1
|
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13:748. [PMID: 38727284 PMCID: PMC11083486 DOI: 10.3390/cells13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs) with increased proliferative potential that move into tissues and ultimately differentiate into a specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea and whether TACs could represent a population of cells with progenitor-like capabilities within the cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate into SCs.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
| | | |
Collapse
|
2
|
Ning H, Liu J, Tan J, Yi M, Lin X. The role of the Notch signalling pathway in the pathogenesis of ulcerative colitis: from the perspective of intestinal mucosal barrier. Front Med (Lausanne) 2024; 10:1333531. [PMID: 38249980 PMCID: PMC10796567 DOI: 10.3389/fmed.2023.1333531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Ulcerative colitis is a common digestive disorder worldwide, with increasing incidence in recent years. It is an urgent problem to be solved, as it seriously affects and threatens the health and life of the global population. Studies have shown that dysfunction of the intestinal mucosal barrier is a critical pathogenic factor and molecular basis of ulcerative colitis, and some scholars have described it as a "barrier organ disease." While the Notch signalling pathway affects a series of cellular processes, including proliferation, differentiation, development, migration, and apoptosis. Therefore, it can regulate intestinal stem cells, CD4+ T cells, innate lymphoid cells, macrophages, and intestinal microbiota and intervene in the chemical, physical, immune, and biological mucosal barriers in cases of ulcerative colitis. The Notch signalling pathway associated with the pathogenesis of ulcerative colitis has distinct characteristics, with good regulatory effects on the mucosal barrier. However, research on ulcerative colitis has mainly focused on immune regulation, anti-inflammatory activity, and antioxidant stress; therefore, the study of the Notch signalling pathway suggests the possibility of understanding the pathogenesis of ulcerative colitis from another perspective. In this article we explore the role and mechanism of the Notch signalling pathway in the pathogenesis of ulcerative colitis from the perspective of the intestinal mucosal barrier to provide new targets and theoretical support for further research on the pathogenesis and clinical treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Hang Ning
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiemin Liu
- Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiaqian Tan
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Mengni Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyuan Lin
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Boers R, Boers J, Tan B, van Leeuwen ME, Wassenaar E, Sanchez EG, Sleddens E, Tenhagen Y, Mulugeta E, Laven J, Creyghton M, Baarends W, van IJcken WFJ, Gribnau J. Retrospective analysis of enhancer activity and transcriptome history. Nat Biotechnol 2023; 41:1582-1592. [PMID: 36823354 PMCID: PMC10635829 DOI: 10.1038/s41587-023-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Cell state changes in development and disease are controlled by gene regulatory networks, the dynamics of which are difficult to track in real time. In this study, we used an inducible DCM-RNA polymerase subunit b fusion protein which labels active genes and enhancers with a bacterial methylation mark that does not affect gene transcription and is propagated in S-phase. This DCM-RNA polymerase fusion protein enables transcribed genes and active enhancers to be tagged and then examined at later stages of development or differentiation. We apply this DCM-time machine (DCM-TM) technology to study intestinal homeostasis, revealing rapid and coordinated activation of enhancers and nearby genes during enterocyte differentiation. We provide new insights in absorptive-secretory lineage decision-making in intestinal stem cell (ISC) differentiation and show that ISCs retain a unique chromatin landscape required to maintain ISC identity and delineate future expression of differentiation-associated genes. DCM-TM has wide applicability in tracking cell states, providing new insights in the regulatory networks underlying cell state changes.
Collapse
Affiliation(s)
- Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Beatrice Tan
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marieke E van Leeuwen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Erlantz Gonzalez Sanchez
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Esther Sleddens
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yasha Tenhagen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joop Laven
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Menno Creyghton
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willy Baarends
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
4
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Lei Y, Shen HF, Li QW, Yang S, Xie HT, Li XF, Chen ML, Xia JW, Wang SC, Dai GQ, Zhou Y, Li YC, Huang SH, He DH, Zhou ZH, Cong JG, Lin XL, Lin TY, Wu AB, Xiao D, Xiao SJ, Zhang XK, Jia JS. Hairy gene homolog increases nasopharyngeal carcinoma cell stemness by upregulating Bmi-1. Aging (Albany NY) 2023; 15:204742. [PMID: 37219449 DOI: 10.18632/aging.204742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.
Collapse
Affiliation(s)
- Ye Lei
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Hong-Fen Shen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qi-Wen Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong-Ting Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xu-Feng Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530000, China
| | - Mei-Ling Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Sheng-Chun Wang
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Guan-Qi Dai
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying-Chun Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shi-Hao Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dan-Hua He
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Hao Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Ge Cong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Tao-Yan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ai-Bing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Dong Xiao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Xin-Ke Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Shuang Jia
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
miR-145-5p Targets Sp1 in Non-Small Cell Lung Cancer Cells and Links to BMI1 Induced Pemetrexed Resistance and Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms232315352. [PMID: 36499676 PMCID: PMC9741456 DOI: 10.3390/ijms232315352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pemetrexed is a folic acid inhibitor used as a second-line chemotherapeutic agent for the treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC), which accounts for 85% of lung cancers. However, prolonged treatment with pemetrexed may cause cancer cells to develop resistance. In this study, we found increased expressions of BMI1 (B Lymphoma Mo-MLV insertion region 1 homolog) and Sp1 and a decreased expression of miR-145-5p was found in pemetrexed-resistant A400 cells than in A549 cells. Direct Sp1 targeting activity of miR-145-5p was demonstrated by a luciferase based Sp1 3'-UTR reporter. Changed expression of miR-145-5p in A400 or A549 cells by transfection of miR-145-5p mimic or inhibitor affected the sensitivity of the cells to pemetrexed. On the other hand, the overexpression of Sp1 in A549 cells caused the decreased sensitivity to pemetrexed, induced cell migratory capability, and epithelial-mesenchymal transition (EMT) related transcription factors such as Snail Family Transcriptional Repressor 1 and Zinc Finger E-Box Binding Homeobox 1. In addition, the overexpression of BMI1 in the A549 cells resulted in an increase in Sp1 and a decrease in miR-145-5p accompanied by the elevations of cell proliferation and EMT transcription factors, which could be reduced by the overexpression of miR-145-5p or by treatment with the Sp1 inhibitor of mithramycin A. In conclusion, the results of this study suggest that the downregulation of miR-145-5p by BMI1 overexpression could lead to the enhanced expression of Sp1 to induce the EMT process in pemetrexed-resistant NSCLC cells. These results suggest that increasing miR-145-5p expression by delivering RNA drugs may serve as a sensitizing agent for pemetrexed-resistant NSCLC patients.
Collapse
|
7
|
Fessé P, Nyman J, Hermansson I, Book ML, Ahlgren J, Turesson I. Human cutaneous interfollicular melanocytes differentiate temporarily under genotoxic stress. iScience 2022; 25:105238. [PMID: 36274944 PMCID: PMC9579029 DOI: 10.1016/j.isci.2022.105238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
DNA-damage response of cutaneous interfollicular melanocytes to fractionated radiotherapy was investigated by immunostaining of tissue sections from punch biopsies collected before, during, and after the treatment of patients for breast cancer. Our clinical assay with sterilized hair follicles, excluded the migration of immature melanocytes from the bulge, and highlighted interfollicular melanocytes as an autonomous self-renewing population. About thirty percent are immature. Surrounding keratinocytes induced and maintained melanocyte differentiation as long as treatment was ongoing. Concomitant with differentiation, melanocytes were protected from apoptosis by transient upregulation of Bcl-2 and CXCR2. CXCR2 upregulation also indicated the instigation of premature senescence, preventing proliferation. The stem cell factor BMI1 was constitutively expressed exclusively in interfollicular melanocytes and further upregulated upon irradiation. BMI1 prevents apoptosis, terminal differentiation, and premature senescence, allowing dedifferentiation post-treatment, by suppressing the p53/p21-and p16-mediated response and upregulating CXCR2 to genotoxic damage. The pre-treatment immature subset of interfollicular melanocytes was restored after the exposure ended.
Collapse
Affiliation(s)
- Per Fessé
- Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Jan Nyman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Hermansson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maj-Lis Book
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Johan Ahlgren
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro Sweden
| | - Ingela Turesson
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Luo H, Li M, Wang F, Yang Y, Wang Q, Zhao Y, Du F, Chen Y, Shen J, Zhao Q, Zeng J, Wang S, Chen M, Li X, Li W, Sun Y, Gu L, Wen Q, Xiao Z, Wu X. The role of intestinal stem cell within gut homeostasis: Focusing on its interplay with gut microbiota and the regulating pathways. Int J Biol Sci 2022; 18:5185-5206. [PMID: 35982910 PMCID: PMC9379405 DOI: 10.7150/ijbs.72600] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Intestinal stem cells (ISCs) play an important role in maintaining intestinal homeostasis via promoting a healthy gut barrier. Within the stem cell niche, gut microbiota linking the crosstalk of dietary influence and host response has been identified as a key regulator of ISCs. Emerging insights from recent research reveal that ISC and gut microbiota interplay regulates epithelial self-renewal. This article reviews the recent knowledge on the key role of ISC in their local environment (stem cell niche) associating with gut microbiota and their metabolites as well as the signaling pathways. The current progress of intestinal organoid culture is further summarized. Subsequently, the key challenges and future directions are discussed.
Collapse
Affiliation(s)
- Haoming Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Yifei Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Qin Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
9
|
Wagner KD, Wagner N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022; 11:cells11121966. [PMID: 35741095 PMCID: PMC9221567 DOI: 10.3390/cells11121966] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that senescent cells accumulate with aging. They are characterized by replicative arrest and the release of a myriad of factors commonly called the senescence-associated secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4, p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development, cancer, and tissue homeostasis. While many markers of senescence have been identified, none are able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in embryonic and postnatal development and potential functions in pathophysiology and homeostasis. The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care and detailed knowledge about the involvement of senescence and senescence-associated proteins in developmental processes and homeostatic mechanism. The review contributes to these topics, summarizes open questions, and provides some directions for future research.
