1
|
Song YS, Park S, Fisk D, Sorenson CM, Sheibani N. Isolation and Characterization of Mouse Choroidal Melanocytes and Their Proinflammatory Characteristics. Cells 2025; 14:646. [PMID: 40358170 PMCID: PMC12071734 DOI: 10.3390/cells14090646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Melanocytes are a major cellular component of the choroid which aids in the maintenance of choroidal integrity and vision. Unfortunately, our knowledge regarding the cell autonomous melanocyte function, in preserving choroidal health and the ocular pathologies associated with choroidal dysfunction, remain largely unknown. The ability to culture melanocytes has advanced our knowledge regarding the origin and function of these cells in choroidal homeostasis and vision. However, the culture of murine choroid melanocytes has not been previously reported. Here, we describe a method for the isolation of melanocytes from the mouse choroid, as well as the delineation of many of their cellular characteristics, including the expression of various cell-specific markers, cell adhesion molecules, melanogenic capacity, and inflammatory responses to various extracellular stressors. Unraveling the molecular mechanisms that regulate melanocyte functions will advance our understanding of their role in choroidal homeostasis and how alterations in these functions impact ocular diseases that compromise vision.
Collapse
Affiliation(s)
- Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (Y.-S.S.); (S.P.); (D.F.)
- Mcpherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - SunYoung Park
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (Y.-S.S.); (S.P.); (D.F.)
| | - Debra Fisk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (Y.-S.S.); (S.P.); (D.F.)
| | - Christine M. Sorenson
- Mcpherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (Y.-S.S.); (S.P.); (D.F.)
- Mcpherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
2
|
Hao J, Yang Y, Xie L, Li Z, Ma B, Wang B, Chen J, Zeng Z, Zhou X. Actl6a regulates autophagy via Sox2-dependent Atg5 and Atg7 expression to inhibit apoptosis in spinal cord injury. J Adv Res 2025:S2090-1232(25)00057-8. [PMID: 39875055 DOI: 10.1016/j.jare.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a severe central nervous system disorder with limited treatment options. While autophagy plays a protective role in neural repair, its regulatory mechanisms in SCI remain unclear. Actin-like protein 6A (Actl6a) influences cell fate and neural development, yet its specific role in SCI repair is not well understood. This study investigates Actl6a's function in regulating autophagy and apoptosis via the transcription factor Sox2 in SCI. OBJECTIVES This study aims to determine if Actl6a promotes neural survival post-SCI by regulating autophagy-related genes Atg5 and Atg7 through Sox2. It also examines how the demethylase Fto modulates Actl6a mRNA stability via m6A methylation. METHODS In vitro experiments were conducted using primary neurons and HT-22 hippocampal cells exposed to hydrogen peroxide (H2O2)-induced oxidative stress. Actl6a expression was manipulated by knockdown or overexpression. For in vivo studies, a rat SCI model was established with AAV-Actl6a injected at the injury site to induce Actl6a overexpression. Autophagy and apoptosis markers were analyzed using immunofluorescence, Western blotting, and qPCR. Additionally, m6A dot blot and RNA immunoprecipitation (RIP) assays were performed to assess Fto's role in regulating Actl6a mRNA methylation and stability. RESULTS Actl6a expression significantly decreased after SCI, resulting in increased apoptosis. Overexpressing Actl6a enhanced autophagy, reduced apoptosis, and improved neurological function in SCI models. Mechanistically, Actl6a and Sox2 collaboratively upregulated Atg5 and Atg7 expression, promoting autophagy. Fto's modulation of Actl6a mRNA stability via m6A demethylation further influenced autophagy and apoptosis. CONCLUSION Actl6a, through interaction with Sox2, plays a critical role in modulating autophagy and reducing apoptosis in SCI, with Fto's m6A modification affecting Actl6a stability. This Fto/Actl6a/Sox2 axis is a promising therapeutic target for SCI repair.
Collapse
Affiliation(s)
- Jian Hao
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| | - Yubiao Yang
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China
| | - Li Xie
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Zhenhan Li
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Boyuan Ma
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Bitao Wang
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jinyu Chen
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhi Zeng
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xianhu Zhou
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
3
|
Rekler D, Ofek S, Kagan S, Friedlander G, Kalcheim C. Retinoic acid, an essential component of the roof plate organizer, promotes the spatiotemporal segregation of dorsal neural fates. Development 2024; 151:dev202973. [PMID: 39250350 PMCID: PMC11463963 DOI: 10.1242/dev.202973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
Dorsal neural tube-derived retinoic acid promotes the end of neural crest production and transition into a definitive roof plate. Here, we analyze how this impacts the segregation of central and peripheral lineages, a process essential for tissue patterning and function. Localized in ovo inhibition in quail embryos of retinoic acid activity followed by single-cell transcriptomics unraveled a comprehensive list of differentially expressed genes relevant to these processes. Importantly, progenitors co-expressed neural crest, roof plate and dI1 interneuron markers, indicating a failure in proper lineage segregation. Furthermore, separation between roof plate and dI1 interneurons is mediated by Notch activity downstream of retinoic acid, highlighting their crucial role in establishing the roof plate-dI1 boundary. Within the peripheral branch, where absence of retinoic acid resulted in neural crest production and emigration extending into the roof plate stage, sensory progenitors failed to separate from melanocytes, leading to formation of a common glia-melanocyte cell with aberrant migratory patterns. In summary, the implementation of single-cell RNA sequencing facilitated the discovery and characterization of a molecular mechanism responsible for the segregation of dorsal neural fates during development.
Collapse
Affiliation(s)
- Dina Rekler
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Shai Ofek
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Sarah Kagan
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
4
|
Lu H, Jiang H, Li C, Derisoud E, Zhao A, Eriksson G, Lindgren E, Pui HP, Risal S, Pei Y, Maxian T, Ohlsson C, Benrick A, Haider S, Stener-Victorin E, Deng Q. Dissecting the Impact of Maternal Androgen Exposure on Developmental Programming through Targeting the Androgen Receptor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309429. [PMID: 39075722 PMCID: PMC11423211 DOI: 10.1002/advs.202309429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/15/2024] [Indexed: 07/31/2024]
Abstract
Women with polycystic ovary syndrome (PCOS) exhibit sustained elevation in circulating androgens during pregnancy, an independent risk factor linked to pregnancy complications and adverse outcomes in offspring. Yet, further studies are required to understand the effects of elevated androgens on cell type-specific placental dysfunction and fetal development. Therefore, a PCOS-like mouse model induced by continuous androgen exposure is examined. The PCOS-mice exhibited impaired placental and embryonic development, resulting in mid-gestation lethality. Co-treatment with the androgen receptor blocker, flutamide, prevents these phenotypes including germ cell specification. Comprehensive profiling of the placenta by whole-genome bisulfite and RNA sequencing shows a reduced proportion of trophoblast precursors, possibly due to the downregulation of Cdx2 expression. Reduced expression of Gcm1, Synb, and Prl3b1 is associated with reduced syncytiotrophoblasts and sinusoidal trophoblast giant cells, impairs placental labyrinth formation. Importantly, human trophoblast organoids exposed to androgens exhibit analogous changes, showing impaired trophoblast differentiation as a key feature in PCOS-related pregnancy complications. These findings provide new insights into the potential cellular targets for future treatments.
