1
|
Feng Y, Liu G, Li H, Cheng L. The landscape of cell lineage tracing. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2751-6. [PMID: 40035969 DOI: 10.1007/s11427-024-2751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
Cell fate changes play a crucial role in the processes of natural development, disease progression, and the efficacy of therapeutic interventions. The definition of the various types of cell fate changes, including cell expansion, differentiation, transdifferentiation, dedifferentiation, reprogramming, and state transitions, represents a complex and evolving field of research known as cell lineage tracing. This review will systematically introduce the research history and progress in this field, which can be broadly divided into two parts: prospective tracing and retrospective tracing. The initial section encompasses an array of methodologies pertaining to isotope labeling, transient fluorescent tracers, non-fluorescent transient tracers, non-fluorescent genetic markers, fluorescent protein, genetic marker delivery, genetic recombination, exogenous DNA barcodes, CRISPR-Cas9 mediated DNA barcodes, and base editor-mediated DNA barcodes. The second part of the review covers genetic mosaicism, genomic DNA alteration, TCR/BCR, DNA methylation, and mitochondrial DNA mutation. In the final section, we will address the principal challenges and prospective avenues of enquiry in the field of cell lineage tracing, with a particular focus on the sequencing techniques and mathematical models pertinent to single-cell genetic lineage tracing, and the value of pursuing a more comprehensive investigation at both the spatial and temporal levels in the study of cell lineage tracing.
Collapse
Affiliation(s)
- Ye Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Tran LN, Shinde A, Schuster KH, Sabaawy A, Dale E, Welch MJ, Isner TJ, Nunez SA, García-Moreno F, Sagerström CG, Appel BH, Franco SJ. Epigenetic priming of neural progenitors by Notch enhances Sonic hedgehog signaling and establishes gliogenic competence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633996. [PMID: 39896669 PMCID: PMC11785114 DOI: 10.1101/2025.01.20.633996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The remarkable cell diversity of multicellular organisms relies on the ability of multipotent progenitor cells to generate distinct cell types at the right times and locations during embryogenesis. A key question is how progenitors establish competence to respond to the different environmental signals required to produce specific cell types at critical developmental timepoints. We addressed this in the mouse developing forebrain, where neural progenitor cells must switch from producing neurons to making oligodendrocytes in response to increased Sonic Hedgehog (SHH) signaling during late embryogenesis. We show that progenitor responses to SHH are regulated by Notch signaling, thus permitting proper timing of the neuron-oligodendrocyte switch. Notch activity epigenetically primes genes associated with the oligodendrocyte lineage and SHH pathway, enabling amplified transcriptional responses to endogenous SHH and robust oligodendrogenesis. These results reveal a critical role for Notch in facilitating progenitor competence states and influencing cell fate transitions at the epigenetic level.
Collapse
Affiliation(s)
- Luuli N. Tran
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashwini Shinde
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen H. Schuster
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aiman Sabaawy
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Dale
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madalynn J. Welch
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Trevor J. Isner
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sylvia A. Nunez
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Edificio Sede del Parque Científico de la UPV/EHU, Leioa, Spain
| | - Charles G. Sagerström
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bruce H. Appel
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Santos J. Franco
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Program in Pediatric Stem Cell Biology, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Lead contact
| |
Collapse
|
3
|
Rueda-Alaña E, Senovilla-Ganzo R, Grillo M, Vázquez E, Marco-Salas S, Gallego-Flores T, Ordeñana-Manso A, Ftara A, Escobar L, Benguría A, Quintas A, Dopazo A, Rábano M, Vivanco MDM, Aransay AM, Garrigos D, Toval Á, Ferrán JL, Nilsson M, Encinas-Pérez JM, De Pittà M, García-Moreno F. Evolutionary convergence of sensory circuits in the pallium of amniotes. Science 2025; 387:eadp3411. [PMID: 39946453 DOI: 10.1126/science.adp3411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/20/2024] [Indexed: 04/23/2025]
Abstract
The amniote pallium contains sensory circuits that are structurally and functionally equivalent, yet their evolutionary relationship remains unresolved. We used birthdating analysis, single-cell RNA and spatial transcriptomics, and mathematical modeling to compare the development and evolution of known pallial circuits across birds (chick), lizards (gecko), and mammals (mouse). We reveal that neurons within these circuits' stations are generated at varying developmental times and brain regions across species and found an early developmental divergence in the transcriptomic progression of glutamatergic neurons. Our research highlights developmental distinctions and functional similarities in the sensory circuit between birds and mammals, suggesting the convergence of high-order sensory processing across amniote lineages.
Collapse
Affiliation(s)
- Eneritz Rueda-Alaña
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
| | - Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
| | - Marco Grillo
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Enrique Vázquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Marco-Salas
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Tatiana Gallego-Flores
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Ordeñana-Manso
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Artemis Ftara
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Escobar
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Quintas
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miriam Rábano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - María dM Vivanco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ana María Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Daniel Garrigos
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Ángel Toval
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - José Luis Ferrán
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Juan Manuel Encinas-Pérez
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| | - Maurizio De Pittà
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- Basque Center for Applied Mathematics, Bilbao, Spain
- Computational Neuroscience Hub, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
4
|
Tran LN, Loew SK, Franco SJ. Notch Signaling Plays a Dual Role in Regulating the Neuron-to-Oligodendrocyte Switch in the Developing Dorsal Forebrain. J Neurosci 2023; 43:6854-6871. [PMID: 37640551 PMCID: PMC10573779 DOI: 10.1523/jneurosci.0144-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Neural progenitor cells in the developing dorsal forebrain generate excitatory neurons followed by oligodendrocytes (OLs) and astrocytes. However, the specific mechanisms that regulate the timing of this neuron-glia switch are not fully understood. In this study, we show that the proper balance of Notch signaling in dorsal forebrain progenitors is required to generate oligodendrocytes during late stages of embryonic development. Using ex vivo and in utero approaches in mouse embryos of both sexes, we found that Notch inhibition reduced the number of oligodendrocyte lineage cells in the dorsal pallium. However, Notch overactivation also prevented oligodendrogenesis and maintained a progenitor state. These results point toward a dual role for Notch signaling in both promoting and inhibiting oligodendrogenesis, which must be fine-tuned to generate oligodendrocyte lineage cells at the right time and in the right numbers. We further identified the canonical Notch downstream factors HES1 and HES5 as negative regulators in this process. CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9-mediated knockdown of Hes1 and Hes5 caused increased expression of the pro-oligodendrocyte factor ASCL1 and led to precocious oligodendrogenesis. Conversely, combining Notch overactivation with ASCL1 overexpression robustly promoted oligodendrogenesis, indicating a separate mechanism of Notch that operates synergistically with ASCL1 to specify an oligodendrocyte fate. We propose a model in which Notch signaling works together with ASCL1 to specify progenitors toward the oligodendrocyte lineage but also maintains a progenitor state through Hes-dependent repression of Ascl1 so that oligodendrocytes are not made too early, thus contributing to the precise timing of the neuron-glia switch.SIGNIFICANCE STATEMENT Neural progenitors make oligodendrocytes after neurogenesis starts to wind down, but the mechanisms that control the timing of this switch are poorly understood. In this study, we identify Notch signaling as a critical pathway that regulates the balance between progenitor maintenance and oligodendrogenesis. Notch signaling is required for the oligodendrocyte fate, but elevated Notch signaling prevents oligodendrogenesis and maintains a progenitor state. We provide evidence that these opposing functions are controlled by different mechanisms. Before the switch, Notch signaling through Hes factors represses oligodendrogenesis. Later, Notch signaling through an unknown mechanism promotes oligodendrogenesis synergistically with the transcription factor ASCL1. Our study underscores the complexity of Notch and reveals its importance in regulating the timing and numbers of oligodendrocyte production.
Collapse
Affiliation(s)
- Luuli N Tran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Sarah K Loew
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Santos J Franco
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Program in Pediatric Stem Cell Biology, Children's Hospital Colorado, Aurora, Colorado 80045
| |
Collapse
|
5
|
Olazagoitia-Garmendia A, Senovilla-Ganzo R, García-Moreno F, Castellanos-Rubio A. Functional evolutionary convergence of long noncoding RNAs involved in embryonic development. Commun Biol 2023; 6:908. [PMID: 37670146 PMCID: PMC10480150 DOI: 10.1038/s42003-023-05278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Long noncoding RNAs have been identified in most vertebrates, but the functional characterization of these molecules is challenging, mainly due to the lack of linear sequence homology between species. In this work, we aimed to find functional evolutionary convergent lncRNAs involved in development by screening of k-mer content (nonlinear similarity) and secondary structure-based approaches combining in silico, in vitro and in vivo validation analysis. From the Madagascar gecko genes, we have found a non-orthologous lncRNA with a similar k-mer content and structurally concordant with the human lncRNA EVX1AS. Analysis of function-related characteristics together with locus-specific targeting of human EVX1AS and gecko EVX1AS-like (i.e., CRISPR Display) in human neuroepithelial cells and chicken mesencephalon have confirmed that gecko EVX1AS-like lncRNA mimics human EVX1AS function and induces EVX1 expression independently of the target species. Our data shows functional convergence of non-homologous lncRNAs and presents a useful approach for the definition and manipulation of lncRNA function within different model organisms.
