1
|
Jia H, Kaster N, Khan R, Ayari-Akkari A. The Roles of myomiRs in the Pathogenesis of Sarcopenia: From Literature to In Silico Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01373-0. [PMID: 40025274 DOI: 10.1007/s12033-025-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
Senile sarcopenia is a condition of age-associated muscular disorder and is a significant health issue around the world. In the current review, we curated the information from the NCBI, PubMed, and Google Scholar literature and explored the non-genetic and genetic causes of senile sarcopenia. Interestingly, the myomiRs such as miR-1, miR-206, miR-133a, miR-133b, miR-208b, and miR-499 are skeletal muscle's critical structural and functional regulators. However, very scattered information is available regarding the roles of myomiRs in different skeletal muscle phenotypes through a diverse list of known target genes. Therefore, these pieces of information must be organized to focus on the conserved target genes and comparable effects of the myomiRs in regulating senile sarcopenia. Hence, in the present review, the roles of pathogenetic factors in regulating senile sarcopenia were highlighted. The literature was further curated for the roles of myomiRs such as hsa-miR-1-3p/206, hsa-miR-27-3p, hsa-miR-146-5p, and hsa-miR-499-5p and their target genes. Additionally, we used different bioinformatics tools and predicted target genes of the myomiRs and found the most critical target genes, shared pathways, and their standard functions in regulating muscle structure and functions. The information gathered in the current review will help the researchers to explore their possible therapeutic potential, especially the use of the myomiRs for the treatment of senile sarcopenia.
Collapse
Affiliation(s)
- Huanxia Jia
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang, 461000, Henan, People's Republic of China
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana, Kazakhstan.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
2
|
Han DH, Gong SP. An Efficient Method for Enrichment and In Vitro Propagation of Muscle Stem Cells Derived from Black Sea Bream (Acanthopagrus schlegelii) Skeletal Muscle. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:49. [PMID: 39954121 DOI: 10.1007/s10126-025-10428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Muscle stem cells (MSCs) play a crucial role in muscle growth, repair, and regeneration, offering potential applications in cell-mediated therapy, tissue engineering, and alternative food production. Despite significant advancements in isolating and enriching MSCs from mammalian tissues, research on fish MSCs remains limited. This study aimed to establish an optimized protocol for isolating, enriching, and propagating black sea bream (Acanthopagrus schlegelii) MSCs for potential biotechnological applications. Skeletal muscle tissues were enzymatically dissociated using various enzymes, with collagenase type II and pronase identified as the most effective combination for cell isolation and tissue debris removal. Differential plating (DP) on collagen type I effectively enriched MSCs, as evidenced by a significant increase in Pax7 expression in non-adhesive cells. Among several adhesion substrates tested, Matrigel-coated dishes best supported the maintenance and differentiation potential of enriched MSCs, enabling robust myotube formation. To mitigate the high cost of Matrigel, cells were transitioned to laminin- or gelatin-coated dishes after the early passages. Notably, Matrigel-conditioned cells maintained their survival and differentiation capacities on these more cost-effective substrates. After long-term culture on gelatin-coated dishes, the cell lines were stably maintained for more than 25 passages, and their myogenic differentiation potentials were well preserved, with variations observed between the cell lines. These findings provide a foundational framework for the efficient isolation, enrichment, and culture of fish MSCs, contributing to the development of scalable and cost-effective protocols for their application in muscle biology and biotechnology.
Collapse
Affiliation(s)
- Dan Hee Han
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Korea
| | - Seung Pyo Gong
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Korea.
- Major in Aquaculture and Applied Life Science, Division of Fisheries Life Science, Pukyong National University, Busan, 48513, Korea.
| |
Collapse
|
3
|
Hoseini R, Hoseini Z, Kamangar A. Myogenic differentiation markers in muscle tissue after aerobic training. Heliyon 2025; 11:e41888. [PMID: 39897925 PMCID: PMC11787638 DOI: 10.1016/j.heliyon.2025.e41888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/21/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Aerobic training induces a myriad of adaptations in muscle tissue, encompassing alterations in muscle fiber type composition, hypertrophy, and metabolic capacity. Understanding the potential role of myogenic differentiation markers (MDFs), such as Pax7, MyoD, Myogenin, and myosin heavy chain (MHC) isoforms, in mediating these adaptations is of paramount importance. The review delves into the intricate molecular mechanisms underlying the regulation of MDFs following aerobic training, elucidating the role of key signaling pathways including the MAPK/ERK, PI3K/Akt, and AMPK pathways, among others. These pathways play pivotal roles in orchestrating the expression and activity of MDFs, ultimately influencing muscle adaptation and regeneration. The comprehension of MDFs in the context of aerobic training is far-reaching, offering the potential for targeted interventions to optimize muscle adaptation and regeneration. This review identifies the need for further research to unveil the precise molecular mechanisms of the activation and interaction of myogenic differentiation markers with other signaling pathways, as well as to explore their potential as therapeutic targets for muscle-related conditions. This review article also provides a thorough analysis of MDFs in muscle tissue after aerobic training, highlighting their potential clinical implications and outlining future research directions in this area.
Collapse
Affiliation(s)
- Rastegar Hoseini
- Assistant Professor of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Zahra Hoseini
- PhD of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ayob Kamangar
- PhD Student of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
4
|
Raiten J, Abd GM, Handelsman SB, Patel HV, Ku JC, Parsons AM, Wassink JL, Hayes SL, Overbay J, Li Y. Hypoxia-induced PD-L1 expression and modulation of muscle stem cell allograft rejection. Front Pharmacol 2024; 15:1471563. [PMID: 39555101 PMCID: PMC11564730 DOI: 10.3389/fphar.2024.1471563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Stem cell therapy has shown immense promise in treating genetic disorders, particularly muscular diseases like Duchenne muscular dystrophy (DMD). This study investigates a novel method to enhance the viability of stem cell transplants in DMD by upregulating Programmed Death Ligand 1 (PD-L1) in muscle stem cells (MuSCs) through preconditioning with hypoxia and/or interferon-γ (IFN-γ) to mitigate T cell immune rejection. MuSCs were treated with 5% hypoxia for 72 h and further treated with IFN-γ to enhance PD-L1 expression. Additionally, gain and loss experiments using a PD-L1 inhibitor (BMS-1) were conducted to investigate cellular expression profiles in vitro and cell transplantation outcomes in vivo. Our results showed significant upregulation of PD-L1 in MuSCs under hypoxia and IFN-γ conditions without affecting cellular proliferation and differentiation in vitro. In vivo, these preconditioned MuSCs led to decreased infiltration of CD4+ and CD8+ T cells in implanted limb muscles of mouse models. Blocking PD-L1 reduced graft survival in muscles treated with MuSCs. Conversely, increased PD-L1 expression and reduced T cell infiltration correlated with improved graft survival, as identified by pre-labeled LacZ + MuSCs following transplantation. This study provides evidence that hypoxia and IFN-γ preconditioning of MuSCs can significantly enhance the efficacy of cell therapy for DMD by mitigating immune rejection. Our strategic approach aimed to improve donor cell survival and function post-transplantation by modifying immune responses towards the donor cells.
Collapse
Affiliation(s)
- Jacob Raiten
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Genevieve M. Abd
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Shane B. Handelsman
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Harshank V. Patel
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Agata M. Parsons
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jonathan L. Wassink
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Sheridan L. Hayes
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Juliana Overbay
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
5
|
Ni M, He J, Li T, Zhao G, Ji Z, Ren F, Leng J, Wu M, Huang R, Li P, Hou L. Establishment and Characterization of SV40 T-Antigen Immortalized Porcine Muscle Satellite Cell. Cells 2024; 13:703. [PMID: 38667318 PMCID: PMC11049531 DOI: 10.3390/cells13080703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Muscle satellite cells (MuSCs) are crucial for muscle development and regeneration. The primary pig MuSCs (pMuSCs) is an ideal in vitro cell model for studying the pig's muscle development and differentiation. However, the long-term in vitro culture of pMuSCs results in the gradual loss of their stemness, thereby limiting their application. To address this conundrum and maintain the normal function of pMuSCs during in vitro passaging, we generated an immortalized pMuSCs (SV40 T-pMuSCs) by stably expressing SV40 T-antigen (SV40 T) using a lentiviral-based vector system. The SV40 T-pMuSCs can be stably sub-cultured for over 40 generations in vitro. An evaluation of SV40 T-pMuSCs was conducted through immunofluorescence staining, quantitative real-time PCR, EdU assay, and SA-β-gal activity. Their proliferation capacity was similar to that of primary pMuSCs at passage 1, and while their differentiation potential was slightly decreased. SiRNA-mediated interference of SV40 T-antigen expression restored the differentiation capability of SV40 T-pMuSCs. Taken together, our results provide a valuable tool for studying pig skeletal muscle development and differentiation.
Collapse
Affiliation(s)
- Mengru Ni
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingqing He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengyu Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Fada Ren
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
| | - Jianxin Leng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
| | - Mengyan Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
| | - Ruihua Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Huai’an Academy, Nanjing Agricultural University, Huai’an 223001, China
| | - Pinghua Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Huai’an Academy, Nanjing Agricultural University, Huai’an 223001, China
| | - Liming Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.N.); (J.H.); (T.L.); (G.Z.); (Z.J.); (F.R.); (J.L.); (M.W.); (R.H.); (P.L.)
