1
|
Goncharov NV, Kovalskaia VA, Romanishin AO, Shved NA, Belousov AS, Tiasto VS, Gulaia VS, Neergheen VS, Rummun N, Liskovykh M, Larionov V, Kouprina N, Kumeiko VV. Novel assay to measure chromosome instability identifies Punica granatum extract that elevates CIN and has a potential for tumor- suppressing therapies. Front Bioeng Biotechnol 2022; 10:989932. [PMID: 36601386 PMCID: PMC9806258 DOI: 10.3389/fbioe.2022.989932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Human artificial chromosomes (HACs) have provided a useful tool to study kinetochore structure and function, gene delivery, and gene expression. The HAC propagates and segregates properly in the cells. Recently, we have developed an experimental high-throughput imaging (HTI) HAC-based assay that allows the identification of genes whose depletion leads to chromosome instability (CIN). The HAC carries a GFP transgene that facilitates quantitative measurement of CIN. The loss of HAC/GFP may be measured by flow cytometry or fluorescence scanning microscope. Therefore, CIN rate can be measured by counting the proportion of fluorescent cells. Here, the HAC/GFP-based assay has been adapted to screen anticancer compounds for possible induction or elevation of CIN. We analyzed 24 cytotoxic plant extracts. Punica granatum leaf extract (PLE) indeed sharply increases CIN rate in HT1080 fibrosarcoma cells. PLE treatment leads to cell cycle arrest, reduction of mitotic index, and the increased numbers of micronuclei (MNi) and nucleoplasmic bridges (NPBs). PLE-mediated increased CIN correlates with the induction of double-stranded breaks (DSBs). We infer that the PLE extract contains a component(s) that elevate CIN, making it a candidate for further study as a potential cancer treatment. The data also provide a proof of principle for the utility of the HAC/GFP-based system in screening for natural products and other compounds that elevate CIN in cancer cells.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | | | - Nikita A. Shved
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena S. Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia S. Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vidushi S. Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Nawraj Rummun
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Vadim V. Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
2
|
Buss G, Stratton MB, Milenkovic L, Stearns T. Postmitotic centriole disengagement and maturation leads to centrosome amplification in polyploid trophoblast giant cells. Mol Biol Cell 2022; 33:ar118. [PMID: 36001376 PMCID: PMC9634975 DOI: 10.1091/mbc.e22-05-0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA replication is normally coupled with centriole duplication in the cell cycle. Trophoblast giant cells (TGCs) of the placenta undergo endocycles resulting in polyploidy but their centriole state is not known. We used a cell culture model for TGC differentiation to examine centriole and centrosome number and properties. Before differentiation, trophoblast stem cells (TSCs) have either two centrioles before duplication or four centrioles after. We find that the average nuclear area increases approximately eight-fold over differentiation, but most TGCs do not have more than four centrioles. However, these centrioles become disengaged, acquire centrosome proteins, and can nucleate microtubules. In addition, some TGCs undergo further duplication and disengagement of centrioles, resulting in substantially higher numbers. Live imaging revealed that disengagement and separation are centriole autonomous and can occur asynchronously. Centriole amplification, when present, occurs by the standard mechanism of one centriole generating one procentriole. PLK4 inhibition blocks centriole formation in differentiating TGCs but does not affect endocycle progression. In summary, centrioles in TGC endocycles undergo disengagement and conversion to centrosomes. This increases centrosome number but to a limited extent compared with DNA reduplication.
Collapse
Affiliation(s)
- Garrison Buss
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | - Tim Stearns
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305,*Address correspondence to: Tim Stearns ()
| |
Collapse
|
3
|
Wong MK, Ho VWS, Huang X, Chan LY, Xie D, Li R, Ren X, Guan G, Ma Y, Hu B, Yan H, Zhao Z. Initial characterization of gap phase introduction in every cell cycle of C. elegans embryogenesis. Front Cell Dev Biol 2022; 10:978962. [PMID: 36393848 PMCID: PMC9641140 DOI: 10.3389/fcell.2022.978962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Early embryonic cell cycles usually alternate between S and M phases without any gap phase. When the gap phases are developmentally introduced in various cell types remains poorly defined especially during embryogenesis. To establish the cell-specific introduction of gap phases in embryo, we generate multiple fluorescence ubiquitin cell cycle indicators (FUCCI) in C. elegans. Time-lapse 3D imaging followed by lineal expression profiling reveals sharp and differential accumulation of the FUCCI reporters, allowing the systematic demarcation of cell cycle phases throughout embryogenesis. Accumulation of the reporters reliably identifies both G1 and G2 phases only in two embryonic cells with an extended cell cycle length, suggesting that the remaining cells divide either without a G1 phase, or with a brief G1 phase that is too short to be picked up by our reporters. In summary, we provide an initial picture of gap phase introduction in a metazoan embryo. The newly developed FUCCI reporters pave the way for further characterization of developmental control of cell cycle progression.
Collapse
Affiliation(s)
- Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiaotai Huang
- School of Computer Science and Technology, Xidian University, Xi’an, China
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Boyi Hu
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- *Correspondence: Zhongying Zhao,
| |
Collapse
|
4
|
Expansion of Quiescent Hematopoietic Stem Cells under Stress and Nonstress Conditions in Mice. Stem Cell Rev Rep 2022; 18:2388-2402. [DOI: 10.1007/s12015-022-10380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 11/25/2022]
|
5
|
Venkova L, Vishen AS, Lembo S, Srivastava N, Duchamp B, Ruppel A, Williart A, Vassilopoulos S, Deslys A, Garcia Arcos JM, Diz-Muñoz A, Balland M, Joanny JF, Cuvelier D, Sens P, Piel M. A mechano-osmotic feedback couples cell volume to the rate of cell deformation. eLife 2022; 11:72381. [PMID: 35416768 PMCID: PMC9090331 DOI: 10.7554/elife.72381] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanics has been a central focus of physical biology in the past decade. In comparison, how cells manage their size is less understood. Here we show that a parameter central to both the physics and the physiology of the cell, its volume, depends on a mechano-osmotic coupling. We found that cells change their volume depending on the rate at which they change shape, when they spontaneously spread are externally deformed. Cells undergo slow deformation at constant volume, while fast deformation leads to volume loss. We propose a mechano-sensitive pump and leak model to explain this phenomenon. Our model and experiments suggest that volume modulation depends on the state of the actin cortex and the coupling of ion fluxes to membrane tension. This mechano-osmotic coupling defines a membrane tension homeostasis module constantly at work in cells, causing volume fluctuations associated with fast cell shape changes, with potential consequences on cellular physiology.