Collapse
Affiliation(s)
- Ane Olazagoitia-Garmendia
- University of the Basque Country, UPV-EHU, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Fernando García-Moreno
- University of the Basque Country, UPV-EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ainara Castellanos-Rubio
- University of the Basque Country, UPV-EHU, Leioa, Spain.
- Biobizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- CIBERDEM/CIBERER, Madrid, Spain.
| |
Collapse
|
6
|
Procyk CA, Rodgers J, Zindy E, Lucas RJ, Milosavljevic N. Quantitative characterisation of ipRGCs in retinal degeneration using a computation platform for extracting and reconstructing single neurons in 3D from a multi-colour labeled population. Front Cell Neurosci 2022; 16:1009321. [PMID: 36385954 PMCID: PMC9664085 DOI: 10.3389/fncel.2022.1009321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Light has a profound impact on mammalian physiology and behavior. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin, rendering them sensitive to light, and are involved in both image-forming vision and non-image forming responses to light such as circadian photo-entrainment and the pupillary light reflex. Following outer photoreceptor degeneration, the death of rod and cone photoreceptors results in global re-modeling of the remnant neural retina. Although ipRGCs can continue signaling light information to the brain even in advanced stages of degeneration, it is unknown if all six morphologically distinct subtypes survive, or how their dendritic architecture may be affected. To answer these questions, we generated a computational platform-BRIAN (Brainbow Analysis of individual Neurons) to analyze Brainbow labeled tissues by allowing objective identification of voxels clusters in Principal Component Space, and their subsequent extraction to produce 3D images of single neurons suitable for analysis with existing tracing technology. We show that BRIAN can efficiently recreate single neurons or individual axonal projections from densely labeled tissue with sufficient anatomical resolution for subtype quantitative classification. We apply this tool to generate quantitative morphological information about ipRGCs in the degenerate retina including soma size, dendritic field size, dendritic complexity, and stratification. Using this information, we were able to identify cells whose characteristics match those reported for all six defined subtypes of ipRGC in the wildtype mouse retina (M1-M6), including the rare and complex M3 and M6 subtypes. This indicates that ipRGCs survive outer retinal degeneration with broadly normal morphology. We additionally describe one cell in the degenerate retina which matches the description of the Gigantic M1 cell in Humans which has not been previously identified in rodent.
Collapse
Affiliation(s)
- Christopher A. Procyk
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Jessica Rodgers
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Egor Zindy
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert J. Lucas
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Nina Milosavljevic
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Olmos-Carreño CL, Figueres-Oñate M, Scicolone GE, López-Mascaraque L. Cell Fate of Retinal Progenitor Cells: In Ovo UbC-StarTrack Analysis. Int J Mol Sci 2022; 23:ijms232012388. [PMID: 36293245 PMCID: PMC9604099 DOI: 10.3390/ijms232012388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Clonal cell analysis outlines the ontogenic potential of single progenitor cells, allowing the elucidation of the neural heterogeneity among different cell types and their lineages. In this work, we analyze the potency of retinal stem/progenitor cells through development using the chick embryo as a model. We implemented in ovo the clonal genetic tracing strategy UbC-StarTrack for tracking retinal cell lineages derived from individual progenitors of the ciliary margin at E3.5 (HH21-22). The clonal assignment of the derived-cell progeny was performed in the neural retina at E11.5-12 (HH38) through the identification of sibling cells as cells expressing the same combination of fluorophores. Moreover, cell types were assessed based on their cellular morphology and laminar location. Ciliary margin derived-cell progenies are organized in columnar associations distributed along the peripheral retina with a limited tangential dispersion. The analysis revealed that, at the early stages of development, this region harbors multipotent and committed progenitor cells.
Collapse
Affiliation(s)
- Cindy L. Olmos-Carreño
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), CONICET and Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
| | - María Figueres-Oñate
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
- Correspondence: (M.F.-O.); (L.L.-M.)
| | - Gabriel E. Scicolone
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), CONICET and Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Laura López-Mascaraque
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
- Correspondence: (M.F.-O.); (L.L.-M.)
| |
Collapse
|
8
|
Kumamoto T, Ohtaka-Maruyama C. Visualizing Cortical Development and Evolution: A Toolkit Update. Front Neurosci 2022; 16:876406. [PMID: 35495046 PMCID: PMC9039325 DOI: 10.3389/fnins.2022.876406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Visualizing the process of neural circuit formation during neurogenesis, using genetically modified animals or somatic transgenesis of exogenous plasmids, has become a key to decipher cortical development and evolution. In contrast to the establishment of transgenic animals, the designing and preparation of genes of interest into plasmids are simple and easy, dispensing with time-consuming germline modifications. These advantages have led to neuron labeling based on somatic transgenesis. In particular, mammalian expression plasmid, CRISPR-Cas9, and DNA transposon systems, have become widely used for neuronal visualization and functional analysis related to lineage labeling during cortical development. In this review, we discuss the advantages and limitations of these recently developed techniques.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | |
Collapse
|
9
|
Multicolor strategies for investigating clonal expansion and tissue plasticity. Cell Mol Life Sci 2022; 79:141. [PMID: 35187598 PMCID: PMC8858928 DOI: 10.1007/s00018-021-04077-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
Understanding the generation of complexity in living organisms requires the use of lineage tracing tools at a multicellular scale. In this review, we describe the different multicolor strategies focusing on mouse models expressing several fluorescent reporter proteins, generated by classical (MADM, Brainbow and its multiple derivatives) or acute (StarTrack, CLoNe, MAGIC Markers, iOn, viral vectors) transgenesis. After detailing the multi-reporter genetic strategies that serve as a basis for the establishment of these multicolor mouse models, we briefly mention other animal and cellular models (zebrafish, chicken, drosophila, iPSC) that also rely on these constructs. Then, we highlight practical applications of multicolor mouse models to better understand organogenesis at single progenitor scale (clonal analyses) in the brain and briefly in several other tissues (intestine, skin, vascular, hematopoietic and immune systems). In addition, we detail the critical contribution of multicolor fate mapping strategies in apprehending the fine cellular choreography underlying tissue morphogenesis in several models with a particular focus on brain cytoarchitecture in health and diseases. Finally, we present the latest technological advances in multichannel and in-depth imaging, and automated analyses that enable to better exploit the large amount of data generated from multicolored tissues.
Collapse
|
10
|
Shembrey C, Smith J, Grandin M, Williams N, Cho HJ, Mølck C, Behrenbruch C, Thomson BNJ, Heriot AG, Merino D, Hollande F. Longitudinal Monitoring of Intra-Tumoural Heterogeneity Using Optical Barcoding of Patient-Derived Colorectal Tumour Models. Cancers (Basel) 2022; 14:581. [PMID: 35158849 PMCID: PMC8833441 DOI: 10.3390/cancers14030581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Geno- and phenotypic heterogeneity amongst cancer cell subpopulations are established drivers of treatment resistance and tumour recurrence. However, due to the technical difficulty associated with studying such intra-tumoural heterogeneity, this phenomenon is seldom interrogated in conventional cell culture models. Here, we employ a fluorescent lineage technique termed "optical barcoding" (OBC) to perform simultaneous longitudinal tracking of spatio-temporal fate in 64 patient-derived colorectal cancer subclones. To do so, patient-derived cancer cell lines and organoids were labelled with discrete combinations of reporter constructs, stably integrated into the genome and thus passed on from the founder cell to all its clonal descendants. This strategy enables the longitudinal monitoring of individual cell lineages based upon their unique optical barcodes. By designing a novel panel of six fluorescent proteins, the maximum theoretical subpopulation resolution of 64 discriminable subpopulations was achieved, greatly improving throughput compared with previous studies. We demonstrate that all subpopulations can be purified from complex clonal mixtures via flow cytometry, permitting the downstream isolation and analysis of any lineages of interest. Moreover, we outline an optimized imaging protocol that can be used to image optical barcodes in real-time, allowing for clonal dynamics to be resolved in live cells. In contrast with the limited intra-tumour heterogeneity observed in conventional 2D cell lines, the OBC technique was successfully used to quantify dynamic clonal expansions and contractions in 3D patient-derived organoids, which were previously demonstrated to better recapitulate the heterogeneity of their parental tumour material. In summary, we present OBC as a user-friendly, inexpensive, and high-throughput technique for monitoring intra-tumoural heterogeneity in in vitro cell culture models.