Collapse
|
10
|
Hisamori S, Mukohyama J, Koul S, Hayashi T, Rothenberg ME, Maeda M, Isobe T, Valencia Salazar LE, Qian X, Johnston DM, Qian D, Lao K, Asai N, Kakeji Y, Gennarino VA, Sahoo D, Dalerba P, Shimono Y. Upregulation of BMI1-suppressor miRNAs (miR-200c, miR-203) during terminal differentiation of colon epithelial cells. J Gastroenterol 2022; 57:407-422. [PMID: 35244768 PMCID: PMC10091510 DOI: 10.1007/s00535-022-01865-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are key regulators of stem cell functions, including self-renewal and differentiation. In this study, we aimed to identify miRNAs that are upregulated during terminal differentiation in the human colon epithelium, and elucidate their role in the mechanistic control of stem cell properties. METHODS "Bottom-of-the-crypt" (EPCAM+/CD44+/CD66alow) and "top-of-the-crypt" (EPCAM+/CD44neg/CD66ahigh) epithelial cells from 8 primary colon specimens (6 human, 2 murine) were purified by flow cytometry and analyzed for differential expression of 335 miRNAs. The miRNAs displaying the highest upregulation in "top-of-the-crypt" (terminally differentiated) epithelial cells were tested for positive correlation and association with survival outcomes in a colon cancer RNA-seq database (n = 439 patients). The two miRNAs with the strongest "top-of-the-crypt" expression profile were evaluated for capacity to downregulate self-renewal effectors and inhibit in vitro proliferation of colon cancer cells, in vitro organoid formation by normal colon epithelial cells and in vivo tumorigenicity by patient-derived xenografts (PDX). RESULTS Six miRNAs (miR-200a, miR-200b, miR-200c, miR-203, miR-210, miR-345) were upregulated in "top-of-the-crypt" cells and positively correlated in expression among colon carcinomas. Overexpression of the three miRNAs with the highest inter-correlation coefficients (miR-200a, miR-200b, miR-200c) associated with improved survival. The top two over-expressed miRNAs (miR-200c, miR-203) cooperated synergistically in suppressing expression of BMI1, a key regulator of self-renewal in stem cell populations, and in inhibiting proliferation, organoid-formation and tumorigenicity of colon epithelial cells. CONCLUSION In the colon epithelium, terminal differentiation associates with the coordinated upregulation of miR-200c and miR-203, which cooperate to suppress BMI1 and disable the expansion capacity of epithelial cells.
Collapse
Affiliation(s)
- Shigeo Hisamori
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Junko Mukohyama
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.,Department of Medicine (Division of Digestive and Liver Diseases), Columbia University, New York, NY, 10032, USA.,Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY, 10032, USA.,Digestive and Liver Disease Research Center (DLDRC), Columbia University, New York, NY, 10032, USA.,Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY, 10032, USA.,Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 6500017, Japan.,Department of Hepato-Biliary-Pancreatic and Gastrointestinal Surgery, International University of Health and Welfare (IUHW), Tokyo, 1088329, Japan
| | - Sanjay Koul
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.,Department of Medicine (Division of Digestive and Liver Diseases), Columbia University, New York, NY, 10032, USA.,Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY, 10032, USA.,Digestive and Liver Disease Research Center (DLDRC), Columbia University, New York, NY, 10032, USA.,Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY, 10032, USA.,Department of Biological Sciences and Geology, Queensboro Community College (QCC), City University of New York (CUNY), New York, NY, 11364, USA
| | - Takanori Hayashi
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Michael Evan Rothenberg
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Masao Maeda
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan.,Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Taichi Isobe
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Luis Enrique Valencia Salazar
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.,Department of Medicine (Division of Digestive and Liver Diseases), Columbia University, New York, NY, 10032, USA.,Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY, 10032, USA.,Digestive and Liver Disease Research Center (DLDRC), Columbia University, New York, NY, 10032, USA.,Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY, 10032, USA
| | - Xin Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Darius Michael Johnston
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Kaiqin Lao
- Genetic Sciences Division (GSD), Thermo Fisher Scientific, South San Francisco, CA, 94080, USA
| | - Naoya Asai
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 6500017, Japan
| | - Vincenzo Alessandro Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Neurology, Columbia University, New York, NY, 10032, USA.,Department of Pediatrics, Columbia University, New York, NY, 10032, USA.,Initiative for Columbia Ataxia and Tremor (ICAT), Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering and Department of Pediatrics, University of California San Diego (UCSD), San Diego, CA, 92123, USA
| | - Piero Dalerba
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA. .,Department of Medicine (Division of Digestive and Liver Diseases), Columbia University, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY, 10032, USA. .,Digestive and Liver Disease Research Center (DLDRC), Columbia University, New York, NY, 10032, USA. .,Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY, 10032, USA.
| | - Yohei Shimono
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA. .,Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan.
| |
Collapse
|
11
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Shadfar S, Brocardo M, Atkin JD. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052484. [PMID: 35269632 PMCID: PMC8910227 DOI: 10.3390/ijms23052484] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Human cells are exposed to numerous exogenous and endogenous insults every day. Unlike other molecules, DNA cannot be replaced by resynthesis, hence damage to DNA can have major consequences for the cell. The DNA damage response contains overlapping signalling networks that repair DNA and hence maintain genomic integrity, and aberrant DNA damage responses are increasingly described in neurodegenerative diseases. Furthermore, DNA repair declines during aging, which is the biggest risk factor for these conditions. If unrepaired, the accumulation of DNA damage results in death to eliminate cells with defective genomes. This is particularly important for postmitotic neurons because they have a limited capacity to proliferate, thus they must be maintained for life. Neuronal death is thus an important process in neurodegenerative disorders. In addition, the inability of neurons to divide renders them susceptible to senescence or re-entry to the cell cycle. The field of cell death has expanded significantly in recent years, and many new mechanisms have been described in various cell types, including neurons. Several of these mechanisms are linked to DNA damage. In this review, we provide an overview of the cell death pathways induced by DNA damage that are relevant to neurons and discuss the possible involvement of these mechanisms in neurodegenerative conditions.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Mariana Brocardo
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
13
|
Rees WD, Telkar N, Lin DTS, Wong MQ, Poloni C, Fathi A, Kobor M, Zachos NC, Steiner TS. An in vitro chronic damage model impairs inflammatory and regenerative responses in human colonoid monolayers. Cell Rep 2022; 38:110283. [PMID: 35045294 DOI: 10.1016/j.celrep.2021.110283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Acute damage to the intestinal epithelium can be repaired via de-differentiation of mature intestinal epithelial cells (IECs) to a stem-like state, but there is a lack of knowledge on how intestinal stem cells function after chronic injury, such as in inflammatory bowel disease (IBD). We developed a chronic-injury model in human colonoid monolayers by repeated rounds of air-liquid interface and submerged culture. We use this model to understand how chronic intestinal damage affects the ability of IECs to (1) respond to microbial stimulation, using the Toll-like receptor 5 (TLR5) agonist FliC and (2) regenerate and protect the epithelium from further damage. Repeated rounds of damage impair the ability of IECs to regrow and respond to TLR stimulation. We also identify mRNA expression and DNA methylation changes in genes associated with IBD and colon cancer. This methodology results in a human model of recurrent IEC injury like that which occurs in IBD.
Collapse
Affiliation(s)
- William D Rees
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada; Division of Hematology, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nikita Telkar
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada; BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - David T S Lin
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - May Q Wong
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Chad Poloni
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Ayda Fathi
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Michael Kobor
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Theodore S Steiner
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada.
| |
Collapse
|
14
|
Zhou J, Hou C, Chen H, Qin Z, Miao Z, Zhao J, Wang Q, Cui M, Xie C, Wang R, Li Q, Zuo G, Miao D, Jin J. P16 I NK 4a Deletion Ameliorates Damage of Intestinal Epithelial Barrier and Microbial Dysbiosis in a Stress-Induced Premature Senescence Model of Bmi-1 Deficiency. Front Cell Dev Biol 2021; 9:671564. [PMID: 34712655 PMCID: PMC8545785 DOI: 10.3389/fcell.2021.671564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine whether Bmi-1 deficiency leads to intestinal epithelial barrier destruction and microbiota dysfunction, which members of the microbial community alter barrier function with age, and whether p16INK4a deletion could reverse the damage of intestinal epithelial barrier and microbial dysbiosis. Intestines from Bmi-1–deficient (Bmi-1–/–), Bmi-1 and p16INK4a double-knockout (Bmi-1–/–p16INK4a–/–), and wild-type mice were observed for aging and inflammation. Duolink Proximity Ligation Assay, immunoprecipitation, and construction of p16INK4a overexpressed adenovirus and the overexpressed plasmids of full-length, mutant, or truncated fragments for occludin were used for analyzing the interaction between p16INK4a and occludin. High-throughput sequencing of V4 region amplicon of 16S ribosomal RNA was conducted using intestinal microbiota. We found Bmi-1 deficiency destructed barrier structure, barrier function, and tight junction (TJ) in intestinal epithelium; decreased the TJ proteins; increased tumor necrosis factor α (TNF-α)–dependent barrier permeability; and up-regulated proinflammatory level of macrophages induced by intestinal microbial dysbiosis. The transplantation of fecal microbiota from wild-type mice ameliorated TJ in intestinal epithelium of Bmi-1–/– and Bmi-1–/–p16INK4a–/– mice. Harmful bacteria including Desulfovibrio, Helicobacter, and Oscillibacter were at a higher level in Bmi-1–/– mice. More harmful bacteria Desulfovibrio entered the epithelium and promoted macrophages-secreted TNF-α and caused TNF-α–dependent barrier permeability and aging. Accumulated p16INK4a combined with occludin at the 1st–160th residue in cytoplasm of intestinal epithelium cells from Bmi-1–/– mice, which blocked formation of TJ and the repair of intestinal epithelium barrier. P16INK4a deletion could maintain barrier function and microbiota balance in Bmi-1–/– mice through strengthening formation of TJ and decreasing macrophages-secreted TNF-α induced by Desulfovibrio entering the intestinal epithelium. Thus, Bmi-1 maintained intestinal TJ, epithelial barrier function, and microbiota balance through preventing senescence characterized by p16INK4a accumulation. The clearance of p16INK4a-positive cells in aging intestinal epithelium would be a new method for maintaining barrier function and microbiota balance. The residues 1–160 of occludin could be a novel therapeutic target for identifying small molecular antagonistic peptides to prevent the combination of p16INK4a with occludin for protecting TJ.
