1
|
Escamilla-Vega E, Seton LWG, Kyomen S, Murillo-Rincón AP, Petersen J, Tautz D, Kaucká M. Evolution of the essential gene MN1 during the macroevolutionary transition toward patterning the vertebrate hindbrain. Proc Natl Acad Sci U S A 2025; 122:e2416061122. [PMID: 40424121 DOI: 10.1073/pnas.2416061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/27/2025] [Indexed: 05/29/2025] Open
Abstract
The tight link between brain and skull formation is a fundamental aspect of vertebrate evolution and embryogenesis. Their developmental synchronization is essential for structural and functional integration. The brain and skull shape coevolution is evident along the vertebrate phylogeny; however, the genetic basis underlying their close evolutionary and developmental relationship remains little explored. Here, we reveal the evolution and function of the MN1 gene that was previously found to be associated with significant shape variation in the mouse skull and the formation of cranial bones. We show that the vertebrate MN1 gene evolved from an ancestral deuterostome sequence. In vertebrates, the MN1 gene structure, synteny, and spatiotemporal expression pattern are remarkably conserved, indicating that the gene carries out a core function. Using a newly generated mouse knock-out model, we demonstrate in vivo that Mn1 integrated into an ancient molecular machinery and controls the expression of the Cyp26 genes in the developing hindbrain, thereby tuning the retinoic acid levels and patterning of the developing central nervous system. This study thus showcases the emergence of a novel gene function from an ancestral sequence and its role in generating a macroevolutionary innovation. The data expand our knowledge of brain and skull codevelopment and coevolution and highlight the role of this regulatory loop in craniofacial human syndromes.
Collapse
Affiliation(s)
| | - Louk W G Seton
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Stella Kyomen
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | | | - Julian Petersen
- Department of Orthodontics, University Leipzig Medical Center, Leipzig 04103, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
2
|
Chen D, Zhuang Z, Huang M, Huang Y, Yan Y, Zhang Y, Lin Y, Jin X, Wang Y, Huang J, Xu W, Pan J, Wang H, Huang F, Liao K, Cheng M, Zhu Z, Bai Y, Niu Z, Zhang Z, Xiang Y, Wei X, Yang T, Zeng T, Dong Y, Lei Y, Sun Y, Wang J, Yang H, Sun Y, Cao G, Poo M, Liu L, Naumann RK, Xu C, Wang Z, Xu X, Liu S. Genomic evolution reshapes cell-type diversification in the amniote brain. Dev Cell 2025:S1534-5807(25)00252-7. [PMID: 40367951 DOI: 10.1016/j.devcel.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 03/05/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Over 320 million years of evolution, amniotes have developed complex brains and cognition through largely unexplored genetic and gene expression mechanisms. We created a comprehensive single-cell atlas of over 1.3 million cells from the telencephalon and cerebellum of turtles, zebra finches, pigeons, mice, and macaques, employing single-cell resolution spatial transcriptomics to validate gene expression patterns across species. Our study identifies significant species-specific variations in cell types, highlighting their conservation and diversification in evolution. We found pronounced differences in telencephalon excitatory neurons (EXs) and cerebellar cell types between birds and mammals. Birds predominantly express SLC17A6 in EX, whereas mammals express SLC17A7 in the neocortex and SLC17A6 elsewhere, possibly due to loss of function of SLC17A7 in birds. Additionally, we identified a bird-specific Purkinje cell subtype (SVIL+), implicating the lysine-specific demethylase 11 (LSD1)/KDM1A pathway in learning and circadian rhythms and containing numerous positively selected genes, which suggests an evolutionary optimization of cerebellar functions for ecological and behavioral adaptation. Our findings elucidate the complex interplay between genetic evolution and environmental adaptation, underscoring the role of genetic diversification in the development of specialized cell types across amniotes.
Collapse
Affiliation(s)
- Duoyuan Chen
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Yuting Yan
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanru Zhang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Xiaoying Jin
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yuanmei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Jinfeng Huang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Hong Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Fubaoqian Huang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Kuo Liao
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Zhiyong Zhu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yinqi Bai
- BGI Research, Hangzhou 310030, China
| | - Zhiwei Niu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ze Zhang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Zeng
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Yuliang Dong
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Ying Lei
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yangang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Wang
- BGI Research, Hangzhou 310030, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; James D. Watson Institute of Genome Sciences, Hangzhou 310029, China
| | - Yidi Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Cao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Muming Poo
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Robert K Naumann
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China.
| | - Chun Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China.
| |
Collapse
|
3
|
Ghiyamihoor F, Rad AA, Marzban H. The Nuclear Transitory Zone: A Key Player in the Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2025; 24:92. [PMID: 40314748 DOI: 10.1007/s12311-025-01848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
The nuclear transitory zone (NTZ), while crucial during cerebellar development, has remained elusive due to its transient nature and the technical limitations in observing this dynamic structure in vivo. Traditionally considered an assembly point for immature neurons of the prospective cerebellar nuclei, recent studies highlight the NTZ's rich cellular and molecular heterogeneity in the early-developing region at the rostral end of the cerebellar primordium. While much is known about its molecular diversity, the precise functional role of NTZ in cerebellar development remains unclear. This review synthesizes current knowledge of the NTZ, focusing on its developmental origin, cellular and molecular composition, and potential role in regulating cerebellar development. We explore studies primarily conducted in mice, exploring the NTZ development from the rhombic lip, the ventricular zone, and possibly the mesencephalon. Special attention is given to molecules such as TLX3, Contactin-1 (CNTN1), OLIG2, Reelin (RELN), LMX1A, and TBR2, which are prominently expressed in the NTZ during early cerebellar development. Evidence suggests that the NTZ is more than just a neuronal assembly site; its molecular markers and gene expression profile indicate a role in circuit formation and regulation within the cerebellar primordium. We suggest that the NTZ may contribute to early cerebellar circuit formation, potentially acting as a regulator or organizer of cerebellar development. However, caution is necessary in attributing developmental roles solely based on gene expression patterns. Future studies should focus on the functional consequences of gene expression in the NTZ and its interactions with developing cerebellar circuits.
Collapse
Affiliation(s)
- Farshid Ghiyamihoor
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine Rady Faculty of Health Sciences, University of Manitoba, Room 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Azam Asemi Rad
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine Rady Faculty of Health Sciences, University of Manitoba, Room 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine Rady Faculty of Health Sciences, University of Manitoba, Room 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
4
|
Sanchez V, Smith MD, James SH. Effects of Cytomegalovirus-Induced Neuroinflammation on Central Nervous System Development. J Pediatric Infect Dis Soc 2025; 14:piaf021. [PMID: 40276916 DOI: 10.1093/jpids/piaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/26/2025] [Indexed: 04/26/2025]
Abstract
Congenital cytomegalovirus (cCMV) infection is associated with long-term central nervous system sequelae, including sensorineural hearing loss and neurodevelopmental delay, but mechanisms of neuropathogenesis in the developing fetal brain are incompletely understood. Animal models biologically representative of congenital infection have been used to characterize the effects of cCMV on neurogenesis, brain development, and cochlear development. Murine models utilizing host transcriptional analyses have been helpful in understanding the inflammatory response to cCMV infection and have demonstrated a correlation between elevation of proinflammatory mediators and altered brain and cochlear morphology during development. In this article, we review mechanisms of neuropathogenesis in cCMV animal models, with particular focus on the role of CMV-induced neuroinflammation in the impairment of fetal brain development.
Collapse
Affiliation(s)
- Veronica Sanchez
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew D Smith
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Scott H James
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Ashitomi H, Nakagawa T, Nakagawa M, Hosoi T. Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders. Biomedicines 2025; 13:810. [PMID: 40299365 PMCID: PMC12024872 DOI: 10.3390/biomedicines13040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeostasis. This process is orchestrated through a hierarchical enzymatic cascade involving three key enzymes: the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligase. The final step of ubiquitination is catalyzed by the E3 ubiquitin ligase, which facilitates the transfer of ubiquitin from the E2 enzyme to the substrate, thereby dictating which proteins undergo ubiquitination. Emerging evidence underscores the critical roles of ubiquitin ligases in neurodevelopment, regulating fundamental processes such as neuronal polarization, axonal outgrowth, synaptogenesis, and synaptic function. Mutations in genes encoding ubiquitin ligases and the consequent dysregulation of these pathways have been increasingly implicated in a spectrum of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder. This review synthesizes current knowledge on the molecular mechanisms underlying neurodevelopment regulated by Cullin-RING ubiquitin ligases-the largest subclass of ubiquitin ligases-and their involvement in the pathophysiology of neurodevelopmental disorders. A deeper understanding of these mechanisms holds significant promise for informing novel therapeutic strategies, ultimately advancing clinical outcomes for individuals affected by neurodevelopmental disorders.