Collapse
Affiliation(s)
- Haojiang Lu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Congru Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Gustaw Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Eva Lindgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Han-Pin Pui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Sanjiv Risal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Theresa Maxian
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, 1090, Austria
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
- School of Health Sciences, University of Skövde, Skövde, 54128, Sweden
| | - Sandra Haider
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, 1090, Austria
| | | | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
5
|
Erickson AG, Motta A, Kastriti ME, Edwards S, Coulpier F, Théoulle E, Murtazina A, Poverennaya I, Wies D, Ganofsky J, Canu G, Lallemend F, Topilko P, Hadjab S, Fried K, Ruhrberg C, Schwarz Q, Castellani V, Bonanomi D, Adameyko I. Motor innervation directs the correct development of the mouse sympathetic nervous system. Nat Commun 2024; 15:7065. [PMID: 39152112 PMCID: PMC11329663 DOI: 10.1038/s41467-024-51290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest. Motor nerve ablation causes mispositioning of SCP-derived sympathoblasts as well as sympathetic chain hypoplasia and fragmentation. Sympathetic neurons in motor-ablated embryos project precociously and abnormally towards dorsal root ganglia, eventually resulting in fusion of sympathetic and sensory ganglia. Cell interaction analysis identifies semaphorins as potential motor nerve-derived signaling molecules regulating sympathoblast positioning and outgrowth. Overall, central innervation functions both as infrastructure and regulatory niche to ensure the integrity of peripheral ganglia morphogenesis.
Collapse
Affiliation(s)
- Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alessia Motta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria
| | - Steven Edwards
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fanny Coulpier
- Mondor Institute for Biomedical Research (IMRB), INSERM, Créteil, France
| | - Emy Théoulle
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Aliia Murtazina
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Irina Poverennaya
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria
| | - Daniel Wies
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jeremy Ganofsky
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Giovanni Canu
- University College London, Department of Ophthalmology London, London, UK
| | - Francois Lallemend
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Piotr Topilko
- Mondor Institute for Biomedical Research (IMRB), INSERM, Créteil, France
| | - Saida Hadjab
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | | | - Quenten Schwarz
- Center for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Valerie Castellani
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Brombin A, Patton EE. Melanocyte lineage dynamics in development, growth and disease. Development 2024; 151:dev201266. [PMID: 39092608 DOI: 10.1242/dev.201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.
Collapse
Affiliation(s)
- Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
7
|
Hushmandi K, Saadat SH, Mirilavasani S, Daneshi S, Aref AR, Nabavi N, Raesi R, Taheriazam A, Hashemi M. The multifaceted role of SOX2 in breast and lung cancer dynamics. Pathol Res Pract 2024; 260:155386. [PMID: 38861919 DOI: 10.1016/j.prp.2024.155386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Breast and lung cancers are leading causes of death among patients, with their global mortality and morbidity rates increasing. Conventional treatments often prove inadequate due to resistance development. The alteration of molecular interactions may accelerate cancer progression and treatment resistance. SOX2, known for its abnormal expression in various human cancers, can either accelerate or impede cancer progression. This review focuses on examining the role of SOX2 in breast and lung cancer development. An imbalance in SOX2 expression can promote the growth and dissemination of these cancers. SOX2 can also block programmed cell death, affecting autophagy and other cell death mechanisms. It plays a significant role in cancer metastasis, mainly by regulating the epithelial-to-mesenchymal transition (EMT). Additionally, an imbalanced SOX2 expression can cause resistance to chemotherapy and radiation therapy in these cancers. Genetic and epigenetic factors may affect SOX2 levels. Pharmacologically targeting SOX2 could improve the effectiveness of breast and lung cancer treatments.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Seyedalireza Mirilavasani
- Campus Venlo, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, The Netherlands
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University of Medical Sciences,Jiroft, the Islamic Republic of Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Rasoul Raesi
- Department of Health Services Management, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
8
|
Lowenstein ED, Misios A, Buchert S, Ruffault PL. Molecular Characterization of Nodose Ganglia Development Reveals a Novel Population of Phox2b+ Glial Progenitors in Mice. J Neurosci 2024; 44:e1441232024. [PMID: 38830761 PMCID: PMC11236582 DOI: 10.1523/jneurosci.1441-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/17/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage-tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity, a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single-cell RNA-sequencing to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia, and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells, and display a transcriptional program that may underlie their bipotent nature.
Collapse
Affiliation(s)
- Elijah D Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Aristotelis Misios
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Sven Buchert
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
9
|
Hampl M, Jandová N, Lusková D, Nováková M, Szotkowská T, Čada Š, Procházka J, Kohoutek J, Buchtová M. Early embryogenesis in CHDFIDD mouse model reveals facial clefts and altered cranial neurogenesis. Dis Model Mech 2024; 17:dmm050261. [PMID: 38511331 PMCID: PMC11212636 DOI: 10.1242/dmm.050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.
Collapse
Affiliation(s)
- Marek Hampl
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Nela Jandová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Denisa Lusková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Monika Nováková
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Tereza Szotkowská
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Jan Procházka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jiri Kohoutek
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| |
Collapse
|
10
|
Zhang W, Kaser-Eichberger A, Fan W, Platzl C, Schrödl F, Heindl LM. The structure and function of the human choroid. Ann Anat 2024; 254:152239. [PMID: 38432349 DOI: 10.1016/j.aanat.2024.152239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In this manuscript, the structure of the human choroid is reviewed with emphasis of the macro- and microscopic anatomy including Bruch's membrane, choriocapillaris, Sattler's and Haller's layer, and the suprachoroid. We here discuss the development of the choroid, as well as the question of choroidal lymphatics, and further the neuronal control of this tissue, as well as the pathologic angiogenesis. Wherever possible, functional aspects of the various structures are included and reviewed.
Collapse
Affiliation(s)
- Weina Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wanlin Fan
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Falk Schrödl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Floriddia E. In conversation with Igor Adameyko. Nat Neurosci 2024; 27:601-605. [PMID: 38472650 DOI: 10.1038/s41593-024-01614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
|
12
|
Ojeda-Alonso J, Calvo-Enrique L, Paricio-Montesinos R, Kumar R, Zhang MD, Poulet JFA, Ernfors P, Lewin GR. Sensory Schwann cells set perceptual thresholds for touch and selectively regulate mechanical nociception. Nat Commun 2024; 15:898. [PMID: 38320986 PMCID: PMC10847425 DOI: 10.1038/s41467-024-44845-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Previous work identified nociceptive Schwann cells that can initiate pain. Consistent with the existence of inherently mechanosensitive sensory Schwann cells, we found that in mice, the mechanosensory function of almost all nociceptors, including those signaling fast pain, were dependent on sensory Schwann cells. In polymodal nociceptors, sensory Schwann cells signal mechanical, but not cold or heat pain. Terminal Schwann cells also surround mechanoreceptor nerve-endings within the Meissner's corpuscle and in hair follicle lanceolate endings that both signal vibrotactile touch. Within Meissner´s corpuscles, two molecularly and functionally distinct sensory Schwann cells positive for Sox10 and Sox2 differentially modulate rapidly adapting mechanoreceptor function. Using optogenetics we show that Meissner's corpuscle Schwann cells are necessary for the perception of low threshold vibrotactile stimuli. These results show that sensory Schwann cells within diverse glio-neural mechanosensory end-organs are sensors for mechanical pain as well as necessary for touch perception.
Collapse
Affiliation(s)
- Julia Ojeda-Alonso
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Laura Calvo-Enrique
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Departamento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Paricio-Montesinos
- Neural Circuits and Behavior, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Rakesh Kumar
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Pain Center, Department of Anesthesiology Washington University School of Medicine, CB 8108, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - James F A Poulet
- Neural Circuits and Behavior, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden.
