1
|
Vanacore G, Christensen JB, Bayin NS. Age-dependent regenerative mechanisms in the brain. Biochem Soc Trans 2024; 52:2243-2252. [PMID: 39584473 PMCID: PMC11668278 DOI: 10.1042/bst20230547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Repairing the adult mammalian brain represents one of the greatest clinical challenges in medicine. Injury to the adult brain often results in substantial loss of neural tissue and permanent functional impairment. In contrast with the adult, during development, the mammalian brain exhibits a remarkable capacity to replace lost cells. A plethora of cell-intrinsic and extrinsic factors regulate the age-dependent loss of regenerative potential in the brain. As the developmental window closes, neural stem cells undergo epigenetic changes, limiting their proliferation and differentiation capacities, whereas, changes in the brain microenvironment pose additional challenges opposing regeneration, including inflammation and gliosis. Therefore, studying the regenerative mechanisms during development and identifying what impairs them with age may provide key insights into how to stimulate regeneration in the brain. Here, we will discuss how the mammalian brain engages regenerative mechanisms upon injury or neuron loss. Moreover, we will describe the age-dependent changes that affect these processes. We will conclude by discussing potential therapeutic approaches to overcome the age-dependent regenerative decline and stimulate regeneration.
Collapse
Affiliation(s)
- Giada Vanacore
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Jens Bager Christensen
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - N. Sumru Bayin
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| |
Collapse
|
2
|
Hu Z, Luo Y, Wu Y, Qin D, Yang F, Luo F, Lin Q. Extraction, structures, biological effects and potential mechanisms of Momordica charantia polysaccharides: A review. Int J Biol Macromol 2024; 268:131498. [PMID: 38614167 DOI: 10.1016/j.ijbiomac.2024.131498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Momordica charantia L. is a kind of vegetable with medicinal value. As the main component of the vegetable, Momordica charantia polysaccharides (MCPs) mainly consist of galactose, galacturonic acid, xylose, rhamnose, mannose and the molecular weight range is 4.33 × 103-1.16 × 106 Da. MCPs have been found to have various biological activities in recent years, such as anti-oxidation, anti-diabetes, anti-brain injury, anti-obesity, immunomodulatory and anti-inflammation. In this review, we systematically summarized the extraction methods, structural characteristics and physicochemical properties of MCPs. Especially MCPs modulate gut microbiota and cause the alterations of metabolic products, which can regulate different signaling pathways and target gene expressions to exert various functions. Meanwhile, the potential structure-activity relationships of MCPs were analyzed to provide a scientific basis for better development or modification of MCPs. Future researches on MCPs should focus on industrial extraction and molecular mechanisms. In East Asia, Momordica charantia L. is used as both food and medicine. It is not clear whether MCP has its unique biological effects. Further study on the difference between MCPs and other food-derived polysaccharides will be helpful to the development and potential application of Momordica charantia L.
Collapse
Affiliation(s)
- Zuomin Hu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yidan Luo
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yuchi Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dandan Qin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feiyan Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feijun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|
3
|
Kaise T, Kageyama R. Transcriptional control of neural stem cell activity. Biochem Soc Trans 2024; 52:617-626. [PMID: 38477464 DOI: 10.1042/bst20230439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
In the adult brain, neural stem cells (NSCs) are under the control of various molecular mechanisms to produce an appropriate number of neurons that are essential for specific brain functions. Usually, the majority of adult NSCs stay in a non-proliferative and undifferentiated state known as quiescence, occasionally transitioning to an active state to produce newborn neurons. This transition between the quiescent and active states is crucial for the activity of NSCs. Another significant state of adult NSCs is senescence, in which quiescent cells become more dormant and less reactive, ceasing the production of newborn neurons. Although many genes involved in the regulation of NSCs have been identified using genetic manipulation and omics analyses, the entire regulatory network is complicated and ambiguous. In this review, we focus on transcription factors, whose importance has been elucidated in NSCs by knockout or overexpression studies. We mainly discuss the transcription factors with roles in the active, quiescent, and rejuvenation states of adult NSCs.