Collapse
Affiliation(s)
- Jiawen Zhou
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chenxing Hou
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Haiyun Chen
- Anti-Aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyue Qin
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zi'an Miao
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingyu Zhao
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyi Wang
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Min Cui
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, China
| | - Guoping Zuo
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Anti-Aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Accumulation of Paneth Cells in Early Colorectal Adenomas Is Associated with Beta-Catenin Signaling and Poor Patient Prognosis. Cells 2021; 10:cells10112928. [PMID: 34831152 PMCID: PMC8616107 DOI: 10.3390/cells10112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Previous studies in mice indicated that Paneth cells and c-Kit-positive goblet cells represent the stem cell niche of the small intestine and colon, respectively, partly by supporting Wnt and Notch activation. Whether these cell populations play a similar role in human intestinal cancer remains unexplored. Methods: We performed histopathological evaluation and immunohistochemical analysis of early colorectal adenomas and carcinoma adenoma from patients at the Hospital del Mar in Barcelona. We then determined the possible correlation between the different parameters analyzed and with patient outcomes. Results: Paneth cells accumulate in a subset of human colorectal adenomas directly associated with Notch and Wnt/β-catenin activation. Adenoma areas containing Paneth cells display increased vessel density in the lamina propria and higher levels of the stem cell marker EphB2. In an in-house cohort of 200 colorectal adenoma samples, we also observed a significant correlation between the presence of Paneth cells and Wnt activation. Kaplan–Meier analysis indicated that early adenoma patients carrying Paneth cell-positive tumors display reduced disease-free survival compared with patients with Paneth cell-free lesions. Conclusions: Our results indicate that Paneth cells contribute to the initial steps of cancer progression by providing the stem cell niche to adenoma cells, which could be therapeutically exploited.
Collapse
|
16
|
Xu S, Yang N. Research Progress on the Mechanism of Cochlear Hair Cell Regeneration. Front Cell Neurosci 2021; 15:732507. [PMID: 34489646 PMCID: PMC8417573 DOI: 10.3389/fncel.2021.732507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Mammalian inner ear hair cells do not have the ability to spontaneously regenerate, so their irreversible damage is the main cause of sensorineural hearing loss. The damage and loss of hair cells are mainly caused by factors such as aging, infection, genetic factors, hypoxia, autoimmune diseases, ototoxic drugs, or noise exposure. In recent years, research on the regeneration and functional recovery of mammalian auditory hair cells has attracted more and more attention in the field of auditory research. How to regenerate and protect hair cells or auditory neurons through biological methods and rebuild auditory circuits and functions are key scientific issues that need to be resolved in this field. This review mainly summarizes and discusses the recent research progress in gene therapy and molecular mechanisms related to hair cell regeneration in the field of sensorineural hearing loss.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Lorzadeh A, Romero-Wolf M, Goel A, Jadhav U. Epigenetic Regulation of Intestinal Stem Cells and Disease: A Balancing Act of DNA and Histone Methylation. Gastroenterology 2021; 160:2267-2282. [PMID: 33775639 PMCID: PMC8169626 DOI: 10.1053/j.gastro.2021.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Genetic mutations or regulatory failures underlie cellular malfunction in many diseases, including colorectal cancer and inflammatory bowel diseases. However, mutational defects alone fail to explain the complexity of such disorders. Epigenetic regulation-control of gene action through chemical and structural changes of chromatin-provides a platform to integrate multiple extracellular inputs and prepares the cellular genome for appropriate gene expression responses. Coregulation by polycomb repressive complex 2-mediated trimethylation of lysine 27 on histone 3 and DNA methylation has emerged as one of the most influential epigenetic controls in colorectal cancer and many other diseases, but molecular details remain inadequate. Here we review the molecular interplay of these epigenetic features in relation to gastrointestinal development, homeostasis, and disease biology. We discuss other epigenetic mechanisms pertinent to the balance of trimethylation of lysine 27 on histone 3 and DNA methylation and their actions in gastrointestinal cancers. We also review the current molecular understanding of chromatin control in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maile Romero-Wolf
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
18
|
Tellez-Garcia AA, Álvarez-Martínez R, López-Martínez JM, Arellano-Carbajal F. Transcriptome analysis during early regeneration of Lumbriculus variegatus. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Park M, Kwon J, Youk H, Shin US, Han YH, Kim Y. Valproic acid protects intestinal organoids against radiation via NOTCH signaling. Cell Biol Int 2021; 45:1523-1532. [PMID: 33724613 DOI: 10.1002/cbin.11591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
Radiotherapy is a leading treatment for various types of cancer. However, exposure to high-dose ionizing radiation causes acute gastrointestinal injury and gastrointestinal syndrome. This has significant implications for human health, and therefore, radioprotection is a major area of research. Radiation induces the loss of intestinal stem cells; hence, the protection of stem cells expressing LGR5 (a marker of intestinal epithelial stem cells) is a key strategy for the prevention of radiation-induced injury. In this study, we identified valproic acid (VPA) as a potent radioprotector using an intestinal organoid culture system. VPA treatment increased the number of LGR5+ stem cells and organoid regeneration after irradiation. N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT, an inhibitor of NOTCH signaling) blocked the radioprotective effects of VPA, indicating that NOTCH signaling is a likely mechanism underlying the observed effects of VPA. In addition, VPA acted as a radiosensitizer via the inhibition of histone deacetylase (HDAC) in a colorectal cancer organoid. These results demonstrate that VPA exerts strong protective effects on LGR5+ stem cells via NOTCH signaling and that the inhibition of NOTCH signaling reduces these protective effects, providing a basis for the improved management of radiation injury.
Collapse
Affiliation(s)
- Misun Park
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon, Korea
| | - Junhye Kwon
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Heejeong Youk
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ui Sup Shin
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Young-Hoon Han
- Department of Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon, Korea.,Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Younjoo Kim
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
20
|
Sarkar A, Saha S, Paul A, Maji A, Roy P, Maity TK. Understanding stem cells and its pivotal role in regenerative medicine. Life Sci 2021; 273:119270. [PMID: 33640402 DOI: 10.1016/j.lfs.2021.119270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Stem cells (SCs) are clonogenic cells that develop into the specialized cells which later responsible for making up various types of tissue in the human body. SCs are not only the appropriate source of information for cell division, molecular and cellular processes, and tissue homeostasis but also one of the major putative biological aids to diagnose and cure various degenerative diseases. This study emphasises on various research outputs that occurred in the past two decades. This will give brief information on classification, differentiation, detection, and various isolation techniques of SCs. Here, the various signalling pathways which includes WNT, Sonic hedgehog, Notch, BMI1 and C-met pathways and how does it effect on the regeneration of various classes of SCs and factors that regulates the potency of the SCs are also been discussed. We also focused on the application of SCs in the area of regenerative medicine along with the cellular markers that are useful as salient diagnostic or curative tools or in both, by the process of reprogramming, which includes diabetes, cancer, cardiovascular disorders and neurological disorders. The biomarkers that are mentioned in various literatures and experiments include PDX1, FOXA2, HNF6, and NKX6-1 (for diabetes); CD33, CD24, CD133 (for cancer); c-Kit, SCA-1, Wilm's tumor 1 (for cardiovascular disorders); and OCT4, SOX2, c-MYC, EN1, DAT and VMAT2 (for neurological disorders). In this review, we come to know the advancements and scopes of potential SC-based therapies, its diverse applications in clinical fields that can be helpful in the near future.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Puspita Roy
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India.
| |
Collapse
|
21
|
Non-Canonical Functions of the ARF Tumor Suppressor in Development and Tumorigenesis. Biomolecules 2021; 11:biom11010086. [PMID: 33445626 PMCID: PMC7827855 DOI: 10.3390/biom11010086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
P14ARF (ARF; Alternative Reading Frame) is an extensively characterized tumor suppressor which, in response to oncogenic stimuli, mediates cell cycle arrest and apoptosis via p53-dependent and independent routes. ARF has been shown to be frequently lost through CpG island promoter methylation in a wide spectrum of human malignancies, such as colorectal, prostate, breast, and gastric cancers, while point mutations and deletions in the p14ARF locus have been linked with various forms of melanomas and glioblastomas. Although ARF has been mostly studied in the context of tumorigenesis, it has been also implicated in purely developmental processes, such as spermatogenesis, and mammary gland and ocular development, while it has been additionally involved in the regulation of angiogenesis. Moreover, ARF has been found to hold important roles in stem cell self-renewal and differentiation. As is often the case with tumor suppressors, ARF functions as a pleiotropic protein regulating a number of different mechanisms at the crossroad of development and tumorigenesis. Here, we provide an overview of the non-canonical functions of ARF in cancer and developmental biology, by dissecting the crosstalk of ARF signaling with key oncogenic and developmental pathways.