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Center for Mental Health (DZPG), partner site Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Doda D, Alonso Jimenez S, Rehrauer H, Carreño JF, Valsamides V, Di Santo S, Widmer HR, Edge A, Locher H, van der Valk WH, Zhang J, Koehler KR, Roccio M. Human pluripotent stem cell-derived inner ear organoids recapitulate otic development in vitro. Development 2023; 150:dev201865. [PMID: 37791525 PMCID: PMC10565253 DOI: 10.1242/dev.201865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023]
Abstract
Our molecular understanding of the early stages of human inner ear development has been limited by the difficulty in accessing fetal samples at early gestational stages. As an alternative, previous studies have shown that inner ear morphogenesis can be partially recapitulated using induced pluripotent stem cells directed to differentiate into inner ear organoids (IEOs). Once validated and benchmarked, these systems could represent unique tools to complement and refine our understanding of human otic differentiation and model developmental defects. Here, we provide the first direct comparisons of the early human embryonic otocyst and fetal sensory organs with human IEOs. We use multiplexed immunostaining and single-cell RNA-sequencing to characterize IEOs at three key developmental steps, providing a new and unique signature of in vitro-derived otic placode, epithelium, neuroblasts and sensory epithelia. In parallel, we evaluate the expression and localization of crucial markers at these equivalent stages in human embryos. Together, our data indicate that the current state-of-the-art protocol enables the specification of bona fide otic tissue, supporting the further application of IEOs to inform inner ear biology and disease.
Collapse
Affiliation(s)
- Daniela Doda
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Sara Alonso Jimenez
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Hubert Rehrauer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
- Functional Genomics Center Zurich (ETH Zurich and University of Zurich), 8092 Zurich, Switzerland
| | - Jose F. Carreño
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
- Functional Genomics Center Zurich (ETH Zurich and University of Zurich), 8092 Zurich, Switzerland
| | - Victoria Valsamides
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Stefano Di Santo
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Hans R. Widmer
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Albert Edge
- Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Heiko Locher
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Wouter H. van der Valk
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital,Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital,Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marta Roccio
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| |
Collapse
|
15
|
Castro-Pérez E, Singh M, Sadangi S, Mela-Sánchez C, Setaluri V. Connecting the dots: Melanoma cell of origin, tumor cell plasticity, trans-differentiation, and drug resistance. Pigment Cell Melanoma Res 2023; 36:330-347. [PMID: 37132530 PMCID: PMC10524512 DOI: 10.1111/pcmr.13092] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.
Collapse
Affiliation(s)
- Edgardo Castro-Pérez
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panama
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Mithalesh Singh
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Shreyans Sadangi
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Carmen Mela-Sánchez
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
- William S. Middleton VA Hospital, Madison, WI, U.S.A
| |
Collapse
|
16
|
Ma S, Li X, Cao R, Zhan G, Fu X, Xiao R, Yang Z. Developmentally regulated expression of integrin alpha-6 distinguishes neural crest derivatives in the skin. Front Cell Dev Biol 2023; 11:1140554. [PMID: 37255601 PMCID: PMC10225710 DOI: 10.3389/fcell.2023.1140554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Neural crest-derived cells play essential roles in skin function and homeostasis. However, how they interact with environmental cues and differentiate into functional skin cells remains unclear. Using a combination of single-cell data analysis, neural crest lineage tracing, and flow cytometry, we found that the expression of integrin α6 (ITGA6) in neural crest and its derivatives was developmentally regulated and that ITGA6 could serve as a functional surface marker for distinguishing neural crest derivatives in the skin. Based on the expression of ITGA6, Wnt1-Cre lineage neural crest derivatives in the skin could be categorized into three subpopulations, namely, ITGA6bright, ITGA6dim, and ITGA6neg, which were found to be Schwann cells, melanocytes, and fibroblasts, respectively. We further analyzed the signature genes and transcription factors that specifically enriched in each cell subpopulation, as well as the ligand or receptor molecules, mediating the potential interaction with other cells of the skin. Additionally, we found that Hmx1 and Lhx8 are specifically expressed in neural crest-derived fibroblasts, while Zic1 and homeobox family genes are expressed in mesoderm-derived fibroblasts, indicating the distinct development pathways of fibroblasts of different origins. Our study provides insights into the regulatory landscape of neural crest cell development and identifies potential markers that facilitate the isolation of different neural crest derivatives in the skin.
Collapse
Affiliation(s)
- Shize Ma
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiu Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Cao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Guoqin Zhan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Fu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran Xiao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhigang Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Abstract
Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.
Collapse
Affiliation(s)
- Patricia P Centeno
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valeria Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Oncodrug Ltd, Alderly Park, Macclesfield, UK.
| |
Collapse
|
18
|
Doda D, Jimenez SA, Rehrauer H, Carre O JF, Valsamides V, Santo SD, Widmer HR, Edge A, Locher H, van der Valk W, Zhang J, Koehler KR, Roccio M. Human pluripotent stem cells-derived inner ear organoids recapitulate otic development in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536448. [PMID: 37090562 PMCID: PMC10120641 DOI: 10.1101/2023.04.11.536448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Our molecular understanding of the early stages of human inner ear development has been limited by the difficulty in accessing fetal samples at early gestational stages. As an alternative, previous studies have shown that inner ear morphogenesis can be partially recapitulated using induced pluripotent stem cells (iPSCs) directed to differentiate into Inner Ear Organoids (IEOs). Once validated and benchmarked, these systems could represent unique tools to complement and refine our understanding of human otic differentiation and model developmental defects. Here, we provide the first direct comparisons of the early human embryonic otocyst and human iPSC-derived IEOs. We use multiplexed immunostaining, and single-cell RNA sequencing to characterize IEOs at three key developmental steps, providing a new and unique signature of in vitro derived otic -placode, -epithelium, -neuroblasts, and -sensory epithelia. In parallel, we evaluate the expression and localization of critical markers at these equivalent stages in human embryos. We show that the placode derived in vitro (days 8-12) has similar marker expression to the developing otic placode of Carnegie Stage (CS) 11 embryos and subsequently (days 20-40) this gives rise to otic epithelia and neuroblasts comparable to the CS13 embryonic stage. Differentiation of sensory epithelia, including supporting cells and hair cells starts in vitro at days 50-60 of culture. The maturity of these cells is equivalent to vestibular sensory epithelia at week 10 or cochlear tissue at week 12 of development, before functional onset. Together, our data indicate that the current state-of-the-art protocol enables the specification of bona fide otic tissue, supporting the further application of IEOs to inform inner ear biology and disease.
Collapse
|
19
|
Subkhankulova T, Camargo Sosa K, Uroshlev LA, Nikaido M, Shriever N, Kasianov AS, Yang X, Rodrigues FSLM, Carney TJ, Bavister G, Schwetlick H, Dawes JHP, Rocco A, Makeev VJ, Kelsh RN. Zebrafish pigment cells develop directly from persistent highly multipotent progenitors. Nat Commun 2023; 14:1258. [PMID: 36878908 PMCID: PMC9988989 DOI: 10.1038/s41467-023-36876-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Neural crest cells are highly multipotent stem cells, but it remains unclear how their fate restriction to specific fates occurs. The direct fate restriction model hypothesises that migrating cells maintain full multipotency, whilst progressive fate restriction envisages fully multipotent cells transitioning to partially-restricted intermediates before committing to individual fates. Using zebrafish pigment cell development as a model, we show applying NanoString hybridization single cell transcriptional profiling and RNAscope in situ hybridization that neural crest cells retain broad multipotency throughout migration and even in post-migratory cells in vivo, with no evidence for partially-restricted intermediates. We find that leukocyte tyrosine kinase early expression marks a multipotent stage, with signalling driving iridophore differentiation through repression of fate-specific transcription factors for other fates. We reconcile the direct and progressive fate restriction models by proposing that pigment cell development occurs directly, but dynamically, from a highly multipotent state, consistent with our recently-proposed Cyclical Fate Restriction model.
