating the genetic architecture of QTLs and genes regulating flowering time, we presented an integrated investigation on SNP and haplotype-based genome-wide association study of 373 diverse B. napus germplasm, which were genotyped by the 60K SNP array and were phenotyped in the four environments. The results showed that a total of 15 and 37 QTLs were detected from SNP and haplotype-based GWAS, respectively. Among them, seven QTL clusters were identified by haplotype-based GWAS. Moreover, three and eight environmentally stable QTLs were detected by SNP-GWAS and haplotype-based GWAS, respectively. By integrating the above two approaches and by co-localizing the four traits, ten (10) genomic regions were under selection on chromosomes A03, A07, A08, A10, C06, C07, and C08. Interestingly, the genomic regions FT.A07.1, FT.A08, FT.C06, and FT.C07 were identified as novel. In these ten regions, a total of 197 genes controlling FT were detected, of which 14 highly expressed DEGs were orthologous to 13 Arabidopsis thaliana genes after integration with transcriptome results. In a nutshell, the above results uncovered the genetic architecture of important agronomic traits related to flowering time and provided a basis for multiple molecular marker-trait associations in B. napus.
Collapse
Affiliation(s)
- MMU Helal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Minqiang Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
- Key Laboratory of Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Ming Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Lingli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Yuanyuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
- Correspondence: (Y.Z.); (X.Z.)
| | - Xiong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
- Correspondence: (Y.Z.); (X.Z.)
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| |
Collapse
|
15
|
Xin Y, Pan W, Chen X, Liu Y, Zhang M, Chen X, Yang F, Li J, Wu J, Du Y, Zhang X. Transcriptome profiling reveals key genes in regulation of the tepal trichome development in Lilium pumilum D.C. PLANT CELL REPORTS 2021; 40:1889-1906. [PMID: 34259890 DOI: 10.1007/s00299-021-02753-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A number of potential genes and pathways involved in tepal trichome development were identified in a natural lily mutant by transcriptome analysis and were confirmed with trichome and trichomeless species. Trichome is a specialized structure found on the surface of the plant with an important function in survival against abiotic and biotic stress. It is also an important economic trait in crop breeding. Extensive research has investigated the foliar trichome in model plants (Arabidopsis and tomato). However, the developmental mechanism of tepal trichome remains elusive. Lilium pumilum is an edible ornamental bulb and a good breeding parent possessing cold and salt-alkali resistance. Here, we found a natural mutant of Lilium pumilum grown on a highland whose tepals are covered by trichomes. Our data indicate that trichomes of the mutant are multicellular and branchless. Notably, stomata are also developed on the tepal of the mutant as well, suggesting there may be a correlation between trichome and stomata regulation. Furthermore, we isolated 27 differentially expressed genes (DEGs) by comparing the transcriptome profiling between the natural mutant and the wild type. These 27 genes belong to 4 groups: epidermal cell cycle and division, trichome morphogenesis, stress response, and transcription factors. Quantitative real-time PCR in Lilium pumilum (natural mutant and the wild type) and other lily species (Lilium leichtlinii var. maximowiczii/trichome; Lilium davidii var. willmottiae/, trichomeless) confirmed the validation of RNA-seq data and identified several trichome-related genes.
Collapse
Affiliation(s)
- Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xi Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Liu
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mingfang Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuqing Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fengping Yang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China.
| | - Yunpeng Du
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xiuhai Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
16
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
17
|
Samarth, Lee R, Kelly D, Turnbull MH, Macknight RC, Poole AM, Jameson PE. Molecular control of the floral transition in the mast seeding plant Celmisia lyallii (Asteraceae). Mol Ecol 2021; 30:1846-1863. [PMID: 33624370 DOI: 10.1111/mec.15859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Mast flowering (or masting) is synchronous, highly variable flowering among years in populations of perennial plants. Despite having widespread consequences for seed consumers, endangered fauna and human health, masting is hard to predict. While observational studies show links to various weather patterns in different plant species, the mechanism(s) underpinning the regulation of masting is still not fully explained. We studied floral induction in Celmisia lyallii (Asteraceae), a mast flowering herbaceous alpine perennial, comparing gene expression in flowering and nonflowering plants. We performed translocation experiments to induce the floral transition in C. lyallii plants followed by both global and targeted expression analysis of flowering-pathway genes. Differential expression analysis showed elevated expression of ClSOC1 and ClmiR172 (promoters of flowering) in leaves of plants that subsequently flowered, in contrast to elevated expression of ClAFT and ClTOE1 (repressors of flowering) in leaves of plants that did not flower. The warm summer conditions that promoted flowering led to differential regulation of age and hormonal pathway genes, including ClmiR172 and ClGA20ox2, known to repress the expression of floral repressors and permit flowering. Upregulated expression of epigenetic modifiers of floral promoters also suggests that plants may maintain a novel "summer memory" across years to induce flowering. These results provide a basic mechanistic understanding of floral induction in masting plants and evidence of their ability to imprint various environmental cues to synchronize flowering, allowing us to better predict masting events under climate change.
Collapse
Affiliation(s)
- Samarth
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Anthony M Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
18
|
Yagi H, Nagano AJ, Kim J, Tamura K, Mochizuki N, Nagatani A, Matsushita T, Shimada T. Fluorescent protein-based imaging and tissue-specific RNA-seq analysis of Arabidopsis hydathodes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1260-1270. [PMID: 33165567 DOI: 10.1093/jxb/eraa519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Hydathodes are typically found at leaf teeth in vascular plants and are involved in water release to the outside. Although morphological and physiological analysis of hydathodes has been performed in various plants, little is known about the genes involved in hydathode function. In this study, we performed fluorescent protein-based imaging and tissue-specific RNA-seq analysis in Arabidopsis hydathodes. We used the enhancer trap line E325, which has been reported to express green fluorescent protein (GFP) at its hydathodes. We found that E325-GFP was expressed in small cells found inside the hydathodes (named E cells) that were distributed between the water pores and xylem ends. No fluorescence of the phloem markers pSUC2:GFP and pSEOR1:SEOR1-YFP was observed in the hydathodes. These observations indicate that Arabidopsis hydathodes are composed of three major components: water pores, xylem ends, and E cells. In addition, we performed transcriptome analysis of the hydathode using the E325-GFP line. Microsamples were collected from GFP-positive or -negative regions of E325 leaf margins with a needle-based device (~130 µm in diameter). RNA-seq was performed with each single microsample using a high-throughput library preparation method called Lasy-Seq. We identified 72 differentially expressed genes. Among them, 68 genes showed significantly higher and four genes showed significantly lower expression in the hydathode. Our results provide new insights into the molecular basis for hydathode physiology and development.
Collapse
Affiliation(s)
- Hiroki Yagi
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Jaewook Kim
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Nobuyoshi Mochizuki
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Fouracre JP, Poethig RS. Lonely at the top? Regulation of shoot apical meristem activity by intrinsic and extrinsic factors. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:17-24. [PMID: 33099210 PMCID: PMC7752823 DOI: 10.1016/j.pbi.2020.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 08/28/2020] [Indexed: 05/22/2023]
Abstract
All the above-ground organs of a plant are derived from stem cells that reside in shoot apical meristems (SAM). Over the past 25 years, the genetic pathways that control the proliferation of stem cells within the SAM, and the differentiation of their progenitors into lateral organs, have been described in great detail. However, longstanding questions regarding the importance of communication between cells within the SAM and lateral organs have, until recently, remained unanswered. In this review, we describe recent investigations into the extent, nature and significance of signaling both to and from the SAM.