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Huai’an Academy, Nanjing Agricultural University, Huai’an 223001, China
| |
Collapse
|
6
|
Chen J, Chen H, Dong X, Hui T, Yan M, Ren D, Zou S, Wang S, Fei E, Zhang W, Lai X. Deficiency of skeletal muscle Agrin contributes to the pathogenesis of age-related sarcopenia in mice. Cell Death Dis 2024; 15:201. [PMID: 38461287 PMCID: PMC10925061 DOI: 10.1038/s41419-024-06581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Sarcopenia, a progressive and prevalent neuromuscular disorder, is characterized by age-related muscle wasting and weakening. Despite its widespread occurrence, the molecular underpinnings of this disease remain poorly understood. Herein, we report that levels of Agrin, an extracellular matrix (ECM) protein critical for neuromuscular formation, were decreased with age in the skeletal muscles of mice. The conditional loss of Agrin in myogenic progenitors and satellite cells (SCs) (Pax7 Cre:: Agrin flox/flox) causes premature muscle aging, manifesting a distinct sarcopenic phenotype in mice. Conversely, the elevation of a miniaturized form of Agrin in skeletal muscle through adenovirus-mediated gene transfer induces enhanced muscle capacity in aged mice. Mechanistic investigations suggest that Agrin-mediated improvement in muscle function occurs through the stimulation of Yap signaling and the concurrent upregulation of dystroglycan expression. Collectively, our findings underscore the pivotal role of Agrin in the aging process of skeletal muscles and propose Agrin as a potential therapeutic target for addressing sarcopenia.
Collapse
Affiliation(s)
- Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hong Chen
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xia Dong
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Tiankun Hui
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Min Yan
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Dongyan Ren
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Suqi Zou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shunqi Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Erkang Fei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Wenhua Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xinsheng Lai
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
7
|
Shen Y, Zheng LL, Fang CY, Xu YY, Wang C, Li JT, Lei MZ, Yin M, Lu HJ, Lei QY, Qu J. ABHD7-mediated depalmitoylation of lamin A promotes myoblast differentiation. Cell Rep 2024; 43:113720. [PMID: 38308845 DOI: 10.1016/j.celrep.2024.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/04/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024] Open
Abstract
LMNA gene mutation can cause muscular dystrophy, and post-translational modification plays a critical role in regulating its function. Here, we identify that lamin A is palmitoylated at cysteine 522, 588, and 591 residues, which are reversely catalyzed by palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) and depalmitoylase α/β hydrolase domain 7 (ABHD7). Furthermore, the metabolite lactate promotes palmitoylation of lamin A by inhibiting the interaction between it and ABHD7. Interestingly, low-level palmitoylation of lamin A promotes, whereas high-level palmitoylation of lamin A inhibits, murine myoblast differentiation. Together, these observations suggest that ABHD7-mediated depalmitoylation of lamin A controls myoblast differentiation.
Collapse
Affiliation(s)
- Yuan Shen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang-Liang Zheng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cai-Yun Fang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yao-Yao Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Wang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jin-Tao Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ming-Zhu Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao-Jie Lu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China; Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; New Cornerstone Science Laboratory, Fudan University, Shanghai 200032, China.
| | - Jia Qu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Endo Y, Zhu C, Giunta E, Guo C, Koh DJ, Sinha I. The Role of Hypoxia and Hypoxia Signaling in Skeletal Muscle Physiology. Adv Biol (Weinh) 2024; 8:e2200300. [PMID: 37817370 DOI: 10.1002/adbi.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/06/2023] [Indexed: 10/12/2023]
Abstract
Hypoxia and hypoxia signaling play an integral role in regulating skeletal muscle physiology. Environmental hypoxia and tissue hypoxia in muscles cue for their appropriate physiological response and adaptation, and cause an array of cellular and metabolic changes. In addition, muscle stem cells (satellite cells), exist in a hypoxic state, and this intrinsic hypoxic state correlates with their quiescence and stemness. The mechanisms of hypoxia-mediated regulation of satellite cells and myogenesis are yet to be characterized, and their seemingly contradicting effects reported leave their exact roles somewhat perplexing. This review summarizes the recent findings on the effect of hypoxia and hypoxia signaling on the key aspects of muscle physiology, namely, stem cell maintenance and myogenesis with a particular attention given to distinguish the intrinsic versus local hypoxia in an attempt to better understand their respective regulatory roles and how their relationship affects the overall response. This review further describes their mechanistic links and their possible implications on the relevant pathologies and therapeutics.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Christina Zhu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, 79430, USA
| | - Elena Giunta
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Cynthia Guo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Daniel J Koh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Jung U, Kim M, Dowker-Key P, Noë S, Bettaieb A, Shepherd E, Voy B. Hypoxia promotes proliferation and inhibits myogenesis in broiler satellite cells. Poult Sci 2024; 103:103203. [PMID: 37980759 PMCID: PMC10685027 DOI: 10.1016/j.psj.2023.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Breast muscle myopathies in broilers compromise meat quality and continue to plague the poultry industry. Broiler breast muscle myopathies are characterized by impaired satellite cell (SC)-mediated repair, and localized tissue hypoxia and dysregulation of oxygen homeostasis have been implicated as contributing factors. The present study was designed to test the hypothesis that hypoxia disrupts the ability of SC to differentiate and form myotubes, both of which are key components of myofiber repair, and to determine the extent to which effects are reversed by restoration of oxygen tension. Primary SC were isolated from pectoralis major of young (5 d) Cobb 700 chicks and maintained in growth conditions or induced to differentiate under normoxic (20% O2) or hypoxic (1% O2) conditions for up to 48 h. Hypoxia enhanced SC proliferation while inhibiting myogenic potential, with decreased fusion index and suppressed myotube formation. Reoxygenation after hypoxia partially reversed effects on both proliferation and myogenesis. Western blotting showed that hypoxia diminished myogenin expression, activated AMPK, upregulated proliferation markers, and increased molecular signaling of cellular stress. Hypoxia also promoted accumulation of lipid droplets in myotubes. Targeted RNAseq identified numerous differentially expressed genes across differentiation under hypoxia, including several genes that have been associated with myopathies in vivo. Altogether, these data demonstrate localized hypoxia may influence SC behavior in ways that disrupt muscle repair and promote the formation of myopathies in broilers.
Collapse
Affiliation(s)
- Usuk Jung
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Minjeong Kim
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Presley Dowker-Key
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Simon Noë
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Elizabeth Shepherd
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Brynn Voy
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
10
|
Gong Y, Dale R, Fung HF, Amador GO, Smit ME, Bergmann DC. A cell size threshold triggers commitment to stomatal fate in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadf3497. [PMID: 37729402 PMCID: PMC10881030 DOI: 10.1126/sciadv.adf3497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
How flexible developmental programs integrate information from internal and external factors to modulate stem cell behavior is a fundamental question in developmental biology. Cells of the Arabidopsis stomatal lineage modify the balance of stem cell proliferation and differentiation to adjust the size and cell type composition of mature leaves. Here, we report that meristemoids, one type of stomatal lineage stem cell, trigger the transition from asymmetric self-renewing divisions to commitment and terminal differentiation by crossing a critical cell size threshold. Through computational simulation, we demonstrate that this cell size-mediated transition allows robust, yet flexible termination of stem cell proliferation, and we observe adjustments in the number of divisions before the differentiation threshold under several genetic manipulations. We experimentally evaluate several mechanisms for cell size sensing, and our data suggest that this stomatal lineage transition is dependent on a nuclear factor that is sensitive to DNA content.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Renee Dale
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Hannah F. Fung
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gabriel O. Amador
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Margot E. Smit
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Dominique C. Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Samanta P, Bhowmik A, Biswas S, Sarkar R, Ghosh R, Pakhira S, Mondal M, Sen S, Saha P, Hajra S. Therapeutic Effectiveness of Anticancer Agents Targeting Different Signaling Molecules Involved in Asymmetric Division of Cancer Stem Cell. Stem Cell Rev Rep 2023:10.1007/s12015-023-10523-3. [PMID: 36952080 DOI: 10.1007/s12015-023-10523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
Intra-tumoral heterogeneity is maintained by cancer stem cells (CSCs) with dysregulated self-renewal and asymmetric cell division (ACD). According to the cancer stem cell theory, by ACD a CSC can generate two daughter progenies with different fates such as one cancer stem cell and one differentiated cell. Therefore, this type of mitotic division supports vital process of the maintenance of CSC population. But this CSC pool reservation by ACD complicates the treatment of cancer patients, as CSCs give rise to aggressive clones which are prone to metastasis and drug-insensitivity. Hence, identification of therapeutic modalities which can target ACD of cancer stem cell is an intriguing part of cancer research. In this review, other than the discussion about the extrinsic inducers of ACD role of different proteins, miRNAs and lncRNAs in this type of cell division is also mentioned. Other than these, mode of action of the proven and potential drugs targeting ACD of CSC is also discussed here.