Collapse
Affiliation(s)
- Takashi Kaise
- RIKEN Center for Brain Science, Wako 351-0198, Japan
| | | |
Collapse
|
4
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Jiménez Peinado P, Urbach A. From Youthful Vigor to Aging Decline: Unravelling the Intrinsic and Extrinsic Determinants of Hippocampal Neural Stem Cell Aging. Cells 2023; 12:2086. [PMID: 37626896 PMCID: PMC10453598 DOI: 10.3390/cells12162086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Since Joseph Altman published his pioneering work demonstrating neurogenesis in the hippocampus of adult rats, the number of publications in this field increased exponentially. Today, we know that the adult hippocampus harbors a pool of adult neural stem cells (NSCs) that are the source of life-long neurogenesis and plasticity. The functions of these NSCs are regulated by extrinsic cues arising from neighboring cells and the systemic environment. However, this tight regulation is subject to imbalance with age, resulting in a decline in adult NSCs and neurogenesis, which contributes to the progressive deterioration of hippocampus-related cognitive functions. Despite extensive investigation, the mechanisms underlying this age-related decline in neurogenesis are only incompletely understood, but appear to include an increase in NSC quiescence, changes in differentiation patterns, and NSC exhaustion. In this review, we summarize recent work that has improved our knowledge of hippocampal NSC aging, focusing on NSC-intrinsic mechanisms as well as cellular and molecular changes in the niche and systemic environment that might be involved in the age-related decline in NSC functions. Additionally, we identify future directions that may advance our understanding of NSC aging and the concomitant loss of hippocampal neurogenesis and plasticity.
Collapse
Affiliation(s)
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, 07747 Jena, Germany
- Aging Research Center Jena, Leibniz Institute on Aging, 07745 Jena, Germany
| |
Collapse
|
6
|
Liu X, Liu H, Gu N, Pei J, Lin X, Zhao W. Preeclampsia promotes autism in offspring via maternal inflammation and fetal NFκB signaling. Life Sci Alliance 2023; 6:e202301957. [PMID: 37290815 PMCID: PMC10250690 DOI: 10.26508/lsa.202301957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Preeclampsia (PE) is a risk factor for autism spectrum disorder (ASD) in offspring. However, the exact mechanisms underlying the impact of PE on progeny ASD are not fully understood, which hinders the development of effective therapeutic approaches. This study shows the offspring born to a PE mouse model treated by Nω-nitro-L-arginine methyl ester (L-NAME) exhibit ASD-like phenotypes, including neurodevelopment deficiency and behavioral abnormalities. Transcriptomic analysis of the embryonic cortex and adult offspring hippocampus suggested the expression of ASD-related genes was dramatically changed. Furthermore, the level of inflammatory cytokines TNFα in maternal serum and nuclear factor kappa B (NFκB) signaling in the fetal cortex were elevated. Importantly, TNFα neutralization during pregnancy enabled to ameliorate ASD-like phenotypes and restore the NFκB activation level in the offspring exposed to PE. Furthermore, TNFα/NFκB signaling axis, but not L-NAME, caused deficits in neuroprogenitor cell proliferation and synaptic development. These experiments demonstrate that offspring exposed to PE phenocopies ASD signatures reported in humans and indicate therapeutic targeting of TNFα decreases the likelihood of bearing children with ASD phenotypes from PE mothers.
Collapse
Affiliation(s)
- Xueyuan Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, USA
| | - Haiyan Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Nihao Gu
- International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and Shanghai Key Laboratory for Embryo-Feta Original Adult Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangnan Pei
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xianhua Lin
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wenlong Zhao
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, USA
- International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and Shanghai Key Laboratory for Embryo-Feta Original Adult Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Zocher S, Toda T. Epigenetic aging in adult neurogenesis. Hippocampus 2023; 33:347-359. [PMID: 36624660 DOI: 10.1002/hipo.23494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Neural stem cells (NSCs) in the hippocampus generate new neurons throughout life, which functionally contribute to cognitive flexibility and mood regulation. Yet adult hippocampal neurogenesis substantially declines with age and age-related impairments in NSC activity underlie this reduction. Particularly, increased NSC quiescence and consequently reduced NSC proliferation are considered to be major drivers of the low neurogenesis levels in the aged brain. Epigenetic regulators control the gene expression programs underlying NSC quiescence, proliferation and differentiation and are hence critical to the regulation of adult neurogenesis. Epigenetic alterations have also emerged as central hallmarks of aging, and recent studies suggest the deterioration of the NSC-specific epigenetic landscape as a driver of the age-dependent decline in adult neurogenesis. In this review, we summarize the recently accumulating evidence for a role of epigenetic dysregulation in NSC aging and propose perspectives for future research directions.