Collapse
Affiliation(s)
- Jim P Fouracre
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA, 19104, USA
| | - Richard Scott Poethig
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Ponnu J, Schlereth A, Zacharaki V, Działo MA, Abel C, Feil R, Schmid M, Wahl V. The trehalose 6-phosphate pathway impacts vegetative phase change in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:768-780. [PMID: 32799402 DOI: 10.1111/tpj.14965] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 05/16/2023]
Abstract
The vegetative phase change marks the beginning of the adult phase in the life cycle of plants and is associated with a gradual decline in the microRNA miR156, in response to sucrose status. Trehalose 6-phosphate (T6P) is a sugar molecule with signaling function reporting the current sucrose state. To elucidate the role of T6P signaling in vegetative phase change, molecular, genetic, and metabolic analyses were performed using Arabidopsis thaliana loss-of-function lines in TREHALOSE PHOSPHATE SYNTHASE1 (TPS1), a gene coding for an enzyme that catalyzes the production of T6P. These lines show a significant delay in vegetative phase change, under both short and long day conditions. Induced expression of TPS1 complements this delay in the TPS1 knockout mutant (tps1-2 GVG::TPS1). Further analyses indicate that the T6P pathway promotes vegetative phase transition by suppressing miR156 expression and thereby modulating the levels of its target transcripts, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes. TPS1 knockdown plants, with a delayed vegetative phase change phenotype, accumulate significantly more sucrose than wild-type plants as a result of a feedback mechanism. In summary, we conclude that the T6P pathway forms an integral part of an endogenous mechanism that influences phase transitions dependent on the metabolic state.
Collapse
Affiliation(s)
- Jathish Ponnu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstraße 35, Tübingen, 72076, Germany
| | - Armin Schlereth
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | | | - Magdalena A Działo
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Christin Abel
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Regina Feil
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Markus Schmid
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstraße 35, Tübingen, 72076, Germany
| | - Vanessa Wahl
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
21
|
Liu J, Ren M, Chen H, Wu S, Yan H, Jalal A, Wang C. Evolution of SHORT VEGETATIVE PHASE (SVP) genes in Rosaceae: Implications of lineage-specific gene duplication events and function diversifications with respect to their roles in processes other than bud dormancy. THE PLANT GENOME 2020; 13:e20053. [PMID: 33217197 DOI: 10.1002/tpg2.20053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
MADS-box genes that are homologous to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been shown to play key roles in the regulation of bud dormancy in perennial species, particularly in the deciduous fruit trees of Rosaceae. However, their evolutionary profiles in Rosaceae have not yet been analyzed systematically. Here, The SVP genes were found to be significantly expanded in Rosaceae when compared with annual species from Brassicaceae. Phylogenetic analysis showed that Rosaceae SVP genes could be classified into five clades, namely, SVP1, SVP2-R1, SVP2-R2, SVP2-R3 and SVP3. The SVP1 clade genes were retained in most of the species, whereas the SVP2-R2 and SVP2-R3 clades were found to be Maleae- and Amygdaleae-specific (Both of the lineages belong to Amygdaloideae), respectively, and SVP2-R1 was Rosoideae-specific in Rosaceae. Furthermore, 10 lineage-specific gene duplication (GD) events (GD1-10) were proposed for the expansion of SVP genes, suggesting that the expansion and divergence of Rosaceae SVP genes were mainly derived by lineage-specific manner during evolution. Moreover, tandem and segmental duplications were the major reasons for the expansion of SVP genes, and interestingly, tandem duplications, a well-known evolutionary feature of SVP genes, were found to be mainly Amygdaloideae-specific. Sequence alignment, selection pressure, and cis-acting element analysis suggested large functional innovations and diversification of SVP genes in different lineages of Rosaceae. Finally, the different growth cycle of Rosa multiflora and their novel expression patterns of RmSVP genes provided new insights into the functional diversification of SVP genes in terms of their roles in processes other than bud dormancy.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Shanghai Forestry Station, Shanghai, 200072, China
| | - Hui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Silin Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huijun Yan
- Yunnan Academy of Agricultural Sciences, Flower Research Institute, Kunming, Yunnan, 650200, China
| | - Abdul Jalal
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
22
|
Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana. Nat Commun 2020; 11:4140. [PMID: 32811829 PMCID: PMC7435183 DOI: 10.1038/s41467-020-17896-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
Investigating the evolution of complex phenotypes and the underlying molecular bases of their variation is critical to understand how organisms adapt to their environment. Applying classical quantitative genetics on a segregating population derived from a Can-0xCol-0 cross, we identify the MADS-box transcription factor FLOWERING LOCUS M (FLM) as a player of the phenotypic variation in plant growth and color. We show that allelic variation at FLM modulates plant growth strategy along the leaf economics spectrum, a trade-off between resource acquisition and resource conservation, observable across thousands of plant species. Functional differences at FLM rely on a single intronic substitution, disturbing transcript splicing and leading to the accumulation of non-functional FLM transcripts. Associations between this substitution and phenotypic and climatic data across Arabidopsis natural populations, show how noncoding genetic variation at a single gene might be adaptive through pleiotropic effects. FLOWERING LOCUS M (FLM) is known as a repressor of Arabidopsis flowering. Here, the authors show that a single intronic substitution of FLM modulates leaf color and plant growth strategy along the leaf economics spectrum, as well as plays a role in plant adaptation.
Collapse
|
23
|
Wu S, Sun W, Xu Z, Zhai J, Li X, Li C, Zhang D, Wu X, Shen L, Chen J, Ren H, Dai X, Dai Z, Zhao Y, Chen L, Cao M, Xie X, Liu X, Peng D, Dong J, Hsiao YY, Chen SL, Tsai WC, Lan S, Liu ZJ. The genome sequence of star fruit ( Averrhoa carambola). HORTICULTURE RESEARCH 2020; 7:95. [PMID: 32528707 PMCID: PMC7261771 DOI: 10.1038/s41438-020-0307-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 05/10/2023]
Abstract
Oxalidaceae is one of the most important plant families in horticulture, and its key commercially relevant genus, Averrhoa, has diverse growth habits and fruit types. Here, we describe the assembly of a high-quality chromosome-scale genome sequence for Averrhoa carambola (star fruit). Ks distribution analysis showed that A. carambola underwent a whole-genome triplication event, i.e., the gamma event shared by most eudicots. Comparisons between A. carambola and other angiosperms also permitted the generation of Oxalidaceae gene annotations. We identified unique gene families and analyzed gene family expansion and contraction. This analysis revealed significant changes in MADS-box gene family content, which might be related to the cauliflory of A. carambola. In addition, we identified and analyzed a total of 204 nucleotide-binding site, leucine-rich repeat receptor (NLR) genes and 58 WRKY genes in the genome, which may be related to the defense response. Our results provide insights into the origin, evolution and diversification of star fruit.