Collapse
Affiliation(s)
- Honoka Ashitomi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| | - Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube 755-8505, Japan
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Ube 755-8611, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| |
Collapse
|
6
|
Hussein MT, Kotb NM, Mokhtar DM, Hussein MM. Developmental Dynamics of the Rabbit Cerebellum During Fetal Maturation With Insights into the Role of Radial Glia in Neuronal Development. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf015. [PMID: 40156886 DOI: 10.1093/mam/ozaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
This study examines the development of the rabbit cerebellum from the 10th day postconception to full-term fetal age, with a particular focus on the role of radial glial cells in the differentiation of cerebellar neurons. A total of 35 embryonic samples were meticulously dissected and microscopically analyzed. On embryonic day (ED) 12, cerebellar primordia, consisting of the ventricular neuroepithelium and rhombic lip, were observed. By ED16, significant neuronal cell proliferation and migration in both the radial and tangential directions were noted. On ED 20, lamination processes began, forming the external granular layer (EGL) and Purkinje cell plate (PCP) with the support of radial glial cells. By ED 25, the cerebellar cortex had developed three distinct layers: the EGL, PCP, and the prospective molecular layer (PML), with radial glial cells localized in the PCP. Differentiation continued, and upon ED30, a new cortical layer, the internal granular layer, was evident. Additionally, the gradual replacement of nestin by glial fibrillary acidic protein marked the differentiation of radial glia into Bergmann glia at ED 25 and ED 30. β-III tubulin, a marker of differentiated neurons, was detected in the inner layer of EGL and PCP during these stages. In conclusion, this study highlights the pivotal role of radial glial cells in the layered organization and neuronal differentiation of the developing rabbit cerebellum. The developmental trajectory observed provides valuable insights into cerebellar morphogenesis and supports the relevance of the rabbit model for exploring neurodevelopmental processes.
Collapse
Affiliation(s)
- Manal T Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Norhan M Kotb
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Department of Anatomy and Histology, School of Veterinary Medicine, Badr University in Assiut, Assiut 11829, Egypt
| | - Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
7
|
Laumonnerie C, Shamambo M, Stabley DR, Lewis TL, Trivedi N, Howell D, Solecki DJ. Siah2 antagonism of Pard3/JamC modulates Ntn1-Dcc signaling to regulate cerebellar granule neuron germinal zone exit. Nat Commun 2025; 16:355. [PMID: 39774925 PMCID: PMC11706986 DOI: 10.1038/s41467-024-55400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Exiting a germinal zone (GZ) initiates a cascade of events that promote neuronal maturation and circuit assembly. Developing neurons and their progenitors must interpret various niche signals-such as morphogens, guidance molecules, extracellular matrix components, and adhesive cues-to navigate this region. How differentiating neurons in mouse brains integrate and adapt to multiple cell-extrinsic niche cues with their cell-intrinsic machinery in exiting a GZ is unknown. We establish cooperation between cell polarity-regulated adhesion and Netrin-1 signaling comprises a coincidence detection circuit repelling maturing neurons from their GZ. In this circuit, the Partitioning defective 3 (Pard3) polarity protein and Junctional adhesion molecule-C (JamC) adhesion molecule promote, while the Seven in absentia 2 (Siah2) ubiquitin ligase inhibits, Deleted in colorectal cancer (Dcc) receptor surface recruitment to gate differentiation linked repulsion to GZ Netrin-1. These results demonstrate cell polarity as a central integrator of adhesive- and guidance cues cooperating to spur GZ exit.
Collapse
Affiliation(s)
- Christophe Laumonnerie
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - Maleelo Shamambo
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - Daniel R Stabley
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - Tommy L Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Niraj Trivedi
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - Danielle Howell
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - David J Solecki
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA.
| |
Collapse
|
8
|
Chen Z, Tang Y, Liu X, Li W, Hu Y, Hu B, Xu T, Zhang R, Xia L, Zhang JX, Xiao Z, Chen J, Feng Z, Zhou Y, He Q, Qiu J, Lei X, Chen H, Qin S, Feng T. Edge-centric connectome-genetic markers of bridging factor to comorbidity between depression and anxiety. Nat Commun 2024; 15:10560. [PMID: 39632897 PMCID: PMC11618586 DOI: 10.1038/s41467-024-55008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Depression-anxiety comorbidity is commonly attributed to the occurrence of specific symptoms bridging the two disorders. However, the significant heterogeneity of most bridging symptoms presents challenges for psychopathological interpretation and clinical applicability. Here, we conceptually established a common bridging factor (cb factor) to characterize a general structure of these bridging symptoms, analogous to the general psychopathological p factor. We identified a cb factor from 12 bridging symptoms in depression-anxiety comorbidity network. Moreover, this cb factor could be predicted using edge-centric connectomes with robust generalizability, and was characterized by connectome patterns in attention and frontoparietal networks. In an independent twin cohort, we found that these patterns were moderately heritable, and identified their genetic connectome-transcriptional markers that were associated with the neurobiological enrichment of vasculature and cerebellar development, particularly during late-childhood-to-young-adulthood periods. Our findings revealed a general factor of bridging symptoms and its neurobiological architectures, which enriched neurogenetic understanding of depression-anxiety comorbidity.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China.
- School of Psychology, Southwest University, Chongqing, China.
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| | - Yancheng Tang
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Wei Li
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yuanyuan Hu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ting Xu
- School of Psychology, Southwest University, Chongqing, China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Zhang
- School of Psychology, Southwest University, Chongqing, China
| | - Lei Xia
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Jing-Xuan Zhang
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ji Chen
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Qinghua He
- School of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- School of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Tingyong Feng
- School of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Inskeep KA, Crase B, Dayarathna T, Stottmann RW. SMPD4-mediated sphingolipid metabolism regulates brain and primary cilia development. Development 2024; 151:dev202645. [PMID: 39470011 PMCID: PMC11586524 DOI: 10.1242/dev.202645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Genetic variants in multiple sphingolipid biosynthesis genes cause human brain disorders. A recent study looked at people from 12 unrelated families with variants in the gene SMPD4, a neutral sphingomyelinase that metabolizes sphingomyelin into ceramide at an early stage of the biosynthesis pathway. These individuals have severe developmental brain malformations, including microcephaly and cerebellar hypoplasia. The disease mechanism of SMPD4 was not known and so we pursued a new mouse model. We hypothesized that the role of SMPD4 in producing ceramide is important for making primary cilia, a crucial organelle mediating cellular signaling. We found that the mouse model has cerebellar hypoplasia due to failure of Purkinje cell development. Human induced pluripotent stem cells lacking SMPD4 exhibit neural progenitor cell death and have shortened primary cilia, which is rescued by adding exogenous ceramide. SMPD4 production of ceramide is crucial for human brain development.
Collapse
Affiliation(s)
- Katherine A. Inskeep
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Bryan Crase
- Department of Neuroscience, The Ohio State University College of Arts and Sciences, Columbus, OH 43210, USA
| | - Thamara Dayarathna
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Rolf W. Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Yang G, Yang Y, Song Z, Chen L, Liu F, Li Y, Jiang S, Xue S, Pei J, Wu Y, He Y, Chu B, Wu H. Spliceosomal GTPase Eftud2 deficiency-triggered ferroptosis leads to Purkinje cell degeneration. Neuron 2024; 112:3452-3469.e9. [PMID: 39153477 DOI: 10.1016/j.neuron.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Spliceosomal GTPase elongation factor Tu GTP binding domain containing 2 (EFTUD2) is a causative gene for mandibulofacial dysostosis with microcephaly (MFDM) syndrome comprising cerebellar hypoplasia and motor dysfunction. How EFTUD2 deficiency contributes to these symptoms remains elusive. Here, we demonstrate that specific ablation of Eftud2 in cerebellar Purkinje cells (PCs) in mice results in severe ferroptosis, PC degeneration, dyskinesia, and cerebellar atrophy, which recapitulates phenotypes observed in patients with MFDM. Mechanistically, Eftud2 promotes Scd1 and Gch1 expression, upregulates monounsaturated fatty acid phospholipids, and enhances antioxidant activity, thereby suppressing PC ferroptosis. Importantly, we identified transcription factor Atf4 as a downstream target to regulate anti-ferroptosis effects in PCs in a p53-independent manner. Inhibiting ferroptosis efficiently rescued cerebellar deficits in Eftud2 cKO mice. Our data reveal an important role of Eftud2 in maintaining PC survival, showing that pharmacologically or genetically inhibiting ferroptosis may be a promising therapeutic strategy for EFTUD2 deficiency-induced disorders.
Collapse
Affiliation(s)
- Guochao Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jie Pei
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
11
|
Lin IH, Li YR, Chang CH, Cheng YW, Wang YT, Tsai YS, Lin PY, Kao CH, Su TY, Hsu CS, Tung CY, Hsu PH, Ayrault O, Chung BC, Tsai JW, Wang WJ. Regulation of primary cilia disassembly through HUWE1-mediated TTBK2 degradation plays a crucial role in cerebellar development and medulloblastoma growth. Cell Death Differ 2024; 31:1349-1361. [PMID: 38879724 PMCID: PMC11445238 DOI: 10.1038/s41418-024-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 10/03/2024] Open
Abstract
Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation. We show that TTBK2 is highly expressed in proliferating GNPs under Sonic Hedgehog (SHH) signaling, coinciding with active GNP proliferation and the presence of primary cilia. TTBK2 stabilizes primary cilia by inhibiting their disassembly, thereby promoting GNP proliferation in response to SHH. Mechanistically, we identify HUWE1 as a novel centrosomal E3 ligase that facilitates primary cilia disassembly by targeting TTBK2 degradation. Disassembly of primary cilia serves as a trigger for GNP differentiation, allowing their migration from the external granule layer (EGL) of the cerebellum to the internal granule layer (IGL) for subsequent maturation. Moreover, we have established a link between TTBK2 and SHH-type medulloblastoma (SHH-MB), a tumor characterized by uncontrolled GNP proliferation. TTBK2 depletion inhibits SHH-MB proliferation, indicating that TTBK2 may be a potential therapeutic target for this cancer type. In summary, our findings reveal the mechanism governing cerebellar development and highlight a potential anti-cancer strategy for SHH-MB.