Collapse
Affiliation(s)
- Larisa Venkova
- PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
| | - Amit Singh Vishen
- PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
| | - Sergio Lembo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nishit Srivastava
- PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
| | - Baptiste Duchamp
- PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
| | - Artur Ruppel
- Laboratoire Interdisciplinaire de Physique, Grenoble, France
| | - Alice Williart
- PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
| | | | - Alexandre Deslys
- PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
| | | | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Grenoble, France
| | | | - Damien Cuvelier
- PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
| | - Pierre Sens
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
| | - Matthieu Piel
- PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
| |
Collapse
|
6
|
Teh YC, Chooi MY, Liu D, Kwok I, Lai GC, Ayub Ow Yong L, Ng M, Li JLY, Tan Y, Evrard M, Tan L, Liong KH, Leong K, Goh CC, Chan AYJ, Shadan NB, Mantri CK, Hwang YY, Cheng H, Cheng T, Yu W, Tey HL, Larbi A, St John A, Angeli V, Ruedl C, Lee B, Ginhoux F, Chen SL, Ng LG, Ding JL, Chong SZ. Transitional premonocytes emerge in the periphery for host defense against bacterial infections. SCIENCE ADVANCES 2022; 8:eabj4641. [PMID: 35245124 PMCID: PMC8896792 DOI: 10.1126/sciadv.abj4641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.
Collapse
Affiliation(s)
- Ye Chean Teh
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Department of Biological Science, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Dehua Liu
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ghee Chuan Lai
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Liyana Ayub Ow Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138672, Singapore
| | - Melissa Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Jackson L. Y. Li
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Ka Hang Liong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Keith Leong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Andrew Y. J. Chan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Nurhidaya Binte Shadan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Weimiao Yu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Hong Liang Tey
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ashley St John
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Veronique Angeli
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Swaine L. Chen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138672, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Corresponding author. (L.G.N.); (J.L.D.); (S.Z.C.)
| | - Jeak Ling Ding
- Department of Biological Science, National University of Singapore (NUS), Singapore 117543, Singapore
- Corresponding author. (L.G.N.); (J.L.D.); (S.Z.C.)
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Corresponding author. (L.G.N.); (J.L.D.); (S.Z.C.)
| |
Collapse
|
7
|
Cadart C, Venkova L, Piel M, Cosentino Lagomarsino M. Volume growth in animal cells is cell cycle dependent and shows additive fluctuations. eLife 2022; 11:e70816. [PMID: 35088713 PMCID: PMC8798040 DOI: 10.7554/elife.70816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
The way proliferating animal cells coordinate the growth of their mass, volume, and other relevant size parameters is a long-standing question in biology. Studies focusing on cell mass have identified patterns of mass growth as a function of time and cell cycle phase, but little is known about volume growth. To address this question, we improved our fluorescence exclusion method of volume measurement (FXm) and obtained 1700 single-cell volume growth trajectories of HeLa cells. We find that, during most of the cell cycle, volume growth is close to exponential and proceeds at a higher rate in S-G2 than in G1. Comparing the data with a mathematical model, we establish that the cell-to-cell variability in volume growth arises from constant-amplitude fluctuations in volume steps rather than fluctuations of the underlying specific growth rate. We hypothesize that such 'additive noise' could emerge from the processes that regulate volume adaptation to biophysical cues, such as tension or osmotic pressure.
Collapse
Affiliation(s)
- Clotilde Cadart
- Institut Pierre-Gilles de Gennes, PSL Research UniversityParisFrance
- Institut Curie, PSL Research University, CNRSParisFrance
| | - Larisa Venkova
- Institut Pierre-Gilles de Gennes, PSL Research UniversityParisFrance
- Institut Curie, PSL Research University, CNRSParisFrance
| | - Matthieu Piel
- Institut Pierre-Gilles de Gennes, PSL Research UniversityParisFrance
- Institut Curie, PSL Research University, CNRSParisFrance
| | - Marco Cosentino Lagomarsino
- FIRC Institute of Molecular Oncology (IFOM)MilanItaly
- Physics Department, University of Milan, and INFNMilanItaly
| |
Collapse
|
8
|
Kohrman AQ, Kim-Yip RP, Posfai E. Imaging developmental cell cycles. Biophys J 2021; 120:4149-4161. [PMID: 33964274 PMCID: PMC8516676 DOI: 10.1016/j.bpj.2021.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
The last decade has seen a major expansion in development of live biosensors, the tools needed to genetically encode them into model organisms, and the microscopic techniques used to visualize them. When combined, these offer us powerful tools with which to make fundamental discoveries about complex biological processes. In this review, we summarize the availability of biosensors to visualize an essential cellular process, the cell cycle, and the techniques for single-cell tracking and quantification of these reporters. We also highlight studies investigating the connection of cellular behavior to the cell cycle, particularly through live imaging, and anticipate exciting discoveries with the combination of these technologies in developmental contexts.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| |
Collapse
|
9
|
Tomura M, Ikebuchi R, Moriya T, Kusumoto Y. Tracking the fate and migration of cells in live animals with cell-cycle indicators and photoconvertible proteins. J Neurosci Methods 2021; 355:109127. [PMID: 33722643 DOI: 10.1016/j.jneumeth.2021.109127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Cell migration and cell proliferation are the basic principles that make up a living organism, and both biologically and medically. In order to understand living organism and biological phenomena, it is essential to track the migration, proliferation, and fate of cells in living cells and animals and to clarify the properties and molecular expression of cells. Recent developments in novel fluorescent proteins have made it possible to observe cell migration and proliferation as the cell cycle at the single-cell level in living individuals and tissues. Here, we introduce cell cycle visualization of living cells and animals by Fucci (Fluorescent Ubiquitination-based Cell Cycle Indicator) system and in situ cell labeling of cells and tracking cell migration by photoactivatable and photoconvertible proteins. In addition, we will present our established methods as an example of combines above tools with single-cell molecular expression analysis to reveal the fate of migrating cells at single cell level.
