1
|
Li C, Zhou Y, Yin Z, Jiang Y, Liu J, Weiss HL, Wang Q, Evers BM. miR-181a-5p mediates the effects of BMP4 on intestinal cell proliferation and differentiation. Cell Death Dis 2025; 16:420. [PMID: 40436833 PMCID: PMC12120108 DOI: 10.1038/s41419-025-07730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 04/25/2025] [Accepted: 05/09/2025] [Indexed: 06/01/2025]
Abstract
The intestinal mucosa undergoes a dynamic process of continual proliferation, differentiation, and apoptosis. Delineating the mechanisms involved in intestinal epithelial cell (IEC) differentiation is crucial to our understanding of not only normal gut adaptation but also aberrant intestinal growth. Bone morphogenetic protein (BMP) signaling is a pivotal regulator of intestinal proliferation and differentiation. However, the molecular underpinnings of the BMP pathway in this context are not entirely known. Here, we show a key role for the BMP4/microRNA (miR)-181/glycolysis signaling pathway in the maintenance of intestinal epithelial cell proliferation and differentiation. Treatment with BMP4 increased the expression of enterocyte markers and decreased proliferation of IECs, and importantly, decreased the expression of miR-181a-5p in mouse and human intestinal organoids. miR-181a-5p is a member of the miR-181 family with the highest expression in IECs. Treatment with locked nucleic acid (LNA) miR-181a-5p inhibitor significantly increased enterocyte differentiation as noted by increased expression of enterocyte markers in human and mouse intestinal organoids. In addition, LNA miR-181a-5p inhibitor repressed intestinal stem cell self-renewal as noted by the decreased organoid forming efficiency and expression of Ki67, cyclin D1, OLFM4 in human and mouse intestinal organoids. Moreover, in vivo administration of LNA miR-181a-5p inhibitor enhanced increased intestinal enterocyte differentiation and repressed intestinal cell proliferation. In contrast, overexpression of miR-181a-5p mimic decreased basal and BMP4-induced expression of enterocyte markers. Moreover, BMP4 treatment or inhibition of miR-181a-5p repressed hexokinase (HK) 1 expression and inhibited glycolysis. Consistently, knockdown of HK1 or inhibition of glycolysis using 2-deoxyglucose (2-DG) promoted enterocyte maturation and inhibited proliferation of IECs. Together, we provide evidence showing that miR-181a-5p inhibits intestinal enterocyte differentiation and promotes IEC proliferation through HK1-dependent glycolysis. Importantly, our findings identify miR-181a-5p as downstream in mediating BMP4 induction of enterocyte differentiation and inhibition of proliferation in IECs.
Collapse
Affiliation(s)
- Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zhijie Yin
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Yinping Jiang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
- Department of Surgery, University of Kentucky, Lexington, KY, USA.
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
- Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Lešnik S, Konc J, Vodopivec T, Čamernik K, Karolina Potokar U, Legiša M. Small-molecule inhibitors of 6-phosphofructo-1-kinase simultaneously suppress lactate and superoxide generation in cancer cells. PLoS One 2025; 20:e0321998. [PMID: 40397908 DOI: 10.1371/journal.pone.0321998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 03/14/2025] [Indexed: 05/23/2025] Open
Abstract
Deregulated energy metabolism is a hallmark of cancer, characterized by increased glycolytic flux. Cancer-specific modification of 6-phosphofructo-1-kinase (PFK) impairs its ability to regulate the enzyme's activity which increases glycolytic flux. Consequently, excessive cytosolic NADH formation triggers a harmful redox imbalance in cancer cells, which is rapidly neutralized by the formation of lactic acid and superoxide (SOX). To learn more about deregulated glycolysis in cancer cells, a supercomputer used the atomic model of the crystal structure of human PFK1 for virtual screening a database of 4.5 million compounds by docking with the catalytic binding sites of the enzyme. The screening revealed two compounds capable of reducing modified, cancer-specific PFK1 activity and simultaneously suppressing lactate and SOX formation. A dose-dependent inhibition was observed in the cells treated by compounds in the following tumorigenic cells: Jurkat (Acute T cells leukemia); Caco-2 (colorectal adenocarcinoma); COLO 829 (melanoma); and MDA-MB-231 (breast gland adenocarcinoma). In addition, two selected compounds assessed for cytostatic and cytotoxic activity showed no negative effects on tumorigenic cells. However, during incubation, the strengths of inhibitions continuously decreased, both during lactate and SOX formation. No such effects were observed if compounds were sequentially submitted to the cells at low concentrations every 24 hours. Additional experiments performed by Jurkat cells revealed reduced respiration and glycolysis rates in the cells treated with compounds concerning the untreated cells. Inhibition of modified cancer-specific PFK1 activity reduces deregulated glycolytic flux, prevents abundant cytosolic NADH formation, and restores redox balance thus simultaneously preventing the formation of deleterious effects of lactate and SOX, two crucial players in cancer initiation and development.
Collapse
Affiliation(s)
- Samo Lešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenija
| | - Janez Konc
- Department of Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tina Vodopivec
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Čamernik
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Matic Legiša
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
3
|
Shen R, Xia P, Guo Y, Ji P, Yuan X, Wang L, Shuang S, Zhou L, Tong R, Zhang L, Liu D, Wang D. Effects of polystyrene microparticles exposures on spermatogenic cell differentiation and reproductive endpoints in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126200. [PMID: 40185193 DOI: 10.1016/j.envpol.2025.126200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The widespread distribution of microplastics in the environment has raised concerns about their potential implications for human health. Microplastics accumulate in animals and humans, but the risks associated with these pollutants are not fully understood. This study aimed to investigate the effects of polystyrene microplastics on the male reproductive system. The 0.1 μm polystyrene (PS) could accumulate in the testicular tissue and spermatogonia GC-1, while 1 μm PS was not easy to enter and accumulate in the testicular tissue and cells. Mice continuously exposed for 3-months to 0.1 μm PS demonstrated lower fertility and inhibited spermatogonium differentiation compared to control mice. The 0.1 μm PS were dispersed throughout the seminiferous tubule of the testis. Metabolic reprogramming was found to be involved in these processes. Histone methylation and autophagy-related pathways showed significant differences following PS treatment in testis tissue and GC-1 cells. Our findings suggest that chronic exposure to 0.1 μm PS inhibited spermatogenic cell differentiation and impaired fertility in male mice. We propose that abnormal epigenetic modifications in 0.1 μm PS exposed mice contributed to the dysregulation of glycolytic enzymes, and that the impaired autophagic pathway exacerbated the accumulation of glycolytic enzymes further. Glycolysis plays a critical role in the regulation of spermatogenic cell differentiation, and its regulation partially alleviated the impairments associated with PS exposure. In conclusion, our findings suggest that chronic exposure to nanoplastics PS inhibited spermatogenic cell differentiation and impaired fertility in male mice via disrupted epigenetic modification and metabolic dysregulation.
Collapse
Affiliation(s)
- Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Si Shuang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Liwei Zhou
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Ruizhi Tong
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lijuan Zhang
- Medical Experimental Center, Lanzhou University, Gansu, 730000, China
| | - Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
4
|
Matiukhova M, Ryapolova A, Andriianov V, Reshetnikov V, Zhuravleva S, Ivanov R, Karabelsky A, Minskaia E. A comprehensive analysis of induced pluripotent stem cell (iPSC) production and applications. Front Cell Dev Biol 2025; 13:1593207. [PMID: 40406420 PMCID: PMC12095295 DOI: 10.3389/fcell.2025.1593207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
The ability to reprogram mature, differentiated cells into induced pluripotent stem cells (iPSCs) using exogenous pluripotency factors opened up unprecedented opportunities for their application in biomedicine. iPSCs are already successfully used in cell and regenerative therapy, as various drug discovery platforms and for in vitro disease modeling. However, even though already 20 years have passed since their discovery, the production of iPSC-based therapies is still associated with a number of hurdles due to low reprogramming efficiency, the complexity of accurate characterization of the resulting colonies, and the concerns associated with the safety of this approach. However, significant progress in many areas of molecular biology facilitated the production, characterization, and thorough assessment of the safety profile of iPSCs. The number of iPSC-based studies has been steadily increasing in recent years, leading to the accumulation of significant knowledge in this area. In this review, we aimed to provide a comprehensive analysis of methods used for reprogramming and subsequent characterization of iPSCs, discussed barriers towards achieving these goals, and various approaches to improve the efficiency of reprogramming of different cell populations. In addition, we focused on the analysis of iPSC application in preclinical and clinical studies. The accumulated breadth of data helps to draw conclusions about the future of this technology in biomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ekaterina Minskaia
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
5
|
Bui H, Andersson S, Sola-Carvajal A, De Marchi T, Vähäkangas E, Holopainen M, House AH, Rovenko BM, Englund JI, Kasper M, Kuuluvainen E, Käkelä R, Hietakangas V, Niméus E, Katajisto P. Glucose-6-phosphate-dehydrogenase on old peroxisomes maintains self-renewal of epithelial stem cells after asymmetric cell division. Nat Commun 2025; 16:3932. [PMID: 40287409 PMCID: PMC12033372 DOI: 10.1038/s41467-025-58752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Selective inheritance of sub-cellular components has emerged as a mechanism guiding stem cell fate after asymmetric cell divisions. Peroxisomes play a crucial role in multiple metabolic processes such as fatty acid metabolism and reactive oxygen species detoxification, but the apportioning of peroxisomes during stem cell division remains understudied. Here, we develop a mouse model and labeling technique to follow the dynamics of distinct peroxisome age-classes, and find that old peroxisomes are inherited by the daughter cell retaining full stem cell potency in mammary and epidermal stem cell divisions. Old peroxisomes carry Glucose-6-phosphate-dehydrogenase, whose specific location on the peroxisomal membrane promotes stem cell function by facilitating peroxisomal ether lipid synthesis. Our study demonstrates age-selective apportioning of peroxisomes in vivo, and unveils how functional heterogeneity of peroxisomes is utilized by asymmetrically dividing cells to metabolically divert the fate of the two daughter cells.