Collapse
Affiliation(s)
- I-Hsuan Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yue-Ru Li
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Wen Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Ting Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 300, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pei-Yi Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 300, Taiwan
| | - Chien-Han Kao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ting-Yu Su
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chih-Sin Hsu
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, 404, Taiwan
| | - Jin-Wu Tsai
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Won-Jing Wang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
12
|
Xu F, Wang Y, Wang W, Liang W, Tang Y, Liu S. Preterm Birth Alters the Regional Development and Structural Covariance of Cerebellum at Term-Equivalent Age. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1932-1941. [PMID: 38581612 DOI: 10.1007/s12311-024-01691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Preterm birth is associated with increased risk for a spectrum of neurodevelopmental disabilities. The cerebellum is implicated in a wide range of cognitive functions extending beyond sensorimotor control and plays an increasingly recognized role in brain development. Morphometric studies based on volume analyses have revealed impaired cerebellar development in preterm infants. However, the structural covariance between the cerebellum and cerebral cortex has not been studied during the neonatal period, and the extent to which structural covariance is affected by preterm birth remains unknown. In this study, using the structural MR images of 52 preterm infants scanned at term-equivalent age and 312 full-term controls from the Developing Human Connectome Project, we compared volumetric growth, local cerebellum shape development and cerebello-cerebral structural covariance between the two groups. We found that although there was no significant difference in the overall volume measurements between preterm and full-term infants, the shape measurements were different. Compared with the control infants, preterm infants had significantly larger thickness in the vermis and lower thickness in the lateral portions of the bilateral cerebral hemispheres. The structural covariance between the cerebellum and frontal and parietal lobes was significantly greater in preterm infants than in full-term controls. The findings in this study suggested that cerebellar development and cerebello-cerebral structural covariance may be affected by premature birth.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Yu Wang
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjun Wang
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
13
|
Li Z, Abram L, Peall KJ. Deciphering the Pathophysiological Mechanisms Underpinning Myoclonus Dystonia Using Pluripotent Stem Cell-Derived Cellular Models. Cells 2024; 13:1520. [PMID: 39329704 PMCID: PMC11430605 DOI: 10.3390/cells13181520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Dystonia is a movement disorder with an estimated prevalence of 1.2% and is characterised by involuntary muscle contractions leading to abnormal postures and pain. Only symptomatic treatments are available with no disease-modifying or curative therapy, in large part due to the limited understanding of the underlying pathophysiology. However, the inherited monogenic forms of dystonia provide an opportunity for the development of disease models to examine these mechanisms. Myoclonus Dystonia, caused by SGCE mutations encoding the ε-sarcoglycan protein, represents one of now >50 monogenic forms. Previous research has implicated the involvement of the basal ganglia-cerebello-thalamo-cortical circuit in dystonia pathogenesis, but further work is needed to understand the specific molecular and cellular mechanisms. Pluripotent stem cell technology enables a patient-derived disease modelling platform harbouring disease-causing mutations. In this review, we discuss the current understanding of the aetiology of Myoclonus Dystonia, recent advances in producing distinct neuronal types from pluripotent stem cells, and their application in modelling Myoclonus Dystonia in vitro. Future research employing pluripotent stem cell-derived cellular models is crucial to elucidate how distinct neuronal types may contribute to dystonia and how disruption to neuronal function can give rise to dystonic disorders.
Collapse
Affiliation(s)
- Zongze Li
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (Z.L.); (L.A.)
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Laura Abram
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (Z.L.); (L.A.)
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Kathryn J. Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (Z.L.); (L.A.)
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
14
|
Zhang Y, Kunii M, Taniguchi M, Yoshimura SI, Harada A. Rab6-Mediated Polarized Transport of Synaptic Vesicle Precursors Is Essential for the Establishment of Neuronal Polarity and Brain Formation. J Neurosci 2024; 44:e2334232024. [PMID: 38830762 PMCID: PMC11223463 DOI: 10.1523/jneurosci.2334-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.
Collapse
Affiliation(s)
- Yu Zhang
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kunii
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akihiro Harada
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Sung CYW, Li M, Jonjic S, Sanchez V, Britt WJ. Cytomegalovirus infection lengthens the cell cycle of granule cell precursors during postnatal cerebellar development. JCI Insight 2024; 9:e175525. [PMID: 38855871 PMCID: PMC11382886 DOI: 10.1172/jci.insight.175525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection in infants infected in utero can lead to a variety of neurodevelopmental disorders. However, mechanisms underlying altered neurodevelopment in infected infants remain poorly understood. We have previously described a murine model of congenital HCMV infection in which murine CMV (MCMV) spreads hematogenously and establishes a focal infection in all regions of the brain of newborn mice, including the cerebellum. Infection resulted in disruption of cerebellar cortical development characterized by reduced cerebellar size and foliation. This disruption was associated with altered cell cycle progression of the granule cell precursors (GCPs), which are the progenitors that give rise to granule cells (GCs), the most abundant neurons in the cerebellum. In the current study, we have demonstrated that MCMV infection leads to prolonged GCP cell cycle, premature exit from the cell cycle, and reduced numbers of GCs resulting in cerebellar hypoplasia. Treatment with TNF-α neutralizing antibody partially normalized the cell cycle alterations of GCPs and altered cerebellar morphogenesis induced by MCMV infection. Collectively, our results argue that virus-induced inflammation altered the cell cycle of GCPs resulting in a reduced numbers of GCs and cerebellar cortical hypoplasia, thus providing a potential mechanism for altered neurodevelopment in fetuses infected with HCMV.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Mao Li
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Stipan Jonjic
- Department of Histology and Embryology and
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Veronica Sanchez
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Neurobiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Senovilla-Ganzo R, García-Moreno F. The Phylotypic Brain of Vertebrates, from Neural Tube Closure to Brain Diversification. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:45-68. [PMID: 38342091 DOI: 10.1159/000537748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. SUMMARY Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. KEY MESSAGES The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.
Collapse
Affiliation(s)
- Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
17
|
Cheung G, Pauler FM, Koppensteiner P, Krausgruber T, Streicher C, Schrammel M, Gutmann-Özgen N, Ivec AE, Bock C, Shigemoto R, Hippenmeyer S. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron 2024; 112:230-246.e11. [PMID: 38096816 DOI: 10.1016/j.neuron.2023.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 01/21/2024]
Abstract
The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.
Collapse
Affiliation(s)
- Giselle Cheung
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin Schrammel
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Natalie Gutmann-Özgen
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Alexis E Ivec
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
18
|
Iskusnykh IY, Zakharova AA, Kryl’skii ED, Popova TN. Aging, Neurodegenerative Disorders, and Cerebellum. Int J Mol Sci 2024; 25:1018. [PMID: 38256091 PMCID: PMC10815822 DOI: 10.3390/ijms25021018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
An important part of the central nervous system (CNS), the cerebellum is involved in motor control, learning, reflex adaptation, and cognition. Diminished cerebellar function results in the motor and cognitive impairment observed in patients with neurodegenerative disorders such as Alzheimer's disease (AD), vascular dementia (VD), Parkinson's disease (PD), Huntington's disease (HD), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), Friedreich's ataxia (FRDA), and multiple sclerosis (MS), and even during the normal aging process. In most neurodegenerative disorders, impairment mainly occurs as a result of morphological changes over time, although during the early stages of some disorders such as AD, the cerebellum also serves a compensatory function. Biological aging is accompanied by changes in cerebellar circuits, which are predominantly involved in motor control. Despite decades of research, the functional contributions of the cerebellum and the underlying molecular mechanisms in aging and neurodegenerative disorders remain largely unknown. Therefore, this review will highlight the molecular and cellular events in the cerebellum that are disrupted during the process of aging and the development of neurodegenerative disorders. We believe that deeper insights into the pathophysiological mechanisms of the cerebellum during aging and the development of neurodegenerative disorders will be essential for the design of new effective strategies for neuroprotection and the alleviation of some neurodegenerative disorders.
Collapse
Affiliation(s)
- Igor Y. Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anastasia A. Zakharova
- Department of Medical Biochemistry, Faculty of Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov St. 1, Moscow 117997, Russia
| | - Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| |
Collapse
|
19
|
Newman J, Tong X, Tan A, Yeasky T, De Paiva VN, Presicce P, Kannan PS, Williams K, Damianos A, Tamase Newsam M, Benny MK, Wu S, Young KC, Miller LA, Kallapur SG, Chougnet CA, Jobe AH, Brambilla R, Schmidt AF. Chorioamnionitis accelerates granule cell and oligodendrocyte maturation in the cerebellum of preterm nonhuman primates. J Neuroinflammation 2024; 21:16. [PMID: 38200558 PMCID: PMC10777625 DOI: 10.1186/s12974-024-03012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.
Collapse
Affiliation(s)
- Josef Newman
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Xiaoying Tong
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - April Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Toni Yeasky
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Vanessa Nunes De Paiva
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Pietro Presicce
- Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Paranthaman S Kannan
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Kevin Williams
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Andreas Damianos
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Marione Tamase Newsam
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Merline K Benny
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Shu Wu
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Karen C Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, USA
| | - Suhas G Kallapur
- Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Claire A Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Alan H Jobe
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Augusto F Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
- Batchelor Children's Research Institute, 1580 NW 10Th Ave, Room 348, Miami, FL, 33146, USA.
| |
Collapse
|
20
|
Sepp M, Leiss K, Murat F, Okonechnikov K, Joshi P, Leushkin E, Spänig L, Mbengue N, Schneider C, Schmidt J, Trost N, Schauer M, Khaitovich P, Lisgo S, Palkovits M, Giere P, Kutscher LM, Anders S, Cardoso-Moreira M, Sarropoulos I, Pfister SM, Kaessmann H. Cellular development and evolution of the mammalian cerebellum. Nature 2024; 625:788-796. [PMID: 38029793 PMCID: PMC10808058 DOI: 10.1038/s41586-023-06884-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.