Collapse
Affiliation(s)
- Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan.
| | - Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| |
Collapse
|
10
|
Nojima H, Homma H, Onozato Y, Kaida A, Harada H, Miura M. Differential properties of mitosis-associated events following CHK1 and WEE1 inhibitor treatments in human tongue carcinoma cells. Exp Cell Res 2020; 386:111720. [DOI: 10.1016/j.yexcr.2019.111720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022]
|
11
|
Fukuda M, Sakaue-Sawano A, Shimura C, Tachibana M, Miyawaki A, Shinkai Y. G9a-dependent histone methylation can be induced in G1 phase of cell cycle. Sci Rep 2019; 9:956. [PMID: 30700744 PMCID: PMC6354049 DOI: 10.1038/s41598-018-37507-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Epigenetic information (epigenome) on chromatin is crucial for the determination of cellular identity and for the expression of cell type-specific biological functions. The cell type-specific epigenome is maintained beyond replication and cell division. Nucleosomes of chromatin just after DNA replication are a mixture of old histones with the parental epigenome and newly synthesized histones without such information. The diluted epigenome is mostly restored within one cell cycle using the epigenome on the parental DNA and nucleosomes as replication templates. However, many important questions about the epigenome replication process remain to be clarified. In this study, we investigated the model system comprising of dimethylated histone H3 lysine 9 (H3K9me2) and its regulation by the lysine methyltransferase G9a. Using this epigenome model system, we addressed whether H3K9me2 can be induced in specific cell cycle stages, especially G1. Using cell cycle-specific degrons, we achieved G1 or late G1-to M phases specific accumulation of exogenous G9a in G9a deficient cells. Importantly, global levels of H3K9me2 were significantly recovered by both cell types. These data indicate that H3K9me2 may be plastic and inducible, even in the long-living, terminally-differentiated, post-mitotic, G0-G1 cell population in vivo. This knowledge is valuable in designing epigenome-manipulation-based treatments for diseases.
Collapse
Affiliation(s)
- Mikiko Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Makoto Tachibana
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.,Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto, 606-8597, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
12
|
Cadart C, Monnier S, Grilli J, Sáez PJ, Srivastava N, Attia R, Terriac E, Baum B, Cosentino-Lagomarsino M, Piel M. Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat Commun 2018; 9:3275. [PMID: 30115907 PMCID: PMC6095894 DOI: 10.1038/s41467-018-05393-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/30/2018] [Indexed: 02/04/2023] Open
Abstract
Despite decades of research, how mammalian cell size is controlled remains unclear because of the difficulty of directly measuring growth at the single-cell level. Here we report direct measurements of single-cell volumes over entire cell cycles on various mammalian cell lines and primary human cells. We find that, in a majority of cell types, the volume added across the cell cycle shows little or no correlation to cell birth size, a homeostatic behavior called "adder". This behavior involves modulation of G1 or S-G2 duration and modulation of growth rate. The precise combination of these mechanisms depends on the cell type and the growth condition. We have developed a mathematical framework to compare size homeostasis in datasets ranging from bacteria to mammalian cells. This reveals that a near-adder behavior is the most common type of size control and highlights the importance of growth rate modulation to size control in mammalian cells.
Collapse
Affiliation(s)
- Clotilde Cadart
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005, Paris, France
| | - Sylvain Monnier
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
| | - Jacopo Grilli
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th Street, Chicago, IL, 60637, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Pablo J Sáez
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005, Paris, France
| | - Nishit Srivastava
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005, Paris, France
| | - Rafaele Attia
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005, Paris, France
| | - Emmanuel Terriac
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, UCL, London, WC1E 6BT, UK
- Institute of Physics of Living Systems, UCL, London, WC1E 6BT, UK
| | - Marco Cosentino-Lagomarsino
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, F-75005, France.
- CNRS, UMR 7238 Computational and Quantitative Biology, Paris, F-75005, France.
- FIRC Institute of Molecular Oncology (IFOM), Milan, 20139, Italy.
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France.
