1
|
Iwaide S, Murakami T, Sedghi Masoud N, Kobayashi N, Fortin JS, Miyahara H, Higuchi K, Chambers JK. Classification of amyloidosis and protein misfolding disorders in animals 2024: A review on pathology and diagnosis. Vet Pathol 2025; 62:117-138. [PMID: 39389927 DOI: 10.1177/03009858241283750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amyloidosis is a group of diseases in which proteins become amyloid, an insoluble fibrillar aggregate, resulting in organ dysfunction. Amyloid deposition has been reported in various animal species. To diagnose and understand the pathogenesis of amyloidosis, it is important to identify the amyloid precursor protein involved in each disease. Although 42 amyloid precursor proteins have been reported in humans, little is known about amyloidosis in animals, except for a few well-described amyloid proteins, including amyloid A (AA), amyloid light chain (AL), amyloid β (Aβ), and islet amyloid polypeptide-derived amyloid. Recently, several types of novel amyloidosis have been identified in animals using immunohistochemistry and mass spectrometry-based proteomic analysis. Certain species are predisposed to specific types of amyloidosis, suggesting a genetic background for its pathogenesis. Age-related amyloidosis has also emerged due to the increased longevity of captive animals. In addition, experimental studies have shown that some amyloids may be transmissible. Accurate diagnosis and understanding of animal amyloidosis are necessary for appropriate therapeutic intervention and comparative pathological studies. This review provides an updated classification of animal amyloidosis, including associated protein misfolding disorders of the central nervous system, and the current understanding of their pathogenesis. Pathologic features are presented together with state-of-the-art diagnostic methods that can be applied for routine diagnosis and identification of novel amyloid proteins in animals.
Collapse
Affiliation(s)
- Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | | | | | | | | | - Keiichi Higuchi
- Shinshu University, Matsumoto, Japan
- Meio University, Nago, Japan
| | | |
Collapse
|
2
|
Sémon M, Mouginot M, Peltier M, Corneloup C, Veber P, Guéguen L, Pantalacci S. Comparative transcriptomics in serial organs uncovers early and pan-organ developmental changes associated with organ-specific morphological adaptation. Nat Commun 2025; 16:768. [PMID: 39824799 PMCID: PMC11742040 DOI: 10.1038/s41467-025-55826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
Mice have evolved a new dental plan with two additional cusps on the upper molar, while hamsters were retaining the ancestral plan. By comparing the dynamics of molar development with transcriptome time series, we found at least three early changes in mouse upper molar development. Together, they redirect spatio-temporal dynamics to ultimately form two additional cusps. The mouse lower molar has undergone much more limited phenotypic evolution. Nevertheless, its developmental trajectory evolved as much as that of the upper molar and co-evolved with it. Among the coevolving changes, some are clearly involved in the new upper molar phenotype. We found a similar level of coevolution in bat limbs. In conclusion, our study reveals how serial organ morphology has adapted through organ-specific developmental changes, as expected, but also through shared changes that have organ-specific effects on the final phenotype. This highlights the important role of developmental system drift in one organ to accommodate adaptation in another.
Collapse
Affiliation(s)
- Marie Sémon
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Marion Mouginot
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Manon Peltier
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Claudine Corneloup
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Philippe Veber
- Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, UMR CNRS 5558, 69622, Villeurbanne, France
| | - Laurent Guéguen
- Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, UMR CNRS 5558, 69622, Villeurbanne, France
| | - Sophie Pantalacci
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| |
Collapse
|
3
|
Nicklin EF, Cohen KE, Cooper RL, Mitchell G, Fraser GJ. Evolution, development, and regeneration of tooth-like epithelial appendages in sharks. Dev Biol 2024; 516:221-236. [PMID: 39154741 DOI: 10.1016/j.ydbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Sharks and their relatives are typically covered in highly specialized epithelial appendages embedded in the skin called dermal denticles; ancient tooth-like units (odontodes) composed of dentine and enamel-like tissues. These 'skin teeth' are remarkably similar to oral teeth of vertebrates and share comparable morphological and genetic signatures. Here we review the histological and morphological data from embryonic sharks to uncover characters that unite all tooth-like elements (odontodes), including teeth and skin denticles in sharks. In addition, we review the differences between the skin and oral odontodes that reflect their varied capacity for renewal. Our observations have begun to decipher the developmental and genetic shifts that separate these seemingly similar dental units, including elements of the regenerative nature in both oral teeth and the emerging skin denticles from the small-spotted catshark (Scyliorhinus canicula) and other chondrichthyan models. Ultimately, we ask what defines a tooth at both the molecular and morphological level. These insights aim to help us understand how nature makes, replaces and evolves a vast array of odontodes.
Collapse
Affiliation(s)
- Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, USA
| | - Karly E Cohen
- Department of Biology, University of Florida, Gainesville, USA; Department of Biology, California State University Fullerton, Fullerton, USA
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Gianna Mitchell
- Department of Biology, University of Florida, Gainesville, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, USA.
| |
Collapse
|
4
|
Jiang S, Zhang Y, Zheng H, Zhao K, Yang Y, Lai B, Deng X, Wei Y. Spatiotemporal Molecular Architecture of Lineage Allocation and Cellular Organization in Tooth Morphogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403627. [PMID: 39535354 DOI: 10.1002/advs.202403627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/03/2024] [Indexed: 11/16/2024]
Abstract
The remarkable evolution of teeth morphological complexity represents a giant leap for vertebrate. Despite its importance in life history, the understanding of spatiotemporal organization of teeth remains rudimentary. Herein, a high-resolution genome-wide molecular patterning of lineage allocation and cellular organization in tooth morphogenesis is described, constructed by integrating spatial transcriptome and single-cell RNA sequencing. Twelve spatial compartments and seventeen heterogeneous cell clusters linked to tooth morphogenic milestones are identified. Eighty-eight percent of total lineage species has already appeared in the initial tooth bud rather than the generally considered sequential emergence. A previously unrecognized sprouting-like patterning mode of the dental papilla is discovered, that the inner compartment can break through the outer shell compartment to build up the final papilla cusp. Meanwhile, the continuum differentiation hierarchies of enamel knots in time and space are revealed. Furthermore, the regulatory network directing tooth morphogenesis is established, whereby a series of mechanotransduction signals are spatiotemporally involved beyond the well-established classical odontogenesis signals. Finally, genes underlying tooth dysplasia are successfully tracked to highly specific time points and cell types. The results raise the idea that tooth morphogenesis is orchestrated by mechanical niches combined with biochemical signaling.
Collapse
Affiliation(s)
- Shengjie Jiang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Huimin Zheng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Kai Zhao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yue Yang
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Binbin Lai
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
- Department of Dermatology, Peking University First Hospital, Beijing, 100034, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yan Wei
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| |
Collapse
|
5
|
Henriquez JI, Richman JM. Resilience of the replacing dentition in adult reptiles. Dev Biol 2024; 516:71-81. [PMID: 39059678 PMCID: PMC11458058 DOI: 10.1016/j.ydbio.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The dentition is critical to animal survival and teeth are present in modern vertebrates including teleost fish, sharks, amphibians, mammals and reptiles. The developmental processes that give rise to teeth are not just preserved through evolution but also share high level of similarity with the embryogenesis of other ectodermal organs. In this review we go beyond the embryonic phase of tooth development to life-long tooth replacement. We will address the origins of successional teeth, the location of putative tissue-resident stem cells, how de novo tooth formation continues throughout life and how teeth are shed in a spatially and temporally controlled manner. We review the evidence that the dental epithelium, which is the earliest recognizable dental structure in the reptilian dentition, serves as a putative niche for tissue-resident epithelial stem cells and recent molecular findings from transcriptomics carried out in reptilian dentitions. We discuss how odontoclasts resorb the primary tooth allowing eruption of the successional tooth. The reptiles, particularly lizards, are emerging as some of the most accessible animals to study tooth replacement which has relevance to evolution of the dentition and human dental disorders.
Collapse
Affiliation(s)
- Joaquin I Henriquez
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Canada
| | - Joy M Richman
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Canada.
| |
Collapse
|
6
|
Calamari ZT, Song A, Cohen E, Akter M, Das Roy R, Hallikas O, Christensen MM, Li P, Marangoni P, Jernvall J, Klein OD. Bank vole genomics links determinate and indeterminate growth of teeth. BMC Genomics 2024; 25:1000. [PMID: 39472825 PMCID: PMC11523675 DOI: 10.1186/s12864-024-10901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Bank and prairie voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars while retaining similar size and shape, providing alternative models for studying roots. RESULTS We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. Bulk transcriptomics comparisons of embryonic molar development between bank voles and mice demonstrated overall conservation of gene expression levels, with species-specific differences corresponding to the accelerated and more extensive patterning of the vole molar. We leverage convergent evolution of unrooted molars across the clade to examine changes that may underlie the evolution of unrooted molars. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. CONCLUSIONS Our results support ongoing evolution of dental genes across Glires and identify candidate genes for mechanistic studies of root formation. Comparative research using the bank vole as a model species can reveal the complex evolutionary background of convergent evolution for ever-growing molars.
Collapse
Affiliation(s)
- Zachary T Calamari
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA.
- The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY, 10016, USA.