Collapse
Affiliation(s)
- Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wei Sun
- Institute of Chinese Materia Medica, Chinese Academy of China Medical Sciences, Beijing, 100700 China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193 China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoping Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chengru Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoqian Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liming Shen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Junhao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Hui Ren
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Xiaoyu Dai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongwu Dai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yamei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lei Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Mengxia Cao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xinyu Xie
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xuedie Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianwen Dong
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 China
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan City, 701 China
| | - Shi-lin Chen
- Institute of Chinese Materia Medica, Chinese Academy of China Medical Sciences, Beijing, 100700 China
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 China
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan City, 701 China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
24
|
Strauss S, Lempe J, Prusinkiewicz P, Tsiantis M, Smith RS. Phyllotaxis: is the golden angle optimal for light capture? THE NEW PHYTOLOGIST 2020; 225:499-510. [PMID: 31254398 DOI: 10.1111/nph.16040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/24/2019] [Indexed: 05/26/2023]
Abstract
Phyllotactic patterns are some of the most conspicuous in nature. To create these patterns plants must control the divergence angle between the appearance of successive organs, sometimes to within a fraction of a degree. The most common angle is the Fibonacci or golden angle, and its prevalence has led to the hypothesis that it has been selected by evolution as optimal for plants with respect to some fitness benefits, such as light capture. We explore arguments for and against this idea with computer models. We have used both idealized and scanned leaves from Arabidopsis thaliana and Cardamine hirsuta to measure the overlapping leaf area of simulated plants after varying parameters such as leaf shape, incident light angles, and other leaf traits. We find that other angles generated by Fibonacci-like series found in nature are equally optimal for light capture, and therefore should be under similar evolutionary pressure. Our findings suggest that the iterative mechanism for organ positioning itself is a more likely target for evolutionary pressure, rather than a specific divergence angle, and our model demonstrates that the heteroblastic progression of leaf shape in A. thaliana can provide a potential fitness benefit via light capture.
Collapse
Affiliation(s)
- Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Janne Lempe
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | | | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
25
|
Liu Q, Su Y, Zhu Y, Peng K, Hong B, Wang R, Gaballah M, Xiao L. Manipulating osa-MIR156f Expression by D18 Promoter to Regulate Plant Architecture and Yield Traits both in Seasonal and Ratooning Rice. Biol Proced Online 2019; 21:21. [PMID: 31700499 PMCID: PMC6827258 DOI: 10.1186/s12575-019-0110-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023] Open
Abstract
Background Rice (Oryza sativa L.) feeds more than half of the world's population. Ratooning rice is an economical alternative to the second seasonal rice, thus increasing the yield of ratooning rice is highly important. Results Here we report an applicable transgenic line constructed through the manipulation of osa-MIR156f expression in rice shoot using the OsGA3ox2 (D18) promoter. In seasonal rice, the D18-11 transgenic line showed moderate height and more effective tillers with normal panicle. In ratooning rice, axillary buds outgrew from the basal node of the D18-11 transgenic line before the harvest of seasonal rice. More effective tillers produced by the outgrowth of axillary buds contributed to the plant architecture improvement and yield increase. Additionally, it was found that osa-miR156f down-regulated the expression of tillering regulators, such as TEOSINTE BRANCHED1 (TB1) and LAX PANICLE 1 (LAX1). The expression of DWARF10, DWARF27 and DWARF53, three genes being involved in the biosynthesis and signaling of strigolactone (SL), decreased in the stem of the D18-11 transgenic line. Conclusion Our results indicated that the manipulation of osa-MIR156f expression may have application significance in rice genetic breeding. This study developed a novel strategy to regulate plant architecture and grain yield potential both in the seasonal and ratooning rice.
Collapse
Affiliation(s)
- Qing Liu
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Yi Su
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Yunhua Zhu
- 3Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Keqin Peng
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Bin Hong
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Ruozhong Wang
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Mahmoud Gaballah
- 4Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Giza, 33717 Egypt
| | - Langtao Xiao
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
26
|
Hughes PW, Soppe WJJ, Albani MC. Seed traits are pleiotropically regulated by the flowering time gene PERPETUAL FLOWERING 1 (PEP1) in the perennial Arabis alpina. Mol Ecol 2019; 28:1183-1201. [PMID: 30712274 PMCID: PMC6850658 DOI: 10.1111/mec.15034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/22/2018] [Accepted: 11/19/2018] [Indexed: 01/20/2023]
Abstract
The life cycles of plants are characterized by two major life history transitions-germination and the initiation of flowering-the timing of which are important determinants of fitness. Unlike annuals, which make the transition from the vegetative to reproductive phase only once, perennials iterate reproduction in successive years. The floral repressor PERPETUAL FLOWERING 1 (PEP1), an ortholog of FLOWERING LOCUS C, in the alpine perennial Arabis alpina ensures the continuation of vegetative growth after flowering and thereby restricts the duration of the flowering episode. We performed greenhouse and garden experiments to compare flowering phenology, fecundity and seed traits between A. alpina accessions that have a functional PEP1 allele and flower seasonally and pep1 mutants and accessions that carry lesions in PEP1 and flower perpetually. In the garden, perpetual genotypes flower asynchronously and show higher winter mortality than seasonal ones. PEP1 also pleiotropically regulates seed dormancy and longevity in a way that is functionally divergent from FLC. Seeds from perpetual genotypes have shallow dormancy and reduced longevity regardless of whether they after-ripened in plants grown in the greenhouse or in the experimental garden. These results suggest that perpetual genotypes have higher mortality during winter but compensate by showing higher seedling establishment. Differences in seed traits between seasonal and perpetual genotypes are also coupled with differences in hormone sensitivity and expression of genes involved in hormonal pathways. Our study highlights the existence of pleiotropic regulation of seed traits by hub developmental regulators such as PEP1, suggesting that seed and flowering traits in perennial plants might be optimized in a coordinated fashion.
Collapse
Affiliation(s)
- Patrick William Hughes
- Max Planck Institute for Plant Breeding ResearchCologneGermany
- Botanical InstituteUniversity of CologneCologneGermany
| | - Wim J. J. Soppe
- Max Planck Institute for Plant Breeding ResearchCologneGermany
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO)University of BonnBonnGermany
- Present address:
Rijk ZwaanDe LierThe Netherlands
| | - Maria C. Albani
- Max Planck Institute for Plant Breeding ResearchCologneGermany
- Botanical InstituteUniversity of CologneCologneGermany
- Center of Excellence in Plant Sciences (CEPLAS)DüsseldorfGermany
| |
Collapse
|
27
|
Ortuño-Miquel S, Rodríguez-Cazorla E, Zavala-Gonzalez EA, Martínez-Laborda A, Vera A. Arabidopsis HUA ENHANCER 4 delays flowering by upregulating the MADS-box repressor genes FLC and MAF4. Sci Rep 2019; 9:1478. [PMID: 30728422 PMCID: PMC6365585 DOI: 10.1038/s41598-018-38327-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
The adaptive success of flowering plants is largely due to their ability to align floral production with optimal conditions. In Arabidopsis thaliana, MADS-box repressors of the FLC/MAF-clade prevent flowering under non-inductive conditions, although the role of some members is not yet clearly defined. Using a genetic strategy, we identified the KH-domain gene HEN4, previously shown to be involved in MADS-box floral homeotic gene regulation, as a modulator of flowering time. Loss-of-function hen4 mutants are early-flowering, and their response to low growth-temperature (16 °C) and day-length is altered. Interestingly, hen4 plants showed dramatic reduction of FLC and MAF4 transcripts, whereas other flowering repressors of the same clade (FLM, MAF2, MAF3, MAF5) remained unaltered. We also determined that hen4, partly due to loss of FLC, accelerates the vegetative phase-change. This report provides insight into flowering time control and highlights the potential of versatile regulators such as HEN4 to coordinate the juvenile-to-adult transition and floral timing.