Collapse
|
22
|
Li N, Zhang Y, Nepal N, Li G, Yang N, Chen H, Lin Q, Ji X, Zhang S, Jin S. Dental pulp stem cells overexpressing hepatocyte growth factor facilitate the repair of DSS-induced ulcerative colitis. Stem Cell Res Ther 2021; 12:30. [PMID: 33413675 PMCID: PMC7792189 DOI: 10.1186/s13287-020-02098-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background Ulcerative colitis (UC) is a chronic and recurrent disease without satisfactory treatment strategies. Dental pulp stem cell (DPSC) transplantation has been proposed as a potential therapy for UC. This study aimed to investigate the therapeutic effects of the rat hepatocyte growth factor (HGF) gene transduced into DPSCs for UC. Methods The therapeutic effects of HGF-DPSCs transplanted intravenously into a rat model of UC induced by 5% dextran sulphate sodium (DSS) were compared with the other treatment groups (LV-HGF group, DPSCs group and GFP-DPSCs group). Immunofluorescence and immunohistochemistry were used to observe the localization and proliferation of HGF-DPSCs at the site of colon injury. The expression levels of inflammatory factors were detected by real-time quantitative PCR (RT-PCR) and western blotting. The oxidative stress markers were detected by ELISA. DAI scores and body weight changes were used to macroscopically evaluate the treatment of rats in each group. Results Immunofluorescence and immunohistochemistry assays showed that HGF-DPSCs homed to colon injury sites and colocalized with intestinal stem cell (ISC) markers (Bmi1, Musashi1 and Sox9) and significantly promoted protein expression (Bmi1, Musashi1, Sox9 and PCNA). Anti-inflammatory cytokine (TGF-β and IL-10) expression was the highest in the HGF-DPSCs group compared with the other treatment groups, while the expression of pro-inflammatory cytokines (TNF-α and INF-γ) was the lowest. Additionally, the oxidative stress response results showed that malondialdehyde (MDA) and myeloperoxidase (MPO) expression decreased while superoxide dismutase (SOD) expression increased, especially in the HGF-DPSCs group. The DAI scores showed a downward trend with time in the five treatment groups, whereas body weight increased, and the changes were most prominent in the HGF-DPSCs group. Conclusions The study indicated that HGF-DPSCs can alleviate injuries to the intestinal mucosa by transdifferentiating into ISC-like cells, promoting ISC-like cell proliferation, suppressing inflammatory responses and reducing oxidative stress damage, which provides new ideas for the clinical treatment of UC.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yichi Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Narayan Nepal
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Guoqing Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ningning Yang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Haoyuan Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qiuchi Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xuechun Ji
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Sijia Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
23
|
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142:115679. [PMID: 33022453 PMCID: PMC7901145 DOI: 10.1016/j.bone.2020.115679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
Collapse
Affiliation(s)
- Matthew L Potter
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
24
|
Li A, Abraham C, Wang Y, Zhang Y. New insights into the basic biology of acute graft-versus-host-disease. Haematologica 2020; 105:2540-2549. [PMID: 33131244 PMCID: PMC7604569 DOI: 10.3324/haematol.2019.240291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/03/2022] Open
Abstract
Although allogeneic hematopoietic stem cell transplantation is an important therapy for many hematological and non-hematological diseases, acute graft-versus-host-disease (aGVHD) is a major obstacle to its success. The pathogenesis of aGVHD is divided into three distinct phases which occur largely as the result of interactions between infused donor T cells and numerous cell types of both hematopoietic and non-hematopoietic origin. In light of the disease's immensely complex biology, epigenetics has emerged as a framework with which to examine aGVHD. This review focuses on new findings that clarify the roles specific epigenetic regulators play in T cell-mediated aGVHD development and discusses how their modulation could disrupt that process to beneficial effects. DNA methyltransferases, histone methyltransferases and histone deacetylases are the most closely studied regulators across aGVHD priming, induction and effector phases and have been manipulated using drugs and other methods in both murine models and clinical trials to varying degrees of success. Antigen-presenting cells, effector T cells and memory T cells, among others, are targeted and affected by these regulators in different ways. Finally, our review highlights new directions for study and potential novel targets for modulation to abrogate aGVHD.
Collapse
Affiliation(s)
- Alicia Li
- Fels Institute for Cancer Research & Molecular Biology
| | - Ciril Abraham
- Fels Institute for Cancer Research & Molecular Biology
| | - Ying Wang
- Fels Institute for Cancer Research & Molecular Biology
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yi Zhang
- Fels Institute for Cancer Research & Molecular Biology
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Liu Y, Chen YG. Intestinal epithelial plasticity and regeneration via cell dedifferentiation. CELL REGENERATION 2020; 9:14. [PMID: 32869114 PMCID: PMC7459029 DOI: 10.1186/s13619-020-00053-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium possesses a great capacity of self-renewal under normal homeostatic conditions and of regeneration upon damages. The renewal and regenerative processes are driven by intestinal stem cells (ISCs), which reside at the base of crypts and are marked by Lgr5. As Lgr5+ ISCs undergo fast cycling and are vulnerable to damages, there must be other types of cells that can replenish the lost Lgr5+ ISCs and then regenerate the damage epithelium. In addition to Lgr5+ ISCs, quiescent ISCs at the + 4 position in the crypt have been proposed to convert to Lgr5+ ISCs during regeneration. However, this “reserve stem cell” model still remains controversial. Different from the traditional view of a hierarchical organization of the intestinal epithelium, recent works support the dynamic “dedifferentiation” model, in which various cell types within the epithelium can de-differentiate to revert to the stem cell state and then regenerate the epithelium upon tissue injury. Here, we provide an overview of the cell identity and features of two distinct models and discuss the possible mechanisms underlying the intestinal epithelial plasticity.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Zhang Q, Li J, Li Y, Che H, Chen Y, Dong J, Xian CJ, Miao D, Wang L, Ren Y. Bmi deficiency causes oxidative stress and intervertebral disc degeneration which can be alleviated by antioxidant treatment. J Cell Mol Med 2020; 24:8950-8961. [PMID: 32583517 PMCID: PMC7417700 DOI: 10.1111/jcmm.15528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 02/01/2023] Open
Abstract
The transcriptional repressor Bmi‐1 is involved in cell‐cycle regulation and cell senescence, the deficiency of which has been shown to cause oxidative stress. This study investigated whether Bmi‐1 deficiency plays a role in promoting disc degeneration and the effect of treatment with antioxidant N‐acetylcysteine (NAC) on intervertebral disc degeneration. Bmi‐1−/− mice were treated with the antioxidant NAC, supplied in drinking water (Bmi‐1−/−+NAC). For in vitro experiments, mouse intervertebral discs were cultured under low oxygen tension and serum‐limiting conditions in the presence of tumour necrosis factor α and interleukin 1β in order to mimic degenerative insult. Disc metabolism parameters in these in vitro and in vivo studies were evaluated by histopathological, immunohistochemical and molecular methods. Bmi‐1−/− mice showed lower collagen Ⅱ and aggrecan levels and higher collagen Ⅹ levels than wild‐type and Bmi‐1−/−+NAC mice. Bmi‐1−/− mice showed significantly lower superoxide dismutase (SOD)‐1, SOD‐2, glutathione peroxidase (GPX)‐1 and GPX‐3 levels than their wild‐type littermates and Bmi‐1−/−+ NAC mice. Relative to Bmi‐1−/− mice, the control and Bmi‐1−/−+NAC mice showed significantly lower p16, p21, and p53 levels. These results demonstrate that Bmi‐1 plays an important role in attenuating intervertebral disc degeneration in mice by inhibiting oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Qunhu Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthopaedics, Suqian First Hospital, Suqian, Jiangsu, China
| | - Jie Li
- Department of Orthopaedics, Xuzhou Central Hospital, Xuzhou Clinical College of Nanjing Medical University, The Affiliated Xuzhou Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - You Li
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Che
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghui Dong
- Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, Zhejiang, China.,UniSA Clinical and Health Sciences and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- UniSA Clinical and Health Sciences and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liping Wang
- Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, Zhejiang, China.,UniSA Clinical and Health Sciences and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Yongxin Ren
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Giuranno L, Roig EM, Wansleeben C, van den Berg A, Groot AJ, Dubois L, Vooijs M. NOTCH inhibition promotes bronchial stem cell renewal and epithelial barrier integrity after irradiation. Stem Cells Transl Med 2020; 9:799-812. [PMID: 32297712 PMCID: PMC7308641 DOI: 10.1002/sctm.19-0278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/28/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Hyperactivity of the NOTCH pathway is associated with tumor growth and radiotherapy resistance in lung cancer, and NOTCH/γ-secretase inhibitors (GSIs) are a potential therapeutic target. The therapeutic outcome, however, is often restricted by the dose-limiting toxicity of combined treatments on the surrounding healthy tissue. The NOTCH signaling pathway is also crucial for homeostasis and repair of the normal airway epithelium. The effects of NOTCH/γ-secretase inhibition on the irradiation of normal lung epithelium are unknown and may counteract antitumor activity. Here we, therefore, investigated whether normal tissue toxicity to radiation is altered upon NOTCH pathway inhibition. We established air-liquid interface pseudostratified and polarized cultures from primary human bronchial epithelial cells and blocked NOTCH signaling alone or after irradiation with small-molecule NOTCH inhibitor/GSI. We found that the reduction in proliferation and viability of bronchial stem cells (TP63+) in response to irradiation is rescued with concomitant NOTCH inhibition. This correlated with reduced activation of the DNA damage response and accelerated repair by 24 hours and 3 days postirradiation. The increase in basal cell proliferation and viability in GSI-treated and irradiated cultures resulted in an improved epithelial barrier function. Comparable results were obtained after in vivo irradiation, where the combination of NOTCH inhibition and irradiation increased the percentage of stem cells and ciliated cells ex vivo. These encourage further use of normal patient tissue for toxicity screening of combination treatments and disclose novel interactions between NOTCH inhibition and radiotherapy and opportunities for tissue repair after radiotherapy.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Eloy M Roig
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Carolien Wansleeben
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Annette van den Berg
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Arjan J Groot
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Ludwig Dubois
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
28
|
Aceto GM, Catalano T, Curia MC. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1726309. [PMID: 32258104 PMCID: PMC7102468 DOI: 10.1155/2020/1726309] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
The development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors. CRC incidence rates are constantly increased for young adult patients presenting an advanced tumor stage. The majority of CRCs arise from colonic adenomas originating from aberrant cell proliferation of colon epithelium. Endoscopic polypectomy represents a tool for early detection and removal of polyps, although the occurrence of cancers after negative colonoscopy shows a significant incidence. It has long been recognized that the aberrant regulation of Wingless/It (Wnt)/β-Catenin signaling in the pathogenesis of colorectal cancer is supported by its critical role in the differentiation of stem cells in intestinal crypts and in the maintenance of intestinal homeostasis. For this review, we will focus on the development of adenomatous polyps through the interplay between renewal signaling in the colon epithelium and reactive oxygen species (ROS) production. The current knowledge of molecular pathology allows us to deepen the relationships between oxidative stress and other risk factors as lifestyle, microbiota, and predisposition. We underline that the chronic inflammation and ROS production in the colon epithelium can impair the Wnt/β-catenin and/or base excision repair (BER) pathways and predispose to polyp development. In fact, the coexistence of oxidative DNA damage and errors in DNA polymerase can foster C>T transitions in various types of cancer and adenomas, leading to a hypermutated phenotype of tumor cells. Moreover, the function of Adenomatous Polyposis Coli (APC) protein in regulating DNA repair is very important as therapeutic implication making DNA damaging chemotherapeutic agents more effective in CRC cells that tend to accumulate mutations. Additional studies will determine whether approaches based on Wnt inhibition would provide long-term therapeutic value in CRC, but it is clear that APC disruption plays a central role in driving and maintaining tumorigenesis.