Collapse
Affiliation(s)
- Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Piyush Joshi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lisa Spänig
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Noe Mbengue
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nils Trost
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Maria Schauer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Philipp Khaitovich
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Peter Giere
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Lena M Kutscher
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
21
|
Inskeep KA, Crase B, Stottmann RW. SMPD4 mediated sphingolipid metabolism regulates brain and primary cilia development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571873. [PMID: 38168190 PMCID: PMC10760124 DOI: 10.1101/2023.12.15.571873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Genetic variants in multiple sphingolipid biosynthesis genes cause human brain disorders. A recent study collected patients from twelve unrelated families with variants in the gene SMPD4 , a neutral sphingomyelinase which metabolizes sphingomyelin into ceramide at an early stage of the biosynthesis pathway. These patients have severe developmental brain malformations including microcephaly and cerebellar hypoplasia. However, the mechanism of SMPD4 was not known and we pursued a new mouse model. We hypothesized that the role of SMPD4 in producing ceramide is important for making primary cilia, a crucial organelle mediating cellular signaling. We found that the mouse model has cerebellar hypoplasia due to failure of Purkinje cell development. Human induced pluripotent stem cells exhibit neural progenitor cell death and have shortened primary cilia which is rescued by adding exogenous ceramide. SMPD4 production of ceramide is crucial for human brain development.
Collapse
|
22
|
Gebril HM, Lai T, Fedele DE, Wahba A. Developmental and foliation changes due to dysregulation of adenosine kinase in the cerebellum. Sci Rep 2023; 13:19831. [PMID: 37963945 PMCID: PMC10645999 DOI: 10.1038/s41598-023-47098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Adenosine kinase (ADK), the major adenosine-metabolizing enzyme, plays a key role in brain development and disease. In humans, mutations in the Adk gene have been linked to developmental delay, stunted growth, and intellectual disability. To better understand the role of ADK in brain development, it is important to dissect the specific roles of the two isoforms of the enzyme expressed in the cytoplasm (ADK-S) and cell nucleus (ADK-L). We, therefore, studied brain development in Adk-tg transgenic mice, which only express ADK-S in the absence of ADK-L throughout development. In the mutant animals, we found a reduction in the overall brain, body size, and weight during fetal and postnatal development. As a major developmental abnormality, we found a profound change in the foliation pattern of the cerebellum. Strikingly, our results indicated aberrant Purkinje cells arborization at P9 and accelerated cell death at P6 and P9. We found defects in cerebellar cell proliferation and migration using a bromodeoxyuridine (BrdU)-based cell proliferation assay at postnatal day 7. Our data demonstrate that dysregulation of ADK expression during brain development profoundly affects brain growth and differentiation.
Collapse
Affiliation(s)
- Hoda M Gebril
- Departement of Biomedical Engineering, School of Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Tho Lai
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Denise E Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Amir Wahba
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
- Chemistry Department, Faculty of Science, Damietta University, New Damietta City, 34518, Egypt
| |
Collapse
|
23
|
Merighi A, Lossi L. Co-cultures of cerebellar slices from mice with different reelin genetic backgrounds as a model to study cortical lamination. F1000Res 2023; 11:1183. [PMID: 37881513 PMCID: PMC10594056 DOI: 10.12688/f1000research.126787.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
Background: Reelin has fundamental functions in the developing and mature brain. Its absence gives rise to the Reeler phenotype in mice, the first described cerebellar mutation. In homozygous mutants missing the Reelin gene ( reln -/-), neurons are incapable of correctly positioning themselves in layered brain areas such as the cerebral and cerebellar cortices. We here demonstrate that by employing ex vivo cultured cerebellar slices one can reduce the number of animals and use a non-recovery procedure to analyze the effects of Reelin on the migration of Purkinje neurons (PNs). Methods: We generated mouse hybrids (L7-GFP relnF1/) with green fluorescent protein (GFP)-tagged PNs, directly visible under fluorescence microscopy. We then cultured the slices obtained from mice with different reln genotypes and demonstrated that when the slices from reln -/- mutants were co-cultured with those from reln +/- mice, the Reelin produced by the latter induced migration of the PNs to partially rescue the normal layered cortical histology. We have confirmed this observation with Voronoi tessellation to analyze PN dispersion. Results: In images of the co-cultured slices from reln -/- mice, Voronoi polygons were larger than in single-cultured slices of the same genetic background but smaller than those generated from slices of reln +/- animals. The mean roundness factor, area disorder, and roundness factor homogeneity were different when slices from reln -/- mice were cultivated singularly or co-cultivated, supporting mathematically the transition from the clustered organization of the PNs in the absence of Reelin to a layered structure when the protein is supplied ex vivo. Conclusions: Neurobiologists are the primary target users of this 3Rs approach. They should adopt it for the possibility to study and manipulate ex vivo the activity of a brain-secreted or genetically engineered protein (scientific perspective), the potential reduction (up to 20%) of the animals used, and the total avoidance of severe surgery (3Rs perspective).
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Italy
| | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Italy
| |
Collapse
|
24
|
Merighi A, Lossi L. Co-cultures of cerebellar slices from mice with different reelin genetic backgrounds as a model to study cortical lamination. F1000Res 2023; 11:1183. [PMID: 37881513 PMCID: PMC10594056 DOI: 10.12688/f1000research.126787.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
Background: Reelin has fundamental functions in the developing and mature brain. Its absence gives rise to the Reeler phenotype in mice, the first described cerebellar mutation. In homozygous mutants missing the Reelin gene ( reln -/-), neurons are incapable of correctly positioning themselves in layered brain areas such as the cerebral and cerebellar cortices. We here demonstrate that by employing ex vivo cultured cerebellar slices one can reduce the number of animals and use a non-recovery procedure to analyze the effects of Reelin on the migration of Purkinje neurons (PNs). Methods: We generated mouse hybrids (L7-GFP relnF1/) with green fluorescent protein (GFP)-tagged PNs, directly visible under fluorescence microscopy. We then cultured the slices obtained from mice with different reln genotypes and demonstrated that when the slices from reln -/- mutants were co-cultured with those from reln +/- mice, the Reelin produced by the latter induced migration of the PNs to partially rescue the normal layered cortical histology. We have confirmed this observation with Voronoi tessellation to analyze PN dispersion. Results: In images of the co-cultured slices from reln -/- mice, Voronoi polygons were larger than in single-cultured slices of the same genetic background but smaller than those generated from slices of reln +/- animals. The mean roundness factor, area disorder, and roundness factor homogeneity were different when slices from reln -/- mice were cultivated singularly or co-cultivated, supporting mathematically the transition from the clustered organization of the PNs in the absence of Reelin to a layered structure when the protein is supplied ex vivo. Conclusions: Neurobiologists are the primary target users of this 3Rs approach. They should adopt it for the possibility to study and manipulate ex vivo the activity of a brain-secreted or genetically engineered protein (scientific perspective), the potential reduction (up to 20%) of the animals used, and the total avoidance of severe surgery (3Rs perspective).
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Italy
| | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Italy
| |
Collapse
|
25
|
Wei C, Benzow K, Koob MD, Gomez CM, Du X. The Transcription Factor, α1ACT, Acts Through a MicroRNA Network to Regulate Neurogenesis and Cell Death During Neonatal Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2023; 22:651-662. [PMID: 35729466 PMCID: PMC10307715 DOI: 10.1007/s12311-022-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
MicroRNAs, a class of small RNA regulators, function throughout neurodevelopment, from neural stem cell neurogenesis to neuronal maturation, synaptic formation, and plasticity. α1ACT, a transcription factor (TF), plays a critical role in neonatal cerebellar development by regulating an ensemble of genes. Of these, ChIP-seq analysis matched near 50% genes directly regulated by α1ACT. Yet, more than half the regulated transcripts lacked direct interaction with α1ACT. To investigate whether α1ACT acts through a microRNA network, we studied α1ACT-associated simultaneous miRNA:mRNA transcriptome profiles, using miRNA-seq paired with RNA-seq. Thirty-one differentially expressed miRNAs (DEMs) associated with α1ACT-regulated differentially expressed genes (DEGs) were profiled in α1ACT-overexpressing PC12 cells and were further validated in neonatal transgenic mouse cerebellum overexpressing α1ACT in a context-dependent manner. Here, we also demonstrated that α1ACT facilitates neurogenesis and development of dendritic synapses and is partially a result of the downregulation of the miR-99 cluster, miR-143, miR-23, miR-146, miR-363, and miR-484. On the other hand, the miR-181, miR-125, and miR-708 clusters were upregulated by α1ACT, which inhibit MAPK signaling and cell death pathways by targeting Ask1, Odc1, Atf4, and Nuf2 for decreased expression. MiR-181a-5p was verified as the most abundant DEM in neonatal cerebellum, which was further induced by α1ACT. Overall, under α1ACT modulation, up-/downregulated miRNA clusters with their paired target genes may form a regulatory network controlling the balance between the neuronal proliferation, differentiation, and cell death in the cerebellum to promote neonatal development. Our findings concerning the α1ACT-related miRNA/mRNA expression profiles in neonatal cerebellum may inform future investigations for cerebellar development.