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
| | - Andrew Song
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
- Cornell University, 616 Thurston Ave, Ithaca, NY, 14853, USA
| | - Emily Cohen
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
- New York University College of Dentistry, 345 E 34th St, New York, NY, 10010, USA
| | - Muspika Akter
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mona M Christensen
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Pengyang Li
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Rm 119, Stanford, CA, 94305, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ophir D Klein
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA.
| |
Collapse
|
7
|
Fowler TE, Bloomquist DT, Glessner C, Patel P, James JN, Bollinger K, McCluskey LP, Bloomquist RF. A novel model of autologous tooth transplantation for the study of nerve recruitment. BMC Oral Health 2024; 24:1141. [PMID: 39334208 PMCID: PMC11438115 DOI: 10.1186/s12903-024-04884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Limited treatment options exist for damaged nerves and despite impressive advances in tissue engineering, scientists and clinicians have yet to fully replicate nerve development and recruitment. Innervation is a critical feature for normal organ function. While most organs are innervated prior to birth, a rare example of postnatal nerve recruitment occurs in the natural development of secondary teeth during adolescence. Many animals undergo postnatal shedding of deciduous teeth with development and eruption of secondary teeth, a process requiring recruitment of nerve and vasculature to each tooth pulp for viability. Here, the investigators created a novel model for the study of postnatal innervation by exploiting the natural phenomenon of tooth-driven nerve recruitment. METHODS The investigators theorized that developing teeth possess a special capacity to induce innervation which could be harnessed in a clinical setting for nerve regeneration, and hyptothesized that a transplant model could be created to capture this phenomenon. In this descriptive study, a rat model of autologous tooth transplantation and de novo nerve recruitment was developed by surgically transferring whole developing molars to the autologous tibia. RESULTS Downstream histological analysis performed 6 to 14 weeks after surgery demonstrated integration of molar into tibia in 81% of postoperative rats, with progressive pulpal expression of nerve marker ß-tubulin III suggestive of neuronal recruitment. CONCLUSIONS These findings provide a novel model for the study of organ transplantation and support the theory that developing dental tissues may retain nerve-inductive properties postnatally.
Collapse
Affiliation(s)
- Teresa E Fowler
- Department of Ophthalmology, Wellstar MCG Health, 1120 15th Street, Augusta, GA, 30912, USA
| | - Doan T Bloomquist
- Department of Ophthalmology, Charlie Norwood Veterans Affairs Medical Center, 950 15th Street, Augusta, GA, 30901, USA
| | - Caroline Glessner
- The Dental College of Georgia at Augusta University, 1430 John Wesley Gilbert Drive, Augusta, GA, 30912, USA
| | - Poonam Patel
- The Dental College of Georgia at Augusta University, 1430 John Wesley Gilbert Drive, Augusta, GA, 30912, USA
| | - Jeffrey N James
- Department of Surgery, Wellstar MCG Health, 1120 15th Street, Augusta, GA, 30912, USA
- Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Ave, New Orleans, LA, 70119, USA
| | - Kathryn Bollinger
- Department of Ophthalmology, Wellstar MCG Health, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Ophthalmology, Charlie Norwood Veterans Affairs Medical Center, 950 15th Street, Augusta, GA, 30901, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA
- The James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Ryan F Bloomquist
- The Dental College of Georgia at Augusta University, 1430 John Wesley Gilbert Drive, Augusta, GA, 30912, USA.
- University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
8
|
Shao F, Phan AV, Yu W, Guo Y, Thompson J, Coppinger C, Venugopalan SR, Amendt BA, Van Otterloo E, Cao H. Transcriptional programs of Pitx2 and Tfap2a/Tfap2b controlling lineage specification of mandibular epithelium during tooth initiation. PLoS Genet 2024; 20:e1011364. [PMID: 39052671 PMCID: PMC11302917 DOI: 10.1371/journal.pgen.1011364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/06/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
How the dorsal-ventral axis of the vertebrate jaw, particularly the position of tooth initiation site, is established remains a critical and unresolved question. Tooth development starts with the formation of the dental lamina, a localized thickened strip within the maxillary and mandibular epithelium. To identify transcriptional regulatory networks (TRN) controlling the specification of dental lamina from the naïve mandibular epithelium, we utilized Laser Microdissection coupled low-input RNA-seq (LMD-RNA-seq) to profile gene expression of different domains of the mandibular epithelium along the dorsal-ventral axis. We comprehensively identified transcription factors (TFs) and signaling pathways that are differentially expressed along mandibular epithelial domains (including the dental lamina). Specifically, we found that the TFs Sox2 and Tfap2 (Tfap2a/Tfap2b) formed complimentary expression domains along the dorsal-ventral axis of the mandibular epithelium. Interestingly, both classic and novel dental lamina specific TFs-such as Pitx2, Ascl5 and Zfp536-were found to localize near the Sox2:Tfap2a/Tfap2b interface. To explore the functional significance of these domain specific TFs, we next examined loss-of-function mouse models of these domain specific TFs, including the dental lamina specific TF, Pitx2, and the ventral surface ectoderm specific TFs Tfap2a and Tfap2b. We found that disruption of domain specific TFs leads to an upregulation and expansion of the alternative domain's TRN. The importance of this cross-repression is evident by the ectopic expansion of Pitx2 and Sox2 positive dental lamina structure in Tfap2a/Tfap2b ectodermal double knockouts and the emergence of an ectopic tooth in the ventral surface ectoderm. Finally, we uncovered an unappreciated interface of mesenchymal SHH and WNT signaling pathways, at the site of tooth initiation, that were established by the epithelial domain specific TFs including Pitx2 and Tfap2a/Tfap2b. These results uncover a previously unknown molecular mechanism involving cross-repression of domain specific TFs including Pitx2 and Tfap2a/Tfap2b in patterning the dorsal-ventral axis of the mouse mandible, specifically the regulation of tooth initiation site.
Collapse
Affiliation(s)
- Fan Shao
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - An-Vi Phan
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
| | - Wenjie Yu
- Department of Internal Medicine and Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Yuwei Guo
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
| | - Jamie Thompson
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Carter Coppinger
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
| | - Shankar R. Venugopalan
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
- Department of Orthodontics, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
| | - Brad A. Amendt
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Orthodontics, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Periodontics, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
| | - Huojun Cao
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
- Department of Endodontics, University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, United States of America
| |
Collapse
|
9
|
Kenessey DE, Stojanowski CM, Paul KS. Evaluating predictions of the patterning cascade model of crown morphogenesis in the human lower mixed and permanent dentition. PLoS One 2024; 19:e0304455. [PMID: 38935640 PMCID: PMC11210800 DOI: 10.1371/journal.pone.0304455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The patterning cascade model of crown morphogenesis has been studied extensively in a variety of organisms to elucidate the evolutionary history surrounding postcanine tooth form. The current research is the first to use a large modern human sample to examine whether the crown configuration of lower deciduous and permanent molars aligns with expectations derived from the model. This study has two main goals: 1) to determine if metameric and antimeric pairs significantly differ in size, accessory trait expression, and relative intercusp spacing, and 2) assess whether the relative distance among early-forming cusps accounts for observed variation in accessory cusp expression. METHODS Tooth size, intercusp distance, and morphological trait expression data were collected from 3D scans of mandibular dental casts representing participants of the Harvard Solomon Islands Project. Paired tests were utilized to compare tooth size, accessory trait expression, and relative intercusp distance between diphyodont metameres and permanent antimeres. Proportional odds logistic regression was implemented to investigate how the odds of greater accessory cusp expression vary as a function of the distance between early-developing cusps. RESULTS/SIGNIFICANCE Comparing paired molars, significant differences were identified for tooth size and cusp 5 expression. Several relative intercusp distances emerged as important predictors of cusp 6 expression, however, results for cusp 5 and cusp 7 did not match expected patterns. These findings support previous quantitative genetic results and suggest the development of neighboring crown structures represents a zero-sum partitioning of cellular territory and resources. As such, this study contributes to a better understanding of the foundations of deciduous and permanent molar crown variation in humans.
Collapse
Affiliation(s)
- Dori E. Kenessey
- Department of Anthropology, U niversity of Nevada, Reno, Nevada, United States of America
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Kathleen S. Paul
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
10
|
Calamari ZT, Song A, Cohen E, Akter M, Roy RD, Hallikas O, Christensen MM, Li P, Marangoni P, Jernvall J, Klein OD. Vole genomics links determinate and indeterminate growth of teeth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572015. [PMID: 38187646 PMCID: PMC10769287 DOI: 10.1101/2023.12.18.572015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Different species of voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars that have similar size and shape, providing alternative models for studying roots. We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. Bulk transcriptomics analyses of embryonic molar development in bank voles also demonstrated conserved patterns of dental gene expression compared to mice, with species-specific variation likely related to developmental timing and morphological differences between mouse and vole molars. Our results support ongoing evolution of dental genes across Glires, revealing the complex evolutionary background of convergent evolution for ever-growing molars.