Collapse
Affiliation(s)
- Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Soummadeep Sen
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
12
|
Evano B, Sarde L, Tajbakhsh S. Temporal static and dynamic imaging of skeletal muscle in vivo. Exp Cell Res 2023; 424:113484. [PMID: 36693490 DOI: 10.1016/j.yexcr.2023.113484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
A major challenge in the study of living systems is understanding how tissues and organs are established, maintained during homeostasis, reconstituted following injury or deteriorated during disease. Most of the studies that interrogate in vivo cell biological properties of cell populations within tissues are obtained through static imaging approaches. However, in vertebrates, little is known about which, when, and how extracellular and intracellular signals are dynamically integrated to regulate cell behaviour and fates, due largely to technical challenges. Intravital imaging of cellular dynamics in mammalian models has exposed surprising properties that have been missed by conventional static imaging approaches. Here we highlight some selected examples of intravital imaging in mouse intestinal stem cells, hematopoietic stem cells, hair follicle stem cells, and neural stem cells in the brain, each of which have distinct features from an anatomical and niche-architecture perspective. Intravital imaging of mouse skeletal muscles is comparatively less advanced due to several technical constraints that will be discussed, yet this approach holds great promise as a complementary investigative method to validate findings obtained by static imaging, as well as a method for discovery.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France
| | - Liza Sarde
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France; Sorbonne Université, Complexité Du Vivant, F-75005, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
13
|
Łoboda A, Dulak J. Nuclear Factor Erythroid 2-Related Factor 2 and Its Targets in Skeletal Muscle Repair and Regeneration. Antioxid Redox Signal 2023; 38:619-642. [PMID: 36597355 DOI: 10.1089/ars.2022.0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Significance: Skeletal muscles have a robust regenerative capacity in response to acute and chronic injuries. Muscle repair and redox homeostasis are intimately linked; increased generation of reactive oxygen species leads to cellular dysfunction and contributes to muscle wasting and progression of muscle diseases. In exemplary muscle disease, Duchenne muscular dystrophy (DMD), caused by mutations in the DMD gene that encodes the muscle structural protein dystrophin, the regeneration machinery is severely compromised, while oxidative stress contributes to the progression of the disease. The nuclear factor erythroid 2-related factor 2 (NRF2) and its target genes, including heme oxygenase-1 (HO-1), provide protective mechanisms against oxidative insults. Recent Advances: Relevant advances have been evolving in recent years in understanding the mechanisms by which NRF2 regulates processes that contribute to effective muscle regeneration. To this end, pathways related to muscle satellite cell differentiation, oxidative stress, mitochondrial metabolism, inflammation, fibrosis, and angiogenesis have been studied. The regulatory role of NRF2 in skeletal muscle ferroptosis has been also suggested. Animal studies have shown that NRF2 pathway activation can stop or reverse skeletal muscle pathology, especially when endogenous stress defence mechanisms are imbalanced. Critical Issues: Despite the growing recognition of NRF2 as a factor that regulates various aspects of muscle regeneration, the mechanistic impact on muscle pathology in various models of muscle injury remains imprecise. Future Directions: Further studies are necessary to fully uncover the role of NRF2 in muscle regeneration, both in physiological and pathological conditions, and to investigate the possibilities for development of new therapeutic modalities. Antioxid. Redox Signal. 38, 619-642.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
14
|
Yang L, Gilbertsen A, Xia H, Benyumov A, Smith K, Herrera J, Racila E, Bitterman PB, Henke CA. Hypoxia enhances IPF mesenchymal progenitor cell fibrogenicity via the lactate/GPR81/HIF1α pathway. JCI Insight 2023; 8:e163820. [PMID: 36656644 PMCID: PMC9977506 DOI: 10.1172/jci.insight.163820] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Hypoxia is a sentinel feature of idiopathic pulmonary fibrosis (IPF). The IPF microenvironment contains high lactate levels, and hypoxia enhances cellular lactate production. Lactate, acting through the GPR81 lactate receptor, serves as a signal molecule regulating cellular processes. We previously identified intrinsically fibrogenic mesenchymal progenitor cells (MPCs) that drive fibrosis in the lungs of patients with IPF. However, whether hypoxia enhances IPF MPC fibrogenicity is unclear. We hypothesized that hypoxia increases IPF MPC fibrogenicity via lactate and its cognate receptor GPR81. Here we show that hypoxia promotes IPF MPC self-renewal. The mechanism involves hypoxia-mediated enhancement of LDHA function and lactate production and release. Hypoxia also increases HIF1α levels, and this increase in turn augments the expression of GPR81. Exogenous lactate operating through GPR81 promotes IPF MPC self-renewal. IHC analysis of IPF lung tissue demonstrates IPF MPCs expressing GPR81 and hypoxic markers on the periphery of the fibroblastic focus. We show that hypoxia enhances IPF MPC fibrogenicity in vivo. We demonstrate that knockdown of GPR81 inhibits hypoxia-induced IPF MPC self-renewal in vitro and attenuates hypoxia-induced IPF MPC fibrogenicity in vivo. Our data demonstrate that hypoxia creates a feed-forward loop that augments IPF MPC fibrogenicity via the lactate/GPR81/HIF1α pathway.
Collapse
Affiliation(s)
| | | | | | | | - Karen Smith
- CSENG Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Emil Racila
- Department of Laboratory Medicine and Pathology, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
15
|
Thome T, Kim K, Dong G, Ryan TE. The Role of Mitochondrial and Redox Alterations in the Skeletal Myopathy Associated with Chronic Kidney Disease. Antioxid Redox Signal 2023; 38:318-337. [PMID: 36245209 PMCID: PMC9986033 DOI: 10.1089/ars.2022.0143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022]
Abstract
Significance: An estimated 700 million people globally suffer from chronic kidney disease (CKD). In addition to increasing cardiovascular disease risk, CKD is a catabolic disease that results in a loss of muscle mass and function, which are strongly associated with mortality and a reduced quality of life. Despite the importance of muscle health and function, there are no treatments available to prevent or attenuate the myopathy associated with CKD. Recent Advances: Recent studies have begun to unravel the changes in mitochondrial and redox homeostasis within skeletal muscle during CKD. Impairments in mitochondrial metabolism, characterized by reduced oxidative phosphorylation, are found in both rodents and patients with CKD. Associated with aberrant mitochondrial function, clinical and preclinical findings have documented signs of oxidative stress, although the molecular source and species are ill-defined. Critical Issues: First, we review the pathobiology of CKD and its associated myopathy, and we review muscle cell bioenergetics and redox biology. Second, we discuss evidence from clinical and preclinical studies that have implicated the involvement of mitochondrial and redox alterations in CKD-associated myopathy and review the underlying mechanisms reported. Third, we discuss gaps in knowledge related to mitochondrial and redox alterations on muscle health and function in CKD. Future Directions: Despite what has been learned, effective treatments to improve muscle health in CKD remain elusive. Further studies are needed to uncover the complex mitochondrial and redox alterations, including post-transcriptional protein alterations, in patients with CKD and how these changes interact with known or unknown catabolic pathways contributing to poor muscle health and function. Antioxid. Redox Signal. 38, 318-337.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Lin Y, Li J, Chen L, Bai J, Zhang J, Wang Y, Liu P, Long K, Ge L, Jin L, Gu Y, Li M. Allele-specific regulatory effects on the pig transcriptome. Gigascience 2022; 12:giad076. [PMID: 37776365 PMCID: PMC10541795 DOI: 10.1093/gigascience/giad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/25/2023] [Accepted: 08/30/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Allele-specific expression (ASE) refers to the preferential expression of one allele over the other and contributes to adaptive phenotypic plasticity. Here, we used a reciprocal cross-model between phenotypically divergent European Berkshire and Asian Tibetan pigs to characterize 2 ASE classes: imprinting (i.e., the unequal expression between parental alleles) and sequence dependent (i.e., unequal expression between breed-specific alleles). We examined 3 transcript types, including protein-coding genes (PCGs), long noncoding RNAs, and transcripts of unknown coding potential, across 7 representative somatic tissues from hybrid pigs generated by reciprocal crosses. RESULTS We identified a total of 92 putative imprinted transcripts, 69 (75.00%) of which are described here for the first time. By combining the transcriptome from purebred Berkshire and Tibetan pigs, we found ∼6.59% of PCGs are differentially expressed between breeds that are regulated by trans-elements (e.g., transcriptional factors), while only ∼1.35% are attributable to cis (e.g., promoters). The higher prevalence of trans-PCGs indicates the dominated effects of trans-regulation in driving expression differences and shaping adaptive phenotypic plasticity between breeds, which were supported by functional enrichment analysis. We also found strong evidence that expression changes mediated by cis-effects were associated with accumulated variants in promoters. CONCLUSIONS Our study provides a comprehensive map of expression regulation that constitutes a valuable resource for the agricultural improvement of pig breeds.
Collapse
Affiliation(s)
- Yu Lin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Chen
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Jingyi Bai
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujie Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengliang Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangpeng Ge
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Long Jin
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiren Gu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
Fu X, Zhuang CL, Hu P. Regulation of muscle stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:40. [PMID: 36456659 PMCID: PMC9715903 DOI: 10.1186/s13619-022-00142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022]
Abstract
Skeletal muscle plays a critical role in human health. Muscle stem cells (MuSCs) serve as the major cell type contributing to muscle regeneration by directly differentiating to mature muscle cells. MuSCs usually remain quiescent with occasionally self-renewal and are activated to enter cell cycle for proliferation followed by differentiation upon muscle injury or under pathological conditions. The quiescence maintenance, activation, proliferation, and differentiation of MuSCs are tightly regulated. The MuSC cell-intrinsic regulatory network and the microenvironments work coordinately to orchestrate the fate transition of MuSCs. The heterogeneity of MuSCs further complicates the regulation of MuSCs. This review briefly summarizes the current progress on the heterogeneity of MuSCs and the microenvironments, epigenetic, and transcription regulations of MuSCs.
Collapse
Affiliation(s)
- Xin Fu
- grid.412987.10000 0004 0630 1330Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Cheng-le Zhuang
- grid.412538.90000 0004 0527 0050Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, 200072 China
| | - Ping Hu
- grid.412987.10000 0004 0630 1330Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.412538.90000 0004 0527 0050Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, 200072 China ,Guangzhou Laboratory, Guanghzou International Bio Lsland, No. 9 XingDaoHuan Road, Guangzhou, 510005 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
18
|
Tolsma R, Pan H, Harris L, Spitsbergen JM, Li Y. Hypoxia-induced reprogrammed myoblasts enhance the formation of neuromuscular junctions: A pioneer study. J Cell Biochem 2022; 123:2057-2065. [PMID: 36208481 DOI: 10.1002/jcb.30334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022]
Abstract
We previously reported that muscle cells could reprogram into progenitors after traumatic injuries. These injury-induced muscle stem cells (iMuSCs) have increased migration and differentiation capacities, including neuronal differentiation. Recent studies in our laboratory suggest that the hypoxia-induced by tissue injury plays an essential role in the reprogramming process of muscle cells. We hypothesize that muscle cells reprogrammed with hypoxia have increased neuronal differentiation potentials and the neuronal differentiation extends into the formation of neuromuscular junction (NMJ)-like structures. In this study, C2C12 myoblasts were cultured under hypoxic conditions and subsequently in neural differentiation media to generate neurospheres, and then with muscle differentiation media to induce NMJ-like structure formation. Hypoxia-induced muscle cells also produced more robust NMJs compared to controls after intramuscular cell transplantation. Our results suggest hypoxia plays a role in the reprogramming of muscle stem cells, which may have the potential to form neuromuscular junctions and ultimately contribute to functional muscle healing.