Collapse
Affiliation(s)
| | - Karen Camargo Sosa
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Leonid A Uroshlev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
| | - Masataka Nikaido
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo Pref., 678-1297, Japan
| | - Noah Shriever
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- A.A. Kharkevich Institute for Information Transmission Problems (IITP), Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051, Russia
| | - Xueyan Yang
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- The MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | | | - Thomas J Carney
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, 59 Nanyang Drive, Yunnan Garden, 636921, Singapore
| | - Gemma Bavister
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, GU2 7XH, Guildford, UK
- Department of Physics, FEPS, University of Surrey, GU2 7XH, Guildford, UK
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- Laboratory 'Regulatory Genomics', Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Robert N Kelsh
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
20
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
21
|
Zhang X, Xiong Q, Lin W, Wang Q, Zhang D, Xu R, Zhou X, Zhang S, Peng L, Yuan Q. Schwann Cells Contribute to Alveolar Bone Regeneration by Promoting Cell Proliferation. J Bone Miner Res 2023; 38:119-130. [PMID: 36331097 DOI: 10.1002/jbmr.4735] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The plasticity of Schwann cells (SCs) following nerve injury is a critical feature in the regeneration of peripheral nerves as well as surrounding tissues. Here, we show a pivotal role of Schwann cell-derived cells in alveolar bone regeneration through the specific ablation of proteolipid protein 1 (Plp)-expressing cells and the transplantation of teased nerve fibers and associated cells. With inducible Plp specific genetic tracing, we observe that Plp+ cells migrate into wounded alveolar defect and dedifferentiate into repair SCs. Notably, these cells barely transdifferentiate into osteogenic cell lineage in both SCs tracing model and transplant model, but secret factors to enhance the proliferation of alveolar skeletal stem cells (aSSCs). As to the mechanism, this effect is associated with the upregulation of extracellular matrix (ECM) receptors and receptor tyrosine kinases (RTKs) signaling and the downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide 3-kinase-protein kinase B (PI3K-Akt) pathway. Collectively, our data demonstrate that SCs dedifferentiate after neighboring alveolar bone injury and contribute to bone regeneration mainly by a paracrine function. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Peng
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
23
|
Kastriti ME, Faure L, Von Ahsen D, Bouderlique TG, Boström J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, Lallemend F, Erickson A, Kaucka M, Dyachuk V, Perlmann T, Lahti L, Krivanek J, Brunet J, Fried K, Adameyko I. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 2022; 41:e108780. [PMID: 35815410 PMCID: PMC9434083 DOI: 10.15252/embj.2021108780] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Molecular Neuroscience, Center for Brain ResearchMedical University ViennaViennaAustria
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Dorothea Von Ahsen
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | | | - Johan Boström
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Tatiana Solovieva
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Cameron Jackson
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Marianne Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Dies Meijer
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Saida Hadjab
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Alek Erickson
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | | - Thomas Perlmann
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Laura Lahti
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jean‐Francois Brunet
- Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, École Normale SupérieurePSL Research UniversityParisFrance
| | - Kaj Fried
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Igor Adameyko
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| |
Collapse
|
24
|
Bonnamour G, Charrier B, Sallis S, Leduc E, Pilon N. NR2F1 regulates a Schwann cell precursor-vs-melanocyte cell fate switch in a mouse model of Waardenburg syndrome type IV. Pigment Cell Melanoma Res 2022; 35:506-516. [PMID: 35816394 DOI: 10.1111/pcmr.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
Waardenburg syndrome type 4 (WS4) combines abnormal development of neural crest cell (NCC)-derived melanocytes (causing depigmentation and inner ear dysfunction) and enteric nervous system (causing aganglionic megacolon). The full spectrum of WS4 phenotype is present in Spot mice, in which an insertional mutation close to a silencer element leads to NCC-specific upregulation of the transcription factor-coding gene Nr2f1. These mice were previously found to develop aganglionic megacolon because of NR2F1-induced premature differentiation of enteric neural progenitors into enteric glia. Intriguingly, this prior work also showed that inner ear dysfunction in Spot mutants specifically affects balance but not hearing, consistent with the absence of melanocytes in the vestibule only. Here, we report an analysis of the effect of Nr2f1 upregulation on the development of both inner ear and skin melanocytes, also taking in consideration their origin relative to the dorsolateral and ventral NCC migration pathways. In the trunk, we found that NR2F1 overabundance in Spot NCCs forces dorso-laterally migrating melanoblasts to abnormally adopt a Schwann cell precursor (SCP) fate and conversely prevents ventrally migrating SCPs to normally adopt a melanoblast fate. In the head, Nr2f1 upregulation appears not to be uniform, which might explain why SCP-derived melanocytes do colonize the cochlea while non-SCP-derived melanocytes cannot reach the vestibule. Collectively, these data point to a key role for NR2F1 in the control of SCP-vs-melanocyte fate choice and unveil a new pathogenic mechanism for WS4. Moreover, our data argue against the proposed existence of a transit-amplifying compartment of melanocyte precursors in hair follicles.
Collapse
Affiliation(s)
- Grégoire Bonnamour
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Baptiste Charrier
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Sephora Sallis
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada.,Département de Pédiatrie, Université de Montréal, Montréal, Canada
| |
Collapse
|
25
|
Renauld JM, Khan V, Basch ML. Intermediate Cells of Dual Embryonic Origin Follow a Basal to Apical Gradient of Ingression Into the Lateral Wall of the Cochlea. Front Cell Dev Biol 2022; 10:867153. [PMID: 35372344 PMCID: PMC8964366 DOI: 10.3389/fcell.2022.867153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 01/20/2023] Open
Abstract
Intermediate cells of the stria vascularis are neural crest derived melanocytes. They are essential for the establishment of the endocochlear potential in the inner ear, which allows mechanosensory hair cells to transduce sound into nerve impulses. Despite their importance for normal hearing, how these cells develop and migrate to their position in the lateral wall of the cochlea has not been studied. We find that as early as E10.5 some Schwann cell precursors in the VIIIth ganglion begin to express melanocyte specific markers while neural crest derived melanoblasts migrate into the otic vesicle. Intermediate cells of both melanoblast and Schwann cell precursor origin ingress into the lateral wall of the cochlea starting at around E15.5 following a basal to apical gradient during embryonic development, and continue to proliferate postnatally.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Vibhuti Khan
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Martín L Basch
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Otolaryngology, Head and Neck Surgery, University Hospitals, Cleveland, OH, United States
| |
Collapse
|
26
|
Erickson AG, Kameneva P, Adameyko I. The transcriptional portraits of the neural crest at the individual cell level. Semin Cell Dev Biol 2022; 138:68-80. [PMID: 35260294 PMCID: PMC9441473 DOI: 10.1016/j.semcdb.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023]
Abstract
Since the discovery of this cell population by His in 1850, the neural crest has been under intense study for its important role during vertebrate development. Much has been learned about the function and regulation of neural crest cell differentiation, and as a result, the neural crest has become a key model system for stem cell biology in general. The experiments performed in embryology, genetics, and cell biology in the last 150 years in the neural crest field has given rise to several big questions that have been debated intensely for many years: "How does positional information impact developmental potential? Are neural crest cells individually multipotent or a mixed population of committed progenitors? What are the key factors that regulate the acquisition of stem cell identity, and how does a stem cell decide to differentiate towards one cell fate versus another?" Recently, a marriage between single cell multi-omics, statistical modeling, and developmental biology has shed a substantial amount of light on these questions, and has paved a clear path for future researchers in the field.
Collapse
Affiliation(s)
- Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Polina Kameneva
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria.
| |
Collapse
|
27
|
Masamsetti VP, Tam PPL. Identification and Visualization of Protein Expression in Whole Mouse Embryos by Immunofluorescence. Methods Mol Biol 2022; 2490:39-45. [PMID: 35486237 DOI: 10.1007/978-1-0716-2281-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mouse embryo studies are pivotal for the understanding of early development. Analysis of the spatial and temporal changes of protein expression during development of a mouse embryo allows us to identify the genetic basis of errors of development in animal disease models. Immunofluorescence is a powerful technique to study the localization and variation in expression pattern of specific proteins in cells, tissues, and organs. Detecting the antigens with their specific antibodies labeled with fluorescent probes allows visualization of proteins at the cellular level. Here, we provide the optimized protocol of immunostaining whole mouse embryos at embryonic stages E7.5 to E11.5.