Collapse
Affiliation(s)
- Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
29
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
30
|
Katoh M, Katoh M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med 2020; 45:279-297. [PMID: 31894255 PMCID: PMC6984804 DOI: 10.3892/ijmm.2019.4418] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
NOTCH1, NOTCH2, NOTCH3 and NOTCH4 are transmembrane receptors that transduce juxtacrine signals of the delta‑like canonical Notch ligand (DLL)1, DLL3, DLL4, jagged canonical Notch ligand (JAG)1 and JAG2. Canonical Notch signaling activates the transcription of BMI1 proto‑oncogene polycomb ring finger, cyclin D1, CD44, cyclin dependent kinase inhibitor 1A, hes family bHLH transcription factor 1, hes related family bHLH transcription factor with YRPW motif 1, MYC, NOTCH3, RE1 silencing transcription factor and transcription factor 7 in a cellular context‑dependent manner, while non‑canonical Notch signaling activates NF‑κB and Rac family small GTPase 1. Notch signaling is aberrantly activated in breast cancer, non‑small‑cell lung cancer and hematological malignancies, such as T‑cell acute lymphoblastic leukemia and diffuse large B‑cell lymphoma. However, Notch signaling is inactivated in small‑cell lung cancer and squamous cell carcinomas. Loss‑of‑function NOTCH1 mutations are early events during esophageal tumorigenesis, whereas gain‑of‑function NOTCH1 mutations are late events during T‑cell leukemogenesis and B‑cell lymphomagenesis. Notch signaling cascades crosstalk with fibroblast growth factor and WNT signaling cascades in the tumor microenvironment to maintain cancer stem cells and remodel the tumor microenvironment. The Notch signaling network exerts oncogenic and tumor‑suppressive effects in a cancer stage‑ or (sub)type‑dependent manner. Small‑molecule γ‑secretase inhibitors (AL101, MRK‑560, nirogacestat and others) and antibody‑based biologics targeting Notch ligands or receptors [ABT‑165, AMG 119, rovalpituzumab tesirine (Rova‑T) and others] have been developed as investigational drugs. The DLL3‑targeting antibody‑drug conjugate (ADC) Rova‑T, and DLL3‑targeting chimeric antigen receptor‑modified T cells (CAR‑Ts), AMG 119, are promising anti‑cancer therapeutics, as are other ADCs or CAR‑Ts targeting tumor necrosis factor receptor superfamily member 17, CD19, CD22, CD30, CD79B, CD205, Claudin 18.2, fibroblast growth factor receptor (FGFR)2, FGFR3, receptor‑type tyrosine‑protein kinase FLT3, HER2, hepatocyte growth factor receptor, NECTIN4, inactive tyrosine‑protein kinase 7, inactive tyrosine‑protein kinase transmembrane receptor ROR1 and tumor‑associated calcium signal transducer 2. ADCs and CAR‑Ts could alter the therapeutic framework for refractory cancers, especially diffuse‑type gastric cancer, ovarian cancer and pancreatic cancer with peritoneal dissemination. Phase III clinical trials of Rova‑T for patients with small‑cell lung cancer and a phase III clinical trial of nirogacestat for patients with desmoid tumors are ongoing. Integration of human intelligence, cognitive computing and explainable artificial intelligence is necessary to construct a Notch‑related knowledge‑base and optimize Notch‑targeted therapy for patients with cancer.
Collapse
Affiliation(s)
| | - Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
31
|
Jian X, He H, Zhu J, Zhang Q, Zheng Z, Liang X, Chen L, Yang M, Peng K, Zhang Z, Liu T, Ye Y, Jiao H, Wang S, Zhou W, Ding Y, Li T. Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Mol Cancer 2020; 19:20. [PMID: 32005118 PMCID: PMC6993513 DOI: 10.1186/s12943-020-1134-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/09/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that circular RNAs (circRNAs) act as microRNA (miRNA) sponges to directly inhibit specific miRNAs and alter their ability to regulate gene expression at the post-transcriptional level; this mechanism is believed to occur in various cancers. However, the expression level, precise function and mechanism of circ_001680 in colorectal carcinoma (CRC) are largely unknown. METHODS qRT-PCR was used to detect the expression of circ_001680 and miR-340 in human CRC tissues and their matched normal tissues. Bioinformatics analyses and dual-fluorescence reporter assays were used to evaluate whether circ_001680 could bind to miR-340. Circ_001680 overexpression and knockdown cell lines were constructed to investigate the proliferation and migration abilities in vivo and in vitro through function-based experiments, including CCK8, plate clone formation, transwell, and wounding healing assays. The relationships among circ_001680, miR-340 and BMI1 were investigated by bioinformatics analyses, dual-fluorescence reporter system, FISH, RIP and RNA pull down assays. Sphere forming assays and flow cytometry analyses were used to assess the effect of circ_001680 on the stemness characteristics of CRC cells. RESULTS Circ_001680 was more highly expressed in of CRC tissue than in matched adjacent normal tissues from the same patients. Circ_001680 was observed to enhance the proliferation and migration capacity of CRC cells. Furthermore, dual-fluorescence reporter assays confirmed that circ_001680 affects the expression of BMI1 by targeting miR-340. More importantly, we also found that circ_001680 could promote the cancer stem cell (CSC) population in CRC and induce irinotecan therapeutic resistance by regulating the miR-340 target gene BMI1. CONCLUSIONS Our results demonstrated that circ_001680 is a part of a novel strategy to induce chemotherapy resistance in CRC through BMI1 upregulation. Moreover, circ_001680 may be a promising diagnostic and prognostic marker to determine the success of irinotecan-based chemotherapy.
Collapse
Affiliation(s)
- Xiangyu Jian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Han He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiehong Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qi Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangjing Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liuyan Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiling Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaiyue Peng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaowen Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Tengfei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
Lee C, Choi C, Kang HS, Shin SW, Kim SY, Park HC, Hong SN. NOD2 Supports Crypt Survival and Epithelial Regeneration after Radiation-Induced Injury. Int J Mol Sci 2019; 20:ijms20174297. [PMID: 31480799 PMCID: PMC6747113 DOI: 10.3390/ijms20174297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/30/2023] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) affords stem cell protection and links microbes to intestinal epithelial regeneration. We investigated whether NOD2 status is associated with crypt survival and intestinal epithelial regeneration independent of microbiota-derived molecules. To assess crypt survival, a clonogenic microcolony assay was performed with 15 Gy of X-ray irradiation. The fractional crypt survival rate (46.0 ± 15.5% vs. 24.7 ± 9.2%, p < 0.01) and fractional EdU-positive crypt survival rate (29.8 ± 14.5% vs. 9.79 ± 4.37%, p = 0.015) were significantly decreased in the NOD2−/− mice compared with the wild-type (WT) mice at 3.5 days after irradiation. To evaluate intestinal epithelial regeneration capability, organoid reconstitution assays were performed. Small bowel crypts of the WT and NOD2−/− mice were isolated and seeded into Matrigel for 3D culture. In the organoid reconstitution assays, the number of organoids formed did not differ between the NOD2−/− and WT mice. Organoid formation ability was also assessed after exposure to 5 Gy irradiation. Organoid formation ability was significantly decreased in the NOD2−/− mice compared with the WT ones after exposure to 5 Gy irradiation (33.2 ± 5.9 vs. 19.7 ± 8.8/well, p < 0.01). NOD2 supports crypt survival after potentially lethal irradiation damage and is associated with intestinal epithelial regeneration.
Collapse
Affiliation(s)
- Chansu Lee
- Department of Medicine, Samsung Medical Center, Sungkyunwan University School of Medicine, Seoul 06351, Korea
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea
| | - Ho Suk Kang
- Department of Internal Medicine, Hallym University Medical Center, Anyang-si, Gyeonggi-do 14068, Korea
| | - Sung-Won Shin
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea
- Department of Radiation Oncology, Sungkyunwan University School of Medicine, Seoul 06351, Korea
| | - Shin-Yeong Kim
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
- Department of Radiation Oncology, Sungkyunwan University School of Medicine, Seoul 06351, Korea.