Collapse
Affiliation(s)
- Carolyn Shembrey
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Jai Smith
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Mélodie Grandin
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Nathalia Williams
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Hyun-Jung Cho
- Biological Optical Microscopy Platform, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Christina Mølck
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Corina Behrenbruch
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of General Surgical Specialties, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia;
| | - Benjamin NJ. Thomson
- Department of General Surgical Specialties, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia;
- Department of Surgery, the Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Alexander G. Heriot
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Surgery, St Vincent’s Hospital, Melbourne, VIC 3065, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| |
Collapse
|
11
|
Li Y, Walker LA, Zhao Y, Edwards EM, Michki NS, Cheng HPJ, Ghazzi M, Chen TY, Chen M, Roossien DH, Cai D. Bitbow Enables Highly Efficient Neuronal Lineage Tracing and Morphology Reconstruction in Single Drosophila Brains. Front Neural Circuits 2021; 15:732183. [PMID: 34744636 PMCID: PMC8564373 DOI: 10.3389/fncir.2021.732183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the cellular origins and mapping the dendritic and axonal arbors of neurons have been century old quests to understand the heterogeneity among these brain cells. Current Brainbow based transgenic animals take the advantage of multispectral labeling to differentiate neighboring cells or lineages, however, their applications are limited by the color capacity. To improve the analysis throughput, we designed Bitbow, a digital format of Brainbow which exponentially expands the color palette to provide tens of thousands of spectrally resolved unique labels. We generated transgenic Bitbow Drosophila lines, established statistical tools, and streamlined sample preparation, image processing, and data analysis pipelines to conveniently mapping neural lineages, studying neuronal morphology and revealing neural network patterns with unprecedented speed, scale, and resolution.
Collapse
Affiliation(s)
- Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Logan A Walker
- Biophysics LS&A, University of Michigan, Ann Arbor, MI, United States
| | - Yimeng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Erica M Edwards
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Nigel S Michki
- Biophysics LS&A, University of Michigan, Ann Arbor, MI, United States
| | - Hon Pong Jimmy Cheng
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Marya Ghazzi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Tiffany Y Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Maggie Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Douglas H Roossien
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Biophysics LS&A, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Satake T. Epstein-Barr virus-based plasmid enables inheritable transgene expression in mouse cerebral cortex. PLoS One 2021; 16:e0258026. [PMID: 34591902 PMCID: PMC8483300 DOI: 10.1371/journal.pone.0258026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022] Open
Abstract
Continuous development of the cerebral cortex from the prenatal to postnatal period depends on neurons and glial cells, both of which are generated from neural progenitor cells (NPCs). Owing to technical limitations regarding the transfer of genes into mouse brain, the mechanisms behind the long-term development of the cerebral cortex have not been well studied. Plasmid transfection into NPCs in embryonic mouse brains by in utero electroporation (IUE) is a widely used technique aimed at expressing transgenes in NPCs and their recent progeny neurons. Because the plasmids in NPCs are attenuated with each cell division, the transgene is not expressed in their descendants, including glial cells. The present study shows that an Epstein–Barr virus-based plasmid (EB-oriP plasmid) is helpful for studying long-term cerebral cortex development. The use of the EB-oriP plasmid for IUE allowed transgene expression even in the descendant progeny cells of adult mouse brains. Combining the EB-oriP plasmid with the shRNA expression cassette allowed examination of the genes of interest in the continuous development of the cerebral cortex. Furthermore, preferential transgene expression was achieved in combination with cell type-specific promoter-driven transgene expression. Meanwhile, introducing the EB-oriP plasmid twice into the same individual embryos during separate embryonic development stages suggested heterogeneity of NPCs. In summary, IUE using the EB-oriP plasmid is a novel option to study the long-term development of the cerebral cortex in mice.
Collapse
Affiliation(s)
- Tomoko Satake
- Molecular Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- * E-mail:
| |
Collapse
|
13
|
Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. Int J Mol Sci 2021; 22:ijms221910312. [PMID: 34638653 PMCID: PMC8508625 DOI: 10.3390/ijms221910312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood-brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander's disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.
Collapse
|
14
|
Nomura T, Ohtaka-Maruyama C, Kiyonari H, Gotoh H, Ono K. Changes in Wnt-Dependent Neuronal Morphology Underlie the Anatomical Diversification of Neocortical Homologs in Amniotes. Cell Rep 2021; 31:107592. [PMID: 32375034 DOI: 10.1016/j.celrep.2020.107592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022] Open
Abstract
The six-layered neocortex is a shared characteristic of all mammals, but not of non-mammalian species, and its formation requires an inside-out pattern of neuronal migration. The extant reptilian dorsal cortex is thought to represent an ancestral form of the neocortex, although how the reptilian three-layered cortex is formed is poorly understood. Here, we show unique patterns of lamination and neuronal migration in the developing reptilian cortex. While the multipolar-to-bipolar transition of migrating neurons is essential for mammalian cortical development, the reptilian cortex lacks bipolar-shaped migrating neurons, resulting in an outside-in pattern of cortical development. Furthermore, dynamic regulation of Wnt signal strengths contributes to neuronal morphological changes, which is conserved across species. Our data preclude the idea that the six-layered mammalian neocortex emerged by simple addition to the reptilian dorsal cortex but suggest that the acquisition of a novel neuronal morphology based on conserved developmental programs contributed to neocortical evolution.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan.
| | - Chiaki Ohtaka-Maruyama
- Neural Network Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan
| |
Collapse
|
15
|
Figueres-Oñate M, Sánchez-González R, López-Mascaraque L. Deciphering neural heterogeneity through cell lineage tracing. Cell Mol Life Sci 2021; 78:1971-1982. [PMID: 33151389 PMCID: PMC7966193 DOI: 10.1007/s00018-020-03689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Understanding how an adult brain reaches an appropriate size and cell composition from a pool of progenitors that proliferates and differentiates is a key question in Developmental Neurobiology. Not only the control of final size but also, the proper arrangement of cells of different embryonic origins is fundamental in this process. Each neural progenitor has to produce a precise number of sibling cells that establish clones, and all these clones will come together to form the functional adult nervous system. Lineage cell tracing is a complex and challenging process that aims to reconstruct the offspring that arise from a single progenitor cell. This tracing can be achieved through strategies based on genetically modified organisms, using either genetic tracers, transfected viral vectors or DNA constructs, and even single-cell sequencing. Combining different reporter proteins and the use of transgenic mice revolutionized clonal analysis more than a decade ago and now, the availability of novel genome editing tools and single-cell sequencing techniques has vastly improved the capacity of lineage tracing to decipher progenitor potential. This review brings together the strategies used to study cell lineages in the brain and the role they have played in our understanding of the functional clonal relationships among neural cells. In addition, future perspectives regarding the study of cell heterogeneity and the ontogeny of different cell lineages will also be addressed.
Collapse
Affiliation(s)
- María Figueres-Oñate
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
- Max Planck Research Unit for Neurogenetics, 60438, Frankfurt am Main, Germany
| | - Rebeca Sánchez-González
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain.
| |
Collapse
|
16
|
The art of lineage tracing: From worm to human. Prog Neurobiol 2020; 199:101966. [PMID: 33249090 DOI: 10.1016/j.pneurobio.2020.101966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Reconstructing the genealogy of every cell that makes up an organism remains a long-standing challenge in developmental biology. Besides its relevance for understanding the mechanisms underlying normal and pathological development, resolving the lineage origin of cell types will be crucial to create these types on-demand. Multiple strategies have been deployed towards the problem of lineage tracing, ranging from direct observation to sophisticated genetic approaches. Here we discuss the achievements and limitations of past and current technology. Finally, we speculate about the future of lineage tracing and how to reach the next milestones in the field.