Collapse
Affiliation(s)
- Rachael Tolsma
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Loyall Harris
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - John M Spitsbergen
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - Yong Li
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| |
Collapse
|
19
|
Tam WK, Cheung JPY, Koljonen PA, Kwan KYH, Cheung KM, Leung VYL. Slow twitch paraspinal muscle dysregulation in adolescent idiopathic scoliosis exhibiting HIF-2α misexpression. JOR Spine 2022; 5:e1227. [PMID: 36601371 PMCID: PMC9799082 DOI: 10.1002/jsp2.1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background Adolescent idiopathic scoliosis (AIS) refers to a three-dimensional spinal deformity which has a typical onset during adolescence. In most cases, the cause of the deformity cannot be clearly identified. Unbalanced paraspinal muscle activity in AIS patients was reported and hypoxia was implicated to regulate myogenesis. This study aims to investigate the association between myogenesis/muscle toning and HIF-αs activity in the pathogenesis of AIS. Methods HIF-αs expression was examined by enzyme-linked immunosorbent assay and western blot in paraspinal myoblasts isolated from 18 subjects who underwent deformity correction surgery. QPCR was conducted to measure the gene expression levels of perinatal muscle fiber markers MYH3, MYH8; slow twitch muscle fiber markers MHY7; fast twitch muscle fiber markers MYH4; and myogenic regulatory factors MYF5 and MYOG. Slow and fast twitch muscle fiber composition in concave/convex paraspinal musculature of AIS subjects was evaluated by immunostaining of myosin heavy chain type I (MyHC I) and myosin heavy chain type II (MyHC II). Results Reduced HIF-2α induction under hypoxia was found in paraspinal myoblast culture of 33% AIS subjects. We detected a suppression of perinatal and slow twitch muscle fiber associated genes, but not fast twitch muscle fiber-associated genes and myogenic regulatory factors in HIF-2α misexpressed AIS myoblasts. Distinct reduction of slow twitch muscle fiber was evidenced in convex paraspinal musculature, suggesting an asymmetric expression of slow twitch muscle fiber in HIF-2α misexpressed AIS patients. Conclusions This study indicates an association of abnormal HIF-2α expression in paraspinal myoblasts and a disproportionate slow twitch muscle fiber content in the convexity of the curvature in a subset of AIS subjects, suggesting HIF-2α dysregulation as a possible risk factor for AIS. The role of HIF-2α in paraspinal muscle function during spinal growth and its relevance in AIS prognosis warrants further investigation.
Collapse
Affiliation(s)
- Wai Kit Tam
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
| | - Jason P. Y. Cheung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
- Orthopaedic Medical CenterHKU‐Shenzhen HospitalShenzhenChina
| | - Paul A. Koljonen
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
| | - Kenny Y. H. Kwan
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
- Orthopaedic Medical CenterHKU‐Shenzhen HospitalShenzhenChina
| | - Kenneth M.C. Cheung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
- Orthopaedic Medical CenterHKU‐Shenzhen HospitalShenzhenChina
| | - Victor Y. L. Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong SARChina
- Orthopaedic Medical CenterHKU‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
20
|
Bronisz-Budzyńska I, Kozakowska M, Pietraszek-Gremplewicz K, Madej M, Józkowicz A, Łoboda A, Dulak J. NRF2 Regulates Viability, Proliferation, Resistance to Oxidative Stress, and Differentiation of Murine Myoblasts and Muscle Satellite Cells. Cells 2022; 11:cells11203321. [PMID: 36291188 PMCID: PMC9600498 DOI: 10.3390/cells11203321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Increased oxidative stress can slow down the regeneration of skeletal muscle and affect the activity of muscle satellite cells (mSCs). Therefore, we evaluated the role of the NRF2 transcription factor (encoded by the Nfe2l2 gene), the main regulator of the antioxidant response, in muscle cell biology. We used (i) an immortalized murine myoblast cell line (C2C12) with stable overexpression of NRF2 and (ii) primary mSCs isolated from wild-type and Nfe2l2 (transcriptionally)-deficient mice (Nfe2l2tKO). NRF2 promoted myoblast proliferation and viability under oxidative stress conditions and decreased the production of reactive oxygen species. Furthermore, NRF2 overexpression inhibited C2C12 cell differentiation by down-regulating the expression of myogenic regulatory factors (MRFs) and muscle-specific microRNAs. We also showed that NRF2 is indispensable for the viability of mSCs since the lack of its transcriptional activity caused high mortality of cells cultured in vitro under normoxic conditions. Concomitantly, Nfe2l2tKO mSCs grown and differentiated under hypoxic conditions were viable and much more differentiated compared to cells isolated from wild-type mice. Taken together, NRF2 significantly influences the properties of myoblasts and muscle satellite cells. This effect might be modulated by the muscle microenvironment.
Collapse
|
21
|
Jaitovich A. Impaired regenerative capacity contributes to skeletal muscle dysfunction in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol 2022; 323:C974-C989. [PMID: 35993519 PMCID: PMC9484993 DOI: 10.1152/ajpcell.00292.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Locomotor skeletal muscle dysfunction is a relevant comorbidity of chronic obstructive pulmonary disease (COPD) and is strongly associated with worse clinical outcomes including higher mortality. Over the last decades, a large body of literature helped characterize the process, defining the disruptive muscle phenotype caused by COPD that involves reduction in muscle mass, force-generation capacity, fatigue-tolerance, and regenerative potential following injury. A major limitation in the field has been the scarcity of well-calibrated animal models to conduct mechanistic research based on loss- and gain-of-function studies. This article provides an overall description of the process, the tools available to mechanistically investigate it, and the potential role of mitochondrially driven metabolic signals on the regulation muscle regeneration after injury in COPD. Finally, a description of future avenues to further expand on the area is proposed based on very recent evidence involving mitochondrial metabolic cues affecting myogenesis.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
22
|
Lathuiliere A, Vernet R, Charrier E, Urwyler M, Von Rohr O, Belkouch MC, Saingier V, Bouvarel T, Guillarme D, Engel A, Salmon P, Laumonier T, Grogg J, Mach N. Immortalized human myoblast cell lines for the delivery of therapeutic proteins using encapsulated cell technology. Mol Ther Methods Clin Dev 2022; 26:441-458. [PMID: 36092361 PMCID: PMC9418741 DOI: 10.1016/j.omtm.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/31/2022] [Indexed: 12/04/2022]
Abstract
Despite many promising results obtained in previous preclinical studies, the clinical development of encapsulated cell technology (ECT) for the delivery of therapeutic proteins from macrocapsules is still limited, mainly due to the lack of an allogeneic cell line compatible with therapeutic application in humans. In our work, we generated an immortalized human myoblast cell line specifically tailored for macroencapsulation. In the present report, we characterized the immortalized myoblasts and described the engineering process required for the delivery of functional therapeutic proteins including a cytokine, monoclonal antibodies and a viral antigen. We observed that, when encapsulated, the novel myoblast cell line can be efficiently frozen, stored, and thawed, which limits the challenge imposed by the manufacture and supply of encapsulated cell-based therapeutic products. Our results suggest that this versatile allogeneic cell line represents the next step toward a broader development and therapeutic use of ECT.
Collapse
Affiliation(s)
- Aurelien Lathuiliere
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
| | - Remi Vernet
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Emily Charrier
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
- MaxiVAX SA, 1202 Geneva, Switzerland
| | - Muriel Urwyler
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Olivier Von Rohr
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Marie-Claude Belkouch
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Valentin Saingier
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Bouvarel
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | | | - Patrick Salmon
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Laumonier
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopaedic Surgery, Faculty of Medicine, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | | | - Nicolas Mach
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
23
|
Thomas NT, Confides AL, Fry CS, Dupont-Versteegden EE. Satellite cell depletion does not affect diaphragm adaptations to hypoxia. J Appl Physiol (1985) 2022; 133:637-646. [PMID: 35861521 PMCID: PMC9448290 DOI: 10.1152/japplphysiol.00083.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023] Open
Abstract
The diaphragm is the main skeletal muscle responsible for inspiration and is susceptible to age-associated decline in function and morphology. Satellite cells in diaphragm fuse into unperturbed muscle fibers throughout life, yet their role in adaptations to hypoxia in diaphragm is unknown. Given their continual fusion, we hypothesize that satellite cell depletion will negatively impact adaptations to hypoxia in the diaphragm, particularly with aging. We used the Pax7CreER/CreER:R26RDTA/DTA genetic mouse model of inducible satellite cell depletion to investigate diaphragm responses to hypoxia in adult (6 mo) and aged (22 mo) male mice. The mice were subjected to normobaric hypoxia at 10% [Formula: see text] or normoxia for 4 wk. We showed that satellite cell depletion had no effect on diaphragm muscle fiber cross-sectional area, fiber-type distribution, myonuclear density, or regulation of extracellular matrix in either adult or aged mice. Furthermore, we showed lower muscle fiber cross-sectional area with hypoxia and age (main effects), while extracellular matrix content was higher and satellite cell abundance was lower with age (main effect) in diaphragm. Lastly, a greater number of Pax3-mRNA+ cells was observed in diaphragm muscle of satellite cell-depleted mice independent of hypoxia (main effect), potentially as a compensatory mechanism for the loss of satellite cells. We conclude that satellite cells are not required for diaphragm muscle adaptations to hypoxia in either adult or aged mice.NEW & NOTEWORTHY Satellite cells show consistent fusion into diaphragm muscle fibers throughout life, suggesting a critical role in maintaining homeostasis. Here, we report identical diaphragm adaptations to hypoxia with and without satellite cells in adult and aged mice. In addition, we propose that the higher number of Pax3-positive cells in satellite cell-depleted diaphragm muscle acts as a compensatory mechanism.