Collapse
Affiliation(s)
- V Pragathi Masamsetti
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia.
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Westmead, NSW, Australia.
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
28
|
Dawes JHP, Kelsh RN. Cell Fate Decisions in the Neural Crest, from Pigment Cell to Neural Development. Int J Mol Sci 2021; 22:13531. [PMID: 34948326 PMCID: PMC8706606 DOI: 10.3390/ijms222413531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.
Collapse
Affiliation(s)
- Jonathan H. P. Dawes
- Centre for Networks and Collective Behaviour, University of Bath, Bath BA2 7AY, UK;
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | - Robert N. Kelsh
- Centre for Mathematical Biology, University of Bath, Bath BA2 7AY, UK
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
29
|
Colombo S, Petit V, Wagner RY, Champeval D, Yajima I, Gesbert F, Aktary Z, Davidson I, Delmas V, Larue L. Stabilization of β-catenin promotes melanocyte specification at the expense of the Schwann cell lineage. Development 2021; 149:274086. [PMID: 34878101 PMCID: PMC8917410 DOI: 10.1242/dev.194407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
The canonical Wnt/β-catenin pathway governs a multitude of developmental processes in various cell lineages, including the melanocyte lineage. Indeed, β-catenin regulates transcription of Mitf-M, the master regulator of this lineage. The first wave of melanocytes to colonize the skin is directly derived from neural crest cells, whereas the second wave of melanocytes is derived from Schwann cell precursors (SCPs). We investigated the influence of β-catenin in the development of melanocytes of the first and second waves by generating mice expressing a constitutively active form of β-catenin in cells expressing tyrosinase. Constitutive activation of β-catenin did not affect the development of truncal melanoblasts but led to marked hyperpigmentation of the paws. By activating β-catenin at various stages of development (E8.5-E11.5), we showed that the activation of β-catenin in bipotent SCPs favored melanoblast specification at the expense of Schwann cells in the limbs within a specific temporal window. Furthermore, in vitro hyperactivation of the Wnt/β-catenin pathway, which is required for melanocyte development, induces activation of Mitf-M, in turn repressing FoxD3 expression. In conclusion, β-catenin overexpression promotes SCP cell fate decisions towards the melanocyte lineage. Summary: Activation of β-catenin in bipotent Schwann cell precursors during a specific developmental window induces Mitf and represses FoxD3 to promote melanoblast cell fate at the expense of Schwann cells in limbs.
Collapse
Affiliation(s)
- Sophie Colombo
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Valérie Petit
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Roselyne Y Wagner
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Delphine Champeval
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Ichiro Yajima
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Franck Gesbert
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Zackie Aktary
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Irwin Davidson
- Equipes Labellisées Ligue Contre le Cancer, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404 Illkirch Cedex. Department of Functional Genomics and Cancer, France
| | - Véronique Delmas
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| |
Collapse
|
30
|
Kelsh RN, Camargo Sosa K, Farjami S, Makeev V, Dawes JHP, Rocco A. Cyclical fate restriction: a new view of neural crest cell fate specification. Development 2021; 148:273451. [PMID: 35020872 DOI: 10.1242/dev.176057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural crest cells are crucial in development, not least because of their remarkable multipotency. Early findings stimulated two hypotheses for how fate specification and commitment from fully multipotent neural crest cells might occur, progressive fate restriction (PFR) and direct fate restriction, differing in whether partially restricted intermediates were involved. Initially hotly debated, they remain unreconciled, although PFR has become favoured. However, testing of a PFR hypothesis of zebrafish pigment cell development refutes this view. We propose a novel 'cyclical fate restriction' hypothesis, based upon a more dynamic view of transcriptional states, reconciling the experimental evidence underpinning the traditional hypotheses.
Collapse
Affiliation(s)
- Robert N Kelsh
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Karen Camargo Sosa
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Saeed Farjami
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK
| | - Vsevolod Makeev
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK.,Department of Physics, FEPS, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
31
|
Martik ML, Bronner ME. Riding the crest to get a head: neural crest evolution in vertebrates. Nat Rev Neurosci 2021; 22:616-626. [PMID: 34471282 PMCID: PMC10168595 DOI: 10.1038/s41583-021-00503-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
In their seminal 1983 paper, Gans and Northcutt proposed that evolution of the vertebrate 'new head' was made possible by the advent of the neural crest and cranial placodes. The neural crest is a stem cell population that arises adjacent to the forming CNS and contributes to important cell types, including components of the peripheral nervous system and craniofacial skeleton and elements of the cardiovascular system. In the past few years, the new head hypothesis has been challenged by the discovery in invertebrate chordates of cells with some, but not all, characteristics of vertebrate neural crest cells. Here, we discuss recent findings regarding how neural crest cells may have evolved during the course of deuterostome evolution. The results suggest that there was progressive addition of cell types to the repertoire of neural crest derivatives throughout vertebrate evolution. Novel genomic tools have enabled higher resolution insight into neural crest evolution, from both a cellular and a gene regulatory perspective. Together, these data provide clues regarding the ancestral neural crest state and how the neural crest continues to evolve to contribute to the success of vertebrates as efficient predators.
Collapse
Affiliation(s)
- Megan L Martik
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Marianne E Bronner
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
32
|
Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cell Mol Life Sci 2021; 78:6033-6049. [PMID: 34274976 PMCID: PMC8316242 DOI: 10.1007/s00018-021-03885-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.
Collapse
|
33
|
Kameneva P, Artemov AV, Kastriti ME, Faure L, Olsen TK, Otte J, Erickson A, Semsch B, Andersson ER, Ratz M, Frisén J, Tischler AS, de Krijger RR, Bouderlique T, Akkuratova N, Vorontsova M, Gusev O, Fried K, Sundström E, Mei S, Kogner P, Baryawno N, Kharchenko PV, Adameyko I. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet 2021; 53:694-706. [PMID: 33833454 PMCID: PMC7610777 DOI: 10.1038/s41588-021-00818-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thale K Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jörg Otte
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alek Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Bettina Semsch
- Department of Comparative Medicine, Karolinska Institutet, Solna, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology CS, Utrecht, the Netherlands
- Deptartment of Pathology, University Medical Center Utrecht CX, Utrecht, the Netherlands
| | - Thibault Bouderlique
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia
| | - Maria Vorontsova
- Endocrinology Research Centre, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- RIKEN Innovation Center, RIKEN, Yokohama, Japan
- Center for Life Science Technologies, RIKEN, Yokohama, Japan
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Fan X, Masamsetti VP, Sun JQ, Engholm-Keller K, Osteil P, Studdert J, Graham ME, Fossat N, Tam PP. TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation. eLife 2021; 10:62873. [PMID: 33554859 PMCID: PMC7968925 DOI: 10.7554/elife.62873] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Protein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labeling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cells (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal differentiation of NCCs and compromised craniofacial tissue patterning. Following NCC delamination, low level of TWIST1-CRM activity is instrumental to stabilize the early NCC signatures and migratory potential by repressing the neural stem cell programs. High level of TWIST1 module activity at later phases commits the cells to the ectomesenchyme. Our study further revealed the functional interdependency of TWIST1 and potential neurocristopathy factors in NCC development. Shaping the head and face during development relies on a complex ballet of molecular signals that orchestrates the movement and specialization of various groups of cells. In animals with a backbone for example, neural crest cells (NCCs for short) can march long distances from the developing spine to become some of the tissues that form the skull and cartilage but also the pigment cells and nervous system. NCCs mature into specific cell types thanks to a complex array of factors which trigger a precise sequence of binary fate decisions at the right time and place. Amongst these factors, the protein TWIST1 can set up a cascade of genetic events that control how NCCs will ultimately form tissues in the head. To do so, the TWIST1 protein interacts with many other molecular actors, many of which are still unknown. To find some of these partners, Fan et al. studied TWIST1 in the NCCs of mice and cells grown in the lab. The experiments showed that TWIST1 interacted with CHD7, CHD8 and WHSC1, three proteins that help to switch genes on and off, and which contribute to NCCs moving across the head during development. Further work by Fan et al. then revealed that together, these molecular actors are critical for NCCs to form cells that will form facial bones and cartilage, as opposed to becoming neurons. This result helps to show that there is a trade-off between NCCs forming the face or being part of the nervous system. One in three babies born with a birth defect shows anomalies of the head and face: understanding the exact mechanisms by which NCCs contribute to these structures may help to better predict risks for parents, or to develop new approaches for treatment.