Collapse
Affiliation(s)
- Sara Zocher
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Institute of Medical Physics and Microtissue Engineering, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Surya K, Manickam N, Jayachandran KS, Kandasamy M, Anusuyadevi M. Resveratrol Mediated Regulation of Hippocampal Neuroregenerative Plasticity via SIRT1 Pathway in Synergy with Wnt Signaling: Neurotherapeutic Implications to Mitigate Memory Loss in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S125-S140. [PMID: 36463442 PMCID: PMC10473144 DOI: 10.3233/jad-220559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a major form of dementia. Abnormal amyloidogenic event-mediated degeneration of cholinergic neurons in the cognitive centers of the brain has been attributed to neuropathological sequelae and behavioral deficits in AD. Besides, impaired adult neurogenesis in the hippocampus has experimentally been realized as an underlying cause of dementia regardless of neurodegeneration. Therefore, nourishing the neurogenic process in the hippocampus has been considered an effective therapeutic strategy to mitigate memory loss. In the physiological state, the Wnt pathway has been identified as a potent mitogenic generator in the hippocampal stem cell niche. However, downstream components of Wnt signaling have been noticed to be downregulated in AD brains. Resveratrol (RSV) is a potent Sirtuin1 (SIRT1) enhancer that facilitates neuroprotection and promotes neurogenesis in the hippocampus of the adult brain. While SIRT1 is an important positive regulator of Wnt signaling, ample reports indicate that RSV treatment strongly mediates the fate determination of stem cells through Wnt signaling. However, the possible therapeutic roles of RSV-mediated SIRT1 enhancement on the regulation of hippocampal neurogenesis and reversal of memory loss through the Wnt signaling pathway have not been addressed yet. Taken together, this review describes RSV-mediated effects on the regulation of hippocampal neurogenesis via the activation of SIRT1 in synergy with the Wnt signaling. Further, the article emphasizes a hypothesis that RSV treatment can provoke the activation of quiescent neural stem cells and prime their neurogenic capacity in the hippocampus via Wnt signaling in AD.
Collapse
Affiliation(s)
- Kumar Surya
- Department of Biochemistry, Molecular Neuro-gerontology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Nivethitha Manickam
- Department of Animal Science, Laboratory of Stem Cells and Neuroregeneration, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kesavan Swaminathan Jayachandran
- Department of Bioinformatics, Molecular Cardiology and Drug Discovery Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Mahesh Kandasamy
- Department of Animal Science, Laboratory of Stem Cells and Neuroregeneration, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi, India
| | - Muthuswamy Anusuyadevi
- Department of Biochemistry, Molecular Neuro-gerontology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
9
|
Barzegari A, Omidi Y, Gueguen V, Meddahi-Pellé A, Letourneur D, Pavon-Djavid G. Nesting and fate of transplanted stem cells in hypoxic/ischemic injured tissues: The role of HIF1α/sirtuins and downstream molecular interactions. Biofactors 2023; 49:6-20. [PMID: 32939878 DOI: 10.1002/biof.1674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
The nesting mechanisms and programming for the fate of implanted stem cells in the damaged tissue have been critical issues in designing and achieving cell therapies. The fracture site can induce senescence or apoptosis based on the surrounding harsh conditions, hypoxia, and oxidative stress (OS). Respiration deficiency, disruption in energy metabolism, and consequently OS induction change the biophysical, biochemical, and cellular components of the native tissue. Additionally, the homeostatic molecular players and cell signaling might be changed. Despite all aforementioned issues, in the native stem cell niche, physiological hypoxia is not toxic; rather, it is vitally required for homing, self-renewal, and differentiation. Hence, the key macromolecular players involved in the support of stem cell survival and re-adaptation to a new dysfunctional niche must be understood for managing the cell therapy outcome. Hypoxia-inducible factor 1-alpha is the master transcriptional regulator, involved in the cell response to hypoxia and the adaptation of stem cells to a new niche. This protein is regulated by interaction with sirtuins. Sirtuins are highly conserved NAD+-dependent enzymes that monitor the cellular energy status and modulate gene transcription, genome stability, and energy metabolism in response to environmental signals to modulate the homing and fate of stem cells. Herein, new insights into the nesting of stem cells in hypoxic-ischemic injured tissues were provided and their programming in a new dysfunctional niche along with the involved complex macromolecular players were critically discussed.