Collapse
Affiliation(s)
- Samanta Ortuño-Miquel
- Area de Genética, Universidad Miguel Hernández, Campus de Sant Joan, Alicante, 03550, Spain
| | | | | | | | - Antonio Vera
- Area de Genética, Universidad Miguel Hernández, Campus de Sant Joan, Alicante, 03550, Spain.
| |
Collapse
|
28
|
Abstract
Plant leaves are differentiated organs that arise sequentially from a population of pluripotent stem cells at the shoot apical meristem (SAM). There is substantial diversity in leaf shape, much of which depends on the size and arrangement of outgrowths at the leaf margin. These outgrowths are generated by a patterning mechanism similar to the phyllotactic processes producing organs at the SAM, which involves the transcription factors CUP-SHAPED COTYLEDON and the phytohormone auxin. In the leaf, this patterning mechanism creates sequential protrusions and indentations along the margin. The size, shape, and distribution of these protrusions also depend on the overall growth of the leaf lamina. Globally, growth is regulated by a complex genetic network controlling the distribution of cell proliferation and the timing of differentiation. Evolutionary changes in margin form arise from changes in two different classes of homeobox genes that modify the outcome of marginal patterning in diverse ways, and are under intense investigation.
Collapse
Affiliation(s)
| | - Adam Runions
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mainak Das Gupta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
29
|
Sun L, Sang M, Zheng C, Wang D, Shi H, Liu K, Guo Y, Cheng T, Zhang Q, Wu R. The genetic architecture of heterochrony as a quantitative trait: lessons from a computational model. Brief Bioinform 2018; 19:1430-1439. [PMID: 28575183 DOI: 10.1093/bib/bbx056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Indexed: 11/14/2022] Open
Abstract
Heterochrony is known as a developmental change in the timing or rate of ontogenetic events across phylogenetic lineages. It is a key concept synthesizing development into ecology and evolution to explore the mechanisms of how developmental processes impact on phenotypic novelties. A number of molecular experiments using contrasting organisms in developmental timing have identified specific genes involved in heterochronic variation. Beyond these classic approaches that can only identify single genes or pathways, quantitative models derived from current next-generation sequencing data serve as a more powerful tool to precisely capture heterochronic variation and systematically map a complete set of genes that contribute to heterochronic processes. In this opinion note, we discuss a computational framework of genetic mapping that can characterize heterochronic quantitative trait loci that determine the pattern and process of development. We propose a unifying model that charts the genetic architecture of heterochrony that perceives and responds to environmental perturbations and evolves over geologic time. The new model may potentially enhance our understanding of the adaptive value of heterochrony and its evolutionary origins, providing a useful context for designing new organisms that can best use future resources.
Collapse
Affiliation(s)
- Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture at Beijing Forestry University
| | - Mengmeng Sang
- Computational Genetics in the Center for Computational Biology at Beijing Forestry University
| | - Chenfei Zheng
- Computational Genetics in the Center for Computational Biology at Beijing Forestry University
| | - Dongyang Wang
- Computational Biology Center for Computational Biology at Beijing Forestry University
| | - Hexin Shi
- Computational Biology Center for Computational Biology at Beijing Forestry University
| | - Kaiyue Liu
- Computational Biology Center for Computational Biology at Beijing Forestry University
| | - Yanfang Guo
- Computational Biology Center for Computational Biology at Beijing Forestry University
| | - Tangren Cheng
- National Engineering Research Center for Floriculture at Beijing Forestry University
| | - Qixiang Zhang
- National Engineering Research Center for Floriculture at Beijing Forestry University
| | - Rongling Wu
- Center for Computational Biology at Beijing Forestry University
| |
Collapse
|
30
|
Liu X, Sun Z, Dong W, Wang Z, Zhang L. Expansion and Functional Divergence of the SHORT VEGETATIVE PHASE (SVP) Genes in Eudicots. Genome Biol Evol 2018; 10:3026-3037. [PMID: 30364940 PMCID: PMC6251477 DOI: 10.1093/gbe/evy235] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
SHORT VEGETATIVE PHASE (SVP) genes are members of the well-known MADS-box gene family that regulates vital developmental processes in plants. In Arabidopsis, there are two SVP paralogs, SVP/AGAMOUS-LIKE22 (SVP/AGL22) and AGL24. SVP protein suppresses the flowering process, whereas AGL24 acts as a flowering activator. Phylogenetic analysis of SVP genes representing most of the sequenced eudicot species showed that the SVP gene family could be divided into three major clades in eudicots (SVP1, SVP2, and SVP3), most likely resulting from an ancient whole-genome triplication in core eudicots. Among them, the SVP1 (SVP) and SVP2 (AGL24) clades are retained in nearly all species, whereas the SVP3 clade has been lost in Brassicaceae, Myrtaceae, and some species in other families. Reflecting lineage-specific tandem duplication and whole-genome duplication, SVP gene copy numbers ranged from 3 to 11 in the analyzed species. Sequence analysis showed that SVP3 proteins have obvious differences with SVP1 and SVP2 in the C-terminal (C) domain and intervening (I) domain. Positive selection analysis also showed that the ω (dN/dS) value was highest in the SVP3 clade, with 17 positive selection sites detected in the SVP3 clade. Promoter analysis for cis-regulatory elements showed that some genes in the SVP2 and SVP3 clades may be regulated by abscisic acid, ethylene, and gibberellin. RNA-seq data from grape, poplar, and apple revealed that genes in SVP3 group are highly expressed in vegetative organs such as buds, leaves, cotyledons, and dormant buds in particular, indicating the involvement of genes belong to SVP3 group in the dormancy process. Overall, the findings underscore the functional diversity of the SVP genes in eudicots.