Collapse
Grants
- ERC, #677809, and #101045009 EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- #266869, #304591, #312436, #320185 Academy of Finland (Suomen Akatemia)
- 2018-03078, 2018-02963, 2022-01304 Vetenskapsrådet (Swedish Research Council)
- 190634, 180681, and 222499 Cancerfonden (Swedish Cancer Society)
- KAW 2014.0207 and 20220054 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
- Syöpäjärjestöt (Cancer Society of Finland)
- Chan Zuckerberg Initiative MET-0000000418 Center for Innovative Medicine CIMED Sigrid Juselius Foundation
- Finnish Cultural Foundation | Uudenmaan Rahasto (Uusimaa Regional Fund)
- Maud Kuistilan Muistosäätiö (Maud Kuistila Memorial Foundation)
- Doctoral Programme in Biomedicine at the University of Helsinki
Collapse
Affiliation(s)
- Hien Bui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Simon Andersson
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Agustin Sola-Carvajal
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Tommaso De Marchi
- Division of Oncology and Surgery, Department of Clinical Sciences, Lund University, 22362, Lund, Sweden
| | - Eliisa Vähäkangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
- Stem cells and metabolism research program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Minna Holopainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, 00014, Helsinki, Finland
| | - Andrew H House
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, 00014, Helsinki, Finland
| | - Bohdana M Rovenko
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Johanna I Englund
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Emilia Kuuluvainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, 00014, Helsinki, Finland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Emma Niméus
- Division of Oncology and Surgery, Department of Clinical Sciences, Lund University, 22362, Lund, Sweden
- Department of Surgery, Skåne University Hospital, 22242, Lund, Sweden
| | - Pekka Katajisto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland.
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
6
|
Bone RA, Lowndes MP, Raineri S, R Riveiro A, Lundregan SL, Dall M, Sulek K, Romero JAH, Malzard L, Koigi S, Heckenbach IJ, Solis-Mezarino V, Völker-Albert M, Vasilopoulou CG, Meier F, Trusina A, Mann M, L Nielsen M, Treebak JT, Brickman JM. Altering metabolism programs cell identity via NAD +-dependent deacetylation. EMBO J 2025:10.1038/s44318-025-00417-0. [PMID: 40281356 DOI: 10.1038/s44318-025-00417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/03/2025] [Accepted: 03/03/2025] [Indexed: 04/29/2025] Open
Abstract
Cells change their metabolic profiles in response to underlying gene regulatory networks, but how can alterations in metabolism encode specific transcriptional instructions? Here, we show that forcing a metabolic change in embryonic stem cells (ESCs) promotes a developmental identity that better approximates the inner cell mass (ICM) of the early mammalian blastocyst in cultures. This shift in cellular identity depends on the inhibition of glycolysis and stimulation of oxidative phosphorylation (OXPHOS) triggered by the replacement of D-glucose by D-galactose in ESC media. Enhanced OXPHOS in turn activates NAD + -dependent deacetylases of the Sirtuin family, resulting in the deacetylation of histones and key transcription factors to focus enhancer activity while reducing transcriptional noise, which results in a robustly enhanced ESC phenotype. This exploitation of a NAD + /NADH coenzyme coupled to OXPHOS as a means of programming lineage-specific transcription suggests new paradigms for how cells respond to alterations in their environment, and implies cellular rejuvenation exploits enzymatic activities for simultaneous activation of a discrete enhancer set alongside silencing genome-wide transcriptional noise.
Collapse
Affiliation(s)
- Robert A Bone
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Molly P Lowndes
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Silvia Raineri
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alba R Riveiro
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah L Lundregan
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Jose A H Romero
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luna Malzard
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Koigi
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Catherine G Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Meier
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Zhao C, Zhou H, Wang P, Zhang S, Lin X, Pan Y, Zhu H. Hexokinase 2-driven aerobic glycolysis modulates YAP1 in placental trophoblast development. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167872. [PMID: 40286881 DOI: 10.1016/j.bbadis.2025.167872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/21/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Recurrent pregnancy loss (RPL) is a severe complication, and its risk is heightened by dysregulated trophoblast development. However, the underlying mechanisms remain unclear. Herein, we show that a portion of villous samples from patients with RPL display reduced hexokinase II (HK2) and Yes-associated protein 1 (YAP1) expression compared with healthy controls. Moreover, in human trophoblast stem (TS) cell models, blocking HK2 activities via exposure to 3-bromopyruvate markedly reduced cell proliferation and induced cell cycle arrest by regulating YAP1 phosphorylation and localization. This was partially reversed by the YAP signaling activator TT-10. Moreover, YAP1 contributes to aerobic glycolysis regulation by influencing HK2 activity. Together, these findings demonstrate an interplay between the Hippo/YAP1 pathway and glucose metabolism in placental trophoblast development and highlight an approach for RPL intervention.
Collapse
Affiliation(s)
- Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Peixing Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China.
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China.
| |
Collapse
|
8
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2025; 24:1493-1518. [PMID: 39437423 PMCID: PMC11976873 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical
University of Vienna, Vienna 1090, Austria
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Institute
for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Mahamud AGMSU, Tanvir IA, Kabir ME, Samonty I, Chowdhury MAH, Rahman MA. Gerobiotics: Exploring the Potential and Limitations of Repurposing Probiotics in Addressing Aging Hallmarks and Chronic Diseases. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10501-w. [PMID: 40029460 DOI: 10.1007/s12602-025-10501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
As unhealthy aging continues to rise globally, there is a pressing need for effective strategies to promote healthy aging, extend health span, and address aging-related complications. Gerobiotics, an emerging concept in geroscience, offers a novel approach to repurposing selective probiotics, postbiotics, and parabiotics to modulate key aging processes and enhance systemic health. This review explores recent advancements in gerobiotics research, focusing on their role in targeting aging hallmarks, regulating longevity-associated pathways, and reducing risks of multiple age-related chronic conditions. Despite their promise, significant challenges remain, including optimizing formulations, ensuring safety and efficacy across diverse populations, and achieving successful clinical translation. Addressing these gaps through rigorous research, well-designed clinical trials, and advanced biotechnologies can establish gerobiotics as a transformative intervention for healthy aging and chronic disease prevention.
Collapse
Affiliation(s)
| | | | - Md Ehsanul Kabir
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Ismam Samonty
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| |
Collapse
|
10
|
Li Y, He Y, Zheng Q, Zhang J, Pan X, Zhang X, Yuan H, Wang G, Liu X, Zhou X, Zhu X, Ren T, Sui P. Mitochondrial pyruvate carriers control airway basal progenitor cell function through glycolytic-epigenetic reprogramming. Cell Stem Cell 2025; 32:105-120.e6. [PMID: 39426380 DOI: 10.1016/j.stem.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/14/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Basal cells (BCs) are the progenitor cells responsible for tracheal epithelium integrity. Here, we demonstrate that mitochondrial pyruvate carriers (MPCs) act as metabolic checkpoints that are essential for BC fate decision. Inhibition of MPCs enables long-term expansion of BCs from both mice and humans. Genetic inactivation of Mpc2 in mice leads to BC hyperplasia and reduced ciliated cells during homeostasis, as well as delayed epithelial regeneration and accumulation of intermediate cells following injury. Mechanistically, MPC2 links glycolysis to ATP citrate lyase (ACLY)-dependent cytosolic acetyl-coenzyme A (CoA) generation, which is required for the epigenetic control of differentiation-related gene transcription. Modulating this metabolic-epigenetic axis partially rescues Yes-associated protein (YAP)-dysfunction-induced changes in BCs. Importantly, exogenous citrate promotes the differentiation of BCs from chronic obstructive lung disease (COPD) patients. Thus, beyond demonstrating the role of pyruvate metabolism in BC fate decision, our study suggests that targeting pyruvate-citrate metabolism may serve as a potential strategy to rectify abnormal BC behavior in lung diseases.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yalin He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Zheng
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiazhu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangchuan Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Ren
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Pengfei Sui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
11
|
Joly A, Schott A, Phadke I, Gonzalez-Menendez P, Kinet S, Taylor N. Beyond ATP: Metabolite Networks as Regulators of Physiological and Pathological Erythroid Differentiation. Physiology (Bethesda) 2025; 40:0. [PMID: 39226028 DOI: 10.1152/physiol.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state, but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites, including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron, is required for red blood cell (RBC) maturation. In this review, we highlight the multifaceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of solute carrier (SLC) metabolite transporter upregulation. Finally, we discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.