Collapse
Affiliation(s)
- Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Anne Meddahi-Pellé
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Didier Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| |
Collapse
|
10
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
11
|
Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL, Cremonini AL, Tagliafico L, Persia A, Caffa I, Monacelli F, Odetti P, Bonfiglio T, Nencioni A, Pigliautile M, Boccardi V, Mecocci P, Pike CJ, Cohen P, LaDu MJ, Pellegrini M, Xia K, Tran K, Ann B, Chowdhury D, Longo VD. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep 2022; 40:111417. [PMID: 36170815 PMCID: PMC9648488 DOI: 10.1016/j.celrep.2022.111417] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effects of fasting-mimicking diet (FMD) cycles in reducing many aging and disease risk factors indicate it could affect Alzheimer's disease (AD). Here, we show that FMD cycles reduce cognitive decline and AD pathology in E4FAD and 3xTg AD mouse models, with effects superior to those caused by protein restriction cycles. In 3xTg mice, long-term FMD cycles reduce hippocampal Aβ load and hyperphosphorylated tau, enhance genesis of neural stem cells, decrease microglia number, and reduce expression of neuroinflammatory genes, including superoxide-generating NADPH oxidase (Nox2). 3xTg mice lacking Nox2 or mice treated with the NADPH oxidase inhibitor apocynin also display improved cognition and reduced microglia activation compared with controls. Clinical data indicate that FMD cycles are feasible and generally safe in a small group of AD patients. These results indicate that FMD cycles delay cognitive decline in AD models in part by reducing neuroinflammation and/or superoxide production in the brain.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Fleur Lobo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Edoardo Parrella
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, BS 25123, Italy
| | - Nicolas Rochette
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Terri-Leigh Stephen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Anna Laura Cremonini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Pigliautile
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christian J Pike
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy., Los Angeles, CA 90089-0191, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Kyle Xia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Katelynn Tran
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Brandon Ann
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Dolly Chowdhury
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano, MI 20139, Italy.
| |
Collapse
|
12
|
Ren J, Wang X, Dong C, Wang G, Zhang W, Cai C, Qian M, Yang D, Ling B, Ning K, Mao Z, Liu B, Wang T, Xiong L, Wang W, Liang A, Gao Z, Xu J. Sirt1 protects subventricular zone derived neural stem cells from DNA double strand breaks and contributes to olfactory function maintenance in aging mice. Stem Cells 2022; 40:493-507. [PMID: 35349711 DOI: 10.1093/stmcls/sxac008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022]
Abstract
Abstract
DNA damage is assumed to accumulate in stem cells over time and their ability to withstand this damage and maintain tissue homeostasis is a key determinant of aging. Nonetheless, relatively few studies have investigated whether DNA damage does indeed accumulate in stem cells and whether this contributes to stem cell aging and functional decline. Here, we found that, compared with young mice, DNA double strand breaks (DSBs) are reduced in subventricular zone (SVZ)-derived neural stem cells (NSCs) of aged mice, which was achieved partly through the adaptive upregulation of Sirt1 expression and non-homologous end joining (NHEJ)-mediated DNA repair. Sirt1 deficiency abolished this effect, leading to stem cell exhaustion, olfactory memory decline, and accelerated aging. The reduced DSBs and the upregulation of Sirt1 expression in SVZ-derived NSCs with age may represent a compensatory mechanism that evolved to protect stem cells from excessive DNA damage, as well as mitigate memory loss and other stresses during aging.