Collapse
Affiliation(s)
- Xiaochen Fan
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - V Pragathi Masamsetti
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Jane Qj Sun
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Kasper Engholm-Keller
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Joshua Studdert
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Mark E Graham
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Patrick Pl Tam
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
35
|
Renauld JM, Davis W, Cai T, Cabrera C, Basch ML. Transcriptomic analysis and ednrb expression in cochlear intermediate cells reveal developmental differences between inner ear and skin melanocytes. Pigment Cell Melanoma Res 2021; 34:585-597. [PMID: 33484097 PMCID: PMC8186279 DOI: 10.1111/pcmr.12961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
Abstract
In the inner ear, the neural crest gives rise to the glia of the VIII ganglion and two types of melanocytic cells: The pigmented cells of the vestibular system and intermediate cells of the stria vascularis. We analyzed the transcriptome of neonatal intermediate cells in an effort to better understand the development of the stria vascularis. We found that the expression of endothelin receptor B, which is essential for melanocyte development, persists in intermediate cells long after birth. In contrast, skin melanocytes rapidly downregulate the expression of EdnrB. Our findings suggest that endothelins might have co‐opted new functions in the inner ear during evolution of the auditory organ.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - William Davis
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Cabrera
- Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, OH, USA
| | - Martin L Basch
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, OH, USA.,Department of Biology, Case Western Reserve School of Medicine, Cleveland, OH, USA
| |
Collapse
|
36
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Matsumoto Y, Nagayama H, Nakaoka H, Toyoda A, Goto T, Koide T. Combined change of behavioral traits for domestication and gene-networks in mice selectively bred for active tameness. GENES BRAIN AND BEHAVIOR 2021; 20:e12721. [PMID: 33314580 PMCID: PMC7988575 DOI: 10.1111/gbb.12721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/02/2023]
Abstract
Tameness is a major element of animal domestication and involves two components: motivation to approach humans (active tameness) and reluctance to avoid humans (passive tameness). To understand the behavioral and genetic mechanisms of active tameness in mice, we had previously conducted selective breeding for long durations of contact and heading toward human hands in an active tameness test using a wild-derived heterogeneous stock. Although the study showed a significant increase in contacting and heading with the 12th generation of breeding, the effect on other behavioral indices related to tameness and change of gene expression levels underlying selective breeding was unclear. Here, we analyzed nine tameness-related traits at a later stage of selective breeding and analyzed how gene expression levels were changed by the selective breeding. We found that five traits, including contacting and heading, showed behavioral change in the selective groups comparing to the control through the generations. Furthermore, we conducted cluster analyses to evaluate the relationships among the nine traits and found that contacting and heading combined in an independent cluster in the selected groups, but not in the control groups. RNA-Seq of hippocampal tissue revealed differential expression of 136 genes between the selection and control groups, while the pathway analysis identified the networks associated with these genes. These results suggest that active tameness was hidden in the control groups but became apparent in the selected populations by selective breeding, potentially driven by changes in gene expression networks.
Collapse
Affiliation(s)
- Yuki Matsumoto
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan.,Anicom Specialty Medical Institute Inc., Chojamachi, Yokohamashi-Nakaku, Kanagawaken, Japan
| | - Hiromichi Nagayama
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Hirofumi Nakaoka
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan.,Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tatsuhiko Goto
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| |
Collapse
|
38
|
Kameneva P, Kastriti ME, Adameyko I. Neuronal lineages derived from the nerve-associated Schwann cell precursors. Cell Mol Life Sci 2021; 78:513-529. [PMID: 32748156 PMCID: PMC7873084 DOI: 10.1007/s00018-020-03609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/18/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
For a long time, neurogenic placodes and migratory neural crest cells were considered the immediate sources building neurons of peripheral nervous system. Recently, a number of discoveries revealed the existence of another progenitor type-a nerve-associated multipotent Schwann cell precursors (SCPs) building enteric and parasympathetic neurons as well as neuroendocrine chromaffin cells. SCPs are neural crest-derived and are similar to the crest cells by their markers and differentiation potential. Such similarities, but also considerable differences, raise many questions pertaining to the medical side, fundamental developmental biology and evolution. Here, we discuss the genesis of Schwann cell precursors, their role in building peripheral neural structures and ponder on their role in the origin in congenial diseases associated with peripheral nervous systems.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden.
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria.
| |
Collapse
|
39
|
Schock EN, LaBonne C. Sorting Sox: Diverse Roles for Sox Transcription Factors During Neural Crest and Craniofacial Development. Front Physiol 2020; 11:606889. [PMID: 33424631 PMCID: PMC7793875 DOI: 10.3389/fphys.2020.606889] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Sox transcription factors play many diverse roles during development, including regulating stem cell states, directing differentiation, and influencing the local chromatin landscape. Of the twenty vertebrate Sox factors, several play critical roles in the development the neural crest, a key vertebrate innovation, and the subsequent formation of neural crest-derived structures, including the craniofacial complex. Herein, we review the specific roles for individual Sox factors during neural crest cell formation and discuss how some factors may have been essential for the evolution of the neural crest. Additionally, we describe how Sox factors direct neural crest cell differentiation into diverse lineages such as melanocytes, glia, and cartilage and detail their involvement in the development of specific craniofacial structures. Finally, we highlight several SOXopathies associated with craniofacial phenotypes.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
40
|
Diener J, Sommer L. Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Transl Med 2020; 10:522-533. [PMID: 33258291 PMCID: PMC7980219 DOI: 10.1002/sctm.20-0351] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest of all skin cancers due to its high metastatic potential. In recent years, advances in targeted therapy and immunotherapy have contributed to a remarkable progress in the treatment of metastatic disease. However, intrinsic or acquired resistance to such therapies remains a major obstacle in melanoma treatment. Melanoma disease progression, beginning from tumor initiation and growth to acquisition of invasive phenotypes and metastatic spread and acquisition of treatment resistance, has been associated with cellular dedifferentiation and the hijacking of gene regulatory networks reminiscent of the neural crest (NC)—the developmental structure which gives rise to melanocytes and hence melanoma. This review summarizes the experimental evidence for the involvement of NC stem cell (NCSC)‐like cell states during melanoma progression and addresses novel approaches to combat the emergence of stemness characteristics that have shown to be linked with aggressive disease outcome and drug resistance.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| | - Lukas Sommer
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| |
Collapse
|
41
|
Perera SN, Williams RM, Lyne R, Stubbs O, Buehler DP, Sauka-Spengler T, Noda M, Micklem G, Southard-Smith EM, Baker CVH. Insights into olfactory ensheathing cell development from a laser-microdissection and transcriptome-profiling approach. Glia 2020; 68:2550-2584. [PMID: 32857879 PMCID: PMC7116175 DOI: 10.1002/glia.23870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Olfactory ensheathing cells (OECs) are neural crest-derived glia that ensheath bundles of olfactory axons from their peripheral origins in the olfactory epithelium to their central targets in the olfactory bulb. We took an unbiased laser microdissection and differential RNA-seq approach, validated by in situ hybridization, to identify candidate molecular mechanisms underlying mouse OEC development and differences with the neural crest-derived Schwann cells developing on other peripheral nerves. We identified 25 novel markers for developing OECs in the olfactory mucosa and/or the olfactory nerve layer surrounding the olfactory bulb, of which 15 were OEC-specific (that is, not expressed by Schwann cells). One pan-OEC-specific gene, Ptprz1, encodes a receptor-like tyrosine phosphatase that blocks oligodendrocyte differentiation. Mutant analysis suggests Ptprz1 may also act as a brake on OEC differentiation, and that its loss disrupts olfactory axon targeting. Overall, our results provide new insights into OEC development and the diversification of neural crest-derived glia.