Collapse
Affiliation(s)
- Axel Joly
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Arthur Schott
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Ira Phadke
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sandrina Kinet
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Naomi Taylor
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
12
|
Ye J, Jiang H, Tiche S, He C, Liu J, Bian F, Jedoui M, Forgo B, Islam MT, Zhao M, Emengo P, He B, Li Y, Li A, Truong A, Ho J, Simmermaker C, Yang Y, Zhou MN, Hu Z, Svensson K, Cuthbertson D, Hazard F, Xing L, Shimada H, Chiu B. Restoring Mitochondrial Quantity and Quality to Reverse Warburg Effect and Drive Tumor Differentiation. RESEARCH SQUARE 2024:rs.3.rs-5494402. [PMID: 39711563 PMCID: PMC11661309 DOI: 10.21203/rs.3.rs-5494402/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Reduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors, and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation. U-13C-glucose/glutamine isotope tracing revealed a metabolic shift from the pentose phosphate pathway to oxidative phosphorylation, accelerating the TCA cycle and switching substrate preference from glutamine to glucose. These effects were reversed by ETC inhibitors or in ρ0 cells lacking mtDNA, emphasizing the necessity of mitochondrial function for differentiation. Dietary RA and uncoupler treatment promoted tumor differentiation in an orthotopic neuroblastoma xenograft model, evidenced by neuropil production and Schwann cell recruitment. Single-cell RNA sequencing analysis of the orthotopic xenografts revealed that this strategy effectively eliminated the stem cell population, promoted differentiation, and increased mitochondrial gene signatures along the differentiation trajectory, which could potentially significantly improve patient outcomes. Collectively, our findings establish a mitochondria-centric therapeutic strategy for inducing tumor differentiation, suggesting that maintaining/driving differentiation in tumor requires not only ATP production but also continuous ATP consumption and sustained ETC activity.
Collapse
|
13
|
Rodriguez-Sevilla JJ, Colla S. Inflammation in myelodysplastic syndrome pathogenesis. Semin Hematol 2024; 61:385-396. [PMID: 39424469 DOI: 10.1053/j.seminhematol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Inflammation is a key driver of the progression of preleukemic myeloid conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS), to myelodysplastic syndromes (MDS). Inflammation is a critical mediator in the complex interplay of the genetic, epigenetic, and microenvironmental factors contributing to clonal evolution. Under inflammatory conditions, somatic mutations in TET2, DNMT3A, and ASXL1, the most frequently mutated genes in CHIP and CCUS, induce a competitive advantage to hematopoietic stem and progenitor cells, which leads to their clonal expansion in the bone marrow. Chronic inflammation also drives metabolic reprogramming and immune system deregulation, further promoting the expansion of malignant clones. This review underscores the urgent need to fully elucidate the role of inflammation in MDS initiation and highlights the potential of the therapeutical targeting of inflammatory pathways as an early intervention in MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
14
|
Chu Y, Yuan X, Tao Y, Yang B, Luo J. Autophagy in Muscle Regeneration: Mechanisms, Targets, and Therapeutic Perspective. Int J Mol Sci 2024; 25:11901. [PMID: 39595972 PMCID: PMC11593790 DOI: 10.3390/ijms252211901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy maintains the stability of eukaryotic cells by degrading unwanted components and recycling nutrients and plays a pivotal role in muscle regeneration by regulating the quiescence, activation, and differentiation of satellite cells. Effective muscle regeneration is vital for maintaining muscle health and homeostasis. However, under certain disease conditions, such as aging, muscle regeneration can fail due to dysfunctional satellite cells. Dysregulated autophagy may limit satellite cell self-renewal, hinder differentiation, and increase susceptibility to apoptosis, thereby impeding muscle regeneration. This review explores the critical role of autophagy in muscle regeneration, emphasizing its interplay with apoptosis and recent advances in autophagy research related to diseases characterized by impaired muscle regeneration. Additionally, we discuss new approaches involving autophagy regulation to promote macrophage polarization, enhancing muscle regeneration. We suggest that utilizing cell therapy and biomaterials to modulate autophagy could be a promising strategy for supporting muscle regeneration. We hope that this review will provide new insights into the treatment of muscle diseases and promote muscle regeneration.
Collapse
Affiliation(s)
- Yun Chu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Xinrun Yuan
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
15
|
Sommers O, Tomsine RA, Khacho M. Mitochondrial Dynamics Drive Muscle Stem Cell Progression from Quiescence to Myogenic Differentiation. Cells 2024; 13:1773. [PMID: 39513880 PMCID: PMC11545319 DOI: 10.3390/cells13211773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
From quiescence to activation and myogenic differentiation, muscle stem cells (MuSCs) experience drastic alterations in their signaling activity and metabolism. Through balanced cycles of fission and fusion, mitochondria alter their morphology and metabolism, allowing them to affect their decisive role in modulating MuSC activity and fate decisions. This tightly regulated process contributes to MuSC regulation by mediating changes in redox signaling pathways, cell cycle progression, and cell fate decisions. In this review, we discuss the role of mitochondrial dynamics as an integral modulator of MuSC activity, fate, and maintenance. Understanding the influence of mitochondrial dynamics in MuSCs in health and disease will further the development of therapeutics that support MuSC integrity and thus may aid in restoring the regenerative capacity of skeletal muscle.
Collapse
Affiliation(s)
- Olivia Sommers
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rholls A. Tomsine
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Center for Neuromuscular Disease (CNMD), University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
16
|
Liu W, Hsieh HT, He Z, Xiao X, Song C, Lee EX, Dong J, Lei CL, Wang J, Chen G. Medium acidosis drives cardiac differentiation during mesendoderm cell fate specification from human pluripotent stem cells. Stem Cell Reports 2024; 19:1304-1319. [PMID: 39178847 PMCID: PMC11411300 DOI: 10.1016/j.stemcr.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024] Open
Abstract
Effective lineage-specific differentiation is essential to fulfilling the great potentials of human pluripotent stem cells (hPSCs). In this report, we investigate how modulation of medium pH and associated metabolic changes influence mesendoderm differentiation from hPSCs. We show that daily medium pH fluctuations are critical for the heterogeneity of cell fates in the absence of exogenous inducers. Acidic environment alone leads to cardiomyocyte generation without other signaling modulators. In contrast, medium alkalinization is inhibitory to cardiac fate even in the presence of classic cardiac inducers. We then demonstrate that acidic environment suppresses glycolysis to facilitate cardiac differentiation, while alkaline condition promotes glycolysis and diverts the differentiation toward other cell types. We further show that glycolysis inhibition or AMPK activation can rescue cardiac differentiation under alkalinization, and glycolysis inhibition alone can drive cardiac cell fate. This study highlights that pH changes remodel metabolic patterns and modulate signaling pathways to control cell fate.
Collapse
Affiliation(s)
- Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China; Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Hsun-Ting Hsieh
- Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ziqing He
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xia Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - En Xin Lee
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ji Dong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jiaxian Wang
- HELP Stem Cell Innovations Ltd. Co., Nanjing, Jiangsu, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
| |
Collapse
|
17
|
Liu Q, Zhang L, Chen Z, He Y, Huang Y, Qiu C, Zhu C, Zhou D, Gan Z, Gao X, Wan G. Metabolic Profiling of Cochlear Organoids Identifies α-Ketoglutarate and NAD + as Limiting Factors for Hair Cell Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308032. [PMID: 38993037 PMCID: PMC11425867 DOI: 10.1002/advs.202308032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/11/2024] [Indexed: 07/13/2024]
Abstract
Cochlear hair cells are the sensory cells responsible for transduction of acoustic signals. In mammals, damaged hair cells do not regenerate, resulting in permanent hearing loss. Reprogramming of the surrounding supporting cells to functional hair cells represent a novel strategy to hearing restoration. However, cellular processes governing the efficient and functional hair cell reprogramming are not completely understood. Employing the mouse cochlear organoid system, detailed metabolomic characterizations of the expanding and differentiating organoids are performed. It is found that hair cell differentiation is associated with increased mitochondrial electron transport chain (ETC) activity and reactive oxidative species generation. Transcriptome and metabolome analyses indicate reduced expression of oxidoreductases and tricyclic acid (TCA) cycle metabolites. The metabolic decoupling between ETC and TCA cycle limits the availability of the key metabolic cofactors, α-ketoglutarate (α-KG) and nicotinamide adenine dinucleotide (NAD+). Reduced expression of NAD+ in cochlear supporting cells by PGC1α deficiency further impairs hair cell reprogramming, while supplementation of α-KG and NAD+ promotes hair cell reprogramming both in vitro and in vivo. These findings reveal metabolic rewiring as a central cellular process during hair cell differentiation, and highlight the insufficiency of key metabolites as a metabolic barrier for efficient hair cell reprogramming.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Linqing Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhen Chen
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yihan He
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yuhang Huang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Cui Qiu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Chengwen Zhu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| |
Collapse
|
18
|
Khan MP, Sabini E, Beigel K, Lanzolla G, Laslow B, Wang D, Merceron C, Giaccia A, Long F, Taylor D, Schipani E. HIF1 activation safeguards cortical bone formation against impaired oxidative phosphorylation. JCI Insight 2024; 9:e182330. [PMID: 39088272 PMCID: PMC11457864 DOI: 10.1172/jci.insight.182330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting mitochondrial transcription factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones' rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing hypoxia-inducible factor 1a (HIF1) activity within periosteal cells substantially mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.