Collapse
|
17
|
Direct Readout of Neural Stem Cell Transgenesis with an Integration-Coupled Gene Expression Switch. Neuron 2020; 107:617-630.e6. [PMID: 32559415 PMCID: PMC7447981 DOI: 10.1016/j.neuron.2020.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022]
Abstract
Stable genomic integration of exogenous transgenes is essential in neurodevelopmental and stem cell studies. Despite tools driving increasingly efficient genomic insertion with DNA vectors, transgenesis remains fundamentally hindered by the impossibility of distinguishing integrated from episomal transgenes. Here, we introduce an integration-coupled On genetic switch, iOn, which triggers gene expression upon incorporation into the host genome through transposition, thus enabling rapid and accurate identification of integration events following transfection with naked plasmids. In vitro, iOn permits rapid drug-free stable transgenesis of mouse and human pluripotent stem cells with multiple vectors. In vivo, we demonstrate faithful cell lineage tracing, assessment of regulatory elements, and mosaic analysis of gene function in somatic transgenesis experiments that reveal neural progenitor potentialities and interaction. These results establish iOn as a universally applicable strategy to accelerate and simplify genetic engineering in cultured systems and model organisms by conditioning transgene activation to genomic integration. A gene expression switch powered by genomic integration Accelerated readout of additive transgenesis with one or multiple vectors Faithful lineage tracing and mosaic analysis by somatic transfection Near-universal applicability in cultured cells and animal models
Collapse
|
18
|
Koussis K, Withers-Martinez C, Baker DA, Blackman MJ. Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function. Life Sci Alliance 2020; 3:e201900626. [PMID: 32179592 PMCID: PMC7081069 DOI: 10.26508/lsa.201900626] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Over recent years, a plethora of new genetic tools has transformed conditional engineering of the malaria parasite genome, allowing functional dissection of essential genes in the asexual and sexual blood stages that cause pathology or are required for disease transmission, respectively. Important challenges remain, including the desirability to complement conditional mutants with a correctly regulated second gene copy to confirm that observed phenotypes are due solely to loss of gene function and to analyse structure-function relationships. To meet this challenge, here we combine the dimerisable Cre (DiCre) system with the use of multiple lox sites to simultaneously generate multiple recombination events of the same gene. We focused on the Plasmodium falciparum cGMP-dependent protein kinase (PKG), creating in parallel conditional disruption of the gene plus up to two allelic replacements. We use the approach to demonstrate that PKG has no scaffolding or adaptor role in intraerythrocytic development, acting solely at merozoite egress. We also show that a phosphorylation-deficient PKG is functionally incompetent. Our method provides valuable new tools for analysis of gene function in the malaria parasite.
Collapse
Affiliation(s)
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
19
|
Sánchez-González R, Figueres-Oñate M, Ojalvo-Sanz AC, López-Mascaraque L. Cell Progeny in the Olfactory Bulb After Targeting Specific Progenitors with Different UbC-StarTrack Approaches. Genes (Basel) 2020; 11:genes11030305. [PMID: 32183100 PMCID: PMC7140809 DOI: 10.3390/genes11030305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
The large phenotypic variation in the olfactory bulb may be related to heterogeneity in the progenitor cells. Accordingly, the progeny of subventricular zone (SVZ) progenitor cells that are destined for the olfactory bulb is of particular interest, specifically as there are many facets of these progenitors and their molecular profiles remain unknown. Using modified StarTrack genetic tracing strategies, specific SVZ progenitor cells were targeted in E12 mice embryos, and the cell fate of these neural progenitors was determined in the adult olfactory bulb. This study defined the distribution and the phenotypic diversity of olfactory bulb interneurons from specific SVZ-progenitor cells, focusing on their spatial pallial origin, heterogeneity, and genetic profile.
Collapse
|
20
|
Veling MW, Li Y, Veling MT, Litts C, Michki N, Liu H, Ye B, Cai D. Identification of Neuronal Lineages in the Drosophila Peripheral Nervous System with a "Digital" Multi-spectral Lineage Tracing System. Cell Rep 2019; 29:3303-3312.e3. [PMID: 31801091 PMCID: PMC6913890 DOI: 10.1016/j.celrep.2019.10.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Elucidating cell lineages provides crucial understanding of development. Recently developed sequencing-based techniques enhance the scale of lineage tracing but eliminate the spatial information offered by conventional approaches. Multi-spectral labeling techniques, such as Brainbow, have the potential to identify lineage-related cells in situ. Here, we report nuclear Bitbow (nBitbow), a "digital" version of Brainbow that greatly expands the color diversity for scoring cells, and a suite of statistical methods for quantifying the lineage relationship of any two cells. Applying these tools to the Drosophila peripheral nervous system (PNS), we determined lineage relationship between all neuronal pairs. This study demonstrates nBitbow as an efficient tool for in situ lineage mapping, and the complete lineage relationship among larval PNS neurons opens new possibilities for studying how neurons gain specific features and circuit connectivity.
Collapse
Affiliation(s)
- Macy W Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mike T Veling
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher Litts
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nigel Michki
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
de Roo JJD, Vloemans SA, Vrolijk H, de Haas EFE, Staal FJT. Development of an in vivo model to study clonal lineage relationships in hematopoietic cells using Brainbow2.1/Confetti mice. Future Sci OA 2019; 5:FSO427. [PMID: 31827896 PMCID: PMC6900974 DOI: 10.2144/fsoa-2019-0083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem cells maintain the homeostasis of all blood cell progeny during development and repopulation-demanding events. To study the lineage relationships during hematopoiesis, increasingly complex cell tracing models are being developed. In this study, we describe adaptations to the original R26R-Confetti mouse model, which subsequently offers a relatively easy approach to study low complexity clonality during hematopoiesis, with special focus on B and T lymphocyte development. This protocol employs spatiotemporal Cre expression controlled by gammaretroviral transduction for efficient fluorescent protein cell marking. Transplantation of fluorescently marked Lin- cKit+ hematopoietic progenitor cells into Rag1-/- mice, resulted in the visualization of differentially contributing stem cell clones to various lineages. Our methodology is useful to study questions in fundamental and preclinical hematopoietic research and in vivo B- and T-cell development.
Collapse
Affiliation(s)
- Jolanda JD de Roo
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra A Vloemans
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Vrolijk
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin FE de Haas
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank JT Staal
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Palaniappan TK, Slekiene L, Gunhaga L, Patthey C. Extensive apoptosis during the formation of the terminal nerve ganglion by olfactory placode-derived cells with distinct molecular markers. Differentiation 2019; 110:8-16. [PMID: 31539705 DOI: 10.1016/j.diff.2019.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The terminal nerve ganglion (TNG) is a well-known structure of the peripheral nervous system in cartilaginous and teleost fishes. It derives from the olfactory placode during embryonic development. While the differentiation and migration of gonadotropin releasing hormone (GnRH)-expressing neurons from the olfactory placode has been well documented, the TNG has been neglected in birds and mammals, and its development is less well described. Here we describe the formation of a ganglion-like structure from migratory olfactory placodal cells in chicken. The TNG is surrounded by neural crest cells, but in contrast to other cranial sensory ganglia, we observed no neural crest corridor, and olfactory unsheathing cells appear only after the onset of neuronal migration. We identified Isl1 and Lhx2 as two transcription factors that label neuronal subpopulations in the forming TNG, distinct from GnRH1+ cells, thereby revealing a diversity of cell types during the formation of the TNG. We also provide evidence for extensive apoptosis in the terminal nerve ganglion shortly after its formation, but not in other cranial sensory ganglia. Moreover, at later stages placode-derived neurons expressing GnRH1, Isl1 and/or Lhx2 become incorporated in the telencephalon. The integration of TNG neurons into the telencephalon together with the earlier widespread apoptosis in the TNG might be an explanation why the TNG in mammals and birds is much smaller compared to other vertebrates.
Collapse
Affiliation(s)
| | - Lina Slekiene
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
23
|
Marcy G, Raineteau O. Contributions of Single-Cell Approaches for Probing Heterogeneity and Dynamics of Neural Progenitors Throughout Life: Concise Review. Stem Cells 2019; 37:1381-1388. [DOI: 10.1002/stem.3071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Guillaume Marcy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208; Bron France
- Neurogenetics Department; Ecole Pratique des Hautes Etudes, PSL Research University; Paris France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208; Bron France
| |
Collapse
|
24
|
Salvi M, Cerrato V, Buffo A, Molinari F. Automated segmentation of brain cells for clonal analyses in fluorescence microscopy images. J Neurosci Methods 2019; 325:108348. [PMID: 31283938 DOI: 10.1016/j.jneumeth.2019.108348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/26/2022]
Abstract
The understanding of how cell diversity within and across distinct brain regions is ontogenetically achieved is a pivotal topic in neuroscience. Clonal analyses based on multicolor cell labeling represent a powerful tool to tackle this issue and disclose lineage relationships, but produce enormous sets of fluorescence images, leading to time consuming analyses that may be biased by the operator's subjectivity. Thus, time-efficient automated software are needed to analyze images easily, accurately and without subjective bias. In this paper, we present a fully automated method, named FAST ('Fluorescent cell Analysis Segmentation Tool'), for the segmentation of neural cells labeled by multicolor combinations of fluorophores and for their classification into clones. The proposed method was tested on 77 high-magnification fluorescence images of adult mouse cerebellar tissues acquired using a confocal microscope. Automatic results were compared with manual annotations and two open-source software designed for cell detection in microscopic imaging. The algorithm showed very good performance in the cellular detection and in the assignment of the clonal identity. To the best of our knowledge, FAST is the first fully automated technique for the analysis of cellular clones based on combinatorial expression of fluorescent proteins. The proposed approach allows to perform clonal analyses easily, accurately and objectively, overcoming those biases and errors that may result from manual annotations. Moreover, it can be broadly applied to the quantification and colocalization within cells of fluorescent markers, therefore representing a versatile and powerful tool for automated quantitative analyses in fluorescence microscopy.