Collapse
Affiliation(s)
- Jie Ren
- East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Xianli Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuanming Dong
- Department of Anatomy, Nantong University, Nantong, People's Republic of China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, People's Republic of China
- Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunhui Cai
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Minxian Qian
- Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - Danjing Yang
- East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Zhiyong Mao
- School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Baohua Liu
- Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - Tinghua Wang
- Animal Center of Zoology, Institute of Neuroscience, Kunming Medical University, Kunming, People's Republic of China
| | - Liuliu Xiong
- Animal Center of Zoology, Institute of Neuroscience, Kunming Medical University, Kunming, People's Republic of China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, People's Republic of China
- Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zhengliang Gao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, People's Republic of China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, People's Republic of China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Ojha R, Tantray I, Rimal S, Mitra S, Cheshier S, Lu B. Regulation of reverse electron transfer at mitochondrial complex I by unconventional Notch action in cancer stem cells. Dev Cell 2022; 57:260-276.e9. [PMID: 35077680 PMCID: PMC8852348 DOI: 10.1016/j.devcel.2021.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 01/26/2023]
Abstract
Metabolic flexibility is a hallmark of many cancers where mitochondrial respiration is critically involved, but the molecular underpinning of mitochondrial control of cancer metabolic reprogramming is poorly understood. Here, we show that reverse electron transfer (RET) through respiratory chain complex I (RC-I) is particularly active in brain cancer stem cells (CSCs). Although RET generates ROS, NAD+/NADH ratio turns out to be key in mediating RET effect on CSC proliferation, in part through the NAD+-dependent Sirtuin. Mechanistically, Notch acts in an unconventional manner to regulate RET by interacting with specific RC-I proteins containing electron-transporting Fe-S clusters and NAD(H)-binding sites. Genetic and pharmacological interference of Notch-mediated RET inhibited CSC growth in Drosophila brain tumor and mouse glioblastoma multiforme (GBM) models. Our results identify Notch as a regulator of RET and RET-induced NAD+/NADH balance, a critical mechanism of metabolic reprogramming and a metabolic vulnerability of cancer that may be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Rani Ojha
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Siddhartha Mitra
- Stem Cell Institute and Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA,Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sam Cheshier
- Stem Cell Institute and Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA,Department of Neurosurgery, Division of Pediatric Neurosurgery, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA,Lead Contact,Correspondence:
| |
Collapse
|
14
|
Natale F, Leone L, Rinaudo M, Sollazzo R, Barbati SA, La Greca F, Spinelli M, Fusco S, Grassi C. Neural stem cell-derived extracellular vesicles counteract insulin resistance-induced senescence of neurogenic niche. Stem Cells 2022; 40:318-331. [DOI: 10.1093/stmcls/sxab026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Neural stem and progenitor cell (NSPC) depletion may play a crucial role in the cognitive impairment observed in many age-related non communicable diseases. Insulin resistance affects brain functions through a plethora of mechanisms that remain poorly understood. In an experimental model of insulin resistant NSPCs, we identified a novel molecular circuit relying on Insulin receptor substrate 1 (IRS1)/Forkhead box O (FoxO) signaling cascade and inhibiting the recruitment of transcription factors FoxO1 and FoxO3a on the promoters of genes regulating proliferation and self-renewal. Insulin resistance also epigenetically increased the expression of cyclin-dependent kinase inhibitor 1 (p21) and accelerated NSPC senescence. Of note, we found that stimulation of NSPCs with NSPC-derived exosomes (exo-NSPC) rescued IRS1/FoxO activation and counteracted both the reduced proliferation and senescence of stem cells. Accordingly, intranasal administration of exo-NSPC counteracted the high fat diet-dependent impairment of adult hippocampal neurogenesis in mice by restoring the balance between proliferating and senescent NSPCs in the hippocampus. Our findings suggest a novel mechanism underlying the metabolic control of NSPC fate potentially involved in the detrimental effects of metabolic disorders on brain plasticity. In addition, our data highlight the role of extracellular vesicle-mediated signals in the regulation of cell fate within the adult neurogenic niche.
Collapse
Affiliation(s)
- Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Leone
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Francesco La Greca
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
15
|
Ji L, Jiang W, Liu D, Hou K. Effect of SIRT1 on white matter neural network in adolescent patients with depression. Front Psychiatry 2022; 13:966315. [PMID: 36177213 PMCID: PMC9513552 DOI: 10.3389/fpsyt.2022.966315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study aimed to explore the correlation between the rs12415800 polymorphism of the silent information regulator 1 (SIRT1) gene and the white matter neural circuit in adolescent patients with depression. METHODS We enrolled 119 participants, comprising 59 adolescent patients with depression and 60 matched healthy controls for analysis. Patients were further subdivided based on genotype; GG, AG, and AA, with G representing the wild type gene, and A representing the A allele at rs12415800. RESULTS We found that: (1) lower anisotropy fraction (FA) values in the left cingulate fasciculus and left anterior thalamus radiation in the AG/AA genotype were more likely to be affected by depression. (2) The FA values of the right inferior occipital-frontal fasciculus, right corticospinal tract, right inferior longitudinal fasciculus, and right superior longitudinal fasciculus regions in the depression (AG/AA) group were lower than in the depression (GG) group. (3) FA values of the right inferior occipital-frontal fasciculus left corticospinal tract, right inferior longitudinal fasciculus, left anterior thalamus radiation, right superior longitudinal fasciculus, left inferior longitudinal fasciculus, left uncinate fasciculus, and right anterior thalamus radiation in the depression (GG) group were lower than the control (GG) group. CONCLUSIONS The polymorphism locus of the SIRT1 gene rs12415800 may be related to changes in the microstructure of white matter fiber tracts, and patients carrying the A allele (AG/AA) have more changes in the white matter than those with the non-A allele (GG).