Collapse
Affiliation(s)
- Mohd P. Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elena Sabini
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katherine Beigel
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Giulia Lanzolla
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brittany Laslow
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dian Wang
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christophe Merceron
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amato Giaccia
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Fanxin Long
- Department of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Traut M, Kowalczyk-Zieba I, Boruszewska D, Jaworska J, Gąsiorowska S, Lukaszuk K, Ropka-Molik K, Piórkowska K, Szmatoła T, Woclawek-Potocka I. Deregulation of oxidative phosphorylation pathways in embryos derived in vitro from prepubertal and pubertal heifers based on whole-transcriptome sequencing. BMC Genomics 2024; 25:632. [PMID: 38914933 PMCID: PMC11197288 DOI: 10.1186/s12864-024-10532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Although, oocytes from prepubertal donors are known to be less developmentally competent than those from adult donors it does not restrain their ability to produce full-term pregnancies. The transcriptomic profile of embryos could be used as a predictor for embryo's individual developmental competence. The aim of the study was to compare transcriptomic profile of blastocysts derived from prepubertal and pubertal heifers oocytes. Bovine cumulus-oocyte complexes (COCs) were obtained by ovum pick- up method from prepubertal and pubertal heifers. After in vitro maturation COCs were fertilized and cultured to the blastocyst stage. Total RNA was isolated from both groups of blastocysts and RNA-seq was performed. Gene ontology analysis was performed by DAVID (Database for Annotation, Visualization and Integrated Discovery). RESULTS A higher average blastocyst rate was obtained in the pubertal than in the pre-pubertal group. There were no differences in the quality of blastocysts between the examined groups. We identified 436 differentially expressed genes (DEGs) between blastocysts derived from researched groups, of which 247 DEGs were downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes, and 189 DEGs were upregulated. The genes involved in mitochondrial function, including oxidative phosphorylation (OXPHOS) were found to be different in studied groups using Kyoto Encyclopedia of Genes (KEGG) pathway analysis and 8 of those DEGs were upregulated and 1 was downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes. DEGs associated with mitochondrial function were found: ATP synthases (ATP5MF-ATP synthase membrane subunit f, ATP5PD- ATP synthase peripheral stalk subunit d, ATP12A- ATPase H+/K + transporting non-gastric alpha2 subunit), NADH dehydrogenases (NDUFS3- NADH: ubiquinone oxidoreductase subunit core subunit S3, NDUFA13- NADH: ubiquinone oxidoreductase subunit A13, NDUFA3- NADH: ubiquinone oxidoreductase subunit A3), cytochrome c oxidase (COX17), cytochrome c somatic (CYCS) and ubiquinol cytochrome c reductase core protein 1 (UQCRC1). We found lower number of apoptotic cells in blastocysts derived from oocytes collected from prepubertal than those obtained from pubertal donors. CONCLUSIONS Despite decreased expression of genes associated with OXPHOS pathway in blastocysts from prepubertal heifers oocytes, the increased level of ATP12A together with the lower number of apoptotic cells in these blastocysts might support their survival after transfer.
Collapse
Affiliation(s)
- Milena Traut
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Sandra Gąsiorowska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Krzysztof Lukaszuk
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, Gdansk, 80-210, Poland
- Invicta Research and Development Center, Sopot, 81-740, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland.
| |
Collapse
|
20
|
Tian Y, Cheng Z, Ge D, Xu Z, Wang H, Li X, Tian H, Liu F, Luo D, Wang Y. ROS are required for the germinative cell proliferation and metacestode larval growth of Echinococcus multilocularis. Front Microbiol 2024; 15:1410504. [PMID: 38912347 PMCID: PMC11190091 DOI: 10.3389/fmicb.2024.1410504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
The potentially lethal zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode larval stages of the tapeworm Echinococcus multilocularis. Metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular parasite-host interactions. The host has developed various ways to resist a parasitic infection, and the production of reactive oxygen species (ROS) is one of the most important strategies. Here, we found that scavenging of ROS reduced metacestode larval growth and germinative cell proliferation in in vivo models. Furthermore, using in vitro-cultured metacestode vesicles, we found that increased ROS levels enhanced metacestode growth and germinative cell proliferation, which was achieved by positively activating the ROS-EmERK-EmHIF1α axis. These results indicate that, beside its capacity to damage the parasite, ROS also play critical roles in metacestode growth and germinative cell proliferation. This study suggests that the effects of ROS on parasite may be bidirectional during AE infection, reflecting the parasite's adaptation to the oxidative stress microenvironment.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhe Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Defeng Ge
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhijian Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huijuan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiazhen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huimin Tian
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Fan Liu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Damin Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanhai Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
21
|
Liu W, Wu Y, Ma R, Zhu X, Wang R, He L, Shu M. Multi-omics analysis of a case of congenital microtia reveals aldob and oxidative stress associated with microtia etiology. Orphanet J Rare Dis 2024; 19:218. [PMID: 38802922 PMCID: PMC11129396 DOI: 10.1186/s13023-024-03149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/27/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Microtia is reported to be one of the most common congenital craniofacial malformations. Due to the complex etiology and the ethical barrier of embryonic study, the precise mechanisms of microtia remain unclear. Here we report a rare case of microtia with costal chondrodysplasia based on bioinformatics analysis and further verifications on other sporadic microtia patients. RESULTS One hundred fourteen deleterious insert and deletion (InDel) and 646 deleterious SNPs were screened out by WES, candidate genes were ranked in descending order according to their relative impact with microtia. Label-free proteomic analysis showed that proteins significantly different between the groups were related with oxidative stress and energy metabolism. By real-time PCR and immunohistochemistry, we further verified the candidate genes between other sporadic microtia and normal ear chondrocytes, which showed threonine aspartase, cadherin-13, aldolase B and adiponectin were significantly upregulated in mRNA levels but were significantly lower in protein levels. ROS detection and mitochondrial membrane potential (∆ Ψ m) detection proved that oxidative stress exists in microtia chondrocytes. CONCLUSIONS Our results not only spot new candidate genes by WES and label-free proteomics, but also speculate for the first time that metabolism and oxidative stress may disturb cartilage development and this might become therapeutic targets and potential biomarkers with clinical usefulness in the future.
Collapse
Affiliation(s)
- Wenbo Liu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yi Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University Medical College, Xi'an, Shaanxi, China
| | - Xinxi Zhu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Lin He
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Maoguo Shu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
22
|
Luo J, Zhang Y, Jayaprakash S, Zhuang L, He J. Cross-Species Insights into Autosomal Dominant Polycystic Kidney Disease: Provide an Alternative View on Research Advancement. Int J Mol Sci 2024; 25:5646. [PMID: 38891834 PMCID: PMC11171680 DOI: 10.3390/ijms25115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent hereditary disorder that affects the kidneys, characterized by the development of an excessive number of fluid-filled cysts of varying sizes in both kidneys. Along with the progression of ADPKD, these enlarged cysts displace normal kidney tissue, often accompanied by interstitial fibrosis and inflammation, and significantly impair renal function, leading to end-stage renal disease. Currently, the precise mechanisms underlying ADPKD remain elusive, and a definitive cure has yet to be discovered. This review delineates the epidemiology, pathological features, and clinical diagnostics of ADPKD or ADPKD-like disease across human populations, as well as companion animals and other domesticated species. A light has been shed on pivotal genes and biological pathways essential for preventing and managing ADPKD, which underscores the importance of cross-species research in addressing this complex condition. Treatment options are currently limited to Tolvaptan, dialysis, or surgical excision of large cysts. However, comparative studies of ADPKD across different species hold promise for unveiling novel insights and therapeutic strategies to combat this disease.
Collapse
Affiliation(s)
- Jianing Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Yuan Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Sakthidasan Jayaprakash
- Department of Biotechnology, Hindustan Institute of Technology and Science, Tamil Nadu 603103, India;
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Jin He
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| |
Collapse
|
23
|
Sabini E, Schipani E. The hypoxia signature across skeletal progenitor cells. J Bone Miner Res 2024; 39:373-374. [PMID: 38528315 PMCID: PMC11207898 DOI: 10.1093/jbmr/zjae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 03/27/2024]
Affiliation(s)
- Elena Sabini
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
24
|
Lu B, Zhao Q, Cai Z, Qian S, Mao J, Zhang L, Mao X, Sun X, Cui W, Zhang Y. Regulation of Glucose Metabolism for Cell Energy Supply In Situ via High-Energy Intermediate Fructose Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309060. [PMID: 38063818 DOI: 10.1002/smll.202309060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Indexed: 05/12/2024]
Abstract
The cellular functions, such as tissue-rebuilding ability, can be directly affected by the metabolism of cells. Moreover, the glucose metabolism is one of the most important processes of the metabolism. However, glucose cannot be efficiently converted into energy in cells under ischemia hypoxia conditions. In this study, a high-energy intermediate fructose hydrogel (HIFH) is developed by the dynamic coordination between sulfhydryl-functionalized bovine serum albumin (BSA-SH), the high-energy intermediate in glucose metabolism (fructose-1,6-bisphosphate, FBP), and copper ion (Cu2+). This hydrogel system is injectable, self-healing, and biocompatible, which can intracellularly convert energy with high efficacy by regulating the glucose metabolism in situ. Additionally, the HIFH can greatly boost cell antioxidant capacity and increase adenosine triphosphate (ATP) in the ischemia anoxic milieu by roughly 1.3 times, improving cell survival, proliferation and physiological functions in vitro. Furthermore, the ischemic skin tissue model is established in rats. The HIFH can speed up the healing of damaged tissue by promoting angiogenesis, lowering reactive oxygen species (ROS), and eventually expanding the healing area of the damaged tissue by roughly 1.4 times in vivo. Therefore, the HIFH can provide an impressive perspective on efficient in situ cell energy supply of damaged tissue.