Collapse
Affiliation(s)
- Cenfu Wei
- Department of Neurology, University of Chicago, Chicago, IL, 60637, USA
| | - Kellie Benzow
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael D Koob
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
26
|
Kato M, De Schutter E. Models of Purkinje cell dendritic tree selection during early cerebellar development. PLoS Comput Biol 2023; 19:e1011320. [PMID: 37486917 PMCID: PMC10399850 DOI: 10.1371/journal.pcbi.1011320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/03/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
We investigate the relationship between primary dendrite selection of Purkinje cells and migration of their presynaptic partner granule cells during early cerebellar development. During postnatal development, each Purkinje cell grows more than three dendritic trees, from which a primary tree is selected for development, whereas the others completely retract. Experimental studies suggest that this selection process is coordinated by physical and synaptic interactions with granule cells, which undergo a massive migration at the same time. However, technical limitations hinder continuous experimental observation of multiple cell populations. To explore possible mechanisms underlying this selection process, we constructed a computational model using a new computational framework, NeuroDevSim. The study presents the first computational model that simultaneously simulates Purkinje cell growth and the dynamics of granule cell migrations during the first two postnatal weeks, allowing exploration of the role of physical and synaptic interactions upon dendritic selection. The model suggests that interaction with parallel fibers is important to establish the distinct planar morphology of Purkinje cell dendrites. Specific rules to select which dendritic trees to keep or retract result in larger winner trees with more synaptic contacts than using random selection. A rule based on afferent synaptic activity was less effective than rules based on dendritic size or numbers of synapses.
Collapse
Affiliation(s)
- Mizuki Kato
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa, Japan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa, Japan
| |
Collapse
|
27
|
Lowenstein ED, Cui K, Hernandez-Miranda LR. Regulation of early cerebellar development. FEBS J 2023; 290:2786-2804. [PMID: 35262281 DOI: 10.1111/febs.16426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
The study of cerebellar development has been at the forefront of neuroscience since the pioneering work of Wilhelm His Sr., Santiago Ramón y Cajal and many others since the 19th century. They laid the foundation to identify the circuitry of the cerebellum, already revealing its stereotypic three-layered cortex and discerning several of its neuronal components. Their work was fundamental in the acceptance of the neuron doctrine, which acknowledges the key role of individual neurons in forming the basic units of the nervous system. Increasing evidence shows that the cerebellum performs a variety of homeostatic and higher order neuronal functions beyond the mere control of motor behaviour. Over the last three decades, many studies have revealed the molecular machinery that regulates distinct aspects of cerebellar development, from the establishment of a cerebellar anlage in the posterior brain to the identification of cerebellar neuron diversity at the single cell level. In this review, we focus on summarizing our current knowledge on early cerebellar development with a particular emphasis on the molecular determinants that secure neuron specification and contribute to the diversity of cerebellar neurons.
Collapse
Affiliation(s)
| | - Ke Cui
- Institut für Zell- and Neurobiologie, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Luis Rodrigo Hernandez-Miranda
- Institut für Zell- and Neurobiologie, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
28
|
Zou H, Poore B, Brown EE, Qian J, Xie B, Asimakidou E, Razskazovskiy V, Ayrapetian D, Sharma V, Xia S, Liu F, Chen A, Guan Y, Li Z, Wanggou S, Saulnier O, Ly M, Fellows-Mayle W, Xi G, Tomita T, Resnick AC, Mack SC, Raabe EH, Eberhart CG, Sun D, Stronach BE, Agnihotri S, Kohanbash G, Lu S, Herrup K, Rich JN, Gittes GK, Broniscer A, Hu Z, Li X, Pollack IF, Friedlander RM, Hainer SJ, Taylor MD, Hu B. A neurodevelopmental epigenetic programme mediated by SMARCD3-DAB1-Reelin signalling is hijacked to promote medulloblastoma metastasis. Nat Cell Biol 2023; 25:493-507. [PMID: 36849558 PMCID: PMC10014585 DOI: 10.1038/s41556-023-01093-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023]
Abstract
How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.
Collapse
Affiliation(s)
- Han Zou
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Changsha, China
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley Poore
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Emily E Brown
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jieqi Qian
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Evridiki Asimakidou
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Vladislav Razskazovskiy
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Deanna Ayrapetian
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Vaibhav Sharma
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Shunjin Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Apeng Chen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yongchang Guan
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Zhengwei Li
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Olivier Saulnier
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Ly
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wendy Fellows-Mayle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guifa Xi
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen C Mack
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Eric H Raabe
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beth E Stronach
- Office of Research, University of Pittsburgh Health Sciences, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeremy N Rich
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - George K Gittes
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Broniscer
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhongliang Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Changsha, China
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Fiorenza MT, La Rosa P, Canterini S, Erickson RP. The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 PMCID: PMC7617266 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
30
|
Wu PR, Chiang SY, Midence R, Kao WC, Lai CL, Cheng IC, Chou SJ, Chen CC, Huang CY, Chen RH. Wdr4 promotes cerebellar development and locomotion through Arhgap17-mediated Rac1 activation. Cell Death Dis 2023; 14:52. [PMID: 36681682 PMCID: PMC9867761 DOI: 10.1038/s41419-022-05442-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/22/2023]
Abstract
Patients with mutations of WDR4, a substrate adaptor of the CUL4 E3 ligase complex, develop cerebellar atrophy and gait phenotypes. However, the underlying mechanisms remain unexplored. Here, we identify a crucial role of Wdr4 in cerebellar development. Wdr4 deficiency in granule neuron progenitors (GNPs) not only reduces foliation and the sizes of external and internal granular layers but also compromises Purkinje neuron organization and the size of the molecular layer, leading to locomotion defects. Mechanistically, Wdr4 supports the proliferation of GNPs by preventing their cell cycle exit. This effect is mediated by Wdr4-induced ubiquitination and degradation of Arhgap17, thereby activating Rac1 to facilitate cell cycle progression. Disease-associated Wdr4 variants, however, cannot provide GNP cell cycle maintenance. Our study identifies Wdr4 as a previously unappreciated participant in cerebellar development and locomotion, providing potential insights into treatment strategies for diseases with WDR4 mutations, such as primordial dwarfism and Galloway-Mowat syndrome.
Collapse
Affiliation(s)
- Pei-Rung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
| | - Shang-Yin Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Robert Midence
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Chao Kao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Lun Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - I-Cheng Cheng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
31
|
Wu C, Jin Y, Cui Y, Zhu Y, Yin S, Li C. Effects of bilirubin on the development and electrical activity of neural circuits. Front Cell Neurosci 2023; 17:1136250. [PMID: 37025700 PMCID: PMC10070809 DOI: 10.3389/fncel.2023.1136250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
In the past several decades, bilirubin has attracted great attention for central nervous system (CNS) toxicity in some pathological conditions with severely elevated bilirubin levels. CNS function relies on the structural and functional integrity of neural circuits, which are large and complex electrochemical networks. Neural circuits develop from the proliferation and differentiation of neural stem cells, followed by dendritic and axonal arborization, myelination, and synapse formation. The circuits are immature, but robustly developing, during the neonatal period. It is at the same time that physiological or pathological jaundice occurs. The present review comprehensively discusses the effects of bilirubin on the development and electrical activity of neural circuits to provide a systematic understanding of the underlying mechanisms of bilirubin-induced acute neurotoxicity and chronic neurodevelopmental disorders.
Collapse
|
32
|
Daura E, Tegelberg S, Hakala P, Lehesjoki AE, Joensuu T. Cystatin B deficiency results in sustained histone H3 tail cleavage in postnatal mouse brain mediated by increased chromatin-associated cathepsin L activity. Front Mol Neurosci 2022; 15:1069122. [DOI: 10.3389/fnmol.2022.1069122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Cystatin B (CSTB) is a cysteine cathepsin inhibitor whose biallelic loss-of-function mutations in human result in defects in brain development and in neurodegeneration. The physiological function of CSTB is largely unknown, and the mechanisms underlying the human brain diseases remain poorly understood. We previously showed that CSTB modulates the proteolysis of the N-terminal tail of histone H3 (H3cs1) during in vitro neurogenesis. Here we investigated the significance of this mechanism in postnatal mouse brain. Spatiotemporal analysis of H3cs1 intensity showed that while H3cs1 in wild-type (wt) mice was found at varying levels during the first postnatal month, it was virtually absent in adult brain. We further showed that the high level of H3cs1 coincides with chromatin association of de novo synthesized cathepsin L suggesting a role for nuclear cathepsin L in brain development and maturation. On the contrary, the brains of Cstb–/– mice showed sustained H3cs1 proteolysis to adulthood with increased chromatin-associated cathepsin L activity, implying that CSTB regulates chromatin-associated cathepsin L activity in the postnatal mouse brain. As H3 tail proteolysis has been linked to cellular senescence in vitro, we explored the presence of several cellular senescence markers in the maturing Cstb–/– cerebellum, where we see increased levels of H3cs1. While several markers showed alterations in Cstb–/– mice, the results remained inconclusive regarding the association of deficient CSTB function with H3cs1-induced senescence. Together, we identify a molecular role for CSTB in brain with implications for brain development and disease.
Collapse
|
33
|
Iskusnykh IY, Chizhikov VV. Cerebellar development after preterm birth. Front Cell Dev Biol 2022; 10:1068288. [PMID: 36523506 PMCID: PMC9744950 DOI: 10.3389/fcell.2022.1068288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
Preterm birth and its complications and the associated adverse factors, including brain hemorrhage, inflammation, and the side effects of medical treatments, are the leading causes of neurodevelopmental disability. Growing evidence suggests that preterm birth affects the cerebellum, which is the brain region involved in motor coordination, cognition, learning, memory, and social communication. The cerebellum is particularly vulnerable to the adverse effects of preterm birth because key cerebellar developmental processes, including the proliferation of neural progenitors, and differentiation and migration of neurons, occur in the third trimester of a human pregnancy. This review discusses the negative impacts of preterm birth and its associated factors on cerebellar development, focusing on the cellular and molecular mechanisms that mediate cerebellar pathology. A better understanding of the cerebellar developmental mechanisms affected by preterm birth is necessary for developing novel treatment and neuroprotective strategies to ameliorate the cognitive, behavioral, and motor deficits experienced by preterm subjects.