Collapse
Affiliation(s)
- Massimo Salvi
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin and Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy.
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin and Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy.
| | - Filippo Molinari
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
25
|
Picco N, Hippenmeyer S, Rodarte J, Streicher C, Molnár Z, Maini PK, Woolley TE. A mathematical insight into cell labelling experiments for clonal analysis. J Anat 2019; 235:687-696. [PMID: 31173344 PMCID: PMC6704238 DOI: 10.1111/joa.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 11/30/2022] Open
Abstract
Studying the progression of the proliferative and differentiative patterns of neural stem cells at the individual cell level is crucial to the understanding of cortex development and how the disruption of such patterns can lead to malformations and neurodevelopmental diseases. However, our understanding of the precise lineage progression programme at single-cell resolution is still incomplete due to the technical variations in lineage-tracing approaches. One of the key challenges involves developing a robust theoretical framework in which we can integrate experimental observations and introduce correction factors to obtain a reliable and representative description of the temporal modulation of proliferation and differentiation. In order to obtain more conclusive insights, we carry out virtual clonal analysis using mathematical modelling and compare our results against experimental data. Using a dataset obtained with Mosaic Analysis with Double Markers, we illustrate how the theoretical description can be exploited to interpret and reconcile the disparity between virtual and experimental results.
Collapse
Affiliation(s)
- Noemi Picco
- Department of Mathematics, Swansea University, Swansea, UK
| | | | - Julio Rodarte
- Institute of Science and Technology Austria, Klosterneuburg, UK
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Thomas E Woolley
- School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff, UK
| |
Collapse
|
26
|
García-Moreno F, Anderton E, Jankowska M, Begbie J, Encinas JM, Irimia M, Molnár Z. Absence of Tangentially Migrating Glutamatergic Neurons in the Developing Avian Brain. Cell Rep 2019; 22:96-109. [PMID: 29298437 PMCID: PMC5770341 DOI: 10.1016/j.celrep.2017.12.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/29/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022] Open
Abstract
Several neuronal populations orchestrate neocortical development during mammalian embryogenesis. These include the glutamatergic subplate-, Cajal-Retzius-, and ventral pallium-derived populations, which coordinate cortical wiring, migration, and proliferation, respectively. These transient populations are primarily derived from other non-cortical pallial sources that migrate to the dorsal pallium. Are these migrations to the dorsal pallium conserved in amniotes or are they specific to mammals? Using in ovo electroporation, we traced the entire lineage of defined chick telencephalic progenitors. We found that several pallial sources that produce tangential migratory neurons in mammals only produced radially migrating neurons in the avian brain. Moreover, ectopic expression of VP-specific mammalian Dbx1 in avian brains altered neurogenesis but did not convert the migration into a mammal-like tangential movement. Together, these data indicate that tangential cellular contributions of glutamatergic neurons originate from outside the dorsal pallium and that pallial Dbx1 expression may underlie the generation of the mammalian neocortex during evolution.
Collapse
Affiliation(s)
- Fernando García-Moreno
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Achucarro Basque Center for Neuroscience, Parque Científico UPV/EHU Edif. Sede, 48940 Leioa, Spain; IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013 Bilbao, Spain.
| | - Edward Anderton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Marta Jankowska
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jo Begbie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Parque Científico UPV/EHU Edif. Sede, 48940 Leioa, Spain; IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013 Bilbao, Spain
| | - Manuel Irimia
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| |
Collapse
|
27
|
Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat Rev Neurosci 2019; 20:318-329. [DOI: 10.1038/s41583-019-0148-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Cook ZT, Brockway NL, Tobias ZJC, Pajarla J, Boardman IS, Ippolito H, Nkombo Nkoula S, Weissman TA. Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Mol Biol Cell 2019; 30:491-505. [PMID: 30586321 PMCID: PMC6594444 DOI: 10.1091/mbc.e18-06-0340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fluorescent proteins are a powerful experimental tool, allowing the visualization of gene expression and cellular behaviors in a variety of systems. Multicolor combinations of fluorescent proteins, such as Brainbow, have expanded the range of possible research questions and are useful for distinguishing and tracking cells. The addition of a separately driven color, however, would allow researchers to report expression of a manipulated gene within the multicolor context to investigate mechanistic effects. A far-red or near-infrared protein could be particularly suitable in this context, as these can be distinguished spectrally from Brainbow. We investigated five far-red/near-infrared proteins in zebrafish: TagRFP657, mCardinal, miRFP670, iRFP670, and mIFP. Our results show that both mCardinal and iRFP670 are useful fluorescent proteins for zebrafish expression. We also introduce a new transgenic zebrafish line that expresses Brainbow under the control of the neuroD promoter. We demonstrate that mCardinal can be used to track the expression of a manipulated bone morphogenetic protein receptor within the Brainbow context. The overlay of near-infrared fluorescence onto a Brainbow background defines a clear strategy for future research questions that aim to manipulate or track the effects of specific genes within a population of cells that are delineated using multicolor approaches.
Collapse
Affiliation(s)
- Zoe T. Cook
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | | - Joy Pajarla
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | - Helen Ippolito
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | |
Collapse
|
29
|
Martin-Lopez E, Ishiguro K, Greer CA. The Laminar Organization of Piriform Cortex Follows a Selective Developmental and Migratory Program Established by Cell Lineage. Cereb Cortex 2019; 29:1-16. [PMID: 29136113 PMCID: PMC7199997 DOI: 10.1093/cercor/bhx291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Piriform cortex (PC) is a 3-layer paleocortex receiving primary afferent input from the olfactory bulb. The past decade has seen significant progress in understanding the synaptic, cellular and functional organization of PC, but PC embryogenesis continues to be enigmatic. Here, using birthdating strategies and clonal analyses, we probed the early development and laminar specificity of neurogenesis/gliogenesis as it relates to the organization of the PC. Our data demonstrate a temporal sequence of laminar-specific neurogenesis following the canonical "inside-out" pattern, with the notable exception of PC Layer II which exhibited an inverse "outside-in" temporal neurogenic pattern. Of interest, we found no evidence of a neurogenic gradient along the anterior to posterior axis, although the timing of neuronal migration and laminar development was delayed rostrally by approximately 24 h. To begin probing if lineage affected cell fate in the PC, we labeled PC neuroblasts using a multicolor technique and analyzed their laminar organization. Our results suggested that PC progenitors were phenotypically committed to reach specific layers early in the development. Collectively, these studies shed new light on the determinants of the laminar specificity of neuronal/glial organization in PC and the likely role of subpopulations of committed progenitors in regulating PC embryogenesis.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Kimiko Ishiguro
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Charles A Greer
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
| |
Collapse
|
30
|
Rueda-Alaña E, Martínez-Garay I, Encinas JM, Molnár Z, García-Moreno F. Dbx1-Derived Pyramidal Neurons Are Generated Locally in the Developing Murine Neocortex. Front Neurosci 2018; 12:792. [PMID: 30429769 PMCID: PMC6220037 DOI: 10.3389/fnins.2018.00792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/12/2018] [Indexed: 11/23/2022] Open
Abstract
The neocortex (NCx) generates at the dorsal region of the pallium in the forebrain. Several adjacent structures also contribute with neurons to NCx. Ventral pallium (VP) is considered to generate several populations of neurons that arrive through tangential migration to the NCx. Amongst them are the Cajal-Retzius cells and some transient pyramidal neurons. However, the specific site and timing of generation, trajectory of migration and actual contribution to the pyramidal population remains elusive. Here, we investigate the spatio-temporal origin of neuronal populations from VP in an in vivo model, using a transposase mediated in utero electroporation method in embryonic mouse. From E11 to E14 cells born at the lateral corner of the neocortical neuroepithelium including the VP migrated ventro-laterally to settle all areas of the ventral telencephalon. Specifically, neurons migrated into amygdala (Ag), olfactory cortices, and claustrum (Cl). However, we found no evidence for any neurons migrating tangentially toward the NCx, regardless the antero-posterior level and developmental time of the electroporation. Our results challenge the described ventral-pallial origin of the transient pyramidal neuron population. In order to find the exact origin of cortical neurons that were previously Dbx1-fate mapped we used the promoter region of the murine Dbx1 locus to selectively target Dbx1-expressing progenitors and label their lineage. We found these progenitors in low numbers in all pallial areas, and not only in the ventral pallial ventricular zone. Our findings on the local cortical origin of the Dbx1-derived pyramidal neurons reconcile the observation of Dbx1-derived neurons in the cortex without evidence of dorsal tangential migration from VP and provide a new framework for the origin of the transient Dbx1-derived pyramidal neuron population. We conclude that these neurons are born locally within the dorsal pallial neuroepithelium.