Collapse
Affiliation(s)
- Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Shutong Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
25
|
Xu J, Fei P, Simon DW, Morowitz MJ, Mehta PA, Du W. Crosstalk between DNA Damage Repair and Metabolic Regulation in Hematopoietic Stem Cells. Cells 2024; 13:733. [PMID: 38727270 PMCID: PMC11083014 DOI: 10.3390/cells13090733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Peiwen Fei
- Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96812, USA
| | - Dennis W. Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Morowitz
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Parinda A. Mehta
- Division of Blood and Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Du
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Tan VWT, Salmi TM, Karamalakis AP, Gillespie A, Ong AJS, Balic JJ, Chan YC, Bladen CE, Brown KK, Dawson MA, Cox AG. SLAM-ITseq identifies that Nrf2 induces liver regeneration through the pentose phosphate pathway. Dev Cell 2024; 59:898-910.e6. [PMID: 38366599 DOI: 10.1016/j.devcel.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The liver exhibits a remarkable capacity to regenerate following injury. Despite this unique attribute, toxic injury is a leading cause of liver failure. The temporal processes by which the liver senses injury and initiates regeneration remain unclear. Here, we developed a transgenic zebrafish model wherein hepatocyte-specific expression of uracil phosphoribosyltransferase (UPRT) enabled the implementation of SLAM-ITseq to investigate the nascent transcriptome during initiation of liver injury and regeneration. Using this approach, we identified a rapid metabolic transition from the fed to the fasted state that was followed by induction of the nuclear erythroid 2-related factor (Nrf2) antioxidant program. We find that activation of Nrf2 in hepatocytes is required to induce the pentose phosphate pathway (PPP) and improve survival following liver injury. Mechanistically, we demonstrate that inhibition of the PPP disrupts nucleotide biosynthesis to prevent liver regeneration. Together, these studies provide fundamental insights into the mechanism by which early metabolic adaptation to injury facilitates tissue regeneration.
Collapse
Affiliation(s)
- Vicky W T Tan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Talhah M Salmi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony P Karamalakis
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Athena Jessica S Ong
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jesse J Balic
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cerys E Bladen
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristin K Brown
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Andrew G Cox
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
27
|
Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep 2024; 20:617-636. [PMID: 38265576 DOI: 10.1007/s12015-024-10681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Shirkoohi FJ, Ghollasi M, Halabian R, Eftekhari E, Ghiasi M. Oxaloacetate as new inducer for osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol Biol Rep 2024; 51:451. [PMID: 38536507 DOI: 10.1007/s11033-024-09389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Mitochondrial organelles play a crucial role in cellular metabolism so different cell types exhibit diverse metabolic and energy demands. Therefore, alternations in the intracellular distribution, quantity, function, and structure of mitochondria are required for stem cell differentiation. Finding an effective inducer capable of modulating mitochondrial activity is critical for the differentiation of specific stem cells into osteo-like cells for addressing issues related to osteogenic disorders. This study aimed to investigate the effect of oxaloacetate (OAA) on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) in vitro. METHODS AND RESULTS First, the most favorable OAA concentration was measured through MTT assay and subsequently confirmed using acridine orange staining. Human ADSCs were cultured in osteogenic medium supplemented with OAA and analyzed on days 7 and 14 of differentiation. Various assays including alkaline phosphatase assay (ALP), cellular calcium content assay, mineralized matrix staining with alizarin red, catalase (CAT) and superoxide dismutase (SOD) activity, and real-time RT-PCR analysis of three bone-specific markers (ALP, osteocalcin, and collagen type I) were conducted to characterize the differentiated cells. Following viability assessment, OAA at a concentration of 1 µM was considered the optimal dosage for further studies. The results of osteogenic differentiation assays showed that OAA at a concentration of 1 × 10- 6 M significantly increased ALP enzyme activity, mineralization, CAT and SOD activity and the expression of bone-specific genes in differentiated cells compared to control groups in vitro. CONCLUSIONS In conclusion, the fundings from this study suggest that OAA possesses favorable properties that make it a potential candidate for application in medical bone regeneration.
Collapse
Affiliation(s)
- Fatemeh Jamali Shirkoohi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box 31979-37551, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box 31979-37551, Tehran, Iran.
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Triolo M, Baker N, Agarwal S, Larionov N, Podinić T, Khacho M. Optic atrophy 1 mediates muscle differentiation by promoting a metabolic switch via the supercomplex assembly factor SCAF1. iScience 2024; 27:109164. [PMID: 38414856 PMCID: PMC10897915 DOI: 10.1016/j.isci.2024.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Myogenic differentiation is integral for the regeneration of skeletal muscle following tissue damage. Though high-energy post-mitotic muscle relies predominantly on mitochondrial respiration, the importance of mitochondrial remodeling in enabling muscle differentiation and the players involved are not fully known. Here we show that the mitochondrial fusion protein OPA1 is essential for muscle differentiation. Our study demonstrates that OPA1 loss or inhibition, through genetic and pharmacological means, abolishes in vivo muscle regeneration and in vitro myotube formation. We show that both the inhibition and genetic deletion of OPA1 prevent the early onset metabolic switch required to drive myoblast differentiation. In addition, we observe an OPA1-dependent upregulation of the supercomplex assembly factor, SCAF1, at the onset of differentiation. Importantly, preventing the upregulation of SCAF1, through OPA1 loss or siRNA-mediated SCAF1 knockdown, impairs metabolic reprogramming and muscle differentiation. These findings reveal the integral role of OPA1 and mitochondrial reprogramming at the onset of myogenic differentiation.
Collapse
Affiliation(s)
- Matthew Triolo
- Department of Biochemistry, Microbiology and Immunology, Center for Neuromuscular Disease (CNMD), Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicole Baker
- Department of Biochemistry, Microbiology and Immunology, Center for Neuromuscular Disease (CNMD), Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Soniya Agarwal
- Department of Biochemistry, Microbiology and Immunology, Center for Neuromuscular Disease (CNMD), Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikita Larionov
- Department of Biochemistry, Microbiology and Immunology, Center for Neuromuscular Disease (CNMD), Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tina Podinić
- Department of Biochemistry, Microbiology and Immunology, Center for Neuromuscular Disease (CNMD), Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Center for Neuromuscular Disease (CNMD), Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
30
|
Grzymkowski JK, Chiu YC, Jima DD, Wyatt BH, Jayachandran S, Stutts WL, Nascone-Yoder NM. Developmental regulation of cellular metabolism is required for intestinal elongation and rotation. Development 2024; 151:dev202020. [PMID: 38369735 PMCID: PMC10911142 DOI: 10.1242/dev.202020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Malrotation of the intestine is a prevalent birth anomaly, the etiology of which remains poorly understood. Here, we show that late-stage exposure of Xenopus embryos to atrazine, a widely used herbicide that targets electron transport chain (ETC) reactions, elicits intestinal malrotation at high frequency. Interestingly, atrazine specifically inhibits the cellular morphogenetic events required for gut tube elongation, including cell rearrangement, differentiation and proliferation; insufficient gut lengthening consequently reorients the direction of intestine rotation. Transcriptome analyses of atrazine-exposed intestines reveal misexpression of genes associated with glycolysis and oxidative stress, and metabolomics shows that atrazine depletes key glycolytic and tricarboxylic acid cycle metabolites. Moreover, cellular bioenergetics assays indicate that atrazine blocks a crucial developmental transition from glycolytic ATP production toward oxidative phosphorylation. Atrazine-induced defects are phenocopied by rotenone, a known ETC Complex I inhibitor, accompanied by elevated reactive oxygen species, and rescued by antioxidant supplementation, suggesting that malrotation may be at least partly attributable to redox imbalance. These studies reveal roles for metabolism in gut morphogenesis and implicate defective gut tube elongation and/or metabolic perturbations in the etiology of intestinal malrotation.
Collapse
Affiliation(s)
- Julia K. Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Yu-Chun Chiu
- Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC 27695, USA
| | - Dereje D. Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent H. Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Sudhish Jayachandran
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Whitney L. Stutts
- Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC 27695, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Nanette M. Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
31
|
Ruhl T, Nuptybayeva A, Kim BS, Beier JP. GPR55 inhibits the pro-adipogenic activity of anandamide in human adipose stromal cells. Exp Cell Res 2024; 435:113908. [PMID: 38163565 DOI: 10.1016/j.yexcr.2023.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
The endocannabinoid anandamide (AEA) stimulates adipogenesis via the cannabinoid receptor CB1 in adipose stromal cells (ASCs). However, AEA interacts also with nonclassical cannabinoid receptors, including transient receptor potential cation channel (TRPV)1 and G protein-coupled receptor (GPR)55. Their roles in AEA mediated adipogenesis of human ASCs have not been investigated. We examined the receptor-expressions by immunostaining on human ASCs and tested their functionality by measuring the expression of immediate early genes (IEGs) related to the transcription factor-complex AP-1 upon exposition to receptor agonists. Cells were stimulated with increasing concentrations of specific ligands to investigate the effects on ASC viability (proliferation and metabolic activity), secretory activity, and AEA mediated differentiation. ASCs expressed both receptors, and their activation suppressed IEG expression. TRPV1 did not affect viability or cytokine secretion. GPR55 decreased proliferation, and it inhibited the release of hepatocyte growth factor. Blocking GPR55 increased the pro-adipogenic activity of AEA. These data suggest that GPR55 functions as negative regulator of cannabinoid mediated pro-adipogenic capacity in ASCs.
Collapse
Affiliation(s)
- Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Aigul Nuptybayeva
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Bong-Sung Kim
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany; Department of Plastic and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
32
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Li Y, Berliocchi L, Li Z, Rasmussen LJ. Interactions between mitochondrial dysfunction and other hallmarks of aging: Paving a path toward interventions that promote healthy old age. Aging Cell 2024; 23:e13942. [PMID: 37497653 PMCID: PMC10776122 DOI: 10.1111/acel.13942] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Current research on human aging has largely been guided by the milestone paper "hallmarks of aging," which were first proposed in the seminal 2013 paper by Lopez-Otin et al. Most studies have focused on one aging hallmark at a time, asking whether the underlying molecular perturbations are sufficient to drive the aging process and its associated phenotypes. More recently, researchers have begun to investigate whether aging phenotypes are driven by concurrent perturbations in molecular pathways linked to not one but to multiple hallmarks of aging and whether they present different patterns in organs and systems over time. Indeed, preliminary results suggest that more complex interactions between aging hallmarks must be considered and addressed, if we are to develop interventions that successfully promote healthy aging and/or delay aging-associated dysfunction and diseases. Here, we summarize some of the latest work and views on the interplay between hallmarks of aging, with a specific focus on mitochondrial dysfunction. Indeed, this represents a significant example of the complex crosstalk between hallmarks of aging and of the effects that an intervention targeted to a specific hallmark may have on the others. A better knowledge of these interconnections, of their cause-effect relationships, of their spatial and temporal sequence, will be very beneficial for the whole aging research field and for the identification of effective interventions in promoting healthy old age.