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunwan University School of Medicine, Seoul 06351, Korea.
| |
Collapse
|
33
|
Martinez-Redondo P, Izpisua Belmonte JC. Tailored chromatin modulation to promote tissue regeneration. Semin Cell Dev Biol 2019; 97:3-15. [PMID: 31028854 DOI: 10.1016/j.semcdb.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic regulation of gene expression is fundamental in the maintenance of cellular identity and the regulation of cellular plasticity during tissue repair. In fact, epigenetic modulation is associated with the processes of cellular de-differentiation, proliferation, and re-differentiation that takes place during tissue regeneration. In here we explore the epigenetic events that coordinate tissue repair in lower vertebrates with high regenerative capacity, and in mammalian adult stem cells, which are responsible for the homeostasis maintenance of most of our tissues. Finally we summarize promising CRISPR-based editing technologies developed during the last years, which look as promising tools to not only study but also promote specific events during tissue regeneration.
Collapse
Affiliation(s)
- Paloma Martinez-Redondo
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| |
Collapse
|
34
|
Ren J, Sui H, Fang F, Li Q, Li B. The application of Apc Min/+ mouse model in colorectal tumor researches. J Cancer Res Clin Oncol 2019; 145:1111-1122. [PMID: 30887153 DOI: 10.1007/s00432-019-02883-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE ApcMin/+ mouse is an excellent animal model bearing multiple intestinal neoplasia, used to simulate human familial adenomatous polyposis and colorectal tumors. The key point of this model is the mutation of Apc gene, which is a significant tumor-suppressor gene in the Wnt signaling pathway. There are also some other possible mechanisms responsible for the development of colorectal tumors in the ApcMin/+ mouse model, such as tumor-associated signaling pathways activation, the changes of tumor-related genes, and the involvement of some related proteins or molecules. METHODS The relevant literatures about ApcMin/+ mouse model from PUBMED databases are reviewed in this study. RESULTS In recent years, increasing studies have focused on the application of ApcMin/+ mouse model in colorectal tumor, trying to find effective therapeutic targets for further use. CONCLUSION This article will give a brief review on the related molecular mechanisms of the ApcMin/+ mouse model and its application in colorectal tumor researches.
Collapse
Affiliation(s)
- Junze Ren
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Hua Sui
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Qi Li
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
35
|
Grindheim JM, Nicetto D, Donahue G, Zaret KS. Polycomb Repressive Complex 2 Proteins EZH1 and EZH2 Regulate Timing of Postnatal Hepatocyte Maturation and Fibrosis by Repressing Genes With Euchromatic Promoters in Mice. Gastroenterology 2019; 156:1834-1848. [PMID: 30689973 PMCID: PMC6599454 DOI: 10.1053/j.gastro.2019.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Little is known about mechanisms that underlie postnatal hepatocyte maturation and fibrosis at the chromatin level. We investigated the transcription of genes involved in maturation and fibrosis in postnatal hepatocytes of mice, focusing on the chromatin compaction the roles of the Polycomb repressive complex 2 histone methyltransferases EZH1 and EZH2. METHODS Hepatocytes were isolated from mixed background C57BL/6J-C3H mice, as well as mice with liver-specific disruption of Ezh1 and/or Ezh2, at postnatal day 14 and 2 months after birth. Liver tissues were collected and analyzed by RNA sequencing, H3K27me3 chromatin immunoprecipitation sequencing, and sonication-resistant heterochromatin sequencing (a method to map heterochromatin and euchromatin). Liver damage was characterized by histologic analysis. RESULTS We found more than 3000 genes differentially expressed in hepatocytes during liver maturation from postnatal day 14 to month 2 after birth. Disruption of Ezh1 and Ezh2 in livers caused perinatal hepatocytes to differentiate prematurely and to express genes at postnatal day 14 that would normally be induced by month 2 and differentiate prematurely. Loss of Ezh1 and Ezh2 also resulted in liver fibrosis. Genes with H3K27me3-postive and H3K4me3-positive euchromatic promoters were prematurely induced in hepatocytes with loss of Ezh1 and Ezh2-these genes included those that regulate hepatocyte maturation, fibrosis, and genes not specifically associated with the liver lineage. CONCLUSIONS The Polycomb repressive complex 2 proteins EZH1 and EZH2 regulate genes that control hepatocyte maturation and fibrogenesis and genes not specifically associated with the liver lineage by acting at euchromatic promoter regions. EZH1 and EZH2 thereby promote liver homeostasis and prevent liver damage. Strategies to manipulate Polycomb proteins might be used to improve hepatocyte derivation protocols or developed for treatment of patients with liver fibrosis.
Collapse
Affiliation(s)
- Jessica Mae Grindheim
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. of Cancer Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania.
| |
Collapse
|
36
|
Chen X, Hu L, Yang H, Ma H, Ye K, Zhao C, Zhao Z, Dai H, Wang H, Fang Z. DHHC protein family targets different subsets of glioma stem cells in specific niches. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:25. [PMID: 30658672 PMCID: PMC6339410 DOI: 10.1186/s13046-019-1033-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Background Glioblastomas (GBM) comprise different subsets that exhibit marked heterogeneity and plasticity, leading to a lack of success of genomic profiling in guiding the development of precision medicine approaches against these tumors. Accordingly, there is an urgent need to investigate the regulatory mechanisms for different GBM subsets and identify novel biomarkers and therapeutic targets relevant in the context of GBM-specific niches. The DHHC family of proteins is associated tightly with the malignant development and progression of gliomas. However, the role of these proteins in the plasticity of GBM subsets remains unclear. Methods This study utilized human glioma proneural or mesenchymal stem cells as indicated. The effects of DHHC proteins on different GBM subsets were investigated through in vitro and in vivo assays (i.e., colony formation assay, flow cytometry assay, double immunofluorescence, western blot, and xenograft model). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to detect the protein complexes of ZDHHC18 and ZDHHC23 in various GBM subtypes, and explore the mechanism of DHHC proteins in targeting different subsets of GSCs in specific niches. Results ZDHHC18 and ZDHHC23 could target the glioma stem cells of different GBM subsets in the context of their specific niches and regulate the cellular plasticity of these subtypes. Moreover, mechanistic investigations revealed that ZDHHC18 and ZDHHC23 competitively interact with a BMI1 E3 ligase, RNF144A, to regulate the polyubiquitination and accumulation of BMI1. These events contributed to the transition of glioma stem cells in GBM and cell survival under the stressful tumor microenvironment. Conclusions Our work highlights the role of DHHC proteins in the plasticity of GBM subsets and reveals that BMI1 represents a potential therapeutic target for human gliomas. Electronic supplementary material The online version of this article (10.1186/s13046-019-1033-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China.
| | - Lei Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230031, Anhui, China
| | - Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230031, Anhui, China
| | - Huihui Ma
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 218, Jixi Road, Hefei, 230031, Anhui, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230031, Anhui, China
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230031, Anhui, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China.
| |
Collapse
|
37
|
Gunaratna RT, Santos A, Luo L, Nagi C, Lambertz I, Spier M, Conti CJ, Fuchs-Young RS. Dynamic role of the codon 72 p53 single-nucleotide polymorphism in mammary tumorigenesis in a humanized mouse model. Oncogene 2019; 38:3535-3550. [PMID: 30651598 PMCID: PMC6756019 DOI: 10.1038/s41388-018-0630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/14/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
Female breast cancer (BrCa) is the most common noncutaneous cancer among women in the United States. Human epidemiological studies reveal that a p53 single-nucleotide polymorphism (SNP) at codon 72, encoding proline (P72) or arginine (R72), is associated with differential risk of several cancers, including BrCa. However, the molecular mechanisms by which these variants affect mammary tumorigenesis remain unresolved. To investigate the effects of this polymorphism on susceptibility to mammary cancer, we used a humanized p53 mouse model, homozygous for either P72 or R72. Our studies revealed that R72 mice had a significantly higher mammary tumor incidence and reduced latency in both DMBA-induced and MMTV-Erbb2/Neu mouse mammary tumor models compared to P72 mice. Analyses showed that susceptible mammary glands from E-R72 (R72 x MMTV-Erbb2/Neu) mice developed a senescence-associated secretory phenotype (SASP) with influx of proinflammatory macrophages, ultimately resulting in chronic, protumorigenic inflammation. Mammary tumors arising in E-R72 mice also had an increased influx of tumor-associated macrophages, contributing to angiogenesis and elevated tumor growth rates. These results demonstrate that the p53 R72 variant increased susceptibility to mammary tumorigenesis through chronic inflammation.