Collapse
Affiliation(s)
- Eneritz Rueda-Alaña
- Achucarro Basque Center for Neuroscience, Edificio Sede del Parque Científico de la UPV/EHU, Leioa, Spain
| | - Isabel Martínez-Garay
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Edificio Sede del Parque Científico de la UPV/EHU, Leioa, Spain
- Ikerbasque – Basque Foundation for Science, María Díaz de Haro, Bilbao, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Edificio Sede del Parque Científico de la UPV/EHU, Leioa, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Ikerbasque – Basque Foundation for Science, María Díaz de Haro, Bilbao, Spain
| |
Collapse
|
31
|
Martin-Lopez E, Meller SJ, Greer CA. Development of piriform cortex interhemispheric connections via the anterior commissure: progressive and regressive strategies. Brain Struct Funct 2018; 223:4067-4085. [PMID: 30141078 DOI: 10.1007/s00429-018-1741-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
The anterior commissure (AC) is a phylogenetically conserved inter-hemispheric connection found among vertebrates with bilateral symmetry. The AC connects predominantly olfactory areas but many aspects of its development and structure are unknown. To fill this gap, we investigated the embryonic and postnatal development of the AC by tracing axons with DiI and the piggyback transposon multicolor system. With this strategy, we show that axon growth during establishment of the AC follows a strictly regulated timeline of events that include waiting periods ("regressive strategies") as well as periods of active axon outgrowth ("progressive strategies"). We also provide evidence that these processes may be regulated in the midline via overexpression of chondroitin sulfate proteoglycans. Additionally, we demonstrate that the ipsi- and contralateral innervation of piriform cortex occurs simultaneously. Morphologically, we found that 20% of axons were myelinated by postnatal day (P) 22, in a process that occurred fundamentally around P14. By immunohistochemistry, we described the presence of glial cells and two new subtypes of neurons: one expressing a calretinin (CR)-/MAP2+ phenotype, distributed homogeneously inside the AC; and the other expressing a CR+/MAP2+ phenotype that lies beneath the bed nucleus of the stria terminalis. Our results are consistent with the notion that the AC follows a strictly regulated program during the embryonic and postnatal development similarly to other distal targeting axonal tracts.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA. .,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA. .,The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
32
|
The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog. J Neurosci 2018; 38:5237-5250. [PMID: 29739868 DOI: 10.1523/jneurosci.3392-17.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023] Open
Abstract
Neural progenitor cells in the developing dorsal forebrain give rise to excitatory neurons, astrocytes, and oligodendrocytes for the neocortex. While we are starting to gain a better understanding about the mechanisms that direct the formation of neocortical neurons and astrocytes, far less is known about the molecular mechanisms that instruct dorsal forebrain progenitors to make oligodendrocytes. In this study, we show that Sonic hedgehog (Shh) signaling is required in dorsal progenitors for their late embryonic transition to oligodendrogenesis. Using genetic lineage-tracing in mice of both sexes, we demonstrate that most oligodendrocytes in the embryonic neocortex derive from Emx1+ dorsal forebrain progenitors. Deletion of the Shh signaling effector Smo specifically in Emx1+ progenitors led to significantly decreased oligodendrocyte numbers in the embryonic neocortex. Conversely, knock-out of the Shh antagonist Sufu was sufficient to increase neocortical oligodendrogenesis. Using conditional knock-out strategies, we found that Shh ligand is supplied to dorsal progenitors through multiple sources. Loss of Shh from Dlx5/6+ interneurons caused a significant reduction in oligodendrocytes in the embryonic neocortex. This phenotype was identical to that observed upon Shh deletion from the entire CNS using Nestin-Cre, indicating that interneurons migrating into the neocortex from the subpallium are the primary neural source of Shh for dorsal oligodendrogenesis. Additionally, deletion of Shh from migrating interneurons together with the choroid plexus epithelium led to a more severe loss of oligodendrocytes, suggesting that the choroid plexus is an important non-neural source of Shh ligand. Together, our studies demonstrate that the dorsal wave of neocortical oligodendrogenesis occurs earlier than previously appreciated and requires highly regulated Shh signaling from multiple embryonic sources.SIGNIFICANCE STATEMENT Most neocortical oligodendrocytes are made by neural progenitors in the dorsal forebrain, but the mechanisms that specify this fate are poorly understood. This study identifies Sonic hedgehog (Shh) signaling as a critical pathway in the transition from neurogenesis to oligodendrogenesis in dorsal forebrain progenitors during late embryonic development. The timing of this neuron-to-glia "switch" coincides with the arrival of migrating interneurons into the dorsal germinal zone, which we identify as a critical source of Shh ligand, which drives oligodendrogenesis. Our data provide evidence for a new model in which Shh signaling increases in the dorsal forebrain late in embryonic development to provide a temporally regulated mechanism that initiates the third wave of neocortical oligodendrogenesis.
Collapse
|
33
|
Li H, Shuster SA, Li J, Luo L. Linking neuronal lineage and wiring specificity. Neural Dev 2018; 13:5. [PMID: 29653548 PMCID: PMC5899351 DOI: 10.1186/s13064-018-0102-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 02/01/2023] Open
Abstract
Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - S. Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305 USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Beattie R, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett 2017; 591:3993-4008. [PMID: 29121403 PMCID: PMC5765500 DOI: 10.1002/1873-3468.12906] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
The mammalian cerebral cortex is responsible for higher cognitive functions such as perception, consciousness, and acquiring and processing information. The neocortex is organized into six distinct laminae, each composed of a rich diversity of cell types which assemble into highly complex cortical circuits. Radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. Here, we discuss recent discoveries emerging from clonal lineage analysis at the single RGP cell level that provide us with an inaugural quantitative framework of RGP lineage progression. We further discuss the importance of the relative contribution of intrinsic gene functions and non‐cell‐autonomous or community effects in regulating RGP proliferation behavior and lineage progression.
Collapse
Affiliation(s)
- Robert Beattie
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
35
|
Martínez-Cerdeño V, García-Moreno F, Tosches MA, Csillag A, Manger PR, Molnár Z. Update on forebrain evolution: From neurogenesis to thermogenesis. Semin Cell Dev Biol 2017; 76:15-22. [PMID: 28964836 DOI: 10.1016/j.semcdb.2017.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/25/2023]
Abstract
Comparative developmental studies provide growing understanding of vertebrate forebrain evolution. This short review directs the spotlight to some newly emerging aspects, including the evolutionary origin of the proliferative region known as the subventricular zone (SVZ) and of intermediate progenitor cells (IPCs) that populate the SVZ, neural circuits that originated within homologous regions across all amniotes, and the role of thermogenesis in the acquisition of an increased brain size. These data were presented at the 8th European Conference on Comparative Neurobiology.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, USA; MIND Institute, UC Davis School of Medicine, CA, USA.
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Parque Científico UPV/EHU Edif. Sede, E-48940 Leioa, Spain
| | | | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of Witwatersrand, South Africa
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| |
Collapse
|
36
|
The Future Vocation of Neural Stem Cells: Lineage Commitment in Brain Development and Evolution. Neurochem Res 2017; 43:162-165. [PMID: 28836066 DOI: 10.1007/s11064-017-2380-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/13/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
Understanding the fate commitment of neural stem cells is critical to identify the regulatory mechanisms in developing brains. Genetic lineage-tracing has provided a powerful strategy to unveil the heterogeneous nature of stem cells and their descendants. However, recent studies have reported controversial data regarding the heterogeneity of neural stem cells in the developing mouse neocortex, which prevents a decisive conclusion on this issue. Here, we review the progress that has been made using lineage-tracing analyses of the developing neocortex and discuss stem cell heterogeneity from the viewpoint of comparative and evolutionary biology.