Collapse
Affiliation(s)
- Yuan Li
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Laura Berliocchi
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
- Department of Health SciencesUniversity Magna Græcia of CatanzaroCatanzaroItaly
| | - Zhiquan Li
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
34
|
Li X, Jiang O, Wang S. Molecular mechanisms of cellular metabolic homeostasis in stem cells. Int J Oral Sci 2023; 15:52. [PMID: 38040705 PMCID: PMC10692173 DOI: 10.1038/s41368-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
Many tissues and organ systems have intrinsic regeneration capabilities that are largely driven and maintained by tissue-resident stem cell populations. In recent years, growing evidence has demonstrated that cellular metabolic homeostasis plays a central role in mediating stem cell fate, tissue regeneration, and homeostasis. Thus, a thorough understanding of the mechanisms that regulate metabolic homeostasis in stem cells may contribute to our knowledge on how tissue homeostasis is maintained and provide novel insights for disease management. In this review, we summarize the known relationship between the regulation of metabolic homeostasis and molecular pathways in stem cells. We also discuss potential targets of metabolic homeostasis in disease therapy and describe the current limitations and future directions in the development of these novel therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ou Jiang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
35
|
Schipani E, Carmeliet G. Cell metabolism and bone cells. Bone Rep 2023; 19:101719. [PMID: 38163016 PMCID: PMC10757278 DOI: 10.1016/j.bonr.2023.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Affiliation(s)
- Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman Medical School, 310A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, O&N1bis Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Xiao S, Zhang W, Li J, Manley NR. Lin28 regulates thymic growth and involution and correlates with MHCII expression in thymic epithelial cells. Front Immunol 2023; 14:1261081. [PMID: 37868985 PMCID: PMC10588642 DOI: 10.3389/fimmu.2023.1261081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
Thymic epithelial cells (TECs) are essential for T cell development in the thymus, yet the mechanisms governing their differentiation are not well understood. Lin28, known for its roles in embryonic development, stem cell pluripotency, and regulating cell proliferation and differentiation, is expressed in endodermal epithelial cells during embryogenesis and persists in adult epithelia, implying postnatal functions. However, the detailed expression and function of Lin28 in TECs remain unknown. In this study, we examined the expression patterns of Lin28 and its target Let-7g in fetal and postnatal TECs and discovered opposing expression patterns during postnatal thymic growth, which correlated with FOXN1 and MHCII expression. Specifically, Lin28b showed high expression in MHCIIhi TECs, whereas Let-7g was expressed in MHCIIlo TECs. Deletion of Lin28a and Lin28b specifically in TECs resulted in reduced MHCII expression and overall TEC numbers. Conversely, overexpression of Lin28a increased total TEC and thymocyte numbers by promoting the proliferation of MHCIIlo TECs. Additionally, our data strongly suggest that Lin28 and Let-7g expression is reliant on FOXN1 to some extent. These findings suggest a critical role for Lin28 in regulating the development and differentiation of TECs by modulating MHCII expression and TEC proliferation throughout thymic ontogeny and involution. Our study provides insights into the mechanisms underlying TEC differentiation and highlights the significance of Lin28 in orchestrating these processes.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, University of Georgia, Athens, GA, United States
| | | | | | | |
Collapse
|
37
|
Ahmadzadeh‐Gavahan L, Hosseinkhani A, Hamidian G, Jarolmasjed S, Yousefi‐Tabrizi R. Restricted maternal nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride during late pregnancy does not affect muscle fibre characteristics of offspring. Vet Med Sci 2023; 9:2260-2268. [PMID: 37556348 PMCID: PMC10508547 DOI: 10.1002/vms3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Grazing in arid and semi-arid regions faces pregnant ewes with feed restrictions and hence affects the offspring muscle fibre characteristics. Using feed additives that enhance nutrient availability during foetal muscle development is expected to alter offspring skeletal muscle characteristics. OBJECTIVES This study evaluated the effect of maternal restricted nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride on lamb's muscle fibre characteristics. METHODS Forty-eight Ghezel ewes were randomly allocated to one of six diets (N = 8) during the last 6 weeks of gestation: ad libitum feed intake (AL); restricted feeding (RF); restricted feeding containing propylene glycol (PG); restricted feeding containing propylene glycol and monensin sodium (MS); restricted feeding containing propylene glycol and rumen-protected choline chloride (RPC); restricted feeding containing propylene glycol, monensin sodium and rumen-protected choline chloride (PMC). The muscle samples were obtained from the semitendinosus muscle of 2-week-old male lambs (n = 5/treatment) via biopsy and were stained and classified as fibre types I, IIA and IIB. RESULTS Pre-parturient maternal feed restriction and administration of propylene glycol, monensin sodium and rumen-protected choline chloride had no significant effect on fibre-type composition, fibre density of muscle, muscle cross-sectional area and volume density of fibres (p > 0.05). CONCLUSIONS Either maternal dietary restriction or supplementation of nutrient flux-involved additives during late pregnancy did not alter muscle fibre development and had no short-term effects on muscle properties of the resulting offspring as myogenesis occurs in early and mid-gestation, not late gestation. Therefore, maternal nutrition may not be a problematic issue in sheep production in arid and semi-arid areas.
Collapse
Affiliation(s)
| | - Ali Hosseinkhani
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | | | - Reza Yousefi‐Tabrizi
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
38
|
Otsu Y, Hatakeyama M, Kanayama T, Akiyama N, Ninomiya I, Omae K, Kato T, Onodera O, Fukushima M, Shimohata T, Kanazawa M. Oxygen-Glucose Deprived Peripheral Blood Mononuclear Cells Protect Against Ischemic Stroke. Neurotherapeutics 2023; 20:1369-1387. [PMID: 37335500 PMCID: PMC10480381 DOI: 10.1007/s13311-023-01398-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
Stroke is the leading cause of severe long-term disability. Cell therapy has recently emerged as an approach to facilitate functional recovery in stroke. Although administration of peripheral blood mononuclear cells preconditioned by oxygen-glucose deprivation (OGD-PBMCs) has been shown to be a therapeutic strategy for ischemic stroke, the recovery mechanisms remain largely unknown. We hypothesised that cell-cell communications within PBMCs and between PBMCs and resident cells are necessary for a polarising protective phenotype. Here, we investigated the therapeutic mechanisms underlying the effects of OGD-PBMCs through the secretome. We compared levels of transcriptomes, cytokines, and exosomal microRNA in human PBMCs by RNA sequences, Luminex assay, flow cytometric analysis, and western blotting under normoxic and OGD conditions. We also performed microscopic analyses to assess the identification of remodelling factor-positive cells and evaluate angiogenesis, axonal outgrowth, and functional recovery by blinded examination by administration of OGD-PBMCs after ischemic stroke in Sprague-Dawley rats. We found that the therapeutic potential of OGD-PBMCs was mediated by a polarised protective state through decreased levels of exosomal miR-155-5p, and upregulation of vascular endothelial growth factor and a pluripotent stem cell marker stage-specific embryonic antigen-3 through the hypoxia-inducible factor-1α axis. After administration of OGD-PBMCs, microenvironment changes in resident microglia by the secretome promoted angiogenesis and axonal outgrowth, resulting in functional recovery after cerebral ischemia. Our findings revealed the mechanisms underlying the refinement of the neurovascular unit by secretome-mediated cell-cell communications through reduction of miR-155-5p from OGD-PBMCs, highlighting the therapeutic potential carrier of this approach against ischemic stroke.
Collapse
Affiliation(s)
- Yutaka Otsu
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Takeshi Kanayama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Natsuki Akiyama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Kaoru Omae
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Science Branch, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Masanori Fukushima
- Foundation of Learning Health Society Institute, 8F, Nagoya Mitsui Bussan Bldg. 1-16-21 Meiekiminami, Nakamura-ku, Nagoya, 450-003, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan.