Collapse
Affiliation(s)
- Zachary T. Calamari
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY 10016, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Andrew Song
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- Cornell University, 616 Thurston Ave, Ithaca, NY 14853, USA
| | - Emily Cohen
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- New York University College of Dentistry, 345 E 34th St, New York, NY 10010
| | - Muspika Akter
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mona M. Christensen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pengyang Li
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Huysseune A, Witten PE. Continuous tooth replacement: what can teleost fish teach us? Biol Rev Camb Philos Soc 2024; 99:797-819. [PMID: 38151229 DOI: 10.1111/brv.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Most tooth-bearing non-mammalian vertebrates have the capacity to replace their teeth throughout life. This capacity was lost in mammals, which replace their teeth only once at most. Not surprisingly, continuous tooth replacement has attracted much attention. Classical morphological studies (e.g. to analyse patterns of replacement) are now being complemented by molecular studies that investigate the expression of genes involved in tooth formation. This review focuses on ray-finned fish (actinopterygians), which have teeth often distributed throughout the mouth and pharynx, and more specifically on teleost fish, the largest group of extant vertebrates. First we highlight the diversity in tooth distribution and in tooth replacement patterns. Replacement tooth formation can start from a distinct (usually discontinuous and transient) dental lamina, but also in the absence of a successional lamina, e.g. from the surface epithelium of the oropharynx or from the outer dental epithelium of a predecessor tooth. The relationship of a replacement tooth to its predecessor is closely related to whether replacement is the result of a prepattern or occurs on demand. As replacement teeth do not necessarily have the same molecular signature as first-generation teeth, the question of the actual trigger for tooth replacement is discussed. Much emphasis has been laid in the past on the potential role of epithelial stem cells in initiating tooth replacement. The outcome of such studies has been equivocal, possibly related to the taxa investigated, and the permanent or transient nature of the dental lamina. Alternatively, replacement may result from local proliferation of undifferentiated progenitors, stimulated by hitherto unknown, perhaps mesenchymal, factors. So far, the role of the neurovascular link in continuous tooth replacement has been poorly investigated, despite the presence of a rich vascularisation surrounding actinopterygian (as well as chondrichthyan) teeth and despite a complete arrest of tooth replacement after nerve resection. Lastly, tooth replacement is possibly co-opted as a process to expand the number of teeth in a dentition ontogenetically whilst conserving features of the primary dentition. That neither a dental lamina, nor stem cells appear to be required for tooth replacement places teleosts in an advantageous position as models for tooth regeneration in humans, where the dental lamina regresses and epithelial stem cells are considered lost.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
12
|
Jin C, Adachi N, Yoshimoto Y, Sasabuchi A, Kawashima N, Ota MS, Iseki S. Fibroblast growth factor signalling regulates the development of tooth root. J Anat 2024; 244:1067-1077. [PMID: 38258312 PMCID: PMC11095309 DOI: 10.1111/joa.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor (FGF) signalling plays a crucial role in the morphogenesis of multiple tissues including teeth. While the role of the signal has been studied in tooth crown development, little is known about root development. Of several FGF ligands involved in hard tissue formation, we suggest that FGF18 regulates the development of murine tooth roots. We implanted FGF18-soaked heparin beads into the lower first molar tooth buds at postnatal day 6 (P6), followed by transplantation under the kidney capsule. After 3 weeks, FGF18 significantly facilitated root elongation and periodontal tissue formation compared to the control. In situ hybridisation showed that Fgf18 transcripts were initially localised in the dental pulp along Hertwig's epithelial root sheath at P6 and P10 and subsequently in the dental follicle cells at P14. Fgf receptors were expressed in various dental tissues during these stages. In vitro analysis using the dental pulp stem cells revealed that FGF18 inhibited cell proliferation and decreased expression levels of osteogenic markers, Runx2, Alpl and Sp7. Consistently, after 1 week of kidney capsule transplantation, FGF18 application did not induce the expression of Sp7 and Bsp, but upregulated Periostin in the apical region of dental mesenchyme in the grafted molar. These findings suggest that FGF18 facilitates molar root development by regulating the calcification of periodontal tissues.
Collapse
Affiliation(s)
- Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Noritaka Adachi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aino Sasabuchi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato S Ota
- Laboratory of Anatomy, Physiology and Food Biological Science, Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
13
|
Reddien PW. The purpose and ubiquity of turnover. Cell 2024; 187:2657-2681. [PMID: 38788689 DOI: 10.1016/j.cell.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional. Some components turn over with shockingly high rates and others do not turn over at all, further making this process enigmatic. However, turnover can address fundamental problems by yielding powerful properties, including regeneration, rapid repair onset, clearance of unpredictable damage and errors, maintenance of low constitutive levels of disrepair, prevention of stable hazards, and transitions. I argue that trade-offs between turnover benefits and metabolic costs, combined with constraints on turnover, determine its presence and rates across distinct contexts. I suggest that the limits of turnover help explain aging and that turnover properties and the basis for its levels underlie this fundamental component of life.
Collapse
Affiliation(s)
- Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Boutillon A, Banavar SP, Campàs O. Conserved physical mechanisms of cell and tissue elongation. Development 2024; 151:dev202687. [PMID: 38767601 PMCID: PMC11190436 DOI: 10.1242/dev.202687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Living organisms have the ability to self-shape into complex structures appropriate for their function. The genetic and molecular mechanisms that enable cells to do this have been extensively studied in several model and non-model organisms. In contrast, the physical mechanisms that shape cells and tissues have only recently started to emerge, in part thanks to new quantitative in vivo measurements of the physical quantities guiding morphogenesis. These data, combined with indirect inferences of physical characteristics, are starting to reveal similarities in the physical mechanisms underlying morphogenesis across different organisms. Here, we review how physics contributes to shape cells and tissues in a simple, yet ubiquitous, morphogenetic transformation: elongation. Drawing from observed similarities across species, we propose the existence of conserved physical mechanisms of morphogenesis.
Collapse
Affiliation(s)
- Arthur Boutillon
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Samhita P. Banavar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | - Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
15
|
Hoffmann CA, Ribeiro AM, de Andrade MB. On the dentition, tooth replacement, and taxonomic status of Charruodon tetracuspidatus Abdala & Ribeiro, 2000: A bizarre cynodont from the middle upper Triassic of southern Brazil. Anat Rec (Hoboken) 2024; 307:1524-1537. [PMID: 37950602 DOI: 10.1002/ar.25349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Among the living tetrapods, mammals present a unique tooth replacement pattern, diphyodonty. Therefore, studying the dentition of mammalian ancestors is relevant to a better understanding of how this remarkable feature evolved. However, little is known about the postcanine tooth replacement pattern among Triassic cynodonts. Here, we applied the nondestructive method of microcomputed tomography (microCT) to analyze the dentition of the enigmatic Upper Triassic sectorial-toothed cynodont Charruodon tetracuspidatus (MCP 3934 PV, holotype) from the Candelaria Sequence, Santa Maria Supersequence, Brazil. The microCT-scan data allowed visualization of the replacement dentition and roots of the functional teeth, which provided information to inform interpretations of the ontogenetic stage and taxonomy of the species. A combination of dental and mandibular traits, as well as the small size of the specimen MCP 3934 PV, suggest an early ontogenetic stage. Additionally, the specimen could potentially be an ontogenetically immature form of another taxon, or a yet unknown species of probainognathian cynodont. Therefore, Charruodon tetracuspidatus is here designated as a nomen dubium, given the challenges of maintaining the species as valid.
Collapse
Affiliation(s)
- Carolina Abreu Hoffmann
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Maria Ribeiro
- Museu de Ciências Naturais, Secretaria do Meio Ambiente e Infraestrutura, Porto Alegre, RS, Brazil
| | - Marco Brandalise de Andrade
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Kantaputra P, Butali A, Eliason S, Chalkley C, Nakornchai S, Bongkochwilawan C, Kawasaki K, Kumchiang A, Ngamphiw C, Tongsima S, Ketudat Cairns JR, Olsen B, Intachai W, Ohazama A, Tucker AS, Amendt BA. CACNA1S mutation-associated dental anomalies: A calcium channelopathy. Oral Dis 2024; 30:1350-1359. [PMID: 36825457 PMCID: PMC11229413 DOI: 10.1111/odi.14551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES To identify the molecular etiology of distinct dental anomalies found in eight Thai patients and explore the mutational effects on cellular functions. MATERIALS AND METHODS Clinical and radiographic examinations were performed for eight patients. Whole exome sequencing, mutant protein modelling, qPCR, western blot analysis, scratch assays, immunofluorescence, confocal analysis, in situ hybridization, and scanning electron micrography of teeth were done. RESULTS All patients had molars with multiple supernumerary cusps, single-cusped premolars, and a reduction in root number. Mutation analysis highlighted a heterozygous c.865A>G; p.Ile289Val mutation in CACNA1S in the patients. CACNA1S is a component of the slowly inactivating L-type voltage-dependent calcium channel. Mutant protein modeling suggested that the mutation might allow leakage of Ca2+ or other cations, or a tightening, to restrict calcium flow. Immunohistochemistry analysis showed expression of Cacna1s in the developing murine tooth epithelium during stages of crown and root morphogenesis. In cell culture, the mutation resulted in abnormal cell migration of transfected CHO cells compared to wildtype CACNA1S, with changes to the cytoskeleton and markers of focal adhesion. CONCLUSIONS The malformations observed in our patients suggest a role for calcium signaling in organization of both cusps and roots, affecting cell dynamics within the dental epithelium.
Collapse
Affiliation(s)
- P Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - A Butali
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - S Eliason
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, Iowa, USA
| | - C Chalkley
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, Iowa, USA
| | - S Nakornchai
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - C Bongkochwilawan
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - K Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - A Kumchiang
- Na-Chauk Hospital, Na-Chauk, Maha Sarakham, Thailand
| | - C Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | - S Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | - J R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - B Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - W Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - A Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - A S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - B A Amendt
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Van Ankum EM, Majcher KB, Dolovich AT, Johnston JD, Flegel KP, Boughner JC. Food texture and vitamin D influence mouse mandible form and molar roots. Anat Rec (Hoboken) 2024; 307:611-632. [PMID: 37702738 DOI: 10.1002/ar.25315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Industrialization influenced several facets of lifestyle, including softer nutrient-poor diets that contributed to vitamin D deficiency in post-industrzialized populations, with concomitantly increased dental problems. Here we simulated a post-industrialized diet in a mouse model to test the effects of diet texture and vitamin D level on mandible and third molar (M3) forms. Mice were raised on a soft diet with vitamin D (VitD) or without it (NoD), or on a hard diet with vitamin D. We hypothesized that a VitD/hard diet is optimal for normal mandible and tooth root form, as well as for timely M3 initiation. Subsets of adult NoD/soft and VitD/soft groups were bred to produce embryos that were micro-computed tomography (μCT) scanned to stage M3 development. M3 stage did not differ between embryos from mothers fed VitD and NoD diets, indicating that vitamin D does not affect timing of M3 onset. Sacrificed adult mice were μCT-scanned, their mandibles 3D-landmarked and M3 roots were measured. Principal component (PC) analysis described the largest proportion of mandible shape variance (PC1, 30.1%) related to diet texture, and nominal shape variance (PC2, 13.8%) related to vitamin D. Mice fed a soft diet had shorter, relatively narrower, and somewhat differently shaped mandibles that recapitulated findings in human populations. ANOVA and other multivariate tests found significantly wider M3 roots and larger root canals in mice fed a soft diet, with vitamin D having little effect. Altogether our experiments using a mouse model contribute new insights about how a post-industrial diet may influence human craniodental variation.