Collapse
|
34
|
Shang L, Zhou X. Spatially aware dimension reduction for spatial transcriptomics. Nat Commun 2022; 13:7203. [PMID: 36418351 PMCID: PMC9684472 DOI: 10.1038/s41467-022-34879-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Spatial transcriptomics are a collection of genomic technologies that have enabled transcriptomic profiling on tissues with spatial localization information. Analyzing spatial transcriptomic data is computationally challenging, as the data collected from various spatial transcriptomic technologies are often noisy and display substantial spatial correlation across tissue locations. Here, we develop a spatially-aware dimension reduction method, SpatialPCA, that can extract a low dimensional representation of the spatial transcriptomics data with biological signal and preserved spatial correlation structure, thus unlocking many existing computational tools previously developed in single-cell RNAseq studies for tailored analysis of spatial transcriptomics. We illustrate the benefits of SpatialPCA for spatial domain detection and explores its utility for trajectory inference on the tissue and for high-resolution spatial map construction. In the real data applications, SpatialPCA identifies key molecular and immunological signatures in a detected tumor surrounding microenvironment, including a tertiary lymphoid structure that shapes the gradual transcriptomic transition during tumorigenesis and metastasis. In addition, SpatialPCA detects the past neuronal developmental history that underlies the current transcriptomic landscape across tissue locations in the cortex.
Collapse
Affiliation(s)
- Lulu Shang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
35
|
Apsley EJ, Becker EBE. Purkinje Cell Patterning-Insights from Single-Cell Sequencing. Cells 2022; 11:2918. [PMID: 36139493 PMCID: PMC9497131 DOI: 10.3390/cells11182918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Despite their homogeneous appearance, Purkinje cells are remarkably diverse with respect to their molecular phenotypes, physiological properties, afferent and efferent connectivity, as well as their vulnerability to insults. Heterogeneity in Purkinje cells arises early in development, with molecularly distinct embryonic cell clusters present soon after Purkinje cell specification. Traditional methods have characterized cerebellar development and cell types, including Purkinje cell subtypes, based on knowledge of selected markers. However, recent single-cell RNA sequencing studies provide vastly increased resolution of the whole cerebellar transcriptome. Here we draw together the results of multiple single-cell transcriptomic studies in developing and adult cerebellum in both mouse and human. We describe how this detailed transcriptomic data has increased our understanding of the intricate development and function of Purkinje cells and provides first clues into features specific to human cerebellar development.
Collapse
Affiliation(s)
- Elizabeth J. Apsley
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Esther B. E. Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
36
|
Bartkowska K, Tepper B, Turlejski K, Djavadian R. Postnatal and Adult Neurogenesis in Mammals, Including Marsupials. Cells 2022; 11:cells11172735. [PMID: 36078144 PMCID: PMC9455070 DOI: 10.3390/cells11172735] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/11/2022] Open
Abstract
In mammals, neurogenesis occurs during both embryonic and postnatal development. In eutherians, most brain structures develop embryonically; conversely, in marsupials, a number of brain structures develop after birth. The exception is the generation of granule cells in the dentate gyrus, olfactory bulb, and cerebellum of eutherian species. The formation of these structures starts during embryogenesis and continues postnatally. In both eutherians and marsupials, neurogenesis continues in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus of the hippocampal formation throughout life. The majority of proliferated cells from the SVZ migrate to the olfactory bulb, whereas, in the dentate gyrus, cells reside within this structure after division and differentiation into neurons. A key aim of this review is to evaluate advances in understanding developmental neurogenesis that occurs postnatally in both marsupials and eutherians, with a particular emphasis on the generation of granule cells during the formation of the olfactory bulb, dentate gyrus, and cerebellum. We debate the significance of immature neurons in the piriform cortex of young mammals. We also synthesize the knowledge of adult neurogenesis in the olfactory bulb and the dentate gyrus of marsupials by considering whether adult-born neurons are essential for the functioning of a given area.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Beata Tepper
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Ruzanna Djavadian
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
37
|
Usman IM, Adebisi SS, Musa SA, Iliya IA, Archibong VB, Lemuel AM, Kasozi KI. Tamarindus indica ameliorates behavioral and cytoarchitectural changes in the cerebellar cortex following prenatal aluminum chloride exposure in Wistar rats. Anat Cell Biol 2022; 55:320-329. [PMID: 36002437 PMCID: PMC9519771 DOI: 10.5115/acb.22.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022] Open
Abstract
Aluminium exposure has been linked with developmental neurotoxicity in humans and experimental animals. The study aimed to evaluate the ameliorative effect of Tamarindus indica on the developing cerebellar cortex, neurobehavior, and immunohistochemistry of the cerebellar cortex following prenatal aluminum chloride (AlCl3) exposure. Pregnant timed Wistar rats were divided into 5 groups (n=4). Group I (negative control) was given distilled water, group II was treated with 200 mg/kg of AlCl3, group III were given 200 mg/kg of AlCl3 and 400 mg/kg of ethyl acetate leaf fraction of Tamarindus indica (EATI), group IV were given 200 mg/kg of AlCl3 and 800 mg/kg of EATI, and group V were treated with 200 mg/kg of AlCl3 s/c and 300 mg/kg of vitamin E for 14 days (prenatal day 7-21) via the oral route. Male pups (n=6) were randomly selected and taken for neurobehavioral studies, and humanely sacrificed via intraperitoneal injection of thiopental sodium. The cerebellum was removed, fixed and tissue processed for histological and immunohistochemical studies. The results revealed that prenatal AlCl3 exposure impacted neurodevelopment and neurobehaviour among exposed pups. Prenatal AlCl3 exposure was marked with delayed cytoarchitectural development of the cerebellar cortex and increased GFAP expression in the cerebellar cortex. On the other hand, treatment with EATI and vitamin E were marked with significant improvements. The present study therefore concluded treatment with EATI shows an ameliorative effect to prenatal AlCl3 exposure.
Collapse
Affiliation(s)
- Ibe Michael Usman
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Bushenyi, Uganda.,Department of Human Anatomy, College of Medicine and Health Science, Ahmadu Bello University, Zaria, Nigeria
| | - Samuel Sunday Adebisi
- Department of Human Anatomy, College of Medicine and Health Science, Ahmadu Bello University, Zaria, Nigeria
| | - Sunday Abraham Musa
- Department of Human Anatomy, College of Medicine and Health Science, Ahmadu Bello University, Zaria, Nigeria
| | | | - Victor Bassey Archibong
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Bushenyi, Uganda.,Department of Human Anatomy, College of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Ann Monima Lemuel
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Bushenyi, Uganda
| | - Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Baeriswyl T, Schaettin M, Leoni S, Dumoulin A, Stoeckli ET. Endoglycan Regulates Purkinje Cell Migration by Balancing Cell-Cell Adhesion. Front Neurosci 2022; 16:894962. [PMID: 35794952 PMCID: PMC9251411 DOI: 10.3389/fnins.2022.894962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of cell adhesion molecules for the development of the nervous system has been recognized many decades ago. Functional in vitro and in vivo studies demonstrated a role of cell adhesion molecules in cell migration, axon growth and guidance, as well as synaptogenesis. Clearly, cell adhesion molecules have to be more than static glue making cells stick together. During axon guidance, cell adhesion molecules have been shown to act as pathway selectors but also as a means to prevent axons going astray by bundling or fasciculating axons. We identified Endoglycan as a negative regulator of cell-cell adhesion during commissural axon guidance across the midline. The presence of Endoglycan allowed commissural growth cones to smoothly navigate the floor-plate area. In the absence of Endoglycan, axons failed to exit the floor plate and turn rostrally. These observations are in line with the idea of Endoglycan acting as a lubricant, as its presence was important, but it did not matter whether Endoglycan was provided by the growth cone or the floor-plate cells. Here, we expand on these observations by demonstrating a role of Endoglycan during cell migration. In the developing cerebellum, Endoglycan was expressed by Purkinje cells during their migration from the ventricular zone to the periphery. In the absence of Endoglycan, Purkinje cells failed to migrate and, as a consequence, cerebellar morphology was strongly affected. Cerebellar folds failed to form and grow, consistent with earlier observations on a role of Purkinje cells as Shh deliverers to trigger granule cell proliferation.