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005, Paris, France.
| |
Collapse
|
13
|
Abstract
Cellular quiescence is a reversible mode of cell cycle exit that allows cells and organisms to withstand unfavorable stress conditions. The factors that underlie the entry, exit, and maintenance of the quiescent state are crucial for understanding normal tissue development and function as well as pathological conditions such as chronic wound healing and cancer. In vitro models of quiescence have been used to understand the factors that contribute to quiescence under well-controlled experimental conditions. Here, we describe an in vitro model of quiescence that is based on neonatal human dermal fibroblasts. The fibroblasts are induced into quiescence by antiproliferative signals, contact inhibition, and serum-starvation (mitogen withdrawal). We describe the isolation of fibroblasts from skin, methods for inducing quiescence in isolated fibroblasts, and approaches to manipulate the fibroblasts in proliferating and quiescent states to determine critical regulators of quiescence.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, 5145 Terasaki Life Science Building, 610 Charles E. Young Drive E., University of California, Los Angeles, 90095-7329, USA
- Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, 90095-7329, USA
| | - Linda D Ho
- Department of Molecular, Cell and Developmental Biology, 5145 Terasaki Life Science Building, 610 Charles E. Young Drive E., University of California, Los Angeles, 90095-7329, USA
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, 5145 Terasaki Life Science Building, 610 Charles E. Young Drive E., University of California, Los Angeles, 90095-7329, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, 90095-7329, USA.
| |
Collapse
|
14
|
Gomes CJ, Centuori SM, Harman MW, Putnam CW, Wolgemuth CW, Martinez JD. The induction of endoreduplication and polyploidy by elevated expression of 14-3-3γ. Genes Cancer 2017; 8:771-783. [PMID: 29321819 PMCID: PMC5755723 DOI: 10.18632/genesandcancer.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that specific 14-3-3 isoforms are frequently elevated in cancer and that these proteins play a role in human tumorigenesis. 14-3-3γ, an isoform recently demonstrated to function as an oncoprotein, is overexpressed in a variety of human cancers; however, its role in promoting tumorigenesis remains unclear. We previously reported that overexpression of 14-3-3γ caused the appearance of polyploid cells, a phenotype demonstrated to have profound tumor promoting properties. Here we examined the mechanism driving 14-3-3γ-induced polyploidization and the effect this has on genomic stability. Using FUCCI probes we showed that these polyploid cells appeared when diploid cells failed to enter mitosis and subsequently underwent endoreduplication. We then demonstrated that 14-3-3γ-induced polyploid cells experience significant chromosomal segregation errors during mitosis and observed that some of these cells stably propagate as tetraploids when isolated cells were expanded into stable cultures. These data lead us to conclude that overexpression of the 14-3-3γ promotes endoreduplication. We further investigated the role of 14-3-3γ in human NSCLC samples and found that its expression is significantly elevated in polyploid tumors. Collectively, these results suggests that 14-3-3γ may promote tumorigenesis through the production of a genetically unstable polyploid intermediate.
Collapse
Affiliation(s)
- Cecil J Gomes
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Sara M Centuori
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Michael W Harman
- Department of Surgical Research, Rhode Island Hospital, Providence, Rhode Island, USA.,Department of Engineering, Brown University, Providence, Rhode Island, USA
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Charles W Wolgemuth
- Department of Physics, University of Arizona, Tucson, Arizona, USA.,Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Jesse D Martinez
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA.,Department of Cell & Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Sakaue-Sawano A, Yo M, Komatsu N, Hiratsuka T, Kogure T, Hoshida T, Goshima N, Matsuda M, Miyoshi H, Miyawaki A. Genetically Encoded Tools for Optical Dissection of the Mammalian Cell Cycle. Mol Cell 2017; 68:626-640.e5. [DOI: 10.1016/j.molcel.2017.10.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/16/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022]
|
16
|
Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development 2017; 144:3731-3743. [PMID: 28935707 DOI: 10.1242/dev.151654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
The vertebrate-specific ESCC microRNA family arises from two genetic loci in mammals: miR-290/miR-371 and miR-302. The miR-302 locus is found broadly among vertebrates, whereas the miR-290/miR-371 locus is unique to eutheria, suggesting a role in placental development. Here, we evaluate that role. A knock-in reporter for the mouse miR-290 cluster is expressed throughout the embryo until gastrulation, when it becomes specifically expressed in extraembryonic tissues and the germline. In the placenta, expression is limited to the trophoblast lineage, where it remains highly expressed until birth. Deletion of the miR-290 cluster gene (Mirc5) results in reduced trophoblast progenitor cell proliferation and a reduced DNA content in endoreduplicating trophoblast giant cells. The resulting placenta is reduced in size. In addition, the vascular labyrinth is disorganized, with thickening of the maternal-fetal blood barrier and an associated reduction in diffusion. Multiple mRNA targets of the miR-290 cluster microRNAs are upregulated. These data uncover a crucial function for the miR-290 cluster in the regulation of a network of genes required for placental development, suggesting a central role for these microRNAs in the evolution of placental mammals.
Collapse
Affiliation(s)
- Alireza Paikari
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Cassandra D Belair
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Daniel Saw
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA .,Department of Urology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Conway JRW, Warren SC, Timpson P. Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods 2017; 128:78-94. [PMID: 28435000 DOI: 10.1016/j.ymeth.2017.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
Intravital microscopy represents a more physiologically relevant method for assessing therapeutic response. However, the movement into an in vivo setting brings with it several additional considerations, the primary being the context in which drug activity is assessed. Microenvironmental factors, such as hypoxia, pH, fibrosis, immune infiltration and stromal interactions have all been shown to have pronounced effects on drug activity in a more complex setting, which is often lost in simpler two- or three-dimensional assays. Here we present a practical guide for the application of intravital microscopy, looking at the available fluorescent reporters and their respective expression systems and analysis considerations. Moving in vivo, we also discuss the microscopy set up and methods available for overlaying microenvironmental context to the experimental readouts. This enables a smooth transition into applying higher fidelity intravital imaging to improve the drug discovery process.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Sean C Warren
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| |
Collapse
|
18
|
Chong SZ, Evrard M, Devi S, Chen J, Lim JY, See P, Zhang Y, Adrover JM, Lee B, Tan L, Li JLY, Liong KH, Phua C, Balachander A, Boey A, Liebl D, Tan SM, Chan JKY, Balabanian K, Harris JE, Bianchini M, Weber C, Duchene J, Lum J, Poidinger M, Chen Q, Rénia L, Wang CI, Larbi A, Randolph GJ, Weninger W, Looney MR, Krummel MF, Biswas SK, Ginhoux F, Hidalgo A, Bachelerie F, Ng LG. CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. J Exp Med 2016; 213:2293-2314. [PMID: 27811056 PMCID: PMC5068243 DOI: 10.1084/jem.20160800] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 11/04/2022] Open
Abstract
It is well established that Ly6Chi monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6Chi monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6Chi monocytes consist of two distinct subpopulations (CXCR4hi and CXCR4lo subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4hi subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4lo monocytes. We propose that the CXCR4hi subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues.