Collapse
Affiliation(s)
- Surangi N. Perera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ruth M. Williams
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Lyne
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Oliver Stubbs
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Dennis P. Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Gos Micklem
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Clare V. H. Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Perera SN, Kerosuo L. On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. STEM CELLS (DAYTON, OHIO) 2020; 39:7-25. [PMID: 33017496 PMCID: PMC7821161 DOI: 10.1002/stem.3283] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Unique to vertebrates, the neural crest (NC) is an embryonic stem cell population that contributes to a greatly expanding list of derivatives ranging from neurons and glia of the peripheral nervous system, facial cartilage and bone, pigment cells of the skin to secretory cells of the endocrine system. Here, we focus on what is specifically known about establishment and maintenance of NC stemness and ultimate fate commitment mechanisms, which could help explain its exceptionally high stem cell potential that exceeds the "rules set during gastrulation." In fact, recent discoveries have shed light on the existence of NC cells that coexpress commonly accepted pluripotency factors like Nanog, Oct4/PouV, and Klf4. The coexpression of pluripotency factors together with the exceptional array of diverse NC derivatives encouraged us to propose a new term "pleistopotent" (Greek for abundant, a substantial amount) to be used to reflect the uniqueness of the NC as compared to other post-gastrulation stem cell populations in the vertebrate body, and to differentiate them from multipotent lineage restricted stem cells. We also discuss studies related to the maintenance of NC stemness within the challenging context of being a transient and thus a constantly changing population of stem cells without a permanent niche. The discovery of the stem cell potential of Schwann cell precursors as well as multiple adult NC-derived stem cell reservoirs during the past decade has greatly increased our understanding of how NC cells contribute to tissues formed after its initial migration stage in young embryos.
Collapse
Affiliation(s)
- Surangi N Perera
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Bonnamour G, Soret R, Pilon N. Dhh-expressing Schwann cell precursors contribute to skin and cochlear melanocytes, but not to vestibular melanocytes. Pigment Cell Melanoma Res 2020; 34:648-654. [PMID: 33089656 DOI: 10.1111/pcmr.12938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/18/2022]
Abstract
For a long time, melanocytes were believed to be exclusively derived from neural crest cells migrating from the neural tube toward the developing skin. This notion was then challenged by studies suggesting that melanocytes could also be made from neural crest-derived Schwann cell precursors (SCPs) on peripheral nerves. A SCP origin was inferred from lineage tracing studies in mice using a Plp1 promoter-controlled Cre driver transgene (Plp1-CreERT2) and a fluorescent Rosa26 locus-controlled Cre reporter allele (Rosa26FloxSTOP-YFP ). However, doubts were raised in part because another SCP-directed Cre driver controlled by the Dhh promoter (Dhh-Cre) was apparently unable to label melanocytes when used with a non-fluorescent Rosa26 locus-controlled Cre reporter (Rosa26FloxSTOP-LacZ ). Here, we report that the same Dhh-Cre driver line can efficiently label melanocytes when used in a pure FVB/N background together with the fluorescent instead of the non-fluorescent Rosa26 locus-controlled Cre reporter. Our data further suggest that the vast majority of skin melanocytes are SCP-derived. Interestingly, we also discovered that SCPs contribute inner ear melanocytes in a region-specific manner, extensively contributing to the cochlea but not to the vestibule.
Collapse
Affiliation(s)
- Grégoire Bonnamour
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréa, QC, Canada.,Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréa, QC, Canada.,Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréa, QC, Canada.,Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada.,Département de pédiatrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
44
|
van Beelen ESA, van der Valk WH, de Groot JCMJ, Hensen EF, Locher H, van Benthem PPG. Migration and fate of vestibular melanocytes during the development of the human inner ear. Dev Neurobiol 2020; 80:411-432. [PMID: 33075185 PMCID: PMC7894185 DOI: 10.1002/dneu.22786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Melanocytes are present in various parts of the inner ear, including the stria vascularis in the cochlea and the dark cell areas in the vestibular organs, where they contribute to endolymph homeostasis. Developmental studies describing the distribution of vestibular melanocytes are scarce, especially in humans. In this study, we investigated the distribution and maturation of the vestibular melanocytes in relation to the developing dark cell epithelium in inner ear specimens from week 5 to week 14 of development and in surgical specimens of the adult ampulla. Vestibular melanocytes were located around the utricle and the ampullae of the semicircular canals before week 7 and were first seen underneath the transitional zones and dark cell areas between week 8 and week 10. At week 10, melanocytes made intimate contact with epithelial cells, interrupting the local basement membrane with their dendritic processes. At week 11, most melanocytes were positioned under the dark cell epithelia. No melanocytes were seen around or in the saccule during all investigated developmental stages. The dark cell areas gradually matured and showed an adult immunohistochemical profile of the characteristic ion transporter protein Na+/K+‐ATPase α1 by week 14. Furthermore, we investigated the expression of the migration‐related proteins ECAD, PCAD, KIT, and KITLG in melanocytes and dark cell epithelium. This is the first study to describe the spatiotemporal distribution of vestibular melanocytes during the human development and thereby contributes to understanding normal vestibular function and pathophysiological mechanisms underlying vestibular disorders.
Collapse
Affiliation(s)
- Edward S A van Beelen
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter H van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - John C M J de Groot
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik F Hensen
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Heiko Locher
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Paul G van Benthem
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
45
|
Vidal A, Redmer T. Decoding the Role of CD271 in Melanoma. Cancers (Basel) 2020; 12:cancers12092460. [PMID: 32878000 PMCID: PMC7564075 DOI: 10.3390/cancers12092460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations strongly determine tumor progression, additional factors are likely required and prerequisite for melanoma formation. Melanocytes are formed during vertebrate development in a well-controlled differentiation process of multipotent neural crest stem cells (NCSCs). However, mechanisms determining the properties of melanocytes and melanoma cells are still not well understood. The nerve growth factor receptor CD271 is likewise expressed in melanocytes, melanoma cells and NCSCs and programs the maintenance of a stem-like and migratory phenotype via a comprehensive network of associated genes. Moreover, CD271 regulates phenotype switching, a process that enables the rapid and reversible conversion of proliferative into invasive or non-stem-like states into stem-like states by yet largely unknown mechanisms. Here, we summarize current findings about CD271-associated mechanisms in melanoma cells and illustrate the role of CD271 for melanoma cell migration and metastasis, phenotype-switching, resistance to therapeutic interventions, and the maintenance of an NCSC-like state.