Collapse
Affiliation(s)
- Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Amy L Confides
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
24
|
Rodriguez-Outeiriño L, Hernandez-Torres F, Ramirez de Acuña F, Rastrojo A, Creus C, Carvajal A, Salmeron L, Montolio M, Soblechero-Martin P, Arechavala-Gomeza V, Franco D, Aranega AE. miR-106b is a novel target to promote muscle regeneration and restore satellite stem cell function in injured Duchenne dystrophic muscle. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:769-786. [PMID: 36159592 PMCID: PMC9463180 DOI: 10.1016/j.omtn.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/14/2022] [Indexed: 10/26/2022]
|
25
|
Lee DY, Lee SY, Jung JW, Kim JH, Oh DH, Kim HW, Kang JH, Choi JS, Kim GD, Joo ST, Hur SJ. Review of technology and materials for the development of cultured meat. Crit Rev Food Sci Nutr 2022; 63:8591-8615. [PMID: 35466822 DOI: 10.1080/10408398.2022.2063249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cultured meat production technology suggested that can solve the problems of traditional meat production such as inadequate breeding environment, wastewater, methane gas generation, and animal ethics issues. Complementing cultured meat production methods, sales and safety concerns will make the use of cultured meat technology easier. This review contextualizes the commercialization status of cultured meat and the latest technologies and challenges associated with its production. Investigation was conducted on materials and basic cell culture technique for cultured meat culture is presented. The development of optimal cultured meat technology through these studies will be an innovative leap in food technology. The process of obtaining cells from animal muscle, culturing cells, and growing cells into meat are the basic processes of cultured meat production. The substances needed to production of cultured meat were antibiotics, digestive enzymes, basal media, serum or growth factors. Although muscle cells have been produced closer to meat due to the application of scaffolds materials and 3 D printing technology, still a limit to reducing production costs enough to be used as foods. In addition, developing edible materials is also a challenge because the materials used to produce cultured meat are still not suitable for food sources.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Won Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Hyun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Dong Hun Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Kangwong, Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| |
Collapse
|
26
|
Hypoxia Regulates the Self-Renewal of Endometrial Mesenchymal Stromal/Stem-like Cells via Notch Signaling. Int J Mol Sci 2022; 23:ijms23094613. [PMID: 35563003 PMCID: PMC9104239 DOI: 10.3390/ijms23094613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 01/16/2023] Open
Abstract
Human endometrium is an incredibly dynamic tissue undergoing cyclic regeneration and shedding during a woman’s reproductive life. Endometrial mesenchymal stromal/stem-like cells (eMSC) contribute to this process. A hypoxic niche with low oxygen levels has been reported in multiple somatic stem cell types. However, the knowledge of hypoxia on eMSC remains limited. In mice, stromal stem/progenitor cells can be identified by the label-retaining technique. We examined the relationship between the label-retaining stromal cells (LRSC) and hypoxia during tissue breakdown in a mouse model of simulated menses. Our results demonstrated that LRSC resided in a hypoxic microenvironment during endometrial breakdown and early repair. Immunofluorescence staining revealed that the hypoxic-located LRSC underwent proliferation and was highly colocalized with Notch1. In vitro studies illustrated that hypoxia activated Notch signaling in eMSC, leading to enhanced self-renewal, clonogenicity and proliferation of cells. More importantly, HIF-1α played an essential role in the hypoxia-mediated maintenance of eMSC through the activation of Notch signaling. In conclusion, our findings show that some endometrial stem/progenitor cells reside in a hypoxic niche during menstruation, and hypoxia can regulate the self-renewal activity of eMSC via Notch signaling.
Collapse
|
27
|
Cassar-Malek I, Pomiès L, de la Foye A, Tournayre J, Boby C, Hocquette JF. Transcriptome profiling reveals stress-responsive gene networks in cattle muscles. PeerJ 2022; 10:e13150. [PMID: 35411255 PMCID: PMC8994496 DOI: 10.7717/peerj.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
In meat-producing animals, preslaughter operations (e.g., transportation, mixing unfamiliar animals, food and water deprivation) may be a source of stress with detrimental effects on meat quality. The objective of this work was to study the effect of emotional and physical stress by comparing the transcriptomes of two muscles (M. longissimus thoracis, LT and M. semitendinosus, ST) in Normand cows exposed to stress (n = 16) vs. cows handled with limited stress (n = 16). Using a microarray, we showed that exposure to stress resulted in differentially expressed genes (DEGs) in both muscles (62 DEGs in LT and 32 DEGs in ST, of which eight were common transcription factors (TFs)). Promoter analysis of the DEGs showed that 25 cis transcriptional modules were overrepresented, of which nine were detected in both muscles. Molecular interaction networks of the DEGs targeted by the most represented cis modules helped identify common regulators and common targets involved in the response to stress. They provided elements showing that the transcriptional response to stress is likely to (i) be controlled by regulators of energy metabolism, factors involved in the response to hypoxia, and inflammatory cytokines; and (ii) initiate metabolic processes, angiogenesis, corticosteroid response, immune system processes, and satellite cell activation/quiescence. The results of this study demonstrate that exposure to stress induced a core response to stress in both muscles, including changes in the expression of TFs. These factors could relay the physiological adaptive response of cattle muscles to cope with emotional and physical stress. The study provides information to further understand the consequences of these molecular processes on meat quality and find strategies to attenuate them.
Collapse
Affiliation(s)
- Isabelle Cassar-Malek
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Lise Pomiès
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
- Université de Toulouse, INRAE, UR MIAT, Castanet-Tolosan, France
| | - Anne de la Foye
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Jérémy Tournayre
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Céline Boby
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Jean-François Hocquette
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
28
|
Myogenic Precursor Cells Show Faster Activation and Enhanced Differentiation in a Male Mouse Model Selected for Advanced Endurance Exercise Performance. Cells 2022; 11:cells11061001. [PMID: 35326452 PMCID: PMC8947336 DOI: 10.3390/cells11061001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Satellite cells (SATC), the most abundant skeletal muscle stem cells, play a main role in muscle plasticity, including the adaptive response following physical activity. Thus, we investigated how long-term phenotype selection of male mice for high running performance (Dummerstorf high Treadmill Performance; DUhTP) affects abundance, creatine kinase activity, myogenic marker expression (Pax7, MyoD), and functionality (growth kinetics, differentiation) of SATC and their progeny. SATC were isolated from sedentary male DUhTP and control (Dummerstorf Control; DUC) mice at days 12, 43, and 73 of life and after voluntary wheel running for three weeks (day 73). Marked line differences occur at days 43 and 73 (after activity). At both ages, analysis of SATC growth via xCELLigence system revealed faster activation accompanied by a higher proliferation rate and lower proportion of Pax7+ cells in DUhTP mice, indicating reduced reserve cell formation and faster transition into differentiation. Cultures from sedentary DUhTP mice contain an elevated proportion of actively proliferating Pax7+/MyoD+ cells and have a higher fusion index leading to the formation of more large and very large myotubes at day 43. This robust hypertrophic response occurs without any functional load in the donor mice. Thus, our selection model seems to recruit myogenic precursor cells/SATC with a lower activation threshold that respond more rapidly to external stimuli and are more primed for differentiation at the expense of more primitive cells.
Collapse
|
29
|
Gugliuzza MV, Crist C. Muscle stem cell adaptations to cellular and environmental stress. Skelet Muscle 2022; 12:5. [PMID: 35151369 PMCID: PMC8840228 DOI: 10.1186/s13395-022-00289-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/30/2022] [Indexed: 12/21/2022] Open
Abstract
Background Lifelong regeneration of the skeletal muscle is dependent on a rare population of resident skeletal muscle stem cells, also named ‘satellite cells’ for their anatomical position on the outside of the myofibre and underneath the basal lamina. Muscle stem cells maintain prolonged quiescence, but activate the myogenic programme and the cell cycle in response to injury to expand a population of myogenic progenitors required to regenerate muscle. The skeletal muscle does not regenerate in the absence of muscle stem cells. Main body The notion that lifelong regeneration of the muscle is dependent on a rare, non-redundant population of stem cells seems contradictory to accumulating evidence that muscle stem cells have activated multiple stress response pathways. For example, muscle stem cell quiescence is mediated in part by the eIF2α arm of the integrated stress response and by negative regulators of mTORC1, two translational control pathways that downregulate protein synthesis in response to stress. Muscle stem cells also activate pathways to protect against DNA damage, heat shock, and environmental stress. Here, we review accumulating evidence that muscle stem cells encounter stress during their prolonged quiescence and their activation. While stress response pathways are classically described to be bimodal whereby a threshold dictates cell survival versus cell death responses to stress, we review evidence that muscle stem cells additionally respond to stress by spontaneous activation and fusion to myofibres. Conclusion We propose a cellular stress test model whereby the prolonged state of quiescence and the microenvironment serve as selective pressures to maintain muscle stem cell fitness, to safeguard the lifelong regeneration of the muscle. Fit muscle stem cells that maintain robust stress responses are permitted to maintain the muscle stem cell pool. Unfit muscle stem cells are depleted from the pool first by spontaneous activation, or in the case of severe stress, by activating cell death or senescence pathways.