Collapse
Affiliation(s)
- Shu Zhen Chong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore.,School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Sapna Devi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Jyue Yuan Lim
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Peter See
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Yiru Zhang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Biopolis, 138673 Singapore
| | - José M Adrover
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Jackson L Y Li
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Ka Hang Liong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Cindy Phua
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Adrian Boey
- Institute of Medical Biology (IMB)-Institute of Molecular and Cell Biology (IMCB) Electron Microscopy Suite, A*STAR (Agency for Science, Technology and Research), Biopolis, 138671 Singapore
| | - David Liebl
- Institute of Medical Biology (IMB)-Institute of Molecular and Cell Biology (IMCB) Electron Microscopy Suite, A*STAR (Agency for Science, Technology and Research), Biopolis, 138671 Singapore
| | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jerry K Y Chan
- Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899 Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 169857 Singapore
| | - Karl Balabanian
- INSERM UMR-S996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, 92140 Clamart, France
| | - John E Harris
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Johan Duchene
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Josephine Lum
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Biopolis, 138673 Singapore
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Cheng-I Wang
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | | | - Wolfgang Weninger
- Centenary Institute for Cancer Medicine and Cell Biology, Newton, New South Wales 2042, Australia
| | - Mark R Looney
- Department of Medicine and Pathology, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Matthew F Krummel
- Department of Medicine and Pathology, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Françoise Bachelerie
- INSERM UMR-S996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, 92140 Clamart, France
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore .,School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
19
|
Pineda G, Lennon KM, Delos Santos NP, Lambert-Fliszar F, Riso GL, Lazzari E, Marra MA, Morris S, Sakaue-Sawano A, Miyawaki A, Jamieson CHM. Tracking of Normal and Malignant Progenitor Cell Cycle Transit in a Defined Niche. Sci Rep 2016; 6:23885. [PMID: 27041210 PMCID: PMC4819192 DOI: 10.1038/srep23885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 03/10/2016] [Indexed: 11/09/2022] Open
Abstract
While implicated in therapeutic resistance, malignant progenitor cell cycle kinetics have been difficult to quantify in real-time. We developed an efficient lentiviral bicistronic fluorescent, ubiquitination-based cell cycle indicator reporter (Fucci2BL) to image live single progenitors on a defined niche coupled with cell cycle gene expression analysis. We have identified key differences in cell cycle regulatory gene expression and transit times between normal and chronic myeloid leukemia progenitors that may inform cancer stem cell eradication strategies.
Collapse
Affiliation(s)
- Gabriel Pineda
- Divisions of Regenerative Medicine and Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Kathleen M Lennon
- Divisions of Regenerative Medicine and Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Nathaniel P Delos Santos
- Divisions of Regenerative Medicine and Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Florence Lambert-Fliszar
- Divisions of Regenerative Medicine and Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Gennarina L Riso
- Divisions of Regenerative Medicine and Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA.,Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Elisa Lazzari
- Divisions of Regenerative Medicine and Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA.,Doctoral School of Molecular and Translational Medicine, Department of Health Sciences, University of Milan, Milan, Italy
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Sheldon Morris
- Divisions of Regenerative Medicine and Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Wako-city, Saitama, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Wako-city, Saitama, Japan
| | - Catriona H M Jamieson
- Divisions of Regenerative Medicine and Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| |
Collapse
|
20
|
Selective Amplification of the Genome Surrounding Key Placental Genes in Trophoblast Giant Cells. Curr Biol 2016; 26:230-236. [PMID: 26774788 DOI: 10.1016/j.cub.2015.11.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/10/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
While most cells maintain a diploid state, polyploid cells exist in many organisms and are particularly prevalent within the mammalian placenta [1], where they can generate more than 900 copies of the genome [2]. Polyploidy is thought to be an efficient method of increasing the content of the genome by avoiding the costly and slow process of cytokinesis [1, 3, 4]. Polyploidy can also affect gene regulation by amplifying a subset of genomic regions required for specific cellular function [1, 3, 4]. This mechanism is found in the fruit fly Drosophila melanogaster, where polyploid ovarian follicle cells amplify genomic regions containing chorion genes, which facilitate secretion of eggshell proteins [5]. Here, we report that genomic amplification also occurs in mammals at selective regions of the genome in parietal trophoblast giant cells (p-TGCs) of the mouse placenta. Using whole-genome sequencing (WGS) and digital droplet PCR (ddPCR) of mouse p-TGCs, we identified five amplified regions, each containing a gene family known to be involved in mammalian placentation: the prolactins (two clusters), serpins, cathepsins, and the natural killer (NK)/C-type lectin (CLEC) complex [6-12]. We report here the first description of amplification at selective genomic regions in mammals and present evidence that this is an important mode of genome regulation in placental TGCs.
Collapse
|
21
|
Takegahara N, Kim H, Mizuno H, Sakaue-Sawano A, Miyawaki A, Tomura M, Kanagawa O, Ishii M, Choi Y. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts. J Biol Chem 2015; 291:3439-54. [PMID: 26670608 PMCID: PMC4751386 DOI: 10.1074/jbc.m115.677427] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation.