Collapse
Affiliation(s)
- Xing Liu
- Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhichao Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wei Dong
- Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Liangsheng Zhang
- Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
31
|
Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genet 2018; 14:e1007337. [PMID: 29672610 PMCID: PMC5929574 DOI: 10.1371/journal.pgen.1007337] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/01/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Vegetative phase change is regulated by a decrease in the abundance of the miRNAs, miR156 and miR157, and the resulting increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. To determine how miR156/miR157 specify the quantitative and qualitative changes in leaf morphology that occur during vegetative phase change, we measured their abundance in successive leaves and characterized the phenotype of mutations in different MIR156 and MIR157 genes. miR156/miR157 decline rapidly between leaf 1&2 and leaf 3 and decrease more slowly after this point. The amount of miR156/miR157 in leaves 1&2 greatly exceeds the threshold required to specify their identity. Subsequent leaves have relatively low levels of miR156/miR157 and are sensitive to small changes in their abundance. In these later-formed leaves, the amount of miR156/miR157 is close to the threshold required to specify juvenile vs. adult identity; a relatively small decrease in the abundance of miR156/157 in these leaves produces a disproportionately large increase in SPL proteins and a significant change in leaf morphology. miR157 is more abundant than miR156 but has a smaller effect on shoot morphology and SPL gene expression than miR156. This may be attributable to the inefficiency with which miR157 is loaded onto AGO1, as well as to the presence of an extra nucleotide at the 5' end of miR157 that is mis-paired in the miR157:SPL13 duplex. miR156 represses different targets by different mechanisms: it regulates SPL9 by a combination of transcript cleavage and translational repression and regulates SPL13 primarily by translational repression. Our results offer a molecular explanation for the changes in leaf morphology that occur during shoot development in Arabidopsis and provide new insights into the mechanism by which miR156 and miR157 regulate gene expression. Leaves produced at different stages in the development of an Arabidopsis shoot vary predictably in shape and size. Previous studies have shown that this phenomenon is regulated by variation in the abundance of the miRNAs, miR156 and miR157, but how miR156/miR157 produce the changes in leaf morphology that occur during shoot development is not understood. To answer this question, we measured the abundance of miR156/miR157 and their SPL targets in successive leaf primordia, and characterized the effect of variation in the abundance of miR156/miR157 on leaf morphology and the abundance of SPL transcripts and SPL proteins. miR156/miR157 are present at very high levels in the first two rosette leaves, where they act as buffers to stabilize leaf identity. They are present at lower and steadily declining levels in subsequent leaves, where they act to modulate leaf morphogenesis. In these later-formed leaves, a small decrease in the abundance of miR156/miR157 produces a disproportionately large increase in SPL activity, primarily as a result of the increased translation of SPL transcripts. Our results provide a new view of vegetative phase change in Arabidopsis and the mechanism by which miR156 and miR157 regulate this process.
Collapse
|
32
|
Weber K, Burow M. Nitrogen - essential macronutrient and signal controlling flowering time. PHYSIOLOGIA PLANTARUM 2018; 162:251-260. [PMID: 29095491 DOI: 10.1111/ppl.12664] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen, as limiting nutrient for plant growth and crop yield, is a main component of fertilizers and heavily used in modern agriculture. Early reports from over-application of fertilizers in crop production have shown to repress the transition from vegetative to reproductive phase. For the model plant Arabidopsis thaliana, there is evidence that low nitrogen conditions promote early flowering, while high nitrogen as well as nitrogen starvation conditions display the opposite effect. To gain a better understanding of how nitrogen affects the onset of flowering, we reviewed the existing literature for A. thaliana and carried out a meta-analysis on available transcriptomics data, seeking for potential genes and pathways involved in both nitrogen responses and flowering time control. With this strategy, we aimed at identifying potential gateways for integration of nitrogen signaling and potential regulators that might link the regulatory networks controlling nitrogen and flowering in A. thaliana. We found that photoperiodic pathway genes have high potential to be involved in nitrogen-dependent flowering.
Collapse
Affiliation(s)
- Konrad Weber
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
33
|
Xu M, Leichty AR, Hu T, Poethig RS. H2A.Z promotes the transcription of MIR156A and MIR156C in Arabidopsis by facilitating the deposition of H3K4me3. Development 2018; 145:dev152868. [PMID: 29361556 PMCID: PMC5825843 DOI: 10.1242/dev.152868] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023]
Abstract
Vegetative phase change in Arabidopsis thaliana is mediated by a decrease in the level of MIR156A and MIR156C, resulting in an increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. Changes in chromatin structure are required for the downregulation of MIR156A and MIR156C, but whether chromatin structure contributes to their initial elevated expression is unknown. We found that mutations in components of the SWR1 complex (ARP6, SEF) and in genes encoding H2A.Z (HTA9 and HTA11) reduce the expression of MIR156A and MIR156C, and accelerate vegetative phase change, indicating that H2A.Z promotes juvenile vegetative identity. However, arp6 and sef did not accelerate the temporal decline in miR156, and the downregulation of MIR156A and MIR156C was not accompanied by significant change in the level of H2A.Z at these loci. We conclude that H2A.Z contributes to the high expression of MIR156A/MIR156C early in shoot development, but does not regulate the timing of vegetative phase change. Our results also suggest that H2A.Z promotes the expression of MIR156A/MIR156C by facilitating the deposition of H3K4me3, rather than by decreasing nucleosome occupancy.
Collapse
Affiliation(s)
- Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron R Leichty
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tieqiang Hu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species. Proc Natl Acad Sci U S A 2017; 114:E11037-E11046. [PMID: 29203652 PMCID: PMC5754749 DOI: 10.1073/pnas.1618075114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome-wide landscapes of transcription factor (TF) binding sites (BSs) diverge during evolution, conferring species-specific transcriptional patterns. The rate of divergence varies in different metazoan lineages but has not been widely studied in plants. We identified the BSs and assessed the effects on transcription of FLOWERING LOCUS C (FLC) and PERPETUAL FLOWERING 1 (PEP1), two orthologous MADS-box TFs that repress flowering and confer vernalization requirement in the Brassicaceae species Arabidopsis thaliana and Arabis alpina, respectively. We found that only 14% of their BSs were conserved in both species and that these contained a CArG-box that is recognized by MADS-box TFs. The CArG-box consensus at conserved BSs was extended compared with the core motif. By contrast, species-specific BSs usually lacked the CArG-box in the other species. Flowering-time genes were highly overrepresented among conserved targets, and their CArG-boxes were widely conserved among Brassicaceae species. Cold-regulated (COR) genes were also overrepresented among targets, but the cognate BSs and the identity of the regulated genes were usually different in each species. In cold, COR gene transcript levels were increased in flc and pep1-1 mutants compared with WT, and this correlated with reduced growth in pep1-1 Therefore, FLC orthologs regulate a set of conserved target genes mainly involved in reproductive development and were later independently recruited to modulate stress responses in different Brassicaceae lineages. Analysis of TF BSs in these lineages thus distinguishes widely conserved targets representing the core function of the TF from those that were recruited later in evolution.