Collapse
|
37
|
Bitzenhofer SH, Ahlbeck J, Hanganu-Opatz IL. Methodological Approach for Optogenetic Manipulation of Neonatal Neuronal Networks. Front Cell Neurosci 2017; 11:239. [PMID: 28848399 PMCID: PMC5554786 DOI: 10.3389/fncel.2017.00239] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
Coordinated patterns of electrical activity are critical for the functional maturation of neuronal networks, yet their interrogation has proven difficult in the developing brain. Optogenetic manipulations strongly contributed to the mechanistic understanding of network activation in the adult brain, but difficulties to specifically and reliably express opsins at neonatal age hampered similar interrogation of developing circuits. Here, we introduce a protocol that enables to control the activity of specific neuronal populations by light, starting from early postnatal development. We show that brain area-, layer- and cell type-specific expression of opsins by in utero electroporation (IUE), as exemplified for the medial prefrontal cortex (PFC) and hippocampus (HP), permits the manipulation of neuronal activity in vitro and in vivo. Both individual and population responses to different patterns of light stimulation are monitored by extracellular multi-site recordings in the medial PFC of neonatal mice. The expression of opsins via IUE provides a flexible approach to disentangle the cellular mechanism underlying early rhythmic network activity, and to elucidate the role of early neuronal activity for brain maturation, as well as its contribution to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sebastian H Bitzenhofer
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Joachim Ahlbeck
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-EppendorfHamburg, Germany
| |
Collapse
|
38
|
Monitoring and visualizing microRNA dynamics during live cell differentiation using microRNA-responsive non-viral reporter vectors. Biomaterials 2017; 128:121-135. [DOI: 10.1016/j.biomaterials.2017.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 01/17/2023]
|
39
|
Abstract
The fluorescent protein revolution has made the light microscope the most widely used tool for studying biological structure from the single-molecule to whole organism scales. However, traditional approaches are limited in their ability to resolve components in highly complex structures, such as the brain. In recent years, this limitation has been circumvented by the development of multicolor labeling methods, termed Brainbow. Brainbow tools rely on site-specific recombinases to make stochastic "choices" between different combinations of fluorescent proteins so that structures in close proximity to one another can be resolved based on their color profile. These new approaches, however, call for more refined methods of sample preparation and imaging optimized for multispectral imaging, which are presented here. The most robust approach for generating useful Brainbow data combines immunohistology with multispectral laser scanning confocal microscopy. This chapter, therefore, focuses on this particular technique, though the imaging principle discussed here is applicable to other Brainbow approaches as well.
Collapse
Affiliation(s)
- Douglas H Roossien
- Cell and Developmental Biology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dawen Cai
- Cell and Developmental Biology Department, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
40
|
Sacilotto N, Chouliaras KM, Nikitenko LL, Lu YW, Fritzsche M, Wallace MD, Nornes S, García-Moreno F, Payne S, Bridges E, Liu K, Biggs D, Ratnayaka I, Herbert SP, Molnár Z, Harris AL, Davies B, Bond GL, Bou-Gharios G, Schwarz JJ, De Val S. MEF2 transcription factors are key regulators of sprouting angiogenesis. Genes Dev 2016; 30:2297-2309. [PMID: 27898394 PMCID: PMC5110996 DOI: 10.1101/gad.290619.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/29/2016] [Indexed: 12/24/2022]
Abstract
Angiogenesis, the fundamental process by which new blood vessels form from existing ones, depends on precise spatial and temporal gene expression within specific compartments of the endothelium. However, the molecular links between proangiogenic signals and downstream gene expression remain unclear. During sprouting angiogenesis, the specification of endothelial cells into the tip cells that lead new blood vessel sprouts is coordinated by vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 (Dll4)/Notch signaling and requires high levels of Notch ligand DLL4. Here, we identify MEF2 transcription factors as crucial regulators of sprouting angiogenesis directly downstream from VEGFA. Through the characterization of a Dll4 enhancer directing expression to endothelial cells at the angiogenic front, we found that MEF2 factors directly transcriptionally activate the expression of Dll4 and many other key genes up-regulated during sprouting angiogenesis in both physiological and tumor vascularization. Unlike ETS-mediated regulation, MEF2-binding motifs are not ubiquitous to all endothelial gene enhancers and promoters but are instead overrepresented around genes associated with sprouting angiogenesis. MEF2 target gene activation is directly linked to VEGFA-induced release of repressive histone deacetylases and concurrent recruitment of the histone acetyltransferase EP300 to MEF2 target gene regulatory elements, thus establishing MEF2 factors as the transcriptional effectors of VEGFA signaling during angiogenesis.
Collapse
Affiliation(s)
- Natalia Sacilotto
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Kira M Chouliaras
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Leonid L Nikitenko
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Yao Wei Lu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | - Martin Fritzsche
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Marsha D Wallace
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Svanhild Nornes
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Fernando García-Moreno
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Sophie Payne
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Esther Bridges
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Ke Liu
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Daniel Biggs
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Shane P Herbert
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Adrian L Harris
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Benjamin Davies
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Gareth L Bond
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - George Bou-Gharios
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - John J Schwarz
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | - Sarah De Val
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
41
|
Figueres-Oñate M, García-Marqués J, López-Mascaraque L. UbC-StarTrack, a clonal method to target the entire progeny of individual progenitors. Sci Rep 2016; 6:33896. [PMID: 27654510 PMCID: PMC5031994 DOI: 10.1038/srep33896] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 01/02/2023] Open
Abstract
Clonal cell analysis defines the potential of single cells and the diversity they can produce. To achieve this, we have developed a novel adaptation of the genetic tracing strategy, UbC-StarTrack, which attributes a specific and unique color-code to single neural precursors, allowing all their progeny to be tracked. We used integrable fluorescent reporters driven by a ubiquitous promoter in PiggyBac-based vectors to achieve inheritable and stable clonal cell labeling. In addition, coupling this to an inducible Cre-LoxP system avoids the expression of non-integrated reporters. To assess the utility of this system, we first analyzed images of combinatorial expression of fluorescent reporters in transfected cells and their progeny. We also validated the efficiency of the UbC-StarTrack to trace cell lineages through in vivo, in vitro and ex vivo strategies. Finally, progenitors located in the lateral ventricles were targeted at embryonic or postnatal stages to determine the diversity of neurons and glia they produce, and their clonal relationships. In this way we demonstrate that UbC-StarTrack can be used to identify all the progeny of a single cell and that it can be employed in a wide range of contexts.
Collapse
|
42
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
43
|
Wu JW, Turcotte R, Alt C, Runnels JM, Tsao H, Lin CP. Defining Clonal Color in Fluorescent Multi-Clonal Tracking. Sci Rep 2016; 6:24303. [PMID: 27073117 PMCID: PMC4829845 DOI: 10.1038/srep24303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/08/2016] [Indexed: 01/01/2023] Open
Abstract
Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also attractive tools for understanding clonal expansion and clonal competition in cancer. However, the assignment of clonal identity requires an analytical framework in which clonal markings can be parameterized and validated. Here we present a systematic and quantitative method for RGB analysis of fluorescent melanoma cancer clones. We then demonstrate refined clonal trackability of melanoma cells using this scheme.
Collapse
Affiliation(s)
- Juwell W. Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raphaël Turcotte
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Clemens Alt
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Judith M. Runnels
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hensin Tsao
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Wellman Center for Photomedicine, Harvard Medical School, Boston, MA 02114, USA
- Massachusetts General Hospital Melanoma and Pigmented Lesion Center, Boston, MA 02114, USA
| | - Charles P. Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
44
|
Lerner TN, Ye L, Deisseroth K. Communication in Neural Circuits: Tools, Opportunities, and Challenges. Cell 2016; 164:1136-1150. [PMID: 26967281 PMCID: PMC5725393 DOI: 10.1016/j.cell.2016.02.027] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 11/27/2022]
Abstract
Communication, the effective delivery of information, is fundamental to life across all scales and species. Nervous systems (by necessity) may be most specifically adapted among biological tissues for high rate and complexity of information transmitted, and thus, the properties of neural tissue and principles of its organization into circuits may illuminate capabilities and limitations of biological communication. Here, we consider recent developments in tools for studying neural circuits with particular attention to defining neuronal cell types by input and output information streams--i.e., by how they communicate. Complementing approaches that define cell types by virtue of genetic promoter/enhancer properties, this communication-based approach to defining cell types operationally by input/output (I/O) relationships links structure and function, resolves difficulties associated with single-genetic-feature definitions, leverages technology for observing and testing significance of precisely these I/O relationships in intact brains, and maps onto processes through which behavior may be adapted during development, experience, and evolution.