Collapse
Affiliation(s)
- Elsa M Van Ankum
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Kadin B Majcher
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Allan T Dolovich
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Kennedy P Flegel
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Julia C Boughner
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
18
|
Xu X, Gong X, Zhang L, Zhang H, Sun Y. PRX1-positive mesenchymal stem cells drive molar morphogenesis. Int J Oral Sci 2024; 16:15. [PMID: 38369512 PMCID: PMC10874978 DOI: 10.1038/s41368-024-00277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024] Open
Abstract
Mammalian teeth, developing inseparable from epithelial-mesenchymal interaction, come in many shapes and the key factors governing tooth morphology deserve to be answered. By merging single-cell RNA sequencing analysis with lineage tracing models, we have unearthed a captivating correlation between the contrasting morphology of mouse molars and the specific presence of PRX1+ cells within M1. These PRX1+ cells assume a profound responsibility in shaping tooth morphology through a remarkable divergence in dental mesenchymal cell proliferation. Deeper into the mechanisms, we have discovered that Wnt5a, bestowed by mesenchymal PRX1+ cells, stimulates mesenchymal cell proliferation while orchestrating molar morphogenesis through WNT signaling pathway. The loss of Wnt5a exhibits a defect phenotype similar to that of siPrx1. Exogenous addition of WNT5A can successfully reverse the inhibited cell proliferation and consequent deviant appearance exhibited in Prx1-deficient tooth germs. These findings bestow compelling evidence of PRX1-positive mesenchymal cells to be potential target in regulating tooth morphology.
Collapse
Affiliation(s)
- Xiaoqiao Xu
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lei Zhang
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Han Zhang
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
19
|
Iwama H, Kaku M, Thant L, Mizukoshi M, Arai M, Ono Y, Kitami K, Saito I, Uoshima K. Acellular Extrinsic Fiber Cementum Is Invariably Present in the Superficial Layer of Apical Cementum in Mouse Molar. J Histochem Cytochem 2024; 72:109-120. [PMID: 38288702 PMCID: PMC10851881 DOI: 10.1369/00221554241229130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
The cementum is a highly mineralized tissue that covers the tooth root. The regional differences among the types of cementum, especially in the extrinsic fibers that contribute to tooth support, remain controversial. Therefore, this study used second harmonic generation imaging in conjunction with automated collagen extraction and image analysis algorithms to facilitate the quantitative examination of the fiber characteristics and the changes occurring in these fibers over time. Acellular extrinsic fiber cementum (AEFC) was invariably observed in the superficial layer of the apical cementum in mouse molars, indicating that this region of the cementum plays a crucial role in supporting the tooth. The apical AEFC exhibited continuity and fiber characteristics comparable with the cervical AEFC, suggesting a common cellular origin for their formation. The cellular intrinsic fiber cementum present in the inner layer of the apical cementum showed consistent growth in the apical direction without layering. This study highlights the dynamic nature of the cementum in mouse molars and underscores the requirement for re-examining its structure and roles. The findings of the present study elucidate the morphophysiological features of cementum and have broader implications for the maintenance of periodontal tissue health.
Collapse
Affiliation(s)
- Hajime Iwama
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Lay Thant
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Moe Arai
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshiki Ono
- Division of Bio-Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
20
|
Shao F, Van Otterloo E, Cao H. Computational identification of key transcription factors for embryonic and postnatal Sox2+ dental epithelial stem cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573158. [PMID: 38187542 PMCID: PMC10769342 DOI: 10.1101/2023.12.22.573158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
While many reptiles can replace their tooth throughout life, human loss the tooth replacement capability after formation of the permanent teeth. It was thought that the difference in tooth regeneration capability depends on the persistence of a specialized dental epithelial structure, the dental lamina that contains dental epithelial stem cells (DESC). Currently, we know very little about DESC such as what genes are expressed or its chromatin accessibility profile. Multiple markers of DESC have been proposed such as Sox2 and Lgr5 . Few single cell RNA-seq experiments have been performed previously, but no obvious DESC cluster was identified in these scRNA-seq datasets, possible due to that the expression level of DESC markers such as Sox2 and Lgr5 is too low or the percentage of DESC is too low in whole tooth. We utilize a mouse line Sox2-GFP to enrich Sox2+ DESC and use Smart-Seq2 protocol and ATAC-seq protocol to generate transcriptome profile and chromatin accessibility profile of P2 Sox2+ DESC. Additionally, we generate transcriptome profile and chromatin accessibility profile of E11.5 Sox2+ dental lamina cells. With transcriptome profile and chromatin accessibility profile, we systematically identify potential key transcription factors for E11.5 Sox2+ cells and P2 Sox2+ cells. We identified transcription factors including Pitx2, Id3, Pitx1, Tbx1, Trp63, Nkx2-3, Grhl3, Dlx2, Runx1, Nfix, Zfp536 , etc potentially formed the core transcriptional regulatory networks of Sox2+ DESC in both embryonic and postnatal stages.
Collapse
|
21
|
Square TA, Mackey EJ, Sundaram S, Weksler NC, Chen ZZ, Narayanan SN, Miller CT. Modulation of tooth regeneration through opposing responses to Wnt and BMP signals in teleosts. Development 2023; 150:dev202168. [PMID: 38059590 PMCID: PMC10730089 DOI: 10.1242/dev.202168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Most vertebrate species undergo tooth replacement throughout adult life. This process is marked by the shedding of existing teeth and the regeneration of tooth organs. However, little is known about the genetic circuitry regulating tooth replacement. Here, we tested whether fish orthologs of genes known to regulate mammalian hair regeneration have effects on tooth replacement. Using two fish species that demonstrate distinct modes of tooth regeneration, threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), we found that transgenic overexpression of four different genes changed tooth replacement rates in the direction predicted by a hair regeneration model: Wnt10a and Grem2a increased tooth replacement rate, whereas Bmp6 and Dkk2 strongly inhibited tooth formation. Thus, similar to known roles in hair regeneration, Wnt and BMP signals promote and inhibit regeneration, respectively. Regulation of total tooth number was separable from regulation of replacement rates. RNA sequencing of stickleback dental tissue showed that Bmp6 overexpression resulted in an upregulation of Wnt inhibitors. Together, these data support a model in which different epithelial organs, such as teeth and hair, share genetic circuitry driving organ regeneration.
Collapse
Affiliation(s)
- Tyler A. Square
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Emma J. Mackey
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Shivani Sundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Naama C. Weksler
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Zoe Z. Chen
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Sujanya N. Narayanan
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Craig T. Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Jernvall J, Di-Poï N, Mikkola ML, Kratochwil CF. Toward a universal measure of robustness across model organs and systems. Evol Dev 2023; 25:410-417. [PMID: 37070415 DOI: 10.1111/ede.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
The development of an individual must be capable of resisting the harmful effects of internal and external perturbations. This capacity, called robustness, can make the difference between normal variation and disease. Some systems and organs are more resilient in their capacity to correct the effects of internal disturbances such as mutations. Similarly, organs and organisms differ in their capacity to be resilient against external disturbances, such as changes in temperature. Furthermore, all developmental systems must be somewhat flexible to permit evolutionary change, and understanding robustness requires a comparative framework. Over the last decades, most research on developmental robustness has been focusing on specific model systems and organs. Hence, we lack tools that would allow cross-species and cross-organ comparisons. Here, we emphasize the need for a uniform framework to experimentally test and quantify robustness across study systems and suggest that the analysis of fluctuating asymmetry might be a powerful proxy to do so. Such a comparative framework will ultimately help to resolve why and how organs of the same and different species differ in their sensitivity to internal (e.g., mutations) and external (e.g., temperature) perturbations and at what level of biological organization buffering capacities exist and therefore create robustness of the developmental system.
Collapse
Affiliation(s)
- Jukka Jernvall
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
23
|
Alghadeer A, Hanson-Drury S, Patni AP, Ehnes DD, Zhao YT, Li Z, Phal A, Vincent T, Lim YC, O'Day D, Spurrell CH, Gogate AA, Zhang H, Devi A, Wang Y, Starita L, Doherty D, Glass IA, Shendure J, Freedman BS, Baker D, Regier MC, Mathieu J, Ruohola-Baker H. Single-cell census of human tooth development enables generation of human enamel. Dev Cell 2023; 58:2163-2180.e9. [PMID: 37582367 PMCID: PMC10629594 DOI: 10.1016/j.devcel.2023.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/05/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Tooth enamel secreted by ameloblasts (AMs) is the hardest material in the human body, acting as a shield to protect the teeth. However, the enamel is gradually damaged or partially lost in over 90% of adults and cannot be regenerated due to a lack of ameloblasts in erupted teeth. Here, we use single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) to establish a spatiotemporal single-cell census for the developing human tooth and identify regulatory mechanisms controlling the differentiation process of human ameloblasts. We identify key signaling pathways involved between the support cells and ameloblasts during fetal development and recapitulate those findings in human ameloblast in vitro differentiation from induced pluripotent stem cells (iPSCs). We furthermore develop a disease model of amelogenesis imperfecta in a three-dimensional (3D) organoid system and show AM maturation to mineralized structure in vivo. These studies pave the way for future regenerative dentistry.