| |
Collapse
|
39
|
Li J, Jiang Y, Xue W, Liu L, Yu H, Zhang X, Ye X, Miao J, Liu J, Chen Y, Lan X, Liu X, Yao W, Sun J, Zheng J, Xiao J. Effects of transplantation of umbilical cord blood mononuclear cells into the scrotum on sexual function in elderly mice. Regen Med 2023; 18:695-706. [PMID: 37554102 DOI: 10.2217/rme-2022-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Aim: This study investigated the effect of allografting umbilical cord blood mononuclear cells (UCBMCs) into the scrotum on sexual function in male elderly mice. Methods: UCBMCs were injected once into the scrotal sheath cavity of elderly mice. Results: The transplanted UCBMCs survived in the scrotal sheath cavity for 1 month. The mice had significantly increased blood testosterone concentrations, cyclic guanosine monophosphate (cGMP) levels and total nitric oxide synthase (T-NOS) activity in the corpus cavernosum and an increase in the number of mouse matings within 30 min (all p = 0.000). Conclusion: Scrotum-implanted UCBMCs improve the sexual function of male elderly mice through testosterone production and the NOS/cGMP pathway, which may provide an innovative transplantation approach for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Jun Li
- Medical School, Ningde Normal University, Ningde, 352100, China
- Medical School, Kunming University, Kunming, 650214, China
| | - Yinghong Jiang
- Medical School, Kunming University, Kunming, 650214, China
| | - Wei Xue
- Medical School, Kunming University, Kunming, 650214, China
| | - Lejiang Liu
- Medical School, Kunming University, Kunming, 650214, China
| | - Hua Yu
- Medical School, Kunming University, Kunming, 650214, China
| | - Xuemei Zhang
- Medical School, Kunming University, Kunming, 650214, China
| | - Xiao Ye
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jianrong Miao
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jianling Liu
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Yueen Chen
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Xingbin Lan
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Xiaoqing Liu
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Wensong Yao
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jianchuan Sun
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jing Zheng
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jianzhong Xiao
- Medical School, Ningde Normal University, Ningde, 352100, China
| |
Collapse
|
40
|
Nekooie Marnany N, Fodil R, Féréol S, Dady A, Depp M, Relaix F, Motterlini R, Foresti R, Duband JL, Dufour S. Glucose oxidation drives trunk neural crest cell development and fate. J Cell Sci 2023; 136:jcs260607. [PMID: 37589341 DOI: 10.1242/jcs.260607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/30/2023] [Indexed: 08/18/2023] Open
Abstract
Bioenergetic metabolism is a key regulator of cellular function and signaling, but how it can instruct the behavior of cells and their fate during embryonic development remains largely unknown. Here, we investigated the role of glucose metabolism in the development of avian trunk neural crest cells (NCCs), a migratory stem cell population of the vertebrate embryo. We uncovered that trunk NCCs display glucose oxidation as a prominent metabolic phenotype, in contrast to what is seen for cranial NCCs, which instead rely on aerobic glycolysis. In addition, only one pathway downstream of glucose uptake is not sufficient for trunk NCC development. Indeed, glycolysis, mitochondrial respiration and the pentose phosphate pathway are all mobilized and integrated for the coordinated execution of diverse cellular programs, epithelial-to-mesenchymal transition, adhesion, locomotion, proliferation and differentiation, through regulation of specific gene expression. In the absence of glucose, the OXPHOS pathway fueled by pyruvate failed to promote trunk NCC adaptation to environmental stiffness, stemness maintenance and fate-decision making. These findings highlight the need for trunk NCCs to make the most of the glucose pathway potential to meet the high metabolic demands appropriate for their development.
Collapse
Affiliation(s)
| | - Redouane Fodil
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Sophie Féréol
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Alwyn Dady
- Laboratoire Gly-CRRET, Université Paris-Est Créteil, 94000 Créteil, France
| | - Marine Depp
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Frederic Relaix
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | | | - Roberta Foresti
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Jean-Loup Duband
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Sylvie Dufour
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| |
Collapse
|
41
|
Takata N, Miska JM, Morgan MA, Patel P, Billingham LK, Joshi N, Schipma MJ, Dumar ZJ, Joshi NR, Misharin AV, Embry RB, Fiore L, Gao P, Diebold LP, McElroy GS, Shilatifard A, Chandel NS, Oliver G. Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis. Nat Commun 2023; 14:4129. [PMID: 37452018 PMCID: PMC10349100 DOI: 10.1038/s41467-023-39672-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.
Collapse
Affiliation(s)
- Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Jason M Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Neha Joshi
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nikita R Joshi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alexander V Misharin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ryan B Embry
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Luciano Fiore
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Laboratory of Nanomedicine, National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren P Diebold
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gregory S McElroy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
42
|
Conte F, Noga MJ, van Scherpenzeel M, Veizaj R, Scharn R, Sam JE, Palumbo C, van den Brandt FCA, Freund C, Soares E, Zhou H, Lefeber DJ. Isotopic Tracing of Nucleotide Sugar Metabolism in Human Pluripotent Stem Cells. Cells 2023; 12:1765. [PMID: 37443799 PMCID: PMC10340731 DOI: 10.3390/cells12131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Metabolism not only produces energy necessary for the cell but is also a key regulator of several cellular functions, including pluripotency and self-renewal. Nucleotide sugars (NSs) are activated sugars that link glucose metabolism with cellular functions via protein N-glycosylation and O-GlcNAcylation. Thus, understanding how different metabolic pathways converge in the synthesis of NSs is critical to explore new opportunities for metabolic interference and modulation of stem cell functions. Tracer-based metabolomics is suited for this challenge, however chemically-defined, customizable media for stem cell culture in which nutrients can be replaced with isotopically labeled analogs are scarcely available. Here, we established a customizable flux-conditioned E8 (FC-E8) medium that enables stem cell culture with stable isotopes for metabolic tracing, and a dedicated liquid chromatography mass-spectrometry (LC-MS/MS) method targeting metabolic pathways converging in NS biosynthesis. By 13C6-glucose feeding, we successfully traced the time-course of carbon incorporation into NSs directly via glucose, and indirectly via other pathways, such as glycolysis and pentose phosphate pathways, in induced pluripotent stem cells (hiPSCs) and embryonic stem cells. Then, we applied these tools to investigate the NS biosynthesis in hiPSC lines from a patient affected by deficiency of phosphoglucomutase 1 (PGM1), an enzyme regulating the synthesis of the two most abundant NSs, UDP-glucose and UDP-galactose.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marek J. Noga
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | - Raisa Veizaj
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rik Scharn
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Chiara Palumbo
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | | | - Eduardo Soares
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Huiqing Zhou
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- GlycoMScan B.V., 5349 AB Oss, The Netherlands
| |
Collapse
|
43
|
Zou B, Du J, Xuan Q, Wang Y, Wang Z, Zhang W, Wang L, Gu W. Scraping Therapy Improved Muscle Regeneration through Regulating GLUT4/Glycolytic and AMPK/mTOR/4EBP1 Pathways in Rats with Lumbar Multifidus Injury. Pain Res Manag 2023; 2023:8870256. [PMID: 37397163 PMCID: PMC10310458 DOI: 10.1155/2023/8870256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Background High morbidity of nonspecific low back pain (NLBP) and large consumption of medical resources caused by it have become a heavy social burden. There are many factors inducing NLBP, among which the damage and atrophy of multifidus (MF) are most closely related to NLBP. Scraping therapy can have significant treatment effects on NLBP with fewer adverse reactions and less medical fund input than other modalities or medications. However, the mechanism of scraping therapy treating NLBP remains unclarified. Here, we wanted to investigate the effects of scraping therapy on promoting MF regeneration and the underlying mechanisms. Methods A total of 54 male rats (SD, 6-7 weeks old) were randomly divided into nine groups, namely, K, M6h, M1d, M2d, M3d, G6h, G1d, G2d, and G3d, with six rats in each group. They were injected with bupivacaine (BPVC) to intentionally induce MF injury. We then performed scraping therapy on the rats that had been randomly chosen and compared treatment effects at different time points. In vitro data including skin temperature and tactile allodynia threshold were collected and histological sections were analyzed. mRNA sequencing was applied to distinguish the genes or signaling pathways that had been altered due to scraping therapy, and the results were further verified through reverse transcription polymerase chain reaction and Western blot analysis. Results Transitory petechiae and ecchymosis both on and beneath the rats' skin raised by scraping therapy gradually faded in about 3 d. Cross-sectional area (CSA) of MF was significantly smaller 30 h, 2 d, and 4 d after modeling (P=0.007, P=0.001, and P=0.015, respectively, vs. the blank group) and was significantly larger in the scraping group 1 d after treatment (P=0.002 vs. the model 1d group). Skin temperature significantly increased immediately after scraping (P < 0.001) and hindlimb pain threshold increased on the 2nd day after scraping (P=0.046 and P=0.028, respectively). 391 differentially expressed genes and 8 signaling pathways were characterized 6 h after scraping; only 3 differentially expressed genes and 3 signaling pathways were screened out 2 d after treatment. The amounts of mRNAs or proteins for GLUT4, HK2, PFKM, PKM, LDHA (which belong to the GLUT4/glycolytic pathway), p-mTOR, p-4EBP1 (which belong to the AMPK/mTOR/4EBP1 pathway), and BDH1 were enhanced, and p-AMPKα was decreased after scraping therapy. Conclusions Scraping therapy has therapeutic effects on rats with multifidus injury by promoting muscle regeneration via regulating GLUT4/glycolytic and AMPK/mTOR/4EBP1 signaling pathways.
Collapse
Affiliation(s)
- Bin Zou
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
- Dujiangyan Air Force Special Service Sanatorium, Chengdu 611838, China
| | - Juan Du
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Qiwen Xuan
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yajing Wang
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Zixiao Wang
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Wen Zhang
- Dujiangyan Air Force Special Service Sanatorium, Chengdu 611838, China
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Wei Gu
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
44
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
45
|
Kang Z, Wu B, Zhang L, Liang X, Guo D, Yuan S, Xie D. Metabolic regulation by biomaterials in osteoblast. Front Bioeng Biotechnol 2023; 11:1184463. [PMID: 37324445 PMCID: PMC10265685 DOI: 10.3389/fbioe.2023.1184463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
The repair of bone defects resulting from high-energy trauma, infection, or pathological fracture remains a challenge in the field of medicine. The development of biomaterials involved in the metabolic regulation provides a promising solution to this problem and has emerged as a prominent research area in regenerative engineering. While recent research on cell metabolism has advanced our knowledge of metabolic regulation in bone regeneration, the extent to which materials affect intracellular metabolic remains unclear. This review provides a detailed discussion of the mechanisms of bone regeneration, an overview of metabolic regulation in bone regeneration in osteoblasts and biomaterials involved in the metabolic regulation for bone regeneration. Furthermore, it introduces how materials, such as promoting favorable physicochemical characteristics (e.g., bioactivity, appropriate porosity, and superior mechanical properties), incorporating external stimuli (e.g., photothermal, electrical, and magnetic stimulation), and delivering metabolic regulators (e.g., metal ions, bioactive molecules like drugs and peptides, and regulatory metabolites such as alpha ketoglutarate), can affect cell metabolism and lead to changes of cell state. Considering the growing interests in cell metabolic regulation, advanced materials have the potential to help a larger population in overcoming bone defects.