Collapse
|
35
|
Nguyen STT, Greaves T, McCurdy DW. Heteroblastic Development of Transfer Cells Is Controlled by the microRNA miR156/SPL Module. PLANT PHYSIOLOGY 2017; 173:1676-1691. [PMID: 28082719 PMCID: PMC5338675 DOI: 10.1104/pp.16.01741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/10/2017] [Indexed: 05/08/2023]
Abstract
We report that wall ingrowth deposition in phloem parenchyma (PP) transfer cells (TCs) in leaf veins of Arabidopsis (Arabidopsis thaliana) represents a novel trait of heteroblasty. Development of PP TCs involves extensive deposition of wall ingrowths adjacent to cells of the sieve element/companion cell complex. These PP TCs potentially facilitate phloem loading by enhancing efflux of symplasmic Suc for subsequent active uptake into cells of the sieve element/companion cell complex. PP TCs with extensive wall ingrowths are ubiquitous in mature cotyledons and juvenile leaves, but dramatically less so in mature adult leaves, an observation consistent with PP TC development reflecting vegetative phase change (VPC) in Arabidopsis. Consistent with this conclusion, the abundance of PP TCs with extensive wall ingrowths varied across rosette development in three ecotypes displaying differing durations of juvenile phase, and extensive deposition of wall ingrowths was observed in rejuvenated leaves following prolonged defoliation. PP TC development across juvenile, transition, and adult leaves correlated positively with levels of miR156, a major regulator of VPC in plants, and corresponding changes in wall ingrowth deposition were observed when miR156 was overexpressed or its activity suppressed by target mimicry. Analysis of plants carrying miR156-resistant forms of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes showed that wall ingrowth deposition was increased in SPL9-group but not SPL3-group genes, indicating that SPL9-group genes may function as negative regulators of wall ingrowth deposition in PP TCs. Collectively, our results point to wall ingrowth deposition in PP TCs being under control of the genetic program regulating VPC.
Collapse
Affiliation(s)
- Suong T T Nguyen
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Teighan Greaves
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - David W McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
36
|
Abstract
Leaf shape is spectacularly diverse. As a major component of plant architecture and an interface for light capture, gas exchange, and thermoregulation, the potential contributions of leaves to plant fitness are innumerable. Particularly because of their intimate association and interaction with the surrounding environment, both the plasticity of leaf shape during the lifetime of a plant and the evolution of leaf shape over geologic time are revealing with respect to leaf function. Leaf shapes arise within a developmental context that constrains both their evolution and environmental plasticity. Quantitative models capturing genetic diversity, developmental context, and environmental plasticity will be required to fully understand the evolution and development of leaf shape and its response to environmental pressures. In this review, we discuss recent literature demonstrating that distinct molecular pathways are modulated by specific environmental inputs, the output of which regulates leaf dissection. We propose a synthesis explaining both historical patterns in the paleorecord and conserved plastic responses in extant plants. Understanding the potential adaptive value of leaf shape, and how to molecularly manipulate it, will prove to be invaluable in designing crops optimized for future climates.
Collapse
Affiliation(s)
| | - Neelima R Sinha
- Department of Plant Biology, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Xu M, Hu T, Zhao J, Park MY, Earley KW, Wu G, Yang L, Poethig RS. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006263. [PMID: 27541584 PMCID: PMC4991793 DOI: 10.1371/journal.pgen.1006263] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023] Open
Abstract
Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.
Collapse
Affiliation(s)
- Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tieqiang Hu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jianfei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mee-Yeon Park
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keith W. Earley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Li Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Lièvre M, Granier C, Guédon Y. Identifying developmental phases in the Arabidopsis thaliana rosette using integrative segmentation models. THE NEW PHYTOLOGIST 2016; 210:1466-78. [PMID: 26853434 DOI: 10.1111/nph.13861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/15/2015] [Indexed: 05/26/2023]
Abstract
The change in leaf size and shape during ontogeny associated with heteroblastic development is a composite trait for which extensive spatiotemporal data can be acquired using phenotyping platforms. However, only part of the information contained in such data is exploited, and developmental phases are usually defined using a selected organ trait. We here introduce new methods for identifying developmental phases in the Arabidopsis rosette using various traits and minimum a priori assumptions. A pipeline of analysis was developed combining image analysis and statistical models to integrate morphological, shape, dimensional and expansion dynamics traits for the successive leaves of the Arabidopsis rosette. Dedicated segmentation models called semi-Markov switching models were built for selected genotypes in order to identify rosette developmental phases. Four successive developmental phases referred to as seedling, juvenile, transition and adult were identified for the different genotypes. We show that the degree of covering of the leaf abaxial surface with trichomes is insufficient to define these developmental phases. Using our pipeline of analysis, we were able to identify the supplementary seedling phase and to uncover the structuring role of various leaf traits. This enabled us to compare on a more objective basis the vegetative development of Arabidopsis mutants.
Collapse
Affiliation(s)
- Maryline Lièvre
- INRA, UMR LEPSE, 34060, Montpellier, France
- CIRAD, UMR AGAP and Inria, Virtual Plants, 34095, Montpellier, France
| | | | - Yann Guédon
- CIRAD, UMR AGAP and Inria, Virtual Plants, 34095, Montpellier, France
| |
Collapse
|
39
|
Matías-Hernández L, Aguilar-Jaramillo AE, Cigliano RA, Sanseverino W, Pelaz S. Flowering and trichome development share hormonal and transcription factor regulation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1209-19. [PMID: 26685187 DOI: 10.1093/jxb/erv534] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gibberellins (GAs) and cytokinins (CKs) are plant hormones that act either synergistically or antagonistically during the regulation of different developmental processes. In Arabidopsis thaliana, GAs and CKs overlap in the positive regulation of processes such as the transition from the vegetative to the reproductive phase and the development of epidermal adaxial trichomes. Despite the fact that both developmental processes originate in the rosette leaves, they occur separately in time and space. Here we review how, as genetic and molecular mechanisms are being unraveled, both processes might be closely related. Additionally, this shared genetic network is not only dependent on GA and CK hormone signaling but is also strictly controlled by specific clades of transcription factor families. Some key flowering genes also control other rosette leaf developmental processes such as adaxial trichome formation. Conversely, most of the trichome activator genes, which belong to the MYB, bHLH and C2H2 families, were found to positively control the floral transition. Furthermore, three MADS floral organ identity genes, which are able to convert leaves into floral structures, are also able to induce trichome proliferation in the flower. These data lead us to propose that the spatio-temporal regulation and integration of diverse signals control different developmental processes, such as floral induction and trichome formation, which are intimately connected through similar genetic pathways.
Collapse
Affiliation(s)
- Luis Matías-Hernández
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain Sequentia Biotech, Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain
| | - Andrea E Aguilar-Jaramillo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain
| | | | - Walter Sanseverino
- Sequentia Biotech, Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain ICREA (Institució Catalana de Recerca i EstudisAvançats), Barcelona, Spain
| |
Collapse
|
40
|
Cheng H, Chen X, Zhu J, Huang H. Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1703. [PMID: 27895658 PMCID: PMC5107689 DOI: 10.3389/fpls.2016.01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/28/2016] [Indexed: 05/04/2023]
Abstract
Rubber trees are economically important tropical tree species and the major source of natural rubber, which is an essential industrial material. This tropical perennial tree is susceptible to cold stress and other abiotic stresses, especially in the marginal northern tropics. Recent years, the genome sequencing and RNA-seq projects produced huge amount of sequence data, which greatly facilitated the functional genomics study. However, the characterization of individual functional gene is in urgent demands, especially for those involved in stress resistance. Here we identified and characterized the rubber tree gene ErbB-3 binding protein 1, which undergoes changes in expression in response to cold, drought stress and ABA treatment. HbEBP1 overexpression (OE) in Arabidopsis increased organ size, facilitated root growth and increased adult leaf number by delaying the vegetative-to-reproductive transition. In addition, HbEBP1 OE enhanced the resistance of the Arabidopsis plants to freezing and drought stress, demonstrating that this gene participates in the regulation of abiotic stress resistance. RD29a, RD22 and CYCD3;1 expression was also greatly enhanced by HbEBP1 OE, which explains its regulatory roles in organ size and stress resistance. The regulation of drought stress resistance is a novel function identified in plant EBP1 genes, which expands our understanding of the roles of EBP1 gene in response to the environment. Our results provide information that may lead to the use of HbEBP1 in genetically engineered crops to increase both biomass and abiotic stress resistance.