Collapse
Affiliation(s)
- Ramesh T Gunaratna
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andres Santos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Linjie Luo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Lambertz
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Madison Spier
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Claudio J Conti
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.,Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Robin S Fuchs-Young
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA. .,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
38
|
López-Arribillaga E, Rodilla V, Espinosa L. Could JAG1 protein inhibition prevent colorectal cancer? Future Oncol 2019; 15:345-347. [PMID: 30620224 DOI: 10.2217/fon-2018-0760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Erika López-Arribillaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science & Technology (BIST), Barcelona, Spain
| | - Verónica Rodilla
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Lluís Espinosa
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
39
|
Samadani AA, Norollahi SE, Rashidy-Pour A, Mansour-Ghanaei F, Nemati S, Joukar F, Afshar AM, Ghazanfari S, Safizadeh M, Rostami P, Gatei M. Cancer signaling pathways with a therapeutic approach: An overview in epigenetic regulations of cancer stem cells. Biomed Pharmacother 2018; 108:590-599. [DOI: 10.1016/j.biopha.2018.09.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
|
40
|
Sun W, Qiao W, Zhou B, Hu Z, Yan Q, Wu J, Wang R, Zhang Q, Miao D. Overexpression of Sirt1 in mesenchymal stem cells protects against bone loss in mice by FOXO3a deacetylation and oxidative stress inhibition. Metabolism 2018; 88:61-71. [PMID: 30318050 DOI: 10.1016/j.metabol.2018.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/23/2018] [Accepted: 06/17/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) deficiency (Bmi-1-/-) leads to an osteoporotic phenotype with a significant downregulation of Sirt1 protein expression. Sirtuin 1 (Sirt1) haploinsufficiency results in a bone loss by decreased bone formation; however, it is unclear whether Sirt1 overexpression in mesenchymal stem cells (MSCs) plays an anti-osteoporotic role. The aim of the study is to identify whether the overexpression of Sirt1 in MSCs could restore skeletal growth retardation and osteoporosis in Bmi-1 deficient mice. METHODS We used our new generated transgenic mouse model that overexpresses Sirt1 in its MSCs (Sirt1TG) to cross with Bmi-1-/- mice to generate Bmi-1-/- mice with Sirt1 overexpression in MSCs, and compared their skeletal metabolism with those of their Bmi-1-/- and wild-type (WT) littermates (6 mice for each genotype) at 4 weeks of age using imaging, histopathological, immunohistochemical, histomorphometric, cellular, and molecular methods. RESULTS The levels of expression for Sirt1 were noticeably higher in the skeletal tissue of Sirt1TG mice than in those of WT mice. In Comparison to WT mice, the body weight and size, skeletal size, bone volume, osteoblast number, alkaline phosphatase and type I collagen positive areas, osteogenic related gene expression levels were all significantly increased in the Sirt1TG mice. Overexpression of Sirt1 in Bmi-1-/- mouse MSCs resulted in a longer lifespan, improved skeletal growth and significantly increased bone mass by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption in the Bmi-1-/- mice, although the defects were not completely restored. Furthermore, Sirt1 overexpression in MSCs reduced the acetylation level of FOXO3a (Forkhead box O3a), increasing levels of expression for FOXO3a and SOD2 (Superoxide dismutase 2) in bony tissue, enhanced osteogenesis and reduced osteogenic cell senescence. We also demonstrated that nicotinamide, a Sirt1 inhibitor, blocks the effect of overexpression of Sirt1 in MSCs on osteogenesis and osteogenic cell senescence. CONCLUSIONS Taken together, these results demonstrate that Sirt1 overexpression in MSCs increased the osteoblastic bone formation and partially restores the defects in skeletal growth and osteogenesis in Bmi-1-/- mice by FOXO3a deacetylation and oxidative stress inhibition. Our data support the proposal that Sirt1 is a target for promoting bone formation as an anabolic approach for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wanxin Qiao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Bin Zhou
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zixuan Hu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Quanquan Yan
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China; Shanghai Lida Polytechnic Institute, Shanghai, China
| | - Jun Wu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
41
|
Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018; 155:1348-1361. [PMID: 30118745 PMCID: PMC7493459 DOI: 10.1053/j.gastro.2018.08.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.
Collapse
Affiliation(s)
- Eric D. Bankaitis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew Ha
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305
| | - Calvin J. Kuo
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Joint Departments of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| |
Collapse
|
42
|
Kahn SA, Wang X, Nitta RT, Gholamin S, Theruvath J, Hutter G, Azad TD, Wadi L, Bolin S, Ramaswamy V, Esparza R, Liu KW, Edwards M, Swartling FJ, Sahoo D, Li G, Wechsler-Reya RJ, Reimand J, Cho YJ, Taylor MD, Weissman IL, Mitra SS, Cheshier SH. Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma. Nat Commun 2018; 9:4121. [PMID: 30297829 PMCID: PMC6175869 DOI: 10.1038/s41467-018-06564-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor of childhood. Group 3 medulloblastoma, the most aggressive molecular subtype, frequently disseminates through the leptomeningeal cerebral spinal fluid (CSF) spaces in the brain and spinal cord. The mechanism of dissemination through the CSF remains poorly understood, and the molecular pathways involved in medulloblastoma metastasis and self-renewal are largely unknown. Here we show that NOTCH1 signaling pathway regulates both the initiation of metastasis and the self-renewal of medulloblastoma. We identify a mechanism in which NOTCH1 activates BMI1 through the activation of TWIST1. NOTCH1 expression and activity are directly related to medulloblastoma metastasis and decreased survival rate of tumor-bearing mice. Finally, medulloblastoma-bearing mice intrathecally treated with anti-NRR1, a NOTCH1 blocking antibody, present lower frequency of spinal metastasis and higher survival rate. These findings identify NOTCH1 as a pivotal driver of Group 3 medulloblastoma metastasis and self-renewal, supporting the development of therapies targeting this pathway.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/immunology
- Antibodies, Blocking/pharmacology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cerebellar Neoplasms/drug therapy
- Cerebellar Neoplasms/genetics
- Cerebellar Neoplasms/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Medulloblastoma/drug therapy
- Medulloblastoma/genetics
- Medulloblastoma/metabolism
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasm Metastasis
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/immunology
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Twist-Related Protein 1/genetics
- Twist-Related Protein 1/metabolism
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Suzana A Kahn
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, 94305, California, USA.
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, 94305, California, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, 94305, California, USA.
- Ludwig Institute for Cancer Research, Stanford University School of Medicine, Stanford, 94305, California, USA.
| | - Xin Wang
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, M5G 0A4, Ontario, Canada
| | - Ryan T Nitta
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Sharareh Gholamin
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, 94305, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, 94305, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Johanna Theruvath
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Gregor Hutter
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Tej D Azad
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Lina Wadi
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, M5G 0A3, Ontario, Canada
| | - Sara Bolin
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, 94305, California, USA
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, 75185, Sweden
| | - Vijay Ramaswamy
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, M5G 0A4, Ontario, Canada
| | - Rogelio Esparza
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, 94305, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Kun-Wei Liu
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 2880 Torrey Pines Scenic Drive, La Jolla, California, 92037, USA
| | - Michael Edwards
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, 94305, California, USA
- Ludwig Institute for Cancer Research, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, 75185, Sweden
| | - Debashis Sahoo
- Department of Pediatrics and Department of Computer Science and Engineering, University of California San Diego, San Diego, 92093, California, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 2880 Torrey Pines Scenic Drive, La Jolla, California, 92037, USA
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, M5G 0A3, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, Ontario, Canada
| | - Yoon-Jae Cho
- Ludwig Institute for Cancer Research, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, M5G 0A4, Ontario, Canada
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, 94305, California, USA
- Ludwig Institute for Cancer Research, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Siddhartha S Mitra
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, 94305, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, 94305, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, 94305, California, USA
- Ludwig Institute for Cancer Research, Stanford University School of Medicine, Stanford, 94305, California, USA
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado, School of Medicine, Room No. P18-4114, Research Complex 1-North MS-8302, 12800 East 19th Avenue, Aurora, Colorado, 80045, USA
| | - Samuel H Cheshier
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, 94305, California, USA.
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, 94305, California, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, 94305, California, USA.
- Ludwig Institute for Cancer Research, Stanford University School of Medicine, Stanford, 94305, California, USA.
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Primary Children's Hospital and Huntsman Cancer Institute, University of Utah, 100 North Mario Capecchi Drive Suite 3850, Salt Lake City, Utah, 84113, USA.
| |
Collapse
|
43
|
Liu P, Zhang M, Niu Q, Zhang F, Yang Y, Jiang X. Knockdown of long non-coding RNA ANRIL inhibits tumorigenesis in human gastric cancer cells via microRNA-99a-mediated down-regulation of BMI1. ACTA ACUST UNITED AC 2018; 51:e6839. [PMID: 30156609 PMCID: PMC6110352 DOI: 10.1590/1414-431x20186839] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
Long non-coding RNA antisense non-coding RNA in the INK4 locus (ANRIL) has been reported to promote tumorigenesis via regulating microRNA (miR)-99a in gastric cancer cells. However, the role of each component involved in it is still not well understood. This study aimed to verify the role of ANRIL in gastric cancer as well as the underlying mechanisms. ANRIL levels in clinical gastric cancer tissues and cell lines were tested by qPCR. Effects of ANRIL silence on cell viability, migration and invasion, apoptosis, and miR-99a expression in MKN-45 and SGC-7901 cells were measured using CCK-8, Transwell assay, flow cytometry, and qPCR assays, respectively. Then, effects of miR-99a inhibition on ANRIL-silenced cells were evaluated. B-lymphoma Mo-MLV insertion region 1 (BMI1) expression, after abnormal expression of ANRIL and miR-99a, was determined. Finally, expression of key proteins in the apoptotic, Notch, and mTOR pathways was assessed. ANRIL level was elevated in gastric cancer tissues and cell lines. Knockdown of ANRIL suppressed cell viability, migration, and invasion, and increased apoptosis through up-regulating miR-99a. Furthermore, ANRIL silence down-regulated BMI1 via up-regulating miR-99a. BMI1 silence down-regulated Bcl-2 and key kinases in the Notch and mTOR pathways and up-regulated p16 and cleaved caspases. We verified the tumor suppressive effects of ANRIL knockdown in gastric cancer cells via crosstalk with miR-99a. Together, we provided a novel regulatory mechanism for ANRIL in gastric cancer, in which ANRIL silence down-regulated BMI1 via miR-99a, along with activation of the apoptotic pathway and inhibition of the Notch and mTOR pathways.
Collapse
Affiliation(s)
- Pei Liu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingming Zhang
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Qinghui Niu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengjuan Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuling Yang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangjun Jiang
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
44
|
Manic Fringe deficiency imposes Jagged1 addiction to intestinal tumor cells. Nat Commun 2018; 9:2992. [PMID: 30065304 PMCID: PMC6068201 DOI: 10.1038/s41467-018-05385-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/29/2018] [Indexed: 12/26/2022] Open
Abstract
Delta ligands regulate Notch signaling in normal intestinal stem cells, while Jagged1 activates Notch in intestinal adenomas carrying active β-catenin. We used the ApcMin/+ mouse model, tumor spheroid cultures, and patient-derived orthoxenografts to address this divergent ligand-dependent Notch function and its implication in disease. We found that intestinal-specific Jag1 deletion or antibody targeting Jag1 prevents tumor initiation in mice. Addiction to Jag1 is concomitant with the absence of Manic Fringe (MFNG) in adenoma cells, and its ectopic expression reverts Jag1 dependence. In 239 human colorectal cancer patient samples, MFNG imposes a negative correlation between Jag1 and Notch, being high Jag1 in the absence of MFNG predictive of poor prognosis. Jag1 antibody treatment reduces patient-derived tumor orthoxenograft growth without affecting normal intestinal mucosa. Our data provide an explanation to Jag1 dependence in cancer, and reveal that Jag1-Notch1 interference provides therapeutic benefit in a subset of colorectal cancer and FAP syndrome patients.