Collapse
|
30
|
Elashry MI, Kinde M, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Res Ther 2022; 13:56. [PMID: 35123554 PMCID: PMC8817503 DOI: 10.1186/s13287-022-02730-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Skeletal muscle-derived stem cells (SC) have become a promising approach for investigating myogenic differentiation and optimizing tissue regeneration. Muscle regeneration is performed by SC, a self-renewal cell population underlying the basal lamina of muscle fibers. Here, we examined the impact of hypoxia condition on the regenerative capacity of SC either in their native microenvironment or via isolation in a monolayer culture using ectopic differentiation inductions. Furthermore, the effect of low oxygen tension on myogenic differentiation protocols of the myoblasts cell line C2C12 was examined.
Methods
Hind limb muscles of wild type mice were processed for both SC/fiber isolation and myoblast extraction using magnetic beads. SC were induced for myogenic, adipogenic and osteogenic commitments under normoxic (21% O2) and hypoxic (3% O2) conditions. SC proliferation and differentiation were evaluated using histological staining, immunohistochemistry, morphometric analysis and RT-qPCR. The data were statistically analyzed using ANOVA.
Results
The data revealed enhanced SC proliferation and motility following differentiation induction after 48 h under hypoxia. Following myogenic induction, the number of undifferentiated cells positive for Pax7 were increased at 72 h under hypoxia. Hypoxia upregulated MyoD and downregulated Myogenin expression at day-7 post-myogenic induction. Hypoxia promoted both SC adipogenesis and osteogenesis under respective induction as shown by using Oil Red O and Alizarin Red S staining. The expression of adipogenic markers; peroxisome proliferator activated receptor gamma (PPARγ) and fatty acid-binding protein 4 (FABP4) were upregulated under hypoxia up to day 14 compared to normoxic condition. Enhanced osteogenic differentiation was detected under hypoxic condition via upregulation of osteocalcin and osteopontin expression up to day 14 as well as, increased calcium deposition at day 21. Hypoxia exposure increases the number of adipocytes and the size of fat vacuoles per adipocyte compared to normoxic culture. Combining the differentiation medium with dexamethasone under hypoxia improves the efficiency of the myogenic differentiation protocol of C2C12 by increasing the length of the myotubes.
Conclusions
Hypoxia exposure increases cell resources for clinical applications and promotes SC multipotency and thus beneficial for tissue regeneration.
Collapse
|
31
|
Mori T, Onodera Y, Itokazu M, Takehara T, Shigi K, Iwawaki N, Akagi M, Teramura T. Depletion of NIMA-related kinase Nek2 induces aberrant self-renewal and apoptosis in stem/progenitor cells of aged muscular tissues. Mech Ageing Dev 2022; 201:111619. [PMID: 34995645 DOI: 10.1016/j.mad.2022.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
Frailty of the locomotory organs has become a widespread problem in the geriatric population. The major factor leading to frailty is an age-associated decrease in muscular mass and a reduced number of muscular cells and myofibers. In aged muscular tissues, muscular satellite cells (MuSCs) are reduced due to abnormalities in their self-renewal and the induction of apoptosis. However, the molecular mechanisms connecting aging-associated physiological changes and the reduction of MuSCs are largely unknown. NIMA-related kinase 2 (Nek2), a member of the Nek family of serine/threonine kinases, was found to be downregulated in aged MuSCs/progenitors. Further, Nek2 downregulation was found to inhibit self-renewal and apoptotic cell death by activating the p53-dependent checkpoint. Attenuated NEK2 expression was also observed in the muscular tissues of elderly donors, and its function was confirmed to be conserved in humans. Overall, this study proposes a novel mechanism for inducing muscular atrophy to understand aging-associated muscular diseases.
Collapse
Affiliation(s)
| | - Yuta Onodera
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Maki Itokazu
- Department of Rehabilitation Medicine, Kindai University Faculty of Medicine, Japan
| | - Toshiyuki Takehara
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Kanae Shigi
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Natsumi Iwawaki
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Faculty of Medicine, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan.
| |
Collapse
|
32
|
He X, An W, Liu J. Effects of hypoxia on stemness, survival and angiogenic capacity of muscle-derived stem/progenitor cells. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1977725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xiao He
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Weizheng An
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jianyu Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
33
|
Duś-Szachniewicz K, Gdesz-Birula K, Zduniak K, Wiśniewski JR. Proteomic-Based Analysis of Hypoxia- and Physioxia-Responsive Proteins and Pathways in Diffuse Large B-Cell Lymphoma. Cells 2021; 10:cells10082025. [PMID: 34440794 PMCID: PMC8392495 DOI: 10.3390/cells10082025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/17/2023] Open
Abstract
Hypoxia is a common feature in most tumors, including hematological malignancies. There is a lack of studies on hypoxia- and physioxia-induced global proteome changes in lymphoma. Here, we sought to explore how the proteome of diffuse large B-cell lymphoma (DLBCL) changes when cells are exposed to acute hypoxic stress (1% of O2) and physioxia (5% of O2) for a long-time. A total of 8239 proteins were identified by LC–MS/MS, of which 718, 513, and 486 had significant changes, in abundance, in the Ri-1, U2904, and U2932 cell lines, respectively. We observed that changes in B-NHL proteome profiles induced by hypoxia and physioxia were quantitatively similar in each cell line; however, differentially abundant proteins (DAPs) were specific to a certain cell line. A significant downregulation of several ribosome proteins indicated a translational inhibition of new ribosome protein synthesis in hypoxia, what was confirmed in a pathway enrichment analysis. In addition, downregulated proteins highlighted the altered cell cycle, metabolism, and interferon signaling. As expected, the enrichment of upregulated proteins revealed terms related to metabolism, HIF1 signaling, and response to oxidative stress. In accordance to our results, physioxia induced weaker changes in the protein abundance when compared to those induced by hypoxia. Our data provide new evidence for understanding mechanisms by which DLBCL cells respond to a variable oxygen level. Furthermore, this study reveals multiple hypoxia-responsive proteins showing an altered abundance in hypoxic and physioxic DLBCL. It remains to be investigated whether changes in the proteomes of DLBCL under normoxia and physioxia have functional consequences on lymphoma development and progression.
Collapse
Affiliation(s)
- Kamila Duś-Szachniewicz
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland; (K.G.-B.); (K.Z.)
- Correspondence:
| | - Katarzyna Gdesz-Birula
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland; (K.G.-B.); (K.Z.)
| | - Krzysztof Zduniak
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland; (K.G.-B.); (K.Z.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| |
Collapse
|
34
|
Bovine Satellite Cells Isolated after 2 and 5 Days of Tissue Storage Maintain the Proliferative and Myogenic Capacity Needed for Cultured Meat Production. Int J Mol Sci 2021; 22:ijms22168376. [PMID: 34445082 PMCID: PMC8395070 DOI: 10.3390/ijms22168376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/03/2023] Open
Abstract
Cultured meat is an emerging alternative food technology which aims to deliver a more ethical, sustainable, and healthy muscle-tissue-derived food item compared to conventional meat. As start-up companies are rapidly forming and accelerating this technology, many aspects of this multi-faceted science have still not been investigated in academia. In this study, we investigated if bovine satellite cells with the ability to proliferate and undergo myogenic differentiation could be isolated after extended tissue storage, for the purpose of increasing the practicality for cultured meat production. Proliferation of bovine satellite cells isolated on the day of arrival or after 2 and 5 days of tissue storage were analyzed by metabolic and DNA-based assays, while their myogenic characteristics were investigated using RT-qPCR and immunofluorescence. Extended tissue storage up to 5 days did not negatively affect proliferation nor the ability to undergo fusion and create myosin heavy chain-positive myotubes. The expression patterns of myogenic and muscle-specific genes were also not affected after tissue storage. In fact, the data indicated a positive trend in terms of myogenic potential after tissue storage, although it was non-significant. These results suggest that the timeframe of which viable myogenic satellite cells can be isolated and used for cultured meat production can be greatly extended by proper tissue storage.
Collapse
|
35
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
36
|
Pircher T, Wackerhage H, Aszodi A, Kammerlander C, Böcker W, Saller MM. Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review. Front Physiol 2021; 12:684899. [PMID: 34248671 PMCID: PMC8260947 DOI: 10.3389/fphys.2021.684899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, oxygen (O2) plays a pivotal role in both metabolism and the regulation of several intercellular pathways, which can modify proliferation, differentiation and survival of cells within the myogenic lineage. The concentration of oxygen in muscle tissue is reduced during embryogenesis and pathological conditions. Myogenic progenitor cells, namely satellite cells, are necessary for muscular regeneration in adults and are localized in a hypoxic microenvironment under the basal lamina, suggesting that the O2 level could affect their function. This review presents the effects of reduced oxygen levels (hypoxia) on satellite cell survival, myoblast regeneration and differentiation in vertebrates. Further investigations and understanding of the pathways involved in adult muscle regeneration during hypoxic conditions are maybe clinically relevant to seek for novel drug treatments for patients with severe muscle damage. We especially outlined the effect of hypoxia-inducible factor 1-alpha (HIF1A), the most studied transcriptional regulator of cellular and developmental response to hypoxia, whose investigation has recently been awarded with the Nobel price.