Collapse
Affiliation(s)
- Ammar Alghadeer
- Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia; Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sesha Hanson-Drury
- Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Anjali P Patni
- Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai 603203, India
| | - Devon D Ehnes
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Yan Ting Zhao
- Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Zicong Li
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ashish Phal
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Thomas Vincent
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Yen C Lim
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Diana O'Day
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Cailyn H Spurrell
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Aishwarya A Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Hai Zhang
- Department of Restorative Dentistry, University of Washington, School of Dentistry, Seattle, WA 98195, USA
| | - Arikketh Devi
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai 603203, India
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lea Starita
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dan Doherty
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Ian A Glass
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Jay Shendure
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Benjamin S Freedman
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle WA 98109
| | - David Baker
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Mary C Regier
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia; Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Sadier A, Anthwal N, Krause AL, Dessalles R, Lake M, Bentolila LA, Haase R, Nieves NA, Santana SE, Sears KE. Bat teeth illuminate the diversification of mammalian tooth classes. Nat Commun 2023; 14:4687. [PMID: 37607943 PMCID: PMC10444822 DOI: 10.1038/s41467-023-40158-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Tooth classes are an innovation that has contributed to the evolutionary success of mammals. However, our understanding of the mechanisms by which tooth classes diversified remain limited. We use the evolutionary radiation of noctilionoid bats to show how the tooth developmental program evolved during the adaptation to new diet types. Combining morphological, developmental and mathematical modeling approaches, we demonstrate that tooth classes develop through independent developmental cascades that deviate from classical models. We show that the diversification of tooth number and size is driven by jaw growth rate modulation, explaining the rapid gain/loss of teeth in this clade. Finally, we mathematically model the successive appearance of tooth buds, supporting the hypothesis that growth acts as a key driver of the evolution of tooth number and size. Our work reveal how growth, by tinkering with reaction/diffusion processes, drives the diversification of tooth classes and other repeated structure during adaptive radiations.
Collapse
Affiliation(s)
- Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Neal Anthwal
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | | | - Renaud Dessalles
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Greenshield, 46 rue Saint-Antoine, 75004, Paris, France
| | - Michael Lake
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Laurent A Bentolila
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Robert Haase
- DFG Cluster of Excellence "Physics of Life", TU Dresden, Dresden, Germany
| | - Natalie A Nieves
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
26
|
Popowics T, Mulimani P. Mammalian dental diversity: an evolutionary template for regenerative dentistry. FRONTIERS IN DENTAL MEDICINE 2023; 4:1158482. [PMID: 39916902 PMCID: PMC11797774 DOI: 10.3389/fdmed.2023.1158482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 02/09/2025] Open
Abstract
The discovery of odontogenic mechanisms essential for regenerating dental tissues and eventually developing a biomimetic artificial whole tooth for replacement is an ongoing aspiration for dental clinicians and researchers. Studying the diversity, development and evolutionary changes of mammalian dentitions can provide key insights into the mechanisms of odontogenesis that can be harnessed for regenerative dental medicine. A myriad of influences is expected to have shaped the dentitions of mammals and our objective is to highlight the contributions of phylogeny, functional adaptation, and development to tooth shape. Innovations in tooth shape analysis will be discussed, such as in imaging methodologies and quantitative comparisons, molecular biology approaches to phylogeny and the ontogenetic basis of tooth form. Study of the inter- and intra-species differences in tooth form as well as dental anomalies has provided clues toward the mechanisms of evolutionary change in dental form. Thus, phenotypic variation in tooth shape will also be discussed, including the role of development in creating tooth shape differences that evolutionary selection pressures may act upon. Functional adaptations have occurred in the context of the phylogenetic signal of primitive mammals, and predecessors to each phylogenetic branch, and examples will be discussed within members of the Order Carnivora, the Superfamily Suoidea and the Order Primates. The comparative study of mammalian tooth shape holds the potential to inform dental research areas, such as etiopathogeneses of dental variation and tooth shape anomalies, molecular mechanisms of tooth development and functional issues. Ultimately, insights from these research areas can be potentially translated for futuristic clinical applications like regeneration of various tooth tissue layers and eventually full tooth replacement.
Collapse
Affiliation(s)
- Tracy Popowics
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA, United States
| | | |
Collapse
|
27
|
Liu H, Yue Y, Xu Z, Guo L, Wu C, Zhang D, Luo L, Huang W, Chen H, Yang D. mTORC1 signaling pathway regulates tooth repair. Int J Oral Sci 2023; 15:14. [PMID: 36927863 PMCID: PMC10020452 DOI: 10.1038/s41368-023-00218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 03/18/2023] Open
Abstract
Tooth germ injury can lead to abnormal tooth development and even tooth loss, affecting various aspects of the stomatognathic system including form, function, and appearance. However, the research about tooth germ injury model on cellular and molecule mechanism of tooth germ repair is still very limited. Therefore, it is of great importance for the prevention and treatment of tooth germ injury to study the important mechanism of tooth germ repair by a tooth germ injury model. Here, we constructed a Tg(dlx2b:Dendra2-NTR) transgenic line that labeled tooth germ specifically. Taking advantage of the NTR/Mtz system, the dlx2b+ tooth germ cells were depleted by Mtz effectively. The process of tooth germ repair was evaluated by antibody staining, in situ hybridization, EdU staining and alizarin red staining. The severely injured tooth germ was repaired in several days after Mtz treatment was stopped. In the early stage of tooth germ repair, the expression of phosphorylated 4E-BP1 was increased, indicating that mTORC1 is activated. Inhibition of mTORC1 signaling in vitro or knockdown of mTORC1 signaling in vivo could inhibit the repair of injured tooth germ. Normally, mouse incisors were repaired after damage, but inhibition/promotion of mTORC1 signaling inhibited/promoted this repair progress. Overall, we are the first to construct a stable and repeatable repair model of severe tooth germ injury, and our results reveal that mTORC1 signaling plays a crucial role during tooth germ repair, providing a potential target for clinical treatment of tooth germ injury.
Collapse
Affiliation(s)
- Honghong Liu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Yue
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhiyun Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Li Guo
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuan Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Da Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Wenming Huang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China. .,Stomatological Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
28
|
Krivanek J, Buchtova M, Fried K, Adameyko I. Plasticity of Dental Cell Types in Development, Regeneration, and Evolution. J Dent Res 2023; 102:589-598. [PMID: 36919873 DOI: 10.1177/00220345231154800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Recent years have improved our understanding of the plasticity of cell types behind inducing, building, and maintaining different types of teeth. The latest efforts were aided by progress in single-cell transcriptomics, which helped to define not only cell states with mathematical precision but also transitions between them. This includes new aspects of dental epithelial and mesenchymal stem cell niches and beyond. These recent efforts revealed continuous and fluid trajectories connecting cell states during dental development and exposed the natural plasticity of tooth-building progenitors. Such "developmental" plasticity seems to be employed for organizing stem cell niches in adult continuously growing teeth. Furthermore, transitions between mature cell types elicited by trauma might represent a replay of embryonic continuous cell states. Alternatively, they could constitute transitions that evolved de novo, not known from the developmental paradigm. In this review, we discuss and exemplify how dental cell types exhibit plasticity during dynamic processes such as development, self-renewal, repair, and dental replacement. Hypothetically, minor plasticity of cell phenotypes and greater plasticity of transitions between cell subtypes might provide a better response to lifetime challenges, such as damage or dental loss. This plasticity might be additionally harnessed by the evolutionary process during the elaboration of dental cell subtypes in different animal lineages. In turn, the diversification of cell subtypes building teeth brings a diversity of their shape, structural properties, and functions.
Collapse
Affiliation(s)
- J Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - K Fried
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - I Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
29
|
Maxillary lateral incisor agenesis is associated with maxillary form: a geometric morphometric analysis. Clin Oral Investig 2023; 27:1063-1070. [PMID: 36036293 PMCID: PMC9985555 DOI: 10.1007/s00784-022-04690-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Agenesis of the maxillary lateral incisor occurs in up to 4% of all individuals and requires multidisciplinary treatment. Its developmental origins, however, are not fully understood. Earlier studies documented genetic factors contributing to agenesis but also an association with craniofacial morphology. In this study, we assessed the association between maxillary morphology and lateral incisor agenesis by a geometric morphometric approach to disentangle the roles of developmental plasticity and genetic factors. MATERIALS AND METHODS We quantified the maxillary alveolar ridge by 19 two-dimensional landmarks on cross-sectional images of 101 computed tomography scans. We compared the shape and size of the alveolar ridge across patients with unilateral or bilateral agenesis of maxillary lateral incisors and patients with extracted or in situ incisors. RESULTS The maxillary alveolar ridge was clearly narrower in patients with agenesis or an extracted incisor compared to the control group, whereas the contralateral side of the unilateral agenesis had an intermediate width. Despite massive individual variation, the ventral curvature of the alveolar ridge was, on average, more pronounced in the bilateral agenesis group compared to unilateral agenesis and tooth extraction. CONCLUSIONS This suggests that pleiotropic genetic and epigenetic factors influence both tooth development and cranial growth, but an inappropriately sized or shaped alveolar process may also inhibit normal formation or development of the tooth bud, thus leading to dental agenesis. CLINICAL RELEVANCE Our results indicate that bilateral agenesis of the lateral incisor tends to be associated with a higher need of bone augmentation prior to implant placement than unilateral agenesis.