Collapse
|
39
|
Todd D, Clapp M, Dains P, Karacay B, Bonthius DJ. Purkinje cell-specific deletion of CREB worsens alcohol-induced cerebellar neuronal losses and motor deficits. Alcohol 2022; 101:27-35. [PMID: 35378204 PMCID: PMC9783827 DOI: 10.1016/j.alcohol.2022.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Exposure to alcohol during pregnancy can kill developing fetal neurons and lead to fetal alcohol spectrum disorder (FASD) in the offspring. However, not all fetuses are equally vulnerable to alcohol toxicity. These differences in vulnerability among individuals are likely due, at least in part, to genetic differences. Some genes encode neuroprotective molecules that act through signaling pathways to protect neurons against alcohol's toxic effects. One signaling pathway that can protect cultured neurons against alcohol-induced cell death in vitro is the cAMP pathway. A goal of this study was to determine whether the cAMP pathway can exert a similar neuroprotective effect against alcohol in vivo. A key molecule within the cAMP pathway is cAMP response element binding protein (CREB). In this study, CREB was specifically disrupted in cerebellar Purkinje cells to study its role in protection of cerebellar neurons against alcohol toxicity. METHODS Mice with Purkinje cell-specific knockout of CREB were generated with the Cre-lox system. A 2 × 2 design was used in which Cre-negative and Cre-positive mice received either 0.0 or 2.2 mg/g ethanol by intraperitoneal (i.p.) injection daily over postnatal day (PD) 4-9. Stereological cell counts of cerebellar Purkinje cells and granule cells were performed on PD 10. Motor function was assessed on PD 40 using the rotarod. RESULTS Purkinje cell-specific disruption of CREB alone (in the absence of alcohol) induced only a small reduction in Purkinje cell number. However, the loss of CREB function from Purkinje cells greatly increased the vulnerability of Purkinje cells to alcohol-induced cell death. While alcohol killed 20% of Purkinje cells in the Cre-negative (CREB-expressing) mice, alcohol killed 57% of Purkinje cells in the Cre-positive (CREB-nonexpressing) mice. This large loss of Purkinje cells did not lead to similar alcohol-induced losses of granule cells. In the absence of alcohol, lack of CREB function in Purkinje cells had no effect on rotarod performance. However, in the presence of alcohol, disruption of CREB in Purkinje cells substantially worsened rotarod performance. DISCUSSION Disruption of a single gene (CREB) in a single neuronal population (Purkinje cells) greatly increases the vulnerability of that cell population to alcohol-induced cell death and worsens alcohol-induced brain dysfunction. The results suggest that the cAMP pathway can protect cells in vivo against alcohol toxicity and underline the importance of genetics in determining the neuropathology and behavioral deficits of FASD.
Collapse
Affiliation(s)
- Dylan Todd
- Neuroscience Program, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Michael Clapp
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Parker Dains
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Bahri Karacay
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Daniel J. Bonthius
- Neuroscience Program, University of Iowa Carver College of Medicine, Iowa City, IA,Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA,Atrium Health/Levine Children’s Hospital, Charlotte, NC
| |
Collapse
|
40
|
Zosen D, Austdal LPE, Bjørnstad S, Lumor JS, Paulsen RE. Antiepileptic drugs lamotrigine and valproate differentially affect neuronal maturation in the developing chick embryo, yet with PAX6 as a potential common mediator. Neurotoxicol Teratol 2022; 90:107057. [DOI: 10.1016/j.ntt.2021.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
|
41
|
Transit Amplifying Progenitors in the Cerebellum: Similarities to and Differences from Transit Amplifying Cells in Other Brain Regions and between Species. Cells 2022; 11:cells11040726. [PMID: 35203375 PMCID: PMC8870322 DOI: 10.3390/cells11040726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Transit amplification of neural progenitors/precursors is widely used in the development of the central nervous system and for tissue homeostasis. In most cases, stem cells, which are relatively less proliferative, first differentiate into transit amplifying cells, which are more proliferative, losing their stemness. Subsequently, transit amplifying cells undergo a limited number of mitoses and differentiation to expand the progeny of differentiated cells. This step-by-step proliferation is considered an efficient system for increasing the number of differentiated cells while maintaining the stem cells. Recently, we reported that cerebellar granule cell progenitors also undergo transit amplification in mice. In this review, we summarize our and others’ recent findings and the prospective contribution of transit amplification to neural development and evolution, as well as the molecular mechanisms regulating transit amplification.
Collapse
|
42
|
Chen X, Chen T, Dong C, Chen H, Dong X, Yang L, Hu L, Wang H, Wu B, Yao Y, Xiong Y, Xiong M, Lin Y, Zhou W. Deletion of CHD8 in cerebellar granule neuron progenitors leads to severe cerebellar hypoplasia, ataxia and psychiatric behavior in mice. J Genet Genomics 2022; 49:859-869. [DOI: 10.1016/j.jgg.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
|
43
|
Shabanipour S, Jiao X, Rahimi-Balaei M, Aghanoori MR, Chung SH, Ghavami S, Consalez GG, Marzban H. Upregulation of Neural Cell Adhesion Molecule 1 and Excessive Migration of Purkinje Cells in Cerebellar Cortex. Front Neurosci 2022; 15:804402. [PMID: 35126044 PMCID: PMC8814629 DOI: 10.3389/fnins.2021.804402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Purkinje cells (PCs) are large GABAergic projection neurons of the cerebellar cortex, endowed with elaborate dendrites that receive a multitude of excitatory inputs. Being the only efferent neuron of the cerebellar cortex, PCs project to cerebellar nuclei and control behaviors ranging from movement to cognition and social interaction. Neural cell adhesion molecule 1 (NCAM1) is widely expressed in the embryonic and postnatal development of the brain and plays essential roles in neuronal migration, axon pathfinding and synapse assembly. However, despite its high expression levels in cerebellum, little is known to date regarding the role(s) of NCAM1 in PCs development. Among other aspects, elucidating how the expression of NCAM1 in PCs could impact their postnatal migration would be a significant achievement. We analyzed the Acp2 mutant mouse (nax: naked and ataxia), which displays excessive PC migration into the molecular layer, and investigated how the excessive migration of PCs along Bergmann glia could correlate to NCAM1 expression pattern in early postnatal days. Our Western blot and RT-qPCR analysis of the whole cerebellum show that the protein and mRNA of NCAM1 in wild type are not different during PC dispersal from the cluster stage to monolayer formation. However, RT-qPCR analysis from FACS-based isolated PCs shows that Ncam1 is significantly upregulated when PCs fail to align and instead overmigrate into the molecular layer. Our results suggest two alternative interpretations: (1) NCAM1 promotes excessive PC migration along Bergmann glia, or (2) NCAM1 upregulation is an attempt to prevent PCs from invading the molecular layer. If the latter scenario proves true, NCAM1 may play a key role in PC monolayer formation.
Collapse
Affiliation(s)
- Shahin Shabanipour
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaodan Jiao
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad Reza Aghanoori
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Seung H. Chung
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - G. Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Hassan Marzban,
| |
Collapse
|
44
|
Sival DA, Noort SAMV, Tijssen MAJ, de Koning TJ, Verbeek DS. Developmental neurobiology of cerebellar and Basal Ganglia connections. Eur J Paediatr Neurol 2022; 36:123-129. [PMID: 34954622 DOI: 10.1016/j.ejpn.2021.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/03/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The high prevalence of mixed phenotypes of Early Onset Ataxia (EOA) with comorbid dystonia has shifted the pathogenetic concept from the cerebellum towards the interconnected cerebellar motor network. This paper on EOA with comorbid dystonia (EOA-dystonia) explores the conceptual relationship between the motor phenotype and the cortico-basal-ganglia-ponto-cerebellar network. METHODS In EOA-dystonia, we reviewed anatomic-, genetic- and biochemical-studies on the comorbidity between ataxia and dystonia. RESULTS In a clinical EOA cohort, the prevalence of dystonia was over 60%. Both human and animal studies converge on the underlying role for the cortico-basal-ganglia-ponto-cerebellar network. Genetic -clinical and -in silico network studies reveal underlying biological pathways for energy production and neural signal transduction. CONCLUSIONS EOA-dystonia phenotypes are attributable to the cortico-basal-ganglia-ponto-cerebellar network, instead of to the cerebellum, alone. The underlying anatomic and pathogenetic pathways have clinical implications for our understanding of the heterogeneous phenotype, neuro-metabolic and genetic testing and potentially also for new treatment strategies, including neuro-modulation.
Collapse
Affiliation(s)
- Deborah A Sival
- Department of Pediatrics, University of Groningen, Groningen, the Netherlands.
| | - Suus A M van Noort
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Tom J de Koning
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Dineke S Verbeek
- Genetics University Medical Center, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
45
|
Imosemi IO. Aquoeus Extracts of Daucus Carota (Linn) Protected the Postnatal Developing Cerebellum of Wistar Rats Against Arsenic-Induced Oxidative Stress. Niger J Physiol Sci 2021; 36:211-220. [PMID: 35947743 DOI: 10.54548/njps.v36i2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2022] [Indexed: 06/15/2023]
Abstract
The neuroprotective effects of the aqueous extract of Daucus carota (Dc) tuber against arsenic-induced oxidative damage on the developing cerebellum of Wistar rats were studied. Twenty-five pregnant rats (110-200g) were divided into five groups (n=5) - control received distilled water; Arsenic (As); Dc (200mg/kg); Dc (200mg/kg) +As; Vitamin C (Vc) (100mg/kg) +As. The pregnant rats in all the groups were treated orally from the first day of pregnancy to postnatal day 21. The Dc extract and Vc were administered one hour before the administration of As. Body weight of the pups on days 1, 7, 14, 21 and 28 were recorded, while neurobehavioural (forelimb grip strength and negative geotaxis) tests were done on day 21 pups. The rats were sacrificed and cerebellar tissues were collected for oxidative stress, histological (H and E), and immunohistochemical studies. Decreased forelimb grip strength, increased lipid peroxidation and decreased glutathione, glutathione peroxidase, catalase and superoxide dismutase was observed in the As group compared with the control and other treated groups. Histologically, the cerebellar cortex of the As pups showed persistent external granular layer (EGL) on postnatal day 21, reduced thickness of the molecular layer (ML) on postnatal day 28, pyknotic and depleted Purkinje cells compared with the control and other treated rats. Immunohistochemical evaluations of the cerebellar cortex showed astroliosis in the As-treated group on day 21 pups compared with the control and other treated groups. Aqueous extracts of Daucus carota and Vitamin C reversed the toxicity caused by arsenic. From the results of the study, arsenic-induced oxidative stress with morphological alterations in the perinatal developing rat cerebellum. Extracts of Daucus carota exhibited antioxidant activity as such may be a potential neuroprotective agent.