Collapse
Affiliation(s)
- Talia N Lerner
- Bioengineering Department, 318 Campus Drive, Stanford University, Stanford, CA 94305, USA
| | - Li Ye
- Bioengineering Department, 318 Campus Drive, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Bioengineering Department, 318 Campus Drive, Stanford University, Stanford, CA 94305, USA; Psychiatry Department, 318 Campus Drive, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, 318 Campus Drive, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Ohtaka-Maruyama C, Okado H. Molecular Pathways Underlying Projection Neuron Production and Migration during Cerebral Cortical Development. Front Neurosci 2015; 9:447. [PMID: 26733777 PMCID: PMC4682034 DOI: 10.3389/fnins.2015.00447] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG) progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP) migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1) maintenance and departure from the VZ of neural progenitor cells, (2) MP migration and transition to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| |
Collapse
|
46
|
García-Moreno F, Molnár Z. Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain. Proc Natl Acad Sci U S A 2015; 112:E5058-67. [PMID: 26305942 PMCID: PMC4568669 DOI: 10.1073/pnas.1506377112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The classical view of mammalian cortical development suggests that pyramidal neurons are generated in a temporal sequence, with all radial glial cells (RGCs) contributing to both lower and upper neocortical layers. A recent opposing proposal suggests there is a subgroup of fate-restricted RGCs in the early neocortex, which generates only upper-layer neurons. Little is known about the existence of fate restriction of homologous progenitors in other vertebrate species. We investigated the lineage of selected Emx2+ [vertebrate homeobox gene related to Drosophila empty spiracles (ems)] RGCs in mouse neocortex and chick forebrain and found evidence for both sequential and fate-restricted programs only in mouse, indicating that these complementary populations coexist in the developing mammalian but not avian brain. Among a large population of sequentially programmed RGCs in the mouse brain, a subset of self-renewing progenitors lack neurogenic potential during the earliest phase of corticogenesis. After a considerable delay, these progenitors generate callosal upper-layer neurons and glia. On the other hand, we found no homologous delayed population in any sectors of the chick forebrain. This finding suggests that neurogenic delay of selected RGCs may be unique to mammals and possibly associated with the evolution of the corpus callosum.
Collapse
Affiliation(s)
- Fernando García-Moreno
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom
| |
Collapse
|
47
|
Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries. Neuron 2015; 87:989-98. [PMID: 26299473 DOI: 10.1016/j.neuron.2015.07.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/29/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023]
Abstract
The medial ganglionic eminence (MGE) gives rise to the majority of mouse forebrain interneurons. Here, we examine the lineage relationship among MGE-derived interneurons using a replication-defective retroviral library containing a highly diverse set of DNA barcodes. Recovering the barcodes from the mature progeny of infected progenitor cells enabled us to unambiguously determine their respective lineal relationship. We found that clonal dispersion occurs across large areas of the brain and is not restricted by anatomical divisions. As such, sibling interneurons can populate the cortex, hippocampus striatum, and globus pallidus. The majority of interneurons appeared to be generated from asymmetric divisions of MGE progenitor cells, followed by symmetric divisions within the subventricular zone. Altogether, our findings uncover that lineage relationships do not appear to determine interneuron allocation to particular regions. As such, it is likely that clonally related interneurons have considerable flexibility as to the particular forebrain circuits to which they can contribute.
Collapse
|
48
|
Decoding astrocyte heterogeneity: New tools for clonal analysis. Neuroscience 2015; 323:10-9. [PMID: 25917835 DOI: 10.1016/j.neuroscience.2015.04.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/03/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022]
Abstract
The importance of astrocyte heterogeneity came out as a hot topic in neurosciences especially over the last decades, when the development of new methodologies allowed demonstrating the existence of big differences in morphological, neurochemical and physiological features between astrocytes. However, although the knowledge about the biology of astrocytes is increasing rapidly, an important characteristic that remained unexplored, until the last years, has been the relationship between astrocyte lineages and cell heterogeneity. To fill this gap, a new method called StarTrack was recently developed, a powerful genetic tool that allows tracking astrocyte lineages forming cell clones. Using StarTrack, a single astrocyte progenitor and its progeny can be specifically labeled from its generation, during embryonic development, to its final fate in the adult brain. Because of this specific labeling, astrocyte clones, exhibiting heterogeneous morphologies and features, can be easily analyzed in relation to their ontogenetic origin. This review summarizes how astrocyte heterogeneity can be decoded studying the embryonic development of astrocyte lineages and their clonal relationship. Finally, we discuss about some of the challenges and opportunities emerging in this exciting area of investigation.
Collapse
|
49
|
Figueres-Oñate M, García-Marqués J, Pedraza M, De Carlos JA, López-Mascaraque L. Spatiotemporal analyses of neural lineages after embryonic and postnatal progenitor targeting combining different reporters. Front Neurosci 2015; 9:87. [PMID: 25852461 PMCID: PMC4362314 DOI: 10.3389/fnins.2015.00087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/01/2015] [Indexed: 01/19/2023] Open
Abstract
Genetic lineage tracing with electroporation is one of the most powerful techniques to target neural progenitor cells and their progeny. However, the spatiotemporal relationship between neural progenitors and their final phenotype remain poorly understood. One critical factor to analyze the cell fate of progeny is reporter integration into the genome of transfected cells. To address this issue, we performed postnatal and in utero co-electroporations of different fluorescent reporters to label, in both cerebral cortex and olfactory bulb, the progeny of subventricular zone neural progenitors. By comparing fluorescent reporter expression in the adult cell progeny, we show a differential expression pattern within the same cell lineage, depending on electroporation stage and cell identity. Further, while neuronal lineages arise from many progenitors in proliferative zones after few divisions, glial lineages come from fewer progenitors that accomplish many cell divisions. Together, these data provide a useful guide to select a strategy to track the cell fate of a specific cell population and to address whether a different proliferative origin might be correlated with functional heterogeneity.
Collapse
Affiliation(s)
- Maria Figueres-Oñate
- Instituto Cajal-Consejo Superior de Investigaciones Científicas, Department of Molecular, Cellular and Developmental Neurobiology Madrid, Spain
| | - Jorge García-Marqués
- Instituto Cajal-Consejo Superior de Investigaciones Científicas, Department of Molecular, Cellular and Developmental Neurobiology Madrid, Spain
| | - Maria Pedraza
- Instituto Cajal-Consejo Superior de Investigaciones Científicas, Department of Molecular, Cellular and Developmental Neurobiology Madrid, Spain
| | - Juan Andrés De Carlos
- Instituto Cajal-Consejo Superior de Investigaciones Científicas, Department of Molecular, Cellular and Developmental Neurobiology Madrid, Spain
| | - Laura López-Mascaraque
- Instituto Cajal-Consejo Superior de Investigaciones Científicas, Department of Molecular, Cellular and Developmental Neurobiology Madrid, Spain
| |
Collapse
|
50
|
Richier B, Salecker I. Versatile genetic paintbrushes: Brainbow technologies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:161-80. [PMID: 25491327 PMCID: PMC4384809 DOI: 10.1002/wdev.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/15/2014] [Indexed: 11/07/2022]
Abstract
UNLABELLED Advances in labeling technologies are instrumental to study the developmental mechanisms that control organ formation and function at the cellular level. Until recently, genetic tools relied on the expression of single markers to visualize individual cells or lineages in developing and adult animals. Exploiting the expanding color palette of fluorescent proteins and the power of site-specific recombinases in rearranging DNA fragments, the development of Brainbow strategies in mice made it possible to stochastically label many cells in different colors within the same sample. Over the past years, these pioneering approaches have been adapted for other experimental model organisms, including Drosophila melanogaster, zebrafish, and chicken. Balancing the distinct requirements of single cell and clonal analyses, adjustments were made that both enhance and expand the functionality of these tools. Multicolor cell labeling techniques have been successfully applied in studies analyzing the cellular components of neural circuits and other tissues, and the compositions and interactions of lineages. While being continuously refined, Brainbow technologies have thus found a firm place in the genetic toolboxes of developmental and neurobiologists. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Benjamin Richier
- MRC National Institute for Medical Research, Division of Molecular NeurobiologyLondon, UK
| | - Iris Salecker
- MRC National Institute for Medical Research, Division of Molecular NeurobiologyLondon, UK
| |
Collapse
|