Collapse
Affiliation(s)
- Noriko Takegahara
- From the Next Generation Optical Immune-imaging, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan, the Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104,
| | - Hyunsoo Kim
- the Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Hiroki Mizuno
- the Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, WPI-Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan, the CREST, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Asako Sakaue-Sawano
- the Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako-city, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- the Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako-city, Saitama 351-0198, Japan
| | - Michio Tomura
- the Laboratory for Autoimmune Regulation, Research Center for Allergy and Immunology, RIKEN, Yokohama City, Kanagawa 230-0045, Japan, the Laboratory of Immunology, Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nishikiorikita, Tondabayashi-city, Osaka 584-8540, Japan, and
| | - Osami Kanagawa
- the Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-033, Japan
| | - Masaru Ishii
- the Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, WPI-Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan, the CREST, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yongwon Choi
- the Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
22
|
Motiur Rahman M, Takeshita S, Matsuoka K, Kaneko K, Naoe Y, Sakaue-Sawano A, Miyawaki A, Ikeda K. Proliferation-coupled osteoclast differentiation by RANKL: Cell density as a determinant of osteoclast formation. Bone 2015; 81:392-399. [PMID: 26265539 DOI: 10.1016/j.bone.2015.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/31/2015] [Accepted: 08/07/2015] [Indexed: 11/21/2022]
Abstract
Although it is widely recognized that the osteoclast differentiation induced by RANKL is linked to the anti-proliferative activity of the cytokine, we report here that RANKL in the presence of M-CSF actually stimulates DNA synthesis and cell proliferation during the early proliferative phase (0-48 h) of osteoclastogenesis ex vivo, while the same cytokine exerts an anti-proliferative activity in the latter half (48-96 h). A tracing of the individual cells using Fucci cell cycle indicators showed that waves of active DNA synthesis in the S phase during the period 0-48 h are followed by cell-cycle arrest and cell fusion after 48 h. Inhibition of DNA synthesis with hydroxyurea (HU) during the first half almost completely inhibited osteoclastogenesis; however, the same HU-treated cells, when re-plated at 48 h at increasing cell densities, exhibited restored osteoclast formation, suggesting that a sufficient number of cells, rather than prior DNA synthesis, is the most critical requirement for osteoclast formation. In addition, varying either the number of bone marrow macrophages at the start of osteoclastogenic cultures or pre-osteoclasts halfway through the process had a substantial impact on the number of osteoclasts that finally formed, as well as the timing of the peak of osteoclast formation. Thus, caution should be exerted in the performance of any manipulative procedure, whether pharmacological or genetic, that affects the cell number prior to cell fusion. Such procedures can have a profound effect on the number of osteoclasts that form, the final outcome of "differentiation", leading to misinterpretation of the results.
Collapse
Affiliation(s)
- M Motiur Rahman
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Sunao Takeshita
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan.
| | - Kazuhiko Matsuoka
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keiko Kaneko
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yoshinori Naoe
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Asako Sakaue-Sawano
- Lab for Cell Function Dynamics, BSI, RIKEN, Wako, Japan; Life Function and Dynamics, ERATO, JST, Wako, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function Dynamics, BSI, RIKEN, Wako, Japan; Life Function and Dynamics, ERATO, JST, Wako, Japan
| | - Kyoji Ikeda
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
23
|
Trakala M, Partida D, Salazar-Roa M, Maroto M, Wachowicz P, de Cárcer G, Malumbres M. Activation of the endomitotic spindle assembly checkpoint and thrombocytopenia in Plk1-deficient mice. Blood 2015; 126:1707-14. [PMID: 26185128 DOI: 10.1182/blood-2015-03-634402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
Polyploidization in megakaryocytes is achieved by endomitosis, a specialized cell cycle in which DNA replication is followed by aberrant mitosis. Typical mitotic regulators such as Aurora kinases or Cdk1 are dispensable for megakaryocyte maturation, and inhibition of mitotic kinases may in fact promote megakaryocyte maturation. However, we show here that Polo-like kinase 1 (Plk1) is required for endomitosis, and ablation of the Plk1 gene in megakaryocytes results in defective polyploidization accompanied by mitotic arrest and cell death. Lack of Plk1 results in defective centrosome maturation and aberrant spindle pole formation, thus impairing the formation of multiple poles typically found in megakaryocytes. In these conditions, megakaryocytes arrest for a long time in mitosis and frequently die. Mitotic arrest in wild-type megakaryocytes treated with Plk1 inhibitors or Plk1-null cells is triggered by the spindle assembly checkpoint (SAC), and can be rescued in the presence of SAC inhibitors. These data suggest that, despite the dispensability of proper chromosome segregation in megakaryocytes, an endomitotic SAC is activated in these cells upon Plk1 inhibition. SAC activation results in defective maturation of megakaryocytes and cell death, thus raising a note of caution in the use of Plk1 inhibitors in therapeutic strategies based on polyploidization regulators.
Collapse
Affiliation(s)
- Marianna Trakala
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - David Partida
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - María Salazar-Roa
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - María Maroto
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Paulina Wachowicz
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
24
|
Marcus JM, Burke RT, DeSisto JA, Landesman Y, Orth JD. Longitudinal tracking of single live cancer cells to understand cell cycle effects of the nuclear export inhibitor, selinexor. Sci Rep 2015; 5:14391. [PMID: 26399741 PMCID: PMC4585873 DOI: 10.1038/srep14391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022] Open
Abstract
Longitudinal tracking is a powerful approach to understand the biology of single cells. In cancer therapy, outcome is determined at the molecular and cellular scale, yet relationships between cellular response and cell fate are often unknown. The selective inhibitor of nuclear export, selinexor, is in development for the treatment of various cancers. Selinexor covalently binds exportin-1, causing nuclear sequestration of cargo proteins, including key regulators of the cell cycle and apoptosis. The cell cycle effects of selinexor and the relationships between cell cycle effects and cell fates, has not been described for individual cells. Using fluorescent cell cycle indicators we report the majority of cell death after selinexor treatment occurs from a protracted G1-phase and early S-phase. G1- or early S-phase treated cells show the strongest response and either die or arrest, while those treated in late S- or G2-phase progress to mitosis and divide. Importantly, the progeny of cell divisions also die or arrest, mostly in the next G1-phase. Cells that survive selinexor are negative for multiple proliferation biomarkers, indicating a penetrant, arrested state. Selinexor acts quickly, shows strong cell cycle selectivity, and is highly effective at arresting cell growth and inducing death in cancer-derived cells.