Collapse
|
46
|
Hida T, Kamiya T, Kawakami A, Ogino J, Sohma H, Uhara H, Jimbow K. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int J Mol Sci 2020; 21:ijms21176129. [PMID: 32854423 PMCID: PMC7503925 DOI: 10.3390/ijms21176129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Melanogenesis is the biological and biochemical process of melanin and melanosome biosynthesis. Melanin is formed by enzymic reactions of tyrosinase family proteins that convert tyrosine to form brown-black eumelanin and yellow-red pheomelanin within melanosomal compartments in melanocytes, following the cascades of events interacting with a series of autocrine and paracrine signals. Fully melanized melanosomes are delivered to keratinocytes of the skin and hair. The symbiotic relation of a melanocyte and an associated pool of keratinocytes is called epidermal melanin unit (EMU). Microphthalmia-associated transcription factor (MITF) plays a vital role in melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes for promoting melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis. Diseases involving alterations of EMU show various forms of pigmentation phenotypes. This review introduces four major topics of melanogenesis cascade that include (1) melanocyte development and differentiation, (2) melanogenesis and intracellular trafficking for melanosome biosynthesis, (3) melanin pigmentation and pigment-type switching, and (4) development of a novel therapeutic approach for malignant melanoma by elucidation of melanogenesis cascade.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
| | - Jiro Ogino
- Department of Pathology, JR Sapporo Hospital, Sapporo 060-0033, Hokkaido, Japan;
| | - Hitoshi Sohma
- Department of Biomedical Engineering, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan;
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Kowichi Jimbow
- Institute of Dermatology & Cutaneous Sciences, Sapporo 060-0042, Hokkaido, Japan
- Correspondence: ; Tel.: +81-11-887-8266
| |
Collapse
|
47
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
48
|
McMenamin PG, Shields GT, Seyed-Razavi Y, Kalirai H, Insall RH, Machesky LM, Coupland SE. Melanoblasts Populate the Mouse Choroid Earlier in Development Than Previously Described. Invest Ophthalmol Vis Sci 2020; 61:33. [PMID: 32797202 PMCID: PMC7441366 DOI: 10.1167/iovs.61.10.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Human choroidal melanocytes become evident in the last trimester of development, but very little is known about them. To better understand normal and diseased choroidal melanocyte biology we examined their precursors, melanoblasts (MB), in mouse eyes during development, particularly their relation to the developing vasculature and immune cells. Methods Naïve B6(Cg)-Tyrc-2J/J albino mice were used between embryonic (E) day 15.5 and postnatal (P) day 8, with adult controls. Whole eyes, posterior segments, or dissected choroidal wholemounts were stained with antibodies against tyrosinase-related protein 2, ionized calcium binding adaptor molecule-1 or isolectin B4, and examined by confocal microscopy. Immunoreactive cell numbers in the choroid were quantified with Imaris. One-way ANOVA with Tukey's post hoc test assessed statistical significance. Results Small numbers of MB were present in the presumptive choroid at E15.5 and E18.5. The density significantly increased between E18.5 (381.4 ± 45.8 cells/mm2) and P0 (695.2 ± 87.1 cells/mm2; P = 0.032). In postnatal eyes MB increased in density and formed multiple layers beneath the choriocapillaris. MB in the periocular mesenchyme preceded the appearance of vascular structures at E15.5. Myeloid cells (Ionized calcium binding adaptor molecule-1-positive) were also present at high densities from this time, and attained adult-equivalent densities by P8 (556.4 ± 73.6 cells/mm2). Conclusions We demonstrate that choroidal MB and myeloid cells are both present at very early stages of mouse eye development (E15.5). Although MB and vascularization seemed to be unlinked early in choroidal development, they were closely associated at later stages. MB did not migrate into the choroid in waves, nor did they have a consistent relationship with nerves.
Collapse
Affiliation(s)
- Paul G. McMenamin
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Graham T. Shields
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yashar Seyed-Razavi
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Robert H. Insall
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura M. Machesky
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
49
|
Eura N, Matsui TK, Luginbühl J, Matsubayashi M, Nanaura H, Shiota T, Kinugawa K, Iguchi N, Kiriyama T, Zheng C, Kouno T, Lan YJ, Kongpracha P, Wiriyasermkul P, Sakaguchi YM, Nagata R, Komeda T, Morikawa N, Kitayoshi F, Jong M, Kobashigawa S, Nakanishi M, Hasegawa M, Saito Y, Shiromizu T, Nishimura Y, Kasai T, Takeda M, Kobayashi H, Inagaki Y, Tanaka Y, Makinodan M, Kishimoto T, Kuniyasu H, Nagamori S, Muotri AR, Shin JW, Sugie K, Mori E. Brainstem Organoids From Human Pluripotent Stem Cells. Front Neurosci 2020; 14:538. [PMID: 32670003 PMCID: PMC7332712 DOI: 10.3389/fnins.2020.00538] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
The brainstem is a posterior region of the brain, composed of three parts, midbrain, pons, and medulla oblongata. It is critical in controlling heartbeat, blood pressure, and respiration, all of which are life-sustaining functions, and therefore, damages to or disorders of the brainstem can be lethal. Brain organoids derived from human pluripotent stem cells (hPSCs) recapitulate the course of human brain development and are expected to be useful for medical research on central nervous system disorders. However, existing organoid models are limited in the extent hPSCs recapitulate human brain development and hence are not able to fully elucidate the diseases affecting various components of the brain such as brainstem. Here, we developed a method to generate human brainstem organoids (hBSOs), containing midbrain/hindbrain progenitors, noradrenergic and cholinergic neurons, dopaminergic neurons, and neural crest lineage cells. Single-cell RNA sequence (scRNA-seq) analysis, together with evidence from proteomics and electrophysiology, revealed that the cellular population in these organoids was similar to that of the human brainstem, which raises the possibility of making use of hBSOs in investigating central nervous system disorders affecting brainstem and in efficient drug screenings.
Collapse
Affiliation(s)
- Nobuyuki Eura
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takeshi K. Matsui
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Joachim Luginbühl
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoki Nanaura
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomo Shiota
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Kaoru Kinugawa
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Naohiko Iguchi
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tsukasa Kouno
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Yan Jun Lan
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Pornparn Kongpracha
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Pattama Wiriyasermkul
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | | | - Riko Nagata
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Komeda
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Naritaka Morikawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Fumika Kitayoshi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Miyong Jong
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takahiko Kasai
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Maiko Takeda
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Yusuke Inagaki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Shushi Nagamori
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Alysson R. Muotri
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jay W. Shin
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
50
|
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med 2020; 9:445-464. [PMID: 31943813 PMCID: PMC7103623 DOI: 10.1002/sctm.19-0398] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Human pulp stem cells (PSCs) include dental pulp stem cells (DPSCs) isolated from dental pulp tissues of human extracted permanent teeth and stem cells from human exfoliated deciduous teeth (SHED). Depending on their multipotency and sensitivity to local paracrine activity, DPSCs and SHED exert therapeutic applications at multiple levels beyond the scope of the stomatognathic system. This review is specifically concentrated on PSC-updated biological characteristics and their promising therapeutic applications in (pre)clinical practice. Biologically, distinguished from conventional mesenchymal stem cell markers in vitro, NG2, Gli1, and Celsr1 have been evidenced as PSC markers in vivo. Both perivascular cells and glial cells account for PSC origin. Therapeutically, endodontic regeneration is where PSCs hold the most promises, attributable of PSCs' robust angiogenic, neurogenic, and odontogenic capabilities. More recently, the interplay between cell homing and liberated growth factors from dentin matrix has endowed a novel approach for pulp-dentin complex regeneration. In addition, PSC transplantation for extraoral tissue repair and regeneration has achieved immense progress, following their multipotential differentiation and paracrine mechanism. Accordingly, PSC banking is undergoing extensively with the intent of advancing tissue engineering, disease remodeling, and (pre)clinical treatments.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of OrthodonticsPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| |
Collapse
|