Collapse
Affiliation(s)
- Zhengyang Kang
- Department of Orthopedics, The Second People’s Hospital of Panyu Guangzhou, Guangzhou, China
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Bin Wu
- Department of Orthopedics, The Second People’s Hospital of Panyu Guangzhou, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangxi Key Laboratory of Bone and Joint Degeneration Diseases, Youjiang Medical University For Nationalities, Baise, China
| |
Collapse
|
46
|
Ong AJS, Bladen CE, Tigani TA, Karamalakis AP, Evason KJ, Brown KK, Cox AG. The KEAP1-NRF2 pathway regulates TFEB/TFE3-dependent lysosomal biogenesis. Proc Natl Acad Sci U S A 2023; 120:e2217425120. [PMID: 37216554 PMCID: PMC10235939 DOI: 10.1073/pnas.2217425120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The maintenance of redox and metabolic homeostasis is integral to embryonic development. Nuclear factor erythroid 2-related factor 2 (NRF2) is a stress-induced transcription factor that plays a central role in the regulation of redox balance and cellular metabolism. Under homeostatic conditions, NRF2 is repressed by Kelch-like ECH-associated protein 1 (KEAP1). Here, we demonstrate that Keap1 deficiency induces Nrf2 activation and postdevelopmental lethality. Loss of viability is preceded by severe liver abnormalities characterized by an accumulation of lysosomes. Mechanistically, we demonstrate that loss of Keap1 promotes aberrant activation of transcription factor EB (TFEB)/transcription factor binding to IGHM Enhancer 3 (TFE3)-dependent lysosomal biogenesis. Importantly, we find that NRF2-dependent regulation of lysosomal biogenesis is cell autonomous and evolutionarily conserved. These studies identify a role for the KEAP1-NRF2 pathway in the regulation of lysosomal biogenesis and suggest that maintenance of lysosomal homeostasis is required during embryonic development.
Collapse
Affiliation(s)
- Athena Jessica S. Ong
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Cerys E. Bladen
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Tara A. Tigani
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Anthony P. Karamalakis
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Kimberley J. Evason
- Division of Anatomic Pathology, Department of Pathology, University of Utah, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT84112, USA
| | - Kristin K. Brown
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Andrew G. Cox
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC3010, Australia
| |
Collapse
|
47
|
Wang P, Liu X, Chen Y, Jun-Hao ET, Yao Z, Min-Wen JC, Yan-Jiang BC, Ma S, Ma W, Luo L, Guo L, Song D, Shyh-Chang N. Adult progenitor rejuvenation with embryonic factors. Cell Prolif 2023; 56:e13459. [PMID: 37177849 DOI: 10.1111/cpr.13459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 05/15/2023] Open
Abstract
During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened proliferative capacities and manifest a more robust regenerative response upon injury and transplantation, despite undergoing many rounds of mitosis. How embryonic and foetal progenitors delay senescence and maintain their proliferative and differentiation capacities after numerous rounds of mitosis, remains unknown. It is also unclear if defined embryonic factors can rejuvenate adult progenitors to confer extended proliferative and differentiation capacities, without reprogramming their lineage-specific fates or inducing oncogenic transformation. Here, we report that a minimal combination of LIN28A, TERT, and sh-p53 (LTS), all of which are tightly regulated and play important roles during embryonic development, can delay senescence in adult muscle progenitors. LTS muscle progenitors showed an extended proliferative capacity, maintained a normal karyotype, underwent myogenesis normally, and did not manifest tumorigenesis nor aberrations in lineage differentiation, even in late passages. LTS treatment promoted self-renewal and rescued the pro-senescence phenotype of aged cachexia patients' muscle progenitors, and promoted their engraftment for skeletal muscle regeneration in vivo. When we examined the mechanistic basis for LIN28A's role in the LTS minimum combo, let-7 microRNA suppression could not fully explain how LIN28A promoted muscle progenitor self-renewal. Instead, LIN28A was promoting the translation of oxidative phosphorylation mRNAs in adult muscle progenitors to optimize mitochondrial reactive oxygen species (mtROS) and mitohormetic signalling. Optimized mtROS induced a variety of mitohormetic stress responses, including the hypoxic response for metabolic damage, the unfolded protein response for protein damage, and the p53 response for DNA damage. Perturbation of mtROS levels specifically abrogated the LIN28A-driven hypoxic response in Hypoxia Inducible Factor-1α (HIF1α) and glycolysis, and thus LTS progenitor self-renewal, without affecting normal or TS progenitors. Our findings connect embryonically regulated factors to mitohormesis and progenitor rejuvenation, with implications for ageing-related muscle degeneration.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xupeng Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elwin Tan Jun-Hao
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore, Singapore
| | - Ziyue Yao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason Chua Min-Wen
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore, Singapore
| | - Benjamin Chua Yan-Jiang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore, Singapore
| | - Shilin Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenwu Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lanfang Luo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Guo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Song
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Pascual F, Icyuz M, Karmaus P, Brooks A, Van Gorder E, Fessler MB, Shaw ND. Cholesterol biosynthesis modulates differentiation in murine cranial neural crest cells. Sci Rep 2023; 13:7073. [PMID: 37127649 PMCID: PMC10151342 DOI: 10.1038/s41598-023-32922-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
Cranial neural crest cells (cNCC) are a multipotent embryonic cell population that give rise to a diverse set of cell types. These cells are particularly vulnerable to external metabolic stressors, as exemplified by the association between maternal hyperglycemia and congenital malformations. We were interested in studying the effect of various concentrations of glucose and pyruvate on cNCC metabolism, migration, and differentiation using an established murine neural crest cell model (O9-1). We unexpectedly observed a pattern of gene expression suggestive of cholesterol biosynthesis induction under glucose depletion conditions in O9-1 cells. We further showed that treatment with two different cholesterol synthesis inhibitors interfered with cell migration and differentiation, inhibiting chondrogenesis while enhancing smooth muscle cell differentiation. As congenital arhinia (absent external nose), a malformation caused by mutations in SMCHD1, appears to represent, in part, a defect in cNCC, we were also interested in investigating the effects of glucose and cholesterol availability on Smchd1 expression in O9-1 cells. Smchd1 expression was induced under high glucose conditions whereas cholesterol synthesis inhibitors decreased Smchd1 expression during chondrogenesis. These data highlight a novel role for cholesterol biosynthesis in cNCC physiology and demonstrate that human phenotypic variability in SMCHD1 mutation carriers may be related, in part, to SMCHD1's sensitivity to glucose or cholesterol dosage during development.
Collapse
Affiliation(s)
- Florencia Pascual
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD D3-02, Research Triangle Park, NC, 27709, USA
| | - Mert Icyuz
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD D3-02, Research Triangle Park, NC, 27709, USA
| | - Peer Karmaus
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, USA
| | - Ashley Brooks
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, USA
| | - Elizabeth Van Gorder
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD D3-02, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, USA
| | - Natalie D Shaw
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD D3-02, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
49
|
Danan CH, Naughton KE, Hayer KE, Vellappan S, McMillan EA, Zhou Y, Matsuda R, Nettleford SK, Katada K, Parham LR, Ma X, Chowdhury A, Wilkins BJ, Shah P, Weitzman MD, Hamilton KE. Intestinal transit amplifying cells require METTL3 for growth factor signaling, KRAS expression, and cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535853. [PMID: 37066277 PMCID: PMC10104132 DOI: 10.1101/2023.04.06.535853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Intestinal epithelial transit amplifying cells are essential stem progenitors required for intestinal homeostasis, but their rapid proliferation renders them vulnerable to DNA damage from radiation and chemotherapy. Despite their critical roles in intestinal homeostasis and disease, few studies have described genes that are essential to transit amplifying cell function. We report that the RNA methyltransferase, METTL3, is required for survival of transit amplifying cells in the murine small intestine. Transit amplifying cell death after METTL3 deletion was associated with crypt and villus atrophy, loss of absorptive enterocytes, and uniform wasting and death in METTL3-depleted mice. Ribosome profiling and sequencing of methylated RNAs in enteroids and in vivo demonstrated decreased translation of hundreds of unique methylated transcripts after METTL3 deletion, particularly transcripts involved in growth factor signal transduction such as Kras. Further investigation confirmed a novel relationship between METTL3 and Kras methylation and protein levels in vivo. Our study identifies METTL3 as an essential factor supporting the homeostasis of small intestinal tissue via direct maintenance of transit amplifying cell survival. We highlight the crucial role of RNA modifications in regulating growth factor signaling in the intestine, with important implications for both homeostatic tissue renewal and epithelial regeneration.
Collapse
Affiliation(s)
- Charles H. Danan
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kaitlyn E. Naughton
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharina E. Hayer
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine; University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sangeevan Vellappan
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, 08854, USA
| | - Emily A. McMillan
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yusen Zhou
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rina Matsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shaneice K. Nettleford
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kay Katada
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Louis R. Parham
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xianghui Ma
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Afrah Chowdhury
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin J. Wilkins
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine; University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, 08854, USA
| | - Matthew D. Weitzman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine; University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathryn E. Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
50
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|