Collapse
Affiliation(s)
- Tamara Pircher
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Henning Wackerhage
- Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Christian Kammerlander
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Wolfgang Böcker
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
37
|
Morawin B, Zembroń-Łacny A. Role of endocrine factors and stem cells in skeletal muscle
regeneration. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The process of reconstructing damaged skeletal muscles involves degeneration, inflammatory
and immune responses, regeneration and reorganization, which are regulated by
a number of immune-endocrine factors affecting muscle cells and satellite cells (SCs). One of
these molecules is testosterone (T), which binds to the androgen receptor (AR) to initiate the
expression of the muscle isoform of insulin-like growth factor 1 (IGF-1Ec). The interaction
between T and IGF-1Ec stimulates the growth and regeneration of skeletal muscles by inhibiting
apoptosis, enhancement of SCs proliferation and myoblasts differentiation. As a result
of sarcopenia, muscle dystrophy or wasting diseases, the SCs population is significantly reduced.
Regular physical exercise attenuates a decrease in SCs count, and thus elevates the
regenerative potential of muscles in both young and elderly people. One of the challenges of
modern medicine is the application of SCs and extracellular matrix scaffolds in regenerative
and molecular medicine, especially in the treatment of degenerative diseases and post-traumatic
muscle reconstruction. The aim of the study is to present current information on the
molecular and cellular mechanisms of skeletal muscle regenera,tion, the role of testosterone
and growth factors in the activation of SCs and the possibility of their therapeutic use in
stimulating the reconstruction of damaged muscle fibers.
Collapse
Affiliation(s)
- Barbara Morawin
- Katedra Fizjologii Stosowanej i Klinicznej, Collegium Medicum, Uniwersytet Zielonogórski
| | | |
Collapse
|
38
|
van Doorslaer de Ten Ryen S, Francaux M, Deldicque L. Regulation of satellite cells by exercise in hypoxic conditions: a narrative review. Eur J Appl Physiol 2021; 121:1531-1542. [PMID: 33745023 DOI: 10.1007/s00421-021-04641-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate in vivo the adaptations of satellite cell induced by exercise performed in acute or chronic hypoxic conditions and their contribution to muscle remodeling and hypertrophy. METHODS Search terms related to exercise, hypoxia and satellite cells were entered on Embase, PubMed and Scopus. Studies were selected for their relevance in terms of regulation of satellite cells by in vivo exercise and muscle contraction in hypoxic conditions. RESULTS Satellite cell activation and proliferation seem to be enabled after acute hypoxic exercise via regulations induced by myogenic regulatory factors. Several studies reported also a role of the inflammatory pathway nuclear factor-kappa B and angiogenic factors such as vascular endothelial growth factor, both known to upregulate myogenesis. By stimulating angiogenesis, repeated exercise performed in acute hypoxia might contribute to satellite cell activation. Contrary to such exercise conditions, chronic exposure to hypoxia downregulates myogenesis despite the maintenance of physical activity. This impaired myogenesis might be induced by excessive oxidative stress and proteolysis. CONCLUSION In vivo studies suggest that, in comparison to exercise or hypoxia alone, exercise performed in a hypoxic environment, may improve or impair muscle remodeling induced by contractile activity depending upon the duration of hypoxia. Satellite cells seem to be major actors in these dichotomous adaptations. Further research on the role of angiogenesis, types of contraction and autophagy is needed for a better understanding of their respective role in hypoxic exercise-induced modulations of satellite cell activity in human.
Collapse
Affiliation(s)
- Sophie van Doorslaer de Ten Ryen
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin, 1 L08.10.01, 1348, Louvain-la-Neuve, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin, 1 L08.10.01, 1348, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin, 1 L08.10.01, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
39
|
Ancel S, Stuelsatz P, Feige JN. Muscle Stem Cell Quiescence: Controlling Stemness by Staying Asleep. Trends Cell Biol 2021; 31:556-568. [PMID: 33674167 DOI: 10.1016/j.tcb.2021.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Muscle stem cells (MuSCs) are tissue-resident stem cells required for growth and repair of skeletal muscle, that are otherwise maintained in a cell-cycle-arrested state called quiescence. While quiescence was originally believed to be a state of cellular inactivity, increasing evidence suggests that quiescence is dynamically regulated and contributes to stemness, the long-term capacity to maintain regenerative functions. Here, we review the current understanding of MuSC quiescence and highlight recently discovered molecular markers, which differentiate depth of quiescence and influence self-renewal capacity. We also discuss how quiescent MuSCs integrate paracrine factors from their niche and dynamically regulate cell signaling, metabolism and proteostasis as they anticipate physiological needs, and how perturbing these cues during aging impairs muscle regeneration.
Collapse
Affiliation(s)
- Sara Ancel
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pascal Stuelsatz
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
40
|
Lu Y, Mao J, Han X, Zhang W, Li Y, Liu Y, Li Q. Downregulated hypoxia-inducible factor 1α improves myoblast differentiation under hypoxic condition in mouse genioglossus. Mol Cell Biochem 2021; 476:1351-1364. [PMID: 33389500 DOI: 10.1007/s11010-020-03995-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/01/2020] [Indexed: 10/22/2022]
Abstract
The treatment of obstructive sleep apnea-hypopnea syndrome targets the narrow anatomic structure of the upper airway (UA) and lacks an effective therapy for UA dilator muscle dysfunction. Long-term hypoxia can cause damage to UA dilator muscles and trigger a vicious cycle. We previously confirmed that hypoxia-inducible factor 1α (HIF-1α) upregulation mediates muscle fatigue in hypoxia condition, but the underlying mechanism remains to be determined. The present study investigated the intrinsic mechanisms and related pathways of HIF-1α that affect myoblast differentiation, with an aim to search for compounds that have protective effects in hypoxic condition. Differentiation of myoblasts was induced under hypoxia, and we found that hypoxia significantly inhibits the differentiation of myoblasts, damages the ultrastructure of mitochondria, and reduces the expression of myogenin, PGC-1β and pAMPKα1. HIF-1α has a negative regulation effect on AMPK. Downregulation of HIF-1α increases the expression of the abovementioned proteins, promotes the differentiation of myoblasts, and protects mitochondrial integrity. In addition, mitochondrial biogenesis occurs during myogenic differentiation. Inhibition of the AMPK pathway inhibits mitochondrial biogenesis, decreases the level of PGC-1β, and increases apoptosis. Resveratrol dimer can reverse the mitochondrial damage induced by AMPK pathway inhibition and decrease myoblast apoptosis. Our results provided a regulatory mechanism for hypoxic injury in genioglossus which may contribute to the pathogenesis and treatment of OSAHS.
Collapse
Affiliation(s)
- Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
| | - Jiaqi Mao
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
- Department of Endodontics, Stomatological Hospital, Hebei Medical University, 383 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Xinxin Han
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
| | - Weihua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
| | - Yuanyuan Li
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
- Department of Pediatric Dentistry, Shanghai Stomatological Hospital, Fudan University, 356 East Beijing Road, Shanghai, 200001, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China.
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China.
| | - Qiang Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China.
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China.
| |
Collapse
|
41
|
Biressi S, Filareto A, Rando TA. Stem cell therapy for muscular dystrophies. J Clin Invest 2021; 130:5652-5664. [PMID: 32946430 DOI: 10.1172/jci142031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic diseases, characterized by progressive degeneration of skeletal and cardiac muscle. Despite the intense investigation of different therapeutic options, a definitive treatment has not been developed for this debilitating class of pathologies. Cell-based therapies in muscular dystrophies have been pursued experimentally for the last three decades. Several cell types with different characteristics and tissues of origin, including myogenic stem and progenitor cells, stromal cells, and pluripotent stem cells, have been investigated over the years and have recently entered in the clinical arena with mixed results. In this Review, we do a roundup of the past attempts and describe the updated status of cell-based therapies aimed at counteracting the skeletal and cardiac myopathy present in dystrophic patients. We present current challenges, summarize recent progress, and make recommendations for future research and clinical trials.
Collapse
Affiliation(s)
- Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO) and.,Dulbecco Telethon Institute, University of Trento, Povo, Italy
| | - Antonio Filareto
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Conneticut, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences and.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
42
|
Nakamura N, Shi X, Darabi R, Li Y. Hypoxia in Cell Reprogramming and the Epigenetic Regulations. Front Cell Dev Biol 2021; 9:609984. [PMID: 33585477 PMCID: PMC7876330 DOI: 10.3389/fcell.2021.609984] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular reprogramming is a fundamental topic in the research of stem cells and molecular biology. It is widely investigated and its understanding is crucial for learning about different aspects of development such as cell proliferation, determination of cell fate and stem cell renewal. Other factors involved during development include hypoxia and epigenetics, which play major roles in the development of tissues and organs. This review will discuss the involvement of hypoxia and epigenetics in the regulation of cellular reprogramming and how interplay between each factor can contribute to different cellular functions as well as tissue regeneration.
Collapse
Affiliation(s)
- Nariaki Nakamura
- Department of Orthopaedic Surgery, and Biomedical Engineering, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, United States
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Radbod Darabi
- The Center for Stem Cell and Regenerative Medicine (CSCRM), Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), Houston, TX, United States
| | - Yong Li
- Department of Orthopaedic Surgery, and Biomedical Engineering, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
43
|
Rugowska A, Starosta A, Konieczny P. Epigenetic modifications in muscle regeneration and progression of Duchenne muscular dystrophy. Clin Epigenetics 2021; 13:13. [PMID: 33468200 PMCID: PMC7814631 DOI: 10.1186/s13148-021-01001-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a multisystemic disorder that affects 1:5000 boys. The severity of the phenotype varies dependent on the mutation site in the DMD gene and the resultant dystrophin expression profile. In skeletal muscle, dystrophin loss is associated with the disintegration of myofibers and their ineffective regeneration due to defective expansion and differentiation of the muscle stem cell pool. Some of these phenotypic alterations stem from the dystrophin absence-mediated serine-threonine protein kinase 2 (MARK2) misplacement/downregulation in activated muscle stem (satellite) cells and neuronal nitric oxide synthase loss in cells committed to myogenesis. Here, we trace changes in DNA methylation, histone modifications, and expression of regulatory noncoding RNAs during muscle regeneration, from the stage of satellite cells to myofibers. Furthermore, we describe the abrogation of these epigenetic regulatory processes due to changes in signal transduction in DMD and point to therapeutic treatments increasing the regenerative potential of diseased muscles based on this acquired knowledge.