Collapse
Affiliation(s)
- Joshua M Marcus
- Department of Molecular, Cellular, and Developmental Biology, GOLD A240B, 347 UCB, University of Colorado-Boulder, Boulder, CO 80309 USA
| | - Russell T Burke
- Department of Molecular, Cellular, and Developmental Biology, GOLD A240B, 347 UCB, University of Colorado-Boulder, Boulder, CO 80309 USA
| | - John A DeSisto
- Department of Molecular, Cellular, and Developmental Biology, GOLD A240B, 347 UCB, University of Colorado-Boulder, Boulder, CO 80309 USA
| | - Yosef Landesman
- Karyopharm Therapeutics, Inc., 85 Wells Ave., Newton, MA 02459
| | - James D Orth
- Department of Molecular, Cellular, and Developmental Biology, GOLD A240B, 347 UCB, University of Colorado-Boulder, Boulder, CO 80309 USA
| |
Collapse
|
25
|
Katsumura S, Ezura Y, Izu Y, Shirakawa J, Miyawaki A, Harada K, Noda M. Beta Adrenergic Receptor Stimulation Suppresses Cell Migration in Association with Cell Cycle Transition in Osteoblasts-Live Imaging Analyses Based on FUCCI System. J Cell Physiol 2015; 231:496-504. [PMID: 26192605 DOI: 10.1002/jcp.25096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 01/11/2023]
Abstract
Osteoporosis affects over 20 million patients in the United States. Among those, disuse osteoporosis is serious as it is induced by bed-ridden conditions in patients suffering from aging-associated diseases including cardiovascular, neurological, and malignant neoplastic diseases. Although the phenomenon that loss of mechanical stress such as bed-ridden condition reduces bone mass is clear, molecular bases for the disuse osteoporosis are still incompletely understood. In disuse osteoporosis model, bone loss is interfered by inhibitors of sympathetic tone and adrenergic receptors that suppress bone formation. However, how beta adrenergic stimulation affects osteoblastic migration and associated proliferation is not known. Here we introduced a live imaging system, fluorescent ubiquitination-based cell cycle indicator (FUCCI), in osteoblast biology and examined isoproterenol regulation of cell cycle transition and cell migration in osteoblasts. Isoproterenol treatment suppresses the levels of first entry peak of quiescent osteoblastic cells into cell cycle phase by shifting from G1 /G0 to S/G2 /M and also suppresses the levels of second major peak population that enters into S/G2 /M. The isoproterenol regulation of osteoblastic cell cycle transition is associated with isoproterenol suppression on the velocity of migration. This isoproterenol regulation of migration velocity is cell cycle phase specific as it suppresses migration velocity of osteoblasts in G1 phase but not in G1 /S nor in G2 /M phase. Finally, these observations on isoproterenol regulation of osteoblastic migration and cell cycle transition are opposite to the PTH actions in osteoblasts. In summary, we discovered that sympathetic tone regulates osteoblastic migration in association with cell cycle transition by using FUCCI system.
Collapse
Affiliation(s)
- Sakie Katsumura
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jumpei Shirakawa
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Kiyoshi Harada
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
26
|
Trakala M, Rodríguez-Acebes S, Maroto M, Symonds CE, Santamaría D, Ortega S, Barbacid M, Méndez J, Malumbres M. Functional reprogramming of polyploidization in megakaryocytes. Dev Cell 2015; 32:155-67. [PMID: 25625205 DOI: 10.1016/j.devcel.2014.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/31/2014] [Accepted: 12/17/2014] [Indexed: 12/30/2022]
Abstract
Polyploidization is a natural process that frequently accompanies differentiation; its deregulation is linked to genomic instability and cancer. Despite its relevance, why cells select different polyploidization mechanisms is unknown. Here we report a systematic genetic analysis of endomitosis, a process in which megakaryocytes become polyploid by entering mitosis but aborting anaphase. Whereas ablation of the APC/C cofactor Cdc20 results in mitotic arrest and severe thrombocytopenia, lack of the kinases Aurora-B, Cdk1, or Cdk2 does not affect megakaryocyte polyploidization or platelet levels. Ablation of Cdk1 forces a switch to endocycles without mitosis, whereas polyploidization in the absence of Cdk1 and Cdk2 occurs in the presence of aberrant re-replication events. Importantly, ablation of these kinases rescues the defects in Cdc20 null megakaryocytes. These findings suggest that endomitosis can be functionally replaced by alternative polyploidization mechanisms in vivo and provide the cellular basis for therapeutic approaches aimed to discriminate mitotic and polyploid cells.