Collapse
Affiliation(s)
- Han Cheng
- *Correspondence: Han Cheng, Huasun Huang,
| | | | | | | |
Collapse
|
41
|
Liu Q, Shen G, Peng K, Huang Z, Tong J, Kabir MH, Wang J, Zhang J, Qin G, Xiao L. The alteration in the architecture of a T-DNA insertion rice mutant osmtd1 is caused by up-regulation of MicroRNA156f. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:819-29. [PMID: 25677853 PMCID: PMC6681133 DOI: 10.1111/jipb.12340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/09/2015] [Indexed: 05/18/2023]
Abstract
Plant architecture is an important factor for crop production. Some members of microRNA156 (miR156) and their target genes SQUAMOSA Promoter-Binding Protein-Like (SPL) were identified to play essential roles in the establishment of plant architecture. However, the roles and regulation of miR156 is not well understood yet. Here, we identified a T-DNA insertion mutant Osmtd1 (Oryza sativa multi-tillering and dwarf mutant). Osmtd1 produced more tillers and displayed short stature phenotype. We determined that the dramatic morphological changes were caused by a single T-DNA insertion in Osmtd1. Further analysis revealed that the T-DNA insertion was located in the gene Os08g34258 encoding a putative inhibitor I family protein. Os08g34258 was knocked out and OsmiR156f was significantly upregulated in Osmtd1. Overexpression of Os08g34258 in Osmtd1 complemented the defects of the mutant architecture, while overexpression of OsmiR156f in wild-type rice phenocopied Osmtd1. We showed that the expression of OsSPL3, OsSPL12, and OsSPL14 were significantly downregulated in Osmtd1 or OsmiR156f overexpressed lines, indicating that OsSPL3, OsSPL12, and OsSPL14 were possibly direct target genes of OsmiR156f. Our results suggested that OsmiR156f controlled plant architecture by mediating plant stature and tiller outgrowth and may be regulated by an unknown protease inhibitor I family protein.
Collapse
Affiliation(s)
- Qing Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Gezhi Shen
- Crop Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Keqin Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Zhigang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Mohammed Humayun Kabir
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhui Wang
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jingzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
42
|
Heterochrony underpins natural variation in Cardamine hirsuta leaf form. Proc Natl Acad Sci U S A 2015; 112:10539-44. [PMID: 26243877 DOI: 10.1073/pnas.1419791112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key problem in biology is whether the same processes underlie morphological variation between and within species. Here, by using plant leaves as an example, we show that the causes of diversity at these two evolutionary scales can be divergent. Some species like the model plant Arabidopsis thaliana have simple leaves, whereas others like the A. thaliana relative Cardamine hirsuta bear complex leaves comprising leaflets. Previous work has shown that these interspecific differences result mostly from variation in local tissue growth and patterning. Now, by cloning and characterizing a quantitative trait locus (QTL) for C. hirsuta leaf shape, we find that a different process, age-dependent progression of leaf form, underlies variation in this trait within species. This QTL effect is caused by cis-regulatory variation in the floral repressor ChFLC, such that genotypes with low-expressing ChFLC alleles show both early flowering and accelerated age-dependent changes in leaf form, including faster leaflet production. We provide evidence that this mechanism coordinates leaf development with reproductive timing and may help to optimize resource allocation to the next generation.
Collapse
|
43
|
Foerster JM, Beissinger T, de Leon N, Kaeppler S. Large effect QTL explain natural phenotypic variation for the developmental timing of vegetative phase change in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:529-38. [PMID: 25575839 DOI: 10.1007/s00122-014-2451-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/20/2014] [Indexed: 05/16/2023]
Abstract
Natural variation for the timing of vegetative phase change in maize is controlled by several large effect loci, one corresponding to Glossy15 , a gene known for regulating juvenile tissue traits. Vegetative phase change is an intrinsic component of developmental programs in plants. Juvenile and adult vegetative tissues in grasses differ dramatically in their anatomical and biochemical composition affecting the utility of specific genotypes as animal feed and biofuel feedstock. The molecular network controlling the process of developmental transition is incompletely characterized. In this study, we used scoring for juvenile and adult epicuticular wax as an entry point to discover quantitative trait loci (QTL) controlling phenotypic variation for the developmental timing of juvenile to adult transition in maize. We scored the last leaf with juvenile wax on 25 recombinant inbred line families of the B73 reference Nested Association Mapping (NAM) population and the intermated B73×Mo17 (IBM) population across multiple seasons. A total of 13 unique QTL were identified through genome-wide association analysis across the NAM populations, three of which have large effects. A QTL located on chromosome nine had the most significant SNPs within Glossy15, a gene controlling expression of juvenile leaf traits. The second large effect QTL is located on chromosome two. The most significant SNP in this QTL is located adjacent to a homolog of the Arabidopsis transcription factor, enhanced downy mildew-2, which has been shown to promote the transition from juvenile to adult vegetative phase. Overall, these results show that several major QTL and potential candidate genes underlie the extensive natural variation for this developmental trait.
Collapse
Affiliation(s)
- Jillian M Foerster
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Dr., Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
44
|
Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol 2015; 16:31. [PMID: 25853185 PMCID: PMC4378019 DOI: 10.1186/s13059-015-0597-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/26/2015] [Indexed: 11/25/2022] Open
Abstract
Background The initiation of flowering is an important developmental transition as it marks the beginning of the reproductive phase in plants. The MADS-box transcription factors (TFs) FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) form a complex to repress the expression of genes that initiate flowering in Arabidopsis. Both TFs play a central role in the regulatory network by conferring seasonal patterns of flowering. However, their interdependence and biological relevance when acting as a complex have not been extensively studied. Results We characterized the effects of both TFs individually and as a complex on flowering initiation using transcriptome profiling and DNA-binding occupancy. We find four major clusters regulating transcriptional responses, and that DNA binding scenarios are highly affected by the presence of the cognate partner. Remarkably, we identify genes whose regulation depends exclusively on simultaneous action of both proteins, thus distinguishing between the specificity of the SVP:FLC complex and that of each TF acting individually. The downstream targets of the SVP:FLC complex include a higher proportion of genes regulating floral induction, whereas those bound by either TF independently are biased towards floral development. Many genes involved in gibberellin-related processes are bound by the SVP:FLC complex, suggesting that direct regulation of gibberellin metabolism by FLC and SVP contributes to their effects on flowering. Conclusions The regulatory codes controlled by SVP and FLC were deciphered at the genome-wide level revealing substantial flexibility based on dependent and independent DNA binding that may contribute to variation and robustness in the regulation of flowering. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0597-1) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Molecular cloning, characterization and expression analysis of bolting-associated genes in flowering Chinese cabbage. Genes Genomics 2015. [DOI: 10.1007/s13258-014-0264-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Fletcher RS, Mullen JL, Heiliger A, McKay JK. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:245-56. [PMID: 25371500 PMCID: PMC4265167 DOI: 10.1093/jxb/eru423] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/16/2014] [Accepted: 09/15/2014] [Indexed: 05/18/2023]
Abstract
Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought.