Collapse
Affiliation(s)
- Anna Rugowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Alicja Starosta
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
44
|
Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021; 20:429-457. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
45
|
Cirillo F, Resmini G, Angelino E, Ferrara M, Tarantino A, Piccoli M, Rota P, Ghiroldi A, Monasky MM, Ciconte G, Pappone C, Graziani A, Anastasia L. HIF-1α Directly Controls WNT7A Expression During Myogenesis. Front Cell Dev Biol 2020; 8:593508. [PMID: 33262987 PMCID: PMC7686515 DOI: 10.3389/fcell.2020.593508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Herein we unveil that Hypoxia-inducible factor-1α (HIF-1α) directly regulates WNT7A expression during myogenesis. In fact, chromatin immunoprecipitation (ChiP) and site-directed mutagenesis experiments revealed two distinct hypoxia response elements (HREs) that are specific HIF-1α binding sites on the WNT7A promoter. Remarkably, a pharmacological activation of HIF-1α induced WNT7A expression and enhanced muscle differentiation. On the other hand, silencing of WNT7A using CRISPR/Cas9 genome editing blocked the effects of HIF-1α activation on myogenesis. Finally, treatment with prolyl hydroxylases (PHDs) inhibitors improved muscle regeneration in vitro and in vivo in a cardiotoxin (CTX)-induced muscle injury mouse model, paving the way for further studies to test its efficacy on acute and chronic muscular pathologies.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giulia Resmini
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Elia Angelino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Michele Ferrara
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Paola Rota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, Faculty of Medicine, Milan, Italy
| | - Andrea Graziani
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Vita-Salute San Raffaele University, Faculty of Medicine, Milan, Italy
| |
Collapse
|
46
|
Endo Y, Baldino K, Li B, Zhang Y, Sakthivel D, MacArthur M, Panayi AC, Kip P, Spencer DJ, Jasuja R, Bagchi D, Bhasin S, Nuutila K, Neppl RL, Wagers AJ, Sinha I. Loss of ARNT in skeletal muscle limits muscle regeneration in aging. FASEB J 2020; 34:16086-16104. [PMID: 33064329 PMCID: PMC7756517 DOI: 10.1096/fj.202000761rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The ability of skeletal muscle to regenerate declines significantly with aging. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT), a critical component of the hypoxia signaling pathway, was less abundant in skeletal muscle of old (23-25 months old) mice. This loss of ARNT was associated with decreased levels of Notch1 intracellular domain (N1ICD) and impaired regenerative response to injury in comparison to young (2-3 months old) mice. Knockdown of ARNT in a primary muscle cell line impaired differentiation in vitro. Skeletal muscle-specific ARNT deletion in young mice resulted in decreased levels of whole muscle N1ICD and limited muscle regeneration. Administration of a systemic hypoxia pathway activator (ML228), which simulates the actions of ARNT, rescued skeletal muscle regeneration in both old and ARNT-deleted mice. These results suggest that the loss of ARNT in skeletal muscle is partially responsible for diminished myogenic potential in aging and activation of hypoxia signaling holds promise for rescuing regenerative activity in old muscle.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Kodi Baldino
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Bin Li
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuteng Zhang
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | | | - Michael MacArthur
- Department of Genetics and Complex DiseasesHarvard School of Public HealthBostonMAUSA
- Division of Vascular and Endovascular SurgeryBrigham and Women's HospitalBostonMAUSA
| | - Adriana C. Panayi
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Peter Kip
- Division of Vascular and Endovascular SurgeryBrigham and Women's HospitalBostonMAUSA
| | | | - Ravi Jasuja
- Division of EndocrinologyBrigham and Women's HospitalBostonMAUSA
| | - Debalina Bagchi
- Department of Orthopedic SurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shalender Bhasin
- Division of EndocrinologyBrigham and Women's HospitalBostonMAUSA
| | - Kristo Nuutila
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Ronald L. Neppl
- Department of Orthopedic SurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Amy J. Wagers
- Joslin Diabetes CenterBostonMAUSA
- Harvard Department of Stem Cell and Regenerative BiologyHarvard Stem Cell InstituteCambridgeMAUSA
- Paul F. Glenn Center for the Biology of AgingHarvard Medical SchoolBostonMAUSA
| | - Indranil Sinha
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Harvard Department of Stem Cell and Regenerative BiologyHarvard Stem Cell InstituteCambridgeMAUSA
| |
Collapse
|
47
|
Shang Q, Shen G, Chen G, Zhang Z, Yu X, Zhao W, Zhang P, Chen H, Tang K, Yu F, Tang J, Liang D, Jiang X, Ren H. The emerging role of miR-128 in musculoskeletal diseases. J Cell Physiol 2020; 236:4231-4243. [PMID: 33241566 DOI: 10.1002/jcp.30179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
MicroRNA-128 (miR-128) is associated with cell proliferation, differentiation, migration, apoptosis, and survival. Genetic analysis studies have demonstrated that miR-128 participates in bone metabolism, which involves bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, and adipocytes. miR-128 also participates in regeneration of skeletal muscles by targeting myoblast-associated proteins. The deregulation of miR-128 could lead to a series of musculoskeletal diseases. In this review, we discuss recent findings of miR-128 in relation to bone metabolism and muscle regeneration to determine its potential therapeutic effects in musculoskeletal diseases, and to propose directions for future research in this significant field.
Collapse
Affiliation(s)
- Qi Shang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Tang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
48
|
Soplinska A, Zareba L, Wicik Z, Eyileten C, Jakubik D, Siller-Matula JM, De Rosa S, Malek LA, Postula M. MicroRNAs as Biomarkers of Systemic Changes in Response to Endurance Exercise-A Comprehensive Review. Diagnostics (Basel) 2020; 10:diagnostics10100813. [PMID: 33066215 PMCID: PMC7602033 DOI: 10.3390/diagnostics10100813] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Endurance sports have an unarguably beneficial influence on cardiovascular health and general fitness. Regular physical activity is considered one of the most powerful tools in the prevention of cardiovascular disease. MicroRNAs are small particles that regulate the post-transcription gene expression. Previous studies have shown that miRNAs might be promising biomarkers of the systemic changes in response to exercise, before they can be detected by standard imaging or laboratory methods. In this review, we focused on four important physiological processes involved in adaptive changes to various endurance exercises (namely, cardiac hypertrophy, cardiac myocyte damage, fibrosis, and inflammation). Moreover, we discussed miRNAs’ correlation with cardiopulmonary fitness parameter (VO2max). After a detailed literature search, we found that miR-1, miR-133, miR-21, and miR-155 are crucial in adaptive response to exercise.
Collapse
Affiliation(s)
- Aleksandra Soplinska
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
| | - Lukasz Zareba
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
| | - Zofia Wicik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo 055080-90, Brazil
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
| | - Daniel Jakubik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
| | - Jolanta M. Siller-Matula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
- Department of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy;
| | - Lukasz A. Malek
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, 04-635 Warsaw, Poland;
| | - Marek Postula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
- Longevity Center, 00-761 Warsaw, Poland
- Correspondence: ; Tel.: +48-221166160; Fax: +48-221166202
| |
Collapse
|
49
|
Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020; 8:480. [PMID: 32612995 PMCID: PMC7308489 DOI: 10.3389/fcell.2020.00480] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.
Collapse
Affiliation(s)
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
50
|
Prolyl hydroxylase domain 2 reduction enhances skeletal muscle tissue regeneration after soft tissue trauma in mice. PLoS One 2020; 15:e0233261. [PMID: 32413092 PMCID: PMC7228053 DOI: 10.1371/journal.pone.0233261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tissue regeneration. HIF-1 is negatively controlled by O2-dependent prolyl hydroxylases with a predominant role of prolyl hydroxylase 2 isoform (Phd2). Transgenic mice, hypomorphic for this isoform, accumulate more HIF-1 under normoxic conditions. Using these mice, we investigated the influence of Phd2 and HIF-1 on the regenerative capability of skeletal muscle tissue after myotrauma. Phd2-hypomorphic and wild type mice (on C57Bl/6 background) were grouped with regeneration times from 6 to 168 hours after closed mechanic muscle trauma to the hind limb. Tissue samples were analysed by immuno-staining and real-time PCR. Bone marrow derived macrophages of wild type and Phd2-hypomorphic mice were isolated and analysed via flow cytometry and quantitative real-time PCR. Phd2 reduction led to a higher regenerative capability due to enhanced activation of myogenic factors accompanied by induction of genes responsible for glucose and lactate metabolism in Phd2-hypomorphic mice. Macrophage infiltration into the trauma areas in hypomorphic mice started earlier and was more pronounced compared to wild type mice. Phd2-hypomorphic mice also showed higher numbers of macrophages in areas with sustained trauma 72 hours after myotrauma application. In conclusion, we postulate that the HIF-1 pathway is activated secondary to a Phd2 reduction which may lead to i) higher activation of myogenic factors, ii) increased number of positive stem cell proliferation markers, and iii) accelerated macrophage recruitment to areas of trauma, resulting in faster muscle tissue regeneration after myotrauma. With the current development of prolyl hydroxylase domain inhibitors, our findings point towards a potential clinical benefit after myotrauma.
Collapse
|