Collapse
|
30
|
Wang D, Han S, Yang M. Tooth Diversity Underpins Future Biomimetic Replications. Biomimetics (Basel) 2023; 8:biomimetics8010042. [PMID: 36810373 PMCID: PMC9944091 DOI: 10.3390/biomimetics8010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Although the evolution of tooth structure seems highly conserved, remarkable diversity exists among species due to different living environments and survival requirements. Along with the conservation, this diversity of evolution allows for the optimized structures and functions of teeth under various service conditions, providing valuable resources for the rational design of biomimetic materials. In this review, we survey the current knowledge about teeth from representative mammals and aquatic animals, including human teeth, herbivore and carnivore teeth, shark teeth, calcite teeth in sea urchins, magnetite teeth in chitons, and transparent teeth in dragonfish, to name a few. The highlight of tooth diversity in terms of compositions, structures, properties, and functions may stimulate further efforts in the synthesis of tooth-inspired materials with enhanced mechanical performance and broader property sets. The state-of-the-art syntheses of enamel mimetics and their properties are briefly covered. We envision that future development in this field will need to take the advantage of both conservation and diversity of teeth. Our own view on the opportunities and key challenges in this pathway is presented with a focus on the hierarchical and gradient structures, multifunctional design, and precise and scalable synthesis.
Collapse
|
31
|
Cooper RL, Nicklin EF, Rasch LJ, Fraser GJ. Teeth outside the mouth: The evolution and development of shark denticles. Evol Dev 2023; 25:54-72. [PMID: 36594351 DOI: 10.1111/ede.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
Vertebrate skin appendages are incredibly diverse. This diversity, which includes structures such as scales, feathers, and hair, likely evolved from a shared anatomical placode, suggesting broad conservation of the early development of these organs. Some of the earliest known skin appendages are dentine and enamel-rich tooth-like structures, collectively known as odontodes. These appendages evolved over 450 million years ago. Elasmobranchs (sharks, skates, and rays) have retained these ancient skin appendages in the form of both dermal denticles (scales) and oral teeth. Despite our knowledge of denticle function in adult sharks, our understanding of their development and morphogenesis is less advanced. Even though denticles in sharks appear structurally similar to oral teeth, there has been limited data directly comparing the molecular development of these distinct elements. Here, we chart the development of denticles in the embryonic small-spotted catshark (Scyliorhinus canicula) and characterize the expression of conserved genes known to mediate dental development. We find that shark denticle development shares a vast gene expression signature with developing teeth. However, denticles have restricted regenerative potential, as they lack a sox2+ stem cell niche associated with the maintenance of a dental lamina, an essential requirement for continuous tooth replacement. We compare developing denticles to other skin appendages, including both sensory skin appendages and avian feathers. This reveals that denticles are not only tooth-like in structure, but that they also share an ancient developmental gene set that is likely common to all epidermal appendages.
Collapse
Affiliation(s)
- Rory L Cooper
- Department of Genetics and Evolution, The University of Geneva, Geneva, Switzerland
| | - Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Liam J Rasch
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
32
|
Smith-Guzmán NE. A paleoepidemiological approach to the challenging differential diagnosis of an isolated 1500-year-old anomalous molar from Panamá. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2022; 39:1-13. [PMID: 36029689 DOI: 10.1016/j.ijpp.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This study seeks to quantify the presence and prevalence of specific genetic and infectious diseases in the pre-Colombian Panamanian population and uses these data to consider the plausibility of these diseases as causative factors in the development of an abnormal supernumerary cusp morphology in a 1500-year-old isolated molar recovered from Cerro Juan Díaz (Los Santos, Panama). MATERIALS 267 individuals from pre-Columbian sites throughout Panama. METHODS The anomalous tooth was analyzed through macroscopic, odontometric, and radiographic means. Tentative differential diagnosis was performed using inferences from paleopathological features of the broader regional population. RESULTS The regional sample showed evidence of treponemal infection and developmental anomalies in 10.1% and 10.9% of individuals, respectively. CONCLUSIONS While not able to rule out three potential genetic conditions, more evidence was found to support the differential diagnosis of congenital syphilis as the causative agent leading to the development of abnormal supernumerary cusps in the isolated molar. SIGNIFICANCE This study demonstrates how characterizing disease experience in the population can assist in differential diagnoses at the individual level and cautions against the assumption that any one lesion in isolation is unique to only one specific pathological condition. LIMITATIONS The timing discrepancy between clinical descriptions of congenital syphilis and genetic disorders, lack of knowledge on pathophysiological mechanisms of the former, poor preservation of Treponema pathogen ancient DNA, and deficiencies in modern public health data from Panama limit the differential diagnosis. SUGGESTIONS FOR FURTHER RESEARCH Inclusion and serious contemplation of genetic diseases in paleopathological differential diagnoses is necessary.
Collapse
|
33
|
Vitek NS, McDaniel SF, Bloch JI. Microevolutionary variation in molar morphology of Onychomys leucogaster decoupled from genetic structure. Evolution 2022; 76:2032-2048. [PMID: 35872621 DOI: 10.1111/evo.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/22/2023]
Abstract
In neutral models of quantitative trait evolution, both genetic and phenotypic divergence scale as random walks, producing a correlation between the two measures. However, complexity in the genotype-phenotype map may alter the correlation between genotypic and phenotypic divergence, even when both are evolving neutrally or nearly so. Understanding this correlation between phenotypic and genetic variation is critical for accurately interpreting the fossil record. This study compares the geographic structure and scaling of morphological variation of the shape of the first lower molar of 77 individuals of the northern grasshopper mouse Onychomys leucogaster to genome-wide SNP variation in the same sample. We found strong genetic structure but weak or absent morphological structure indicating that the scaling of each type of variation is decoupled from one another. Low PST values relative to FST values are consistent with a lack of morphological divergence in contrast to genetic divergence between groups. This lack of phenotypic structure and the presence of notable within-sample phenotypic variance are consistent with uniform selection or constraints on molar shape across a wide geographic and environmental range. Over time, this kind of decoupling may result in patterns of phenotypic stasis masking underlying genetic patterns.
Collapse
Affiliation(s)
- Natasha S Vitek
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611.,Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Stuart F McDaniel
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
34
|
Traver C, Miralles L, Barcia JM. Association between Molecular Mechanisms and Tooth Eruption in Children with Obesity. CHILDREN 2022; 9:children9081209. [PMID: 36010098 PMCID: PMC9406572 DOI: 10.3390/children9081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Different works have reported earlier permanent teething in obese/overweight children compared to control ones. In contrast, others have reported a delayed permanent teething in undernutrition/underweight children compared to control one. It has been reported that becoming overweight or suffering from obesity can increase gingival pro-inflammatory drive and can affect orthodontic treatment (among other complications). In this sense, little is known about the molecular mechanisms affecting dental eruption timing. Leptin and adiponectin are adipocytokines signaling molecules released in overweight and underweight conditions, respectively. These adipocytokines can modulate osteocyte, odontoblast, and cementoblast activity, even regulating dental lamina initiation. The present review focuses on the molecular approach wherein leptin and adiponectin act as modulators of Runt-related transcription factor 2 (Runx 2) gene regulating dental eruption timing.
Collapse
Affiliation(s)
- Carla Traver
- Department of Dentistry, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
- Correspondence:
| | - Lucía Miralles
- Department of Dentistry, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Jorge Miguel Barcia
- Department of Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
35
|
Peruga M, Piątkowski G, Kotowicz J, Lis J. Orthodontic Treatment of Dogs during the Developmental Stage: Repositioning of Mandibular Canine Teeth with Intercurrent Mandibular Distoclusion. Vet Sci 2022; 9:vetsci9080392. [PMID: 36006307 PMCID: PMC9416222 DOI: 10.3390/vetsci9080392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Orthodontic treatment of dogs in the growth spurt is most effective. It gives a permanent shift of the teeth and a change in occlusion. Treatment does not require retention. Early diagnosis and proper treatment will protect dog in the early stage of life from tooth removal. The use of acrylic appliances is a sure method of treating tooth displacement defects with the accompanying displacement of the mandible, which is a daily practice in these tests. Abstract Linguoverted mandibular canines are relatively rare among craniofacial abnormalities, and they are an isolated anomaly. They are most often caused by non-genetic factors such as persistent deciduous canine teeth or trauma coinciding with the eruption of permanent teeth. Another factor may be mandible narrowing or underdevelopment in the transverse dimension and vestibular inclination of the maxillary canine teeth. This article presents a procedure based on three cases where the position of the mandibular canine tooth was corrected using human orthodontic appliances modified to affect the canine dental system. The incline of the appliance was made to stimulate the protrusion of the mandible while the teeth were closing. After approximately 4 weeks, the lower canine teeth moved along the incline of the appliance, and tilt toward the flews was achieved.
Collapse
Affiliation(s)
| | | | - Jakub Kotowicz
- Individual Veterinary Practice, 37-700 Przemyśl, Poland;
| | - Joanna Lis
- Department of Maxillofacial Orthopaedics and Orthodontics, Wroclaw Medical University, 50-376 Wrocław, Poland;
| |
Collapse
|
36
|
Pantalacci S. What sharks and mammals share. eLife 2022; 11:80392. [PMID: 35775469 PMCID: PMC9249391 DOI: 10.7554/elife.80392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The tooth shape of sharks and mice are regulated by a similar signaling center despite their teeth having very different geometries.
Collapse
Affiliation(s)
- Sophie Pantalacci
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
37
|
Morita W, Morimoto N, Otsu K, Miura T. Stripe and spot selection in cusp patterning of mammalian molar formation. Sci Rep 2022; 12:9149. [PMID: 35701484 PMCID: PMC9197828 DOI: 10.1038/s41598-022-13539-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Tooth development is governed largely by epithelial-mesenchymal interactions and is mediated by numerous signaling pathways. This type of morphogenetic processes has been explained by reaction-diffusion systems, especially in the framework of a Turing model. Here we focus on morphological and developmental differences between upper and lower molars in mice by modeling 2D pattern formation in a Turing system. Stripe vs. spot patterns are the primary types of variation in a Turing model. We show that the complexity of the cusp cross-sections can distinguish between stripe vs. spot patterns, and mice have stripe-like upper and spot-like lower molar morphologies. Additionally, our computational modeling that incorporates empirical data on tooth germ growth traces the order of cusp formation and relative position of the cusps in upper and lower molars in mice. We further propose a hypothetical framework of developmental mechanism that could help us understand the evolution of the highly variable nature of mammalian molars associated with the acquisition of the hypocone and the increase of lophedness.