Collapse
|
46
|
Stoyanova E, Riad M, Rao A, Heintz N. 5-Hydroxymethylcytosine-mediated active demethylation is required for mammalian neuronal differentiation and function. eLife 2021; 10:66973. [PMID: 34919053 PMCID: PMC8683082 DOI: 10.7554/elife.66973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023] Open
Abstract
Although high levels of 5-hydroxymethylcytosine (5hmC) accumulate in mammalian neurons, our knowledge of its roles in terminal differentiation or as an intermediate in active DNA demethylation is incomplete. We report high-resolution mapping of DNA methylation and hydroxymethylation, chromatin accessibility, and histone marks in developing postmitotic Purkinje cells (PCs) in Mus musculus. Our data reveal new relationships between PC transcriptional and epigenetic programs, and identify a class of genes that lose both 5-methylcytosine (5mC) and 5hmC during terminal differentiation. Deletion of the 5hmC writers Tet1, Tet2, and Tet3 from postmitotic PCs prevents loss of 5mC and 5hmC in regulatory domains and gene bodies, and hinders transcriptional and epigenetic developmental transitions. Our data demonstrate that Tet-mediated active DNA demethylation occurs in vivo, and that acquisition of the precise molecular properties of adult PCs require continued oxidation of 5mC to 5hmC during the final phases of differentiation. At birth, the mammalian brain contains tens of billions of neurons. Although the number does not increase much as the animal grows, there are many dramatic changes to their size and structure. These changes allow the neurons to communicate with one another, develop into networks, and learn the tasks of the adult brain. One way that these changes occur is by the accumulation of chemical marks on each neuron’s DNA that help dictate which genes switch on, and which turn off. One of the most common ways that DNA can be marked is through the addition of a chemical group called a methyl group to one of the four DNA bases, cytosine. This process is called methylation. When methylation occurs, cytosine becomes 5-methylcytosine, or 5mC for short. In 2009, researchers found another modification present in the DNA in the brain: 5-hydroxymethylcytosine, or 5hmC. This modification appears when a group of proteins called the Tet hydroxylases turn 5mC into 5hmC. Converting 5mC to 5hmC normally helps cells remove marks on their DNA before they divide and expand. This is important because the newly generated cells need to be able to accumulate their own methylation marks to perform their roles properly. However, neurons in the brain accumulate 5hmC after birth, when the cells are no longer dividing, indicating that 5hmC may be required for the neurons to mature. Stoyanova et al. set out to determine whether mouse neurons need 5hmC to get their adult characteristics by tracking the chemical changes that occur in DNA from birth to adulthood. Some of the mice they tested produced 5hmC normally, while others lacked the genes necessary to make the Tet proteins in a specific class of neurons, preventing them from converting 5mC to 5hmC as they differentiate. The results reveal that neurons do not mature properly if 5hmC is not produced continuously following the first week of life. This is because neurons need to have the right genes switched on and off to differentiate correctly, and this only happens when 5hmC accumulates in some genes, while 5hmC and 5mC are removed from others. The data highlight the role of the Tet proteins, which convert 5mC into 5hmC, in preparing the marks for removal and demonstrate that active removal of these marks is essential for neuronal differentiation. Given the role of 5hmC in the development of neurons, it is possible that problems in this system could contribute to brain disorders. Further studies aimed at understanding how cells control 5hmC levels could lead to new ways to improve brain health. Research has also shown that if dividing cells lose the ability to make 5hmC, they can become cancerous. Future work could explain more about how and why this happens.
Collapse
Affiliation(s)
- Elitsa Stoyanova
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Michael Riad
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Anjana Rao
- Sanford Consortium for Regenerative Medicine, La Jolla, United States.,La Jolla Institute for Allergy and Immunology, La Jolla, United States.,Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
47
|
Baker SA, Gajera CR, Wawro AM, Corces MR, Montine TJ. GATM and GAMT synthesize creatine locally throughout the mammalian body and within oligodendrocytes of the brain. Brain Res 2021; 1770:147627. [PMID: 34418357 DOI: 10.1016/j.brainres.2021.147627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022]
Abstract
The enzymes glycine amidinotransferase, mitochondrial (GATM also known as AGAT) and guanidinoacetate N-methyltransferase (GAMT) function together to synthesize creatine from arginine, glycine, and S-Adenosyl methionine. Deficiency in either enzyme or the creatine transporter, CT1, results in a devastating neurological disorder, Cerebral Creatine Deficiency Syndrome (CCDS). To better understand the pathophysiology of CCDS, we mapped the distribution of GATM and GAMT at single cell resolution, leveraging RNA sequencing analysis combined with in vivo immunofluorescence (IF). Using the mouse as a model system, we find that GATM and GAMT are coexpressed in several tissues with distinct and overlapping cellular sources, implicating local synthesis as an important mechanism of creatine metabolism in numerous organs. Extending previous findings at the RNA level, our analysis demonstrates that oligodendrocytes express the highest level of Gatm and Gamt of any cell type in the body. We confirm this finding in the mouse brain by IF, where GATM localizes to the mitochondria of oligodendrocytes, whereas both oligodendrocytes and cerebral cortical neurons express GAMT. Interestingly, the latter is devoid of GATM. Single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) analysis of 4 brain regions highlights a similar primacy of oligodendrocytes in the expression of GATM and GAMT in the human central nervous system. Importantly, an active putative regulatory element within intron 2 of human GATM is detected in oligodendrocytes but not neurons.
Collapse
Affiliation(s)
- Steven Andrew Baker
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Chandresh R Gajera
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Adam M Wawro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94035, USA; Lead Contact.
| |
Collapse
|
48
|
Rueda-Alaña E, García-Moreno F. Time in Neurogenesis: Conservation of the Developmental Formation of the Cerebellar Circuitry. BRAIN, BEHAVIOR AND EVOLUTION 2021; 97:33-47. [PMID: 34592741 DOI: 10.1159/000519068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/13/2021] [Indexed: 11/19/2022]
Abstract
The cerebellum is a conserved structure of vertebrate brains that develops at the most anterior region of the alar rhombencephalon. All vertebrates display a cerebellum, making it one of the most highly conserved structures of the brain. Although it greatly varies at the morphological level, several lines of research point to strong conservation of its internal neural circuitry. To test the conservation of the cerebellar circuit, we compared the developmental history of the neurons comprising this circuit in three amniote species: mouse, chick, and gecko. We specifically researched the developmental time of generation of the main neuronal types of the cerebellar cortex. This developmental trajectory is known for the mammalian cell types but barely understood for sauropsid species. We show that the neurogenesis of the GABAergic lineage proceeds following the same chronological sequence in the three species compared: Purkinje cells are the first ones generated in the cerebellar cortex, followed by Golgi interneurons of the granule cell layer, and lately by the interneurons of the molecular layer. In the cerebellar glutamatergic lineage, we observed the same conservation of neurogenesis throughout amniotes, and the same vastly prolonged neurogenesis of granule cells, extending much further than for any other brain region. Together these data show that the cerebellar circuitry develops following a tightly conserved chronological sequence of neurogenesis, which is responsible for the preservation of the cerebellum and its function. Our data reinforce the developmental perspective of homology, whereby similarities in neurons and circuits are likely due to similarities in developmental sequence.
Collapse
Affiliation(s)
- Eneritz Rueda-Alaña
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain.,Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain.,Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain.,IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
49
|
Sugahara F, Pascual-Anaya J, Kuraku S, Kuratani S, Murakami Y. Genetic Mechanism for the Cyclostome Cerebellar Neurons Reveals Early Evolution of the Vertebrate Cerebellum. Front Cell Dev Biol 2021; 9:700860. [PMID: 34485287 PMCID: PMC8416312 DOI: 10.3389/fcell.2021.700860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The vertebrate cerebellum arises at the dorsal part of rhombomere 1, induced by signals from the isthmic organizer. Two major cerebellar neuronal subtypes, granule cells (excitatory) and Purkinje cells (inhibitory), are generated from the anterior rhombic lip and the ventricular zone, respectively. This regionalization and the way it develops are shared in all extant jawed vertebrates (gnathostomes). However, very little is known about early evolution of the cerebellum. The lamprey, an extant jawless vertebrate lineage or cyclostome, possesses an undifferentiated, plate-like cerebellum, whereas the hagfish, another cyclostome lineage, is thought to lack a cerebellum proper. In this study, we found that hagfish Atoh1 and Wnt1 genes are co-expressed in the rhombic lip, and Ptf1a is expressed ventrally to them, confirming the existence of r1's rhombic lip and the ventricular zone in cyclostomes. In later stages, lamprey Atoh1 is downregulated in the posterior r1, in which the NeuroD increases, similar to the differentiation process of cerebellar granule cells in gnathostomes. Also, a continuous Atoh1-positive domain in the rostral r1 is reminiscent of the primordium of valvula cerebelli of ray-finned fishes. Lastly, we detected a GAD-positive domain adjacent to the Ptf1a-positive ventricular zone in lampreys, suggesting that the Ptf1a-positive cells differentiate into some GABAergic inhibitory neurons such as Purkinje and other inhibitory neurons like in gnathostomes. Altogether, we conclude that the ancestral genetic programs for the formation of a distinct cerebellum were established in the last common ancestor of vertebrates.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.,Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
50
|
Yin S, Liao Q, Wang Y, Shi Q, Xia P, Yi M, Huang J. Ccdc134 deficiency impairs cerebellar development and motor coordination. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12763. [PMID: 34382738 DOI: 10.1111/gbb.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.
Collapse
Affiliation(s)
- Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianwen Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|