Collapse
|
45
|
Bigas A, Espinosa L. The multiple usages of Notch signaling in development, cell differentiation and cancer. Curr Opin Cell Biol 2018; 55:1-7. [PMID: 30006050 DOI: 10.1016/j.ceb.2018.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Notch is a well-conserved signaling pathway all through evolution that is crucial to specify different cell fates. Although there is a strong context dependent component in each decision, the basic mechanisms that originate from the interplay among ligands and receptors is greatly preserved. In this review we will cover the latest findings on the different mechanisms for Notch activation and signaling. The regulation of this pathway is essential to understand development, cell differentiation and disease.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain.
| | - Lluis Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain.
| |
Collapse
|
46
|
Wang H, Lv C, Gu Y, Li Q, Xie L, Zhang H, Miao D, Sun W. Overexpressed Sirt1 in MSCs Promotes Dentin Formation in Bmi1-Deficient Mice. J Dent Res 2018; 97:1365-1373. [PMID: 29932801 DOI: 10.1177/0022034518781509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sirt1 promotes odontoblastic gene expression in human dental pulp cells, whereas the inhibition of Sirt1 downregulates the expression of those genes. To investigate whether the overexpression of Sirt1 in mesenchymal stem cells (MSCs) driven by Prx1 promoter could rescue the dentin formation defects in Bmi1-deficient (Bmi1-/-) mice, we established the MSCs overexpressing Sirt1 in Bmi1 knockout mice (Sirt1TGBmi1-/-). First, we used Prx1-Cre/ROSAnTnG mice to demonstrate that Prx1 linage cells exist mainly in the pulp horns at 4 wk of age. Second, we found that 4-wk-old Sirt1TG mice had increased tooth volume as compared with wild-type (WT) littermates. The expression level of Sirt1 was significantly higher in dental papilla mesenchymal cells of Sirt1TG mice than WT mice. Furthermore, we demonstrated that the tooth mineralization, dental volume, dentin sialoprotein-immunopositive areas, odontoblastic gene expression, and percentage of proliferating BrdU-positive cells were significantly elevated in the Sirt1TG mice and dramatically reduced in the Bmi1-/- mice versus the WT littermates at 4 wk of age. However, the areas of predentin and the percentage of TUNEL-positive apoptotic cells were significantly reduced in the Sirt1TG mice but dramatically increased in the Bmi1-/- mice as compared with the WT littermates. All these parameters were rescued in the Sirt1TGBmi1-/- mice versus the Bmi1-/- mice. Finally, by using dental papilla mesenchymal cells, we found that the overexpression of Sirt1 rescued the reduced cell proliferation and differentiation and increased the cell apoptosis caused by Bmi1 deficiency, which was associated with increased p53 deacetylation. Therefore, this study indicates that Sirt1 is a potential therapeutic target for promoting dentin formation in an anabolic approach to the treatment of dental developmental defects.
Collapse
Affiliation(s)
- H Wang
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - C Lv
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,2 Department of Stomatology, Taizhou People's Hospital of Jiangsu Province, Taizhou, China
| | - Y Gu
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Q Li
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - L Xie
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - H Zhang
- 3 Center for Musculoskeletal Research, Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - D Miao
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - W Sun
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Wang S, Chen YG. BMP signaling in homeostasis, transformation and inflammatory response of intestinal epithelium. SCIENCE CHINA-LIFE SCIENCES 2018; 61:800-807. [PMID: 29855793 DOI: 10.1007/s11427-018-9310-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Intestine is the organ for food digestion, nutrient absorption and pathogen defense, in which processes intestinal epithelium plays a central role. Intestinal epithelium undergoes fast turnover, and its homeostasis is regulated by multiple signaling pathways, including Wnt, Notch, Hippo and BMP pathways. BMP signaling has been shown to negatively regulate self-renewal of Lgr5+ intestinal stem cells, constrains the expansion of intestinal epithelium, therefore attenuating colorectal cancer formation. BMPs and their receptors are expressed in both epithelial and mesenchymal cells, suggesting a two-way interaction between the mesenchyme and epithelium. In this review, we summarize the current understanding of the function of BMP signaling in homeostasis, cancerous transformation and inflammatory response of intestinal epithelium.
Collapse
Affiliation(s)
- Shan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
48
|
A fusion protein composed of the DSL domain of Dll1 and RGD motif protects cryptic stem cells in irradiation injury. Biosci Rep 2018; 38:BSR20171255. [PMID: 29444821 PMCID: PMC5843746 DOI: 10.1042/bsr20171255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022] Open
Abstract
Intestine is vulnerable to irradiation injury, which induces cell death and compromises regeneration of intestinal crypts. It is well accepted that cryptic stem cells, which are responsible for cryptic regeneration under physiological and pathological conditions, are controlled by multiple cell-intrinsic and environmental signals such as Notch signaling. Therefore, in the present study, we tested whether a soluble Notch ligand tethered to endothelial cells-mD1R-the Delta-Serrate-Lag2 (DSL) domain of mouse Notch ligand Delta-like1 fused with a RGD motif could protect cryptic cells from irradiation-induced intestinal injury. The result showed that administration of mD1R, which activated Notch signaling in intestinal cells, ameliorated loss of body weight and reduction of cryptic structures in intestine after total body irradiation (TBI) in mice. Histological staining showed that injection of mD1R after TBI promoted cryptic cell proliferation and reduced cell apoptosis in crypts. Immunofluorescence staining and reverse transcription (RT)-PCR showed that mD1R increased the level of Lgr5, Bmi1, Olfactomedin-4 (OLFM4), and IRIG1 in crypts, suggesting a protective effect on cryptic stem and progenitor cells after irradiation. Moreover, we found that administration of mD1R increased the number of Paneth cells and the mRNA level of Defa1, and the number Alcian Blue+ Goblet cells decreased first and then increased after irradiation, suggesting that mD1R promoted the maturation of the intestinal crypt after irradiation injury. Our data suggested that mD1R could serve as a therapeutic agent for the treatment of irradiation-induced intestinal injury.
Collapse
|
49
|
The putative tumor suppressor gene EphA7 is a novel BMI-1 target. Oncotarget 2018; 7:58203-58217. [PMID: 27533460 PMCID: PMC5295425 DOI: 10.18632/oncotarget.11279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/08/2016] [Indexed: 11/25/2022] Open
Abstract
Bmi1 was originally identified as a gene that contributes to the development of mouse lymphoma by inhibiting MYC-induced apoptosis through repression of Ink4a and Arf. It codes for the Polycomb group protein BMI-1 and acts primarily as a transcriptional repressor via chromatin modifications. Although it binds to a large number of genomic regions, the direct BMI-1 target genes described so far do not explain the full spectrum of BMI-1-mediated effects. Here we identify the putative tumor suppressor gene EphA7 as a novel direct BMI-1 target in neural cells and lymphocytes. EphA7 silencing has been reported in several different human tumor types including lymphomas, and our data suggest BMI1 overexpression as a novel mechanism leading to EphA7 inactivation via H3K27 trimethylation and DNA methylation.
Collapse
|
50
|
Patel N, Garikapati KR, Makani VKK, Nair AD, Vangara N, Bhadra U, Pal Bhadra M. Regulating BMI1 expression via miRNAs promote Mesenchymal to Epithelial Transition (MET) and sensitizes breast cancer cell to chemotherapeutic drug. PLoS One 2018; 13:e0190245. [PMID: 29394261 PMCID: PMC5796693 DOI: 10.1371/journal.pone.0190245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022] Open
Abstract
Polycomb group (PcG) proteinB lymphoma Mo-MLV insertion region 1 homolog (BMI1) is a transcriptional repressor that plays an important role in human carcinogenesis. MicroRNAs (miRNAs) are endogenous small non-coding RNAsthat implicate a negative regulation on gene expression. Deregulation of the expression of miRNAs has been implicated in tumorigenesis. Here, we have shown that knock-down ofBMI1increases theexpression of tumor-suppressivemiRNAs. Elevated levels of expression of miR-200a, miR-200b, miR-15a, miR-429, miR-203were observed upon knock-down of BMI1. Up-regulation of these miRNAsleads to down-regulation ofPRC1 group of proteins i.e. BMI1, RING1A, RING1B and Ub-H2A. Interestingly, overexpression of miR-200a, miR-200b and miR-15aalso produced decreased BMI1 and Ub-H2A protein expression in the CD44+ Cancer Stem Cellpopulation of MDAMB-231cells. Also,elevating the levels of BMI1 regulated miRNAspromoted Mesenchymal to Epithelial transition by regulating the expression of N-Cadherin, Vimentin, β-Catenin, Zeb, Snail thereby resulting in decreased invasion, migration and proliferation. Here, we also report that miR-200a, miR-200b, miR-203 accretes the sensitivity of MDAMB-231 cells to the histone deacetylase inhibitor (HDACi) SAHA and miR-15a sensitized breast cancer cells to the chemotherapeutic drug cisplatin leading to apoptosis. These findings suggest that modulatingspecific miRNAs may serve as a therapeutic approach for the treatment of breast cancer
Collapse
Affiliation(s)
- Nibedita Patel
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Koteswara Rao Garikapati
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, Taramani, Chennai, India
| | - Venkata Krishna Kanth Makani
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Ayikkara Drishya Nair
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Namratha Vangara
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Utpal Bhadra
- Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad, Telangana State, India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- * E-mail:
| |
Collapse
|