Collapse
Affiliation(s)
- Wataru Morita
- Department of Anthropology, National Museum of Nature and Science, Ibaraki, Japan.
| | - Naoki Morimoto
- Laboratory of Physical Anthropology, Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Paul KS, Stojanowski CM, Hughes T, Brook AH, Townsend GC. Genetic Correlation, Pleiotropy, and Molar Morphology in a Longitudinal Sample of Australian Twins and Families. Genes (Basel) 2022; 13:genes13060996. [PMID: 35741762 PMCID: PMC9222655 DOI: 10.3390/genes13060996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
This study aims to expand our understanding of the genetic architecture of crown morphology in the human diphyodont dentition. Here, we present bivariate genetic correlation estimates for deciduous and permanent molar traits and evaluate the patterns of pleiotropy within (e.g., m1–m2) and between (e.g., m2–M1) dentitions. Morphology was observed and scored from dental models representing participants of an Australian twin and family study (deciduous n = 290, permanent n = 339). Data collection followed Arizona State University Dental Anthropology System standards. Genetic correlation estimates were generated using maximum likelihood variance components analysis in SOLAR v.8.1.1. Approximately 23% of deciduous variance components models and 30% of permanent variance components models yielded significant genetic correlation estimates. By comparison, over half (56%) of deciduous–permanent homologues (e.g., m2 hypocone–M1 hypocone) were significantly genetically correlated. It is generally assumed that the deciduous and permanent molars represent members of a meristic molar field emerging from the primary dental lamina. However, stronger genetic integration among m2–M1/M2 homologues than among paired deciduous traits suggests the m2 represents the anterior-most member of a “true” molar field. The results indicate genetic factors act at distinct points throughout development to generate homologous molar form, starting with the m2, which is later replaced by a permanent premolariform crown.
Collapse
Affiliation(s)
- Kathleen S. Paul
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-479-718-1352
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA;
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| | - Alan H. Brook
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
- Barts and the London Dental Institute, Queen Mary University of London, London EC1M 6AX, UK
| | - Grant C. Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| |
Collapse
|
39
|
Thiery AP, Standing AS, Cooper RL, Fraser GJ. An epithelial signalling centre in sharks supports homology of tooth morphogenesis in vertebrates. eLife 2022; 11:73173. [PMID: 35536602 PMCID: PMC9249395 DOI: 10.7554/elife.73173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Development of tooth shape is regulated by the enamel knot signalling centre, at least in mammals. Fgf signalling regulates differential proliferation between the enamel knot and adjacent dental epithelia during tooth development, leading to formation of the dental cusp. The presence of an enamel knot in non-mammalian vertebrates is debated given differences in signalling. Here, we show the conservation and restriction of fgf3, fgf10, and shh to the sites of future dental cusps in the shark (Scyliorhinus canicula), whilst also highlighting striking differences between the shark and mouse. We reveal shifts in tooth size, shape, and cusp number following small molecule perturbations of canonical Wnt signalling. Resulting tooth phenotypes mirror observed effects in mammals, where canonical Wnt has been implicated as an upstream regulator of enamel knot signalling. In silico modelling of shark dental morphogenesis demonstrates how subtle changes in activatory and inhibitory signals can alter tooth shape, resembling developmental phenotypes and cusp shapes observed following experimental Wnt perturbation. Our results support the functional conservation of an enamel knot-like signalling centre throughout vertebrates and suggest that varied tooth types from sharks to mammals follow a similar developmental bauplan. Lineage-specific differences in signalling are not sufficient in refuting homology of this signalling centre, which is likely older than teeth themselves.
Collapse
Affiliation(s)
- Alexandre P Thiery
- Department of Animal and Plant Sciences, King's College London, London, United Kingdom
| | - Ariane S Standing
- Department of Biology, University of Florida, Gainesville, United States
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, United States
| |
Collapse
|
40
|
Evolution and development of the mammalian multicuspid teeth. J Oral Biosci 2022; 64:165-175. [DOI: 10.1016/j.job.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
|
41
|
Milocco L, Salazar-Ciudad I. Evolution of the G Matrix under Nonlinear Genotype-Phenotype Maps. Am Nat 2022; 199:420-435. [DOI: 10.1086/717814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lisandro Milocco
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Isaac Salazar-Ciudad
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Centre de Recerca Matemàtica, Barcelona, Spain; and Genomics, Bioinformatics, and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
|
43
|
Salomies L, Eymann J, Ollonen J, Khan I, Di-Poï N. The developmental origins of heterodonty and acrodonty as revealed by reptile dentitions. SCIENCE ADVANCES 2021; 7:eabj7912. [PMID: 34919438 PMCID: PMC8682985 DOI: 10.1126/sciadv.abj7912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Despite the exceptional diversity and central role of dentitions in vertebrate evolution, many aspects of tooth characters remain unknown. Here, we exploit the large array of dental phenotypes in acrodontan lizards, including EDA mutants showing the first vertebrate example of positional transformation in tooth identity, to assess the developmental origins and evolutionary patterning of tooth types and heterodonty. We reveal that pleurodont versus acrodont dentition can be determined by a simple mechanism, where modulation of tooth size through EDA signaling has major consequences on dental formula, thereby providing a new flexible tooth patterning model. Furthermore, such implication of morphoregulation in tooth evolution allows predicting the dental patterns characterizing extant and fossil lepidosaurian taxa at large scale. Together, the origins and diversification of tooth types, long a focus of multiple research fields, can now be approached through evo-devo approaches, highlighting the importance of underexplored dental features for illuminating major evolutionary patterns.
Collapse
|
44
|
Seppala M, Thivichon-Prince B, Xavier GM, Shaffie N, Sangani I, Birjandi AA, Rooney J, Lau JNS, Dhaliwal R, Rossi O, Riaz MA, Stonehouse-Smith D, Wang Y, Papageorgiou SN, Viriot L, Cobourne MT. Gas1 Regulates Patterning of the Murine and Human Dentitions through Sonic Hedgehog. J Dent Res 2021; 101:473-482. [PMID: 34796774 PMCID: PMC8935464 DOI: 10.1177/00220345211049403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian dentition is a serially homogeneous structure that exhibits wide numerical and morphological variation among multiple different species. Patterning of the dentition is achieved through complex reiterative molecular signaling interactions that occur throughout the process of odontogenesis. The secreted signaling molecule Sonic hedgehog (Shh) plays a key role in this process, and the Shh coreceptor growth arrest-specific 1 (Gas1) is expressed in odontogenic mesenchyme and epithelium during multiple stages of tooth development. We show that mice engineered with Gas1 loss-of-function mutation have variation in number, morphology, and size of teeth within their molar dentition. Specifically, supernumerary teeth with variable morphology are present mesial to the first molar with high penetrance, while molar teeth are characterized by the presence of both additional and absent cusps, combined with reduced dimensions and exacerbated by the presence of a supernumerary tooth. We demonstrate that the supernumerary tooth in Gas1 mutant mice arises through proliferation and survival of vestigial tooth germs and that Gas1 function in cranial neural crest cells is essential for the regulation of tooth number, acting to restrict Wnt and downstream FGF signaling in odontogenic epithelium through facilitation of Shh signal transduction. Moreover, regulation of tooth number is independent of the additional Hedgehog coreceptors Cdon and Boc, which are also expressed in multiple regions of the developing tooth germ. Interestingly, further reduction of Hedgehog pathway activity in Shhtm6Amc hypomorphic mice leads to fusion of the molar field and reduced prevalence of supernumerary teeth in a Gas1 mutant background. Finally, we demonstrate defective coronal morphology and reduced coronal dimensions in the molar dentition of human subjects identified with pathogenic mutations in GAS1 and SHH/GAS1, suggesting that regulation of Hedgehog signaling through GAS1 is also essential for normal patterning of the human dentition.