Collapse
Affiliation(s)
- Richard S Fletcher
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA Cargill Specialty Seeds and Oils, Fort Collins, CO 80525, USA
| | - Jack L Mullen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Annie Heiliger
- Cargill Specialty Seeds and Oils, Fort Collins, CO 80525, USA Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - John K McKay
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA Plant Genomics LLC, Fort Collins, CO 80524, USA
| |
Collapse
|
47
|
Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, Seo M, Wagner D. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 2014; 344:638-41. [PMID: 24812402 DOI: 10.1126/science.1250498] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The switch to reproductive development is biphasic in many plants, a feature important for optimal pollination and yield. We show that dual opposite roles of the phytohormone gibberellin underpin this phenomenon in Arabidopsis. Although gibberellin promotes termination of vegetative development, it inhibits flower formation. To overcome this effect, the transcription factor LEAFY induces expression of a gibberellin catabolism gene; consequently, increased LEAFY activity causes reduced gibberellin levels. This allows accumulation of gibberellin-sensitive DELLA proteins. The DELLA proteins are recruited by SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors to regulatory regions of the floral commitment gene APETALA1 and promote APETALA1 up-regulation and floral fate synergistically with LEAFY. The two opposing functions of gibberellin may facilitate evolutionary and environmental modulation of plant inflorescence architecture.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang Y, Wu F, Bai J, He Y. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:312-21. [PMID: 24237584 DOI: 10.1111/pbi.12138] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 05/21/2023]
Abstract
The leafy heads of cabbage (Brassica oleracea), Chinese cabbage (Brassica rapa ssp. pekinensis), Brussels sprouts (B. oleracea ssp. gemmifera) and lettuce (Lactuca sativa) comprise extremely incurved leaves that are edible vegetable products. The heading time is important for high quality and yield of these crops. Here, we report that BrpSPL9-2 (B. rapa ssp. pekinensis SQUAMOSA PROMOTER BINDING-LIKE 9-2), a target gene of microRNA brp-miR156, controls the heading time of Chinese cabbage. Quantitative measurements of leaf shapes, sizes, colour and curvature indicated that heading is a late adult phase of vegetative growth. During the vegetative period, miR156 levels gradually decreased from the seedling stage to the heading one, whereas BrpSPL9-2 and BrpSPL15-1 mRNAs increased progressively and reached the highest levels at the heading stage. Overexpression of a mutated miR156-resistant form of BrpSPL9-2 caused the significant earliness of heading, concurrent with shortening of the seedling and rosette stages. By contrast, overexpression of miR156 delayed the folding time, concomitant with prolongation of the seedling and rosette stages. Morphological analysis reveals that the significant earliness of heading in the transgenic plants overexpressing BrpSPL9-2 gene was produced because the juvenile phase was absent and the early adult phase shortened, whereas the significant delay of folding in the transgenic plants overexpressing Brp-MIR156a was due to prolongation of the juvenile and early adult phases. Thus, miR156 and BrpSPL9 genes are potentially important for genetic improvement of earliness of Chinese cabbage and other crops.
Collapse
Affiliation(s)
- Yali Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
49
|
The B-box family gene STO (BBX24) in Arabidopsis thaliana regulates flowering time in different pathways. PLoS One 2014; 9:e87544. [PMID: 24498334 PMCID: PMC3911981 DOI: 10.1371/journal.pone.0087544] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/31/2013] [Indexed: 12/13/2022] Open
Abstract
Flowering at the appropriate time is crucial for reproductive success and is strongly influenced by various pathways such as photoperiod, circadian clock, FRIGIDA and vernalization. Although each separate pathway has been extensively studied, much less is known about the interactions between them. In this study we have investigated the relationship between the photoperiod/circadian clock gene and FRIGIDA/FLC by characterizing the function of the B-box STO gene family. STO has two B-box Zn-finger domains but lacks the CCT domain. Its expression is controlled by circadian rhythm and is affected by environmental factors and phytohormones. Loss and gain of function mutants show diversiform phenotypes from seed germination to flowering. The sto-1 mutant flowers later than the wild type (WT) under short day growth conditions, while over-expression of STO causes early flowering both in long and short days. STO over-expression not only reduces FLC expression level but it also activates FT and SOC1 expression. It also does not rely on the other B-box gene CO or change the circadian clock system to activate FT and SOC1. Furthermore, the STO activation of FT and SOC1 expression is independent of the repression of FLC; rather STO and FLC compete with each other to regulate downstream genes. Our results indicate that photoperiod and the circadian clock pathway gene STO can affect the key flowering time genes FLC and FT/SOC1 separately, and reveals a novel perspective to the mechanism of flowering regulation.
Collapse
|
50
|
Dechaine JM, Brock MT, Iniguez-Luy FL, Weinig C. Quantitative trait loci × environment interactions for plant morphology vary over ontogeny in Brassica rapa. THE NEW PHYTOLOGIST 2014; 201:657-669. [PMID: 26012723 DOI: 10.1111/nph.12520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/15/2013] [Indexed: 05/16/2023]
Abstract
Growth in plants occurs via the addition of repeating modules, suggesting that the genetic architecture of similar subunits may vary between earlier- and later-developing modules. These complex environment × ontogeny interactions are not well elucidated, as studies examining quantitative trait loci (QTLs) expression over ontogeny have not included multiple environments. Here, we characterized the genetic architecture of vegetative traits and onset of reproduction over ontogeny in recombinant inbred lines of Brassica rapa in the field and glasshouse. The magnitude of genetic variation in plasticity of seedling internodes was greater than in those produced later in ontogeny. We correspondingly detected that QTLs for seedling internode length were environment-specific, whereas later in ontogeny the majority of QTLs affected internode lengths in all treatments. The relationship between internode traits and onset of reproduction varied with environment and ontogenetic stage. This relationship was observed only in the glasshouse environment and was largely attributable to one environment-specific QTL. Our results provide the first evidence of a QTL × environment × ontogeny interaction, and provide QTL resolution for differences between early- and later-stage plasticity for stem elongation. These results also suggest potential constraints on morphological evolution in early vs later modules as a result of associations with reproductive timing.
Collapse
Affiliation(s)
- Jennifer M Dechaine
- Department of Biological Sciences, Central Washington University, Ellensburg, WA, 98926, USA
| | - Marcus T Brock
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Federico L Iniguez-Luy
- Agri-Aquaculture Nutritional Genomic Center, Genetic and Bioinformatics Unit, Instituto de Investigaciones Agropecuarias-Carillanca, Codigo Postal, 4780000, Temuco, Chile
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|