Collapse
Affiliation(s)
- Marianna Trakala
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | | | - María Maroto
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | | | | | | | | | - Juan Méndez
- DNA Replication Group, CNIO, 28029 Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
27
|
Zielke N, Edgar BA. FUCCI sensors: powerful new tools for analysis of cell proliferation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:469-87. [PMID: 25827130 PMCID: PMC6681141 DOI: 10.1002/wdev.189] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Visualizing the cell cycle behavior of individual cells within living organisms can facilitate the understanding of developmental processes such as pattern formation, morphogenesis, cell differentiation, growth, cell migration, and cell death. Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI) technology offers an accurate, versatile, and universally applicable means of achieving this end. In recent years, the FUCCI system has been adapted to several model systems including flies, fish, mice, and plants, making this technology available to a wide range of researchers for studies of diverse biological problems. Moreover, a broad range of FUCCI‐expressing cell lines originating from diverse cell types have been generated, hence enabling the design of advanced studies that combine in vivo experiments and cell‐based methods such as high‐content screening. Although only a short time has passed since its introduction, the FUCCI technology has already provided fundamental insight into how cells establish quiescence and how G1 phase length impacts the balance between pluripotency and stem cell differentiation. Further discoveries using the FUCCI technology are sure to come. WIREs Dev Biol 2015, 4:469–487. doi: 10.1002/wdev.189 This article is categorized under:
Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Technologies > Generating Chimeras and Lineage Analysis Technologies > Analysis of Cell, Tissue, and Animal Phenotypes
Collapse
Affiliation(s)
- N Zielke
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| | - B A Edgar
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| |
Collapse
|
28
|
Nakamura-Ishizu A, Takizawa H, Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 2015; 141:4656-66. [PMID: 25468935 DOI: 10.1242/dev.106575] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue homeostasis requires the presence of multipotent adult stem cells that are capable of efficient self-renewal and differentiation; some of these have been shown to exist in a dormant, or quiescent, cell cycle state. Such quiescence has been proposed as a fundamental property of hematopoietic stem cells (HSCs) in the adult bone marrow, acting to protect HSCs from functional exhaustion and cellular insults to enable lifelong hematopoietic cell production. Recent studies have demonstrated that HSC quiescence is regulated by a complex network of cell-intrinsic and -extrinsic factors. In addition, detailed single-cell analyses and novel imaging techniques have identified functional heterogeneity within quiescent HSC populations and have begun to delineate the topological organization of quiescent HSCs. Here, we review the current methods available to measure quiescence in HSCs and discuss the roles of HSC quiescence and the various mechanisms by which HSC quiescence is maintained.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| | - Hitoshi Takizawa
- Division of Hematology, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| |
Collapse
|
29
|
Fucci-guided purification of hematopoietic stem cells with high repopulating activity. Biochem Biophys Res Commun 2015; 457:7-11. [DOI: 10.1016/j.bbrc.2014.12.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 01/14/2023]
|
30
|
Hannibal RL, Chuong EB, Rivera-Mulia JC, Gilbert DM, Valouev A, Baker JC. Copy number variation is a fundamental aspect of the placental genome. PLoS Genet 2014; 10:e1004290. [PMID: 24785991 PMCID: PMC4006706 DOI: 10.1371/journal.pgen.1004290] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication. Generally, every mammalian cell has the same complement of each part of its genome. However, copy number variation (CNV) can occur, where, compared to the rest of its genome, a cell has either more or less of a specific genomic region. It is unknown whether CNVs cause disease, or whether they are a normal aspect of cell biology. We investigated CNVs in polyploid trophoblast giant cells (TGCs) of the mouse placenta, which have up to 1,000 copies of the genome in each cell. We found that there are 47 regions with decreased copy number in TGCs, which we call underrepresented (UR) domains. These domains are marked in the TGC progenitor cells and we suggest that they gradually form during gestation due to slow replication versus fast replication of the rest of the genome. While UR domains contain cell adhesion and neuronal genes, they also contain significantly fewer genes than other genomic regions. Our results demonstrate that CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during pregnancy.
Collapse
Affiliation(s)
- Roberta L. Hannibal
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Edward B. Chuong
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, Tallahassee, Tallahassee Florida, United States of America
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Tallahassee Florida, United States of America
| | - Anton Valouev
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Julie C. Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Nonomura K, Yamaguchi Y, Hamachi M, Koike M, Uchiyama Y, Nakazato K, Mochizuki A, Sakaue-Sawano A, Miyawaki A, Yoshida H, Kuida K, Miura M. Local Apoptosis Modulates Early Mammalian Brain Development through the Elimination of Morphogen-Producing Cells. Dev Cell 2013; 27:621-34. [DOI: 10.1016/j.devcel.2013.11.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/05/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
|
32
|
Direct observation of cell cycle progression in living mouse embryonic stem cells on an extracellular matrix of E-cadherin. SPRINGERPLUS 2013; 2:585. [PMID: 25674414 PMCID: PMC4320234 DOI: 10.1186/2193-1801-2-585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022]
Abstract
Self-renewal and differentiation of embryonic stem cells are tightly coordinated with cell-cycle progression and reconstructions. However, technical approach to directly visualize single embryonic stem cells still remains challenging. Here we combined two independent systems by using artificially constructed extracellular matrix that maintains embryonic stem cells in single level with cell cycle visualization reporters to directly observe cell cycle progression. Using Fucci (fluorescent ubiquitination-based cell cycle indicator) technology and computer-assisted fluorescence microscopy we were able to visualize cell cycle progression of mouse embryonic stem cells prepared from Fucci2 knock-in mice (mES/Fucci2). Imaged mES/Fucci2 cells were plated on coverslips coated with recombinant E-cadherin-IgG Fc (E-cad-Fc). This artificial extracellular matrix effectively increases adherence of cultured cells to coverslips, which is advantageous for fluorescence imaging. mES/Fucci2 cells on the E-cad-Fc maintained the typical cell cycle of mES cells with truncated G1 phase and pluripotency. During time-lapse imaging, we were able to track these cells with dendritic-like cell morphology and many pseudopodial protrusions. By contrast, the cell cycle progression of mES/Fucci2 cells on mouse embryonic fibroblasts (MEFs) was not observable due to their compact aggregation. Cell cycle duration of mES/Fucci2 cells on the E-cad-Fc was 16 h. Thus, the unique properties of our immunocytochemical analysis have revealed that decline of pluripotency of the Fucci2 mES cells on the E-cad-Fc was coordinated with their differentiation.
Collapse
|