Collapse
Affiliation(s)
- M Seppala
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - B Thivichon-Prince
- Laboratoire de Biologie tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305/Université de Lyon 1, IBCP, Lyon, France.,Faculté d'Odontologie, Université de Lyon 1, Université de Lyon, Lyon, France.,Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - G M Xavier
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - N Shaffie
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - I Sangani
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - A A Birjandi
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - J Rooney
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - J N S Lau
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - R Dhaliwal
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - O Rossi
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - M A Riaz
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - D Stonehouse-Smith
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Y Wang
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - S N Papageorgiou
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - L Viriot
- Laboratoire de Biologie tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305/Université de Lyon 1, IBCP, Lyon, France
| | - M T Cobourne
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
45
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
46
|
Vagner VD, Konev VP, Korshunov AS, Moskovskij SN, Kuryatnikov KN, Skurikhina AP. [The research of the connective tissue dysplasia effect on dental eruption and hard tissues mineralization]. STOMATOLOGII︠A︡ 2021; 100:7-14. [PMID: 34752027 DOI: 10.17116/stomat20211000517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The purpose of this investigation was to explore the quality of 38, 48 teeth's hard tissues at different eruption stages and mandibular bone in different postpartum ontogenesis periods. MATERIAL AND METHODS The research involved 102 male patients divided into groups according to their age: 15-20, 21-30 years old, they were extracted one tooth 38, 48 without inflammatory process signs and a fragment of the mandibular bone alveolar part in the projection of the teeth 38, 48 for orthodontic indications. In the comparison group (49 observations without signs of connective tissue dysplasia), in the study group (53 observations with signs of connective tissue dysplasia) we extracted teeth 38, 48 which were in the bone tissue. We analyzed condition of crown and root systems of extracted 38, 48 teeth, densitometric density of mineral component, size of enamel prisms, size of prismatic shells of organic matrix, spatial organization of collagen fibers in bone tissue, size characteristics of bone plates and mineralization centers of bone tissue. Processing of the obtained data was performed by methods of variation statistics using standard packages Microsoft Excel 2008, Statistica 12.0. RESULTS The paper reveals one of the surgical dentistry pressing issues related to the tething mechanism of lower human wisdom teeth, considered by the authors from the position of tissue disorders in collagen type 1 observed in connective tissue dysplasia. At age of 15-20 years in connective tissue dysplasia, the enamel prisms hypomineralized areas are generalized; at age of 21-30 years the hypomineralized areas are characterized by local changes. At the age of 15-20 years in connective tissue dysplasia the bone plates splitting is observed at the level of most fibrils, collagen fibers have insufficiently oriented direction in contrast to the age group of 21-30 years where bone plates splitting is characteristic for single fibrils and collagen fibrils are clearly oriented. CONCLUSION Morphological and histological changes in teeth 38, 48 and in bone tissue prevent correct and timely teething at 15-20 years and create more favorable conditions for teething at 21-30 years with a slower rate in connective tissue dysplasia, but in both groups teeth eruption occurs under unfavorable anatomic conditions.
Collapse
Affiliation(s)
- V D Vagner
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - V P Konev
- Omsk State Medical University, Omsk, Russia
| | | | | | | | | |
Collapse
|
47
|
Carr EM, Summers AP, Cohen KE. The moment of tooth: rate, fate and pattern of Pacific lingcod dentition revealed by pulse-chase. Proc Biol Sci 2021; 288:20211436. [PMID: 34641728 PMCID: PMC8511758 DOI: 10.1098/rspb.2021.1436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022] Open
Abstract
Tooth replacement rates of polyphyodont cartilaginous and bony fishes are hard to determine because of a lack of obvious patterning and maintaining specimens long enough to observe replacement. Pulse-chase is a fluorescent technique that differentially colours developing mineralized tissue. We present in situ tooth replacement rate and position data for the oral and pharyngeal detentions of Ophiodon elongatus (Pacific lingcod). We assessed over 10 000 teeth, in 20 fish, and found a daily replacement rate of about two teeth (3.6% of the dentition). The average tooth is in the dental battery for 27 days. The replacement was higher in the lower pharyngeal jaw (LPJ). We found no difference between replacement rates of feeding and non-feeding fish, suggesting feeding was not a driver of tooth replacement. Lingcod teeth have both a size and location fate; smaller teeth at one spot will not grow into larger teeth, even if a large tooth nearby is lost. We also found increased rates of replacement at the posterior of the LPJ relative to the anterior. We propose that lingcod teeth do not migrate in the jaw as they develop; their teeth are fated in size and location, erupting in their functional position.
Collapse
Affiliation(s)
- E. M. Carr
- Integrative Biology, University of South Florida, Tampa, FL, USA
| | - A. P. Summers
- Friday Harbor Labs, University of Washington, Friday Harbor, WA, USA
| | - K. E. Cohen
- Biology Department, University of Washington, Seattle, WA, USA
| |
Collapse
|
48
|
Queiroz A, Pelissari C, Arana-Chavez VE, Trierveiler M. Temporo-spatial distribution of stem cell markers CD146 and p75NTR during odontogenesis in mice. J Appl Oral Sci 2021; 29:e20210138. [PMID: 34550167 PMCID: PMC8462488 DOI: 10.1590/1678-7757-2021-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal and epithelial stem cells were identified in dental tissues; however, knowledge about the odontogenic stem cells is limited, and there are some questions regarding their temporo-spatial dynamics in tooth development. OBJECTIVE Our study aimed to analyze the expression of the stem cell markers CD146 and p75NTR during the different stages of odontogenesis. METHODOLOGY The groups consisted of 13.5, 15.5, 17.5 days old embryos, and 14 days postnatal BALB/c mice. The expression of CD146 and p75NTR was evaluated by immunohistochemistry. RESULTS Our results showed that positive cells for both markers were present in all stages of tooth development, and the number of positive cells increased with the progression of this process. Cells of epithelial and ectomesenchymal origin were positive for CD146, and the expression of p75NTR was mainly detected in the dental papilla and dental follicle. In the postnatal group, dental pulp cells were positive for CD146, and the reduced enamel epithelium and the oral mucosa epithelium showed immunostaining for p75NTR. CONCLUSIONS These results suggest that the staining pattern of CD146 and p75NTR underwent temporal and spatial changes during odontogenesis and both markers were expressed by epithelial and mesenchymal cell types, which is relevant due to the significance of the epithelial-ectomesenchymal interactions in tooth development.
Collapse
Affiliation(s)
- Aline Queiroz
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, Disciplina de Patologia Oral e Maxilofacial, Laboratório de Biologia de Células-Tronco em Odontologia LABITRON, São Paulo, SP, Brasil
| | - Cibele Pelissari
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, Disciplina de Patologia Oral e Maxilofacial, Laboratório de Biologia de Células-Tronco em Odontologia LABITRON, São Paulo, SP, Brasil
| | - Victor Elias Arana-Chavez
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Biomateriais e Biologia Oral, São Paulo, SP, Brasil
| | - Marília Trierveiler
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, Disciplina de Patologia Oral e Maxilofacial, Laboratório de Biologia de Células-Tronco em Odontologia LABITRON, São Paulo, SP, Brasil
| |
Collapse
|
49
|
Das Roy R, Hallikas O, Christensen MM, Renvoisé E, Jernvall J. Chromosomal neighbourhoods allow identification of organ specific changes in gene expression. PLoS Comput Biol 2021; 17:e1008947. [PMID: 34506480 PMCID: PMC8457456 DOI: 10.1371/journal.pcbi.1008947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/22/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Abstract
Although most genes share their chromosomal neighbourhood with other genes, distribution of genes has not been explored in the context of individual organ development; the common focus of developmental biology studies. Because developmental processes are often associated with initially subtle changes in gene expression, here we explored whether neighbouring genes are informative in the identification of differentially expressed genes. First, we quantified the chromosomal neighbourhood patterns of genes having related functional roles in the mammalian genome. Although the majority of protein coding genes have at least five neighbours within 1 Mb window around each gene, very few of these neighbours regulate development of the same organ. Analyses of transcriptomes of developing mouse molar teeth revealed that whereas expression of genes regulating tooth development changes, their neighbouring genes show no marked changes, irrespective of their level of expression. Finally, we test whether inclusion of gene neighbourhood in the analyses of differential expression could provide additional benefits. For the analyses, we developed an algorithm, called DELocal that identifies differentially expressed genes by comparing their expression changes to changes in adjacent genes in their chromosomal regions. Our results show that DELocal removes detection bias towards large changes in expression, thereby allowing identification of even subtle changes in development. Future studies, including the detection of differential expression, may benefit from, and further characterize the significance of gene-gene neighbour relationships. Development of organs is typically associated with small and hard to detect changes in gene expression. Here we examined how often genes regulating specific organs are neighbours to each other in the genome, and whether this gene neighbourhood helps in the detection of changes in gene expression. We found that genes regulating individual organ development are very rarely close to each other in the mouse and human genomes. We built an algorithm, called DELocal, to detect changes in gene expression that incorporates information about neighbouring genes. Using transcriptomes of developing mouse molar teeth containing gene expression profiles of thousands of genes, we show how genes regulating tooth development are ranked high by DELocal even if their expression level changes are subtle. We propose that developmental biology studies can benefit from gene neighbourhood analyses in the detection of differential expression and identification of organ specific genes.
Collapse
Affiliation(s)
- Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail: (RDR); (JJ)
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Elodie Renvoisé
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- * E-mail: (RDR); (JJ)
| |
Collapse
|
50
|
Fraser GJ, Standing A, Underwood C, Thiery AP. The Dental Lamina: An Essential Structure for Perpetual Tooth Regeneration in Sharks. Integr Comp Biol 2021; 60:644-655. [PMID: 32663287 DOI: 10.1093/icb/icaa102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In recent years, nonclassical models have emerged as mainstays for studies of evolutionary, developmental, and regenerative biology. Genomic advances have promoted the use of alternative taxa for the study of developmental biology, and the shark is one such emerging model vertebrate. Our research utilizes the embryonic shark (Scyliorhinus canicula) to characterize key developmental and regenerative processes that have been overlooked or not possible to study with more classic developmental models. Tooth development is a major event in the construction of the vertebrate body plan, linked in part with the emergence of jaws. Early development of the teeth and morphogenesis is well known from the murine model, but the process of tooth redevelopment and regeneration is less well known. Here we explore the role of the dental lamina in the development of a highly regenerative dentition in sharks. The shark represents a polyphyodont vertebrate with continuously repeated whole tooth regeneration. This is presented as a major developmental shift from the more derived renewal process that the murine model offers, where incisors exhibit continuous renewal and growth of the same tooth. Not only does the shark offer a study system for whole unit dental regeneration, it also represents an important model for understanding the evolutionary context of vertebrate tooth regeneration.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, 32611, FL, USA
| | - Ariane Standing
- Department of Biology, University of Florida, Gainesville, 32611, FL, USA
| | - Charlie Underwood
- Department of Earth and Planetary Sciences, University of London, WC1E 7HX, Birkbeck, London, UK
| | - Alexandre P Thiery
- Department of Craniofacial Development and Stem Cell Biology, King's College London, SE1 9RT, London, UK
| |
Collapse
|