Collapse
Affiliation(s)
- Ling Ji
- Department of Clinical Psychology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wen Jiang
- Outpatient Department, The General Hospital of Western Theater Command, Chengdu, China
| | - Daiyan Liu
- People's Liberation Army of China (PLA) Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Kaiwen Hou
- Outpatient Department, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
16
|
Kapri D, Fanibunda SE, Vaidya VA. Thyroid hormone regulation of adult hippocampal neurogenesis: Putative molecular and cellular mechanisms. VITAMINS AND HORMONES 2021; 118:1-33. [PMID: 35180924 DOI: 10.1016/bs.vh.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adult hippocampal neurogenesis is sensitive to perturbations in thyroid hormone signaling, with evidence supporting a key role for thyroid hormone and thyroid hormone receptors (TRs) in the regulation of postmitotic progenitor survival and neuronal differentiation. In this book chapter we summarize the current understanding of the effects of thyroid hormone signaling on adult hippocampal progenitor development, and also critically address the role of TRs in regulation of distinct aspects of stage-specific hippocampal progenitor progression. We highlight actions of thyroid hormone on thyroid hormone responsive target genes, and the implications for hippocampal progenitor regulation. Given the influence of thyroid hormone on both mitochondrial and lipid metabolism, we discuss a putative role for regulation of metabolism in the effects of thyroid hormone on adult hippocampal neurogenesis. Finally, we highlight specific ideas that require detailed experimental investigation, and the need for future studies to obtain a deeper mechanistic insight into the influence of thyroid hormone and TRs in the developmental progression of adult hippocampal progenitors.
Collapse
Affiliation(s)
- Darshana Kapri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sashaina E Fanibunda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India; Medical Research Centre, Kasturba Health Society, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
17
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
18
|
Tay EXY, Chia K, Ong DST. Epigenetic plasticity and redox regulation of neural stem cell state and fate. Free Radic Biol Med 2021; 170:116-130. [PMID: 33684459 DOI: 10.1016/j.freeradbiomed.2021.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
The neural stem cells (NSCs) are essential for normal brain development and homeostasis. The cell state (i.e. quiescent versus activated) and fate (i.e. the cell lineage of choice upon differentiation) of NSCs are tightly controlled by various redox and epigenetic regulatory mechanisms. There is an increasing appreciation that redox and epigenetic regulations are intimately linked, but how this redox-epigenetics crosstalk affects NSC activity remains poorly understood. Another unresolved topic is whether the NSCs actually contribute to brain ageing and neurodegenerative diseases. In this review, we aim to 1) distill concepts that underlie redox and epigenetic regulation of NSC state and fate; 2) provide examples of the redox-epigenetics crosstalk in NSC biology; and 3) highlight potential redox- and epigenetic-based therapeutic opportunities to rescue NSC dysfunctions in ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmy Xue Yun Tay
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Kimberly Chia
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore; National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
19
|
Dodson M, Anandhan A, Zhang DD, Madhavan L. An NRF2 Perspective on Stem Cells and Ageing. FRONTIERS IN AGING 2021; 2:690686. [PMID: 36213179 PMCID: PMC9536878 DOI: 10.3389/fragi.2021.690686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/03/2021] [Indexed: 04/24/2023]
Abstract
Redox and metabolic mechanisms lie at the heart of stem cell survival and regenerative activity. NRF2 is a major transcriptional controller of cellular redox and metabolic homeostasis, which has also been implicated in ageing and lifespan regulation. However, NRF2's role in stem cells and their functioning with age is only just emerging. Here, focusing mainly on neural stem cells, which are core to adult brain plasticity and function, we review recent findings that identify NRF2 as a fundamental player in stem cell biology and ageing. We also discuss NRF2-based molecular programs that may govern stem cell state and function with age, and implications of this for age-related pathologies.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute and Bio5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
20
|
Hwang I, Tang D, Paik J. Oxidative stress sensing and response in neural stem cell fate. Free Radic Biol Med 2021; 169:74-83. [PMID: 33862161 PMCID: PMC9594080 DOI: 10.1016/j.freeradbiomed.2021.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022]
Abstract
Neural stem/progenitor cells (NSPCs) contribute to the physiological cellular turnover of the adult brain and make up its regenerative potential. It is thus essential to understand how different factors influence their proliferation and differentiation to gain better insight into potential therapeutic targets in neurodegenerative diseases and traumatic brain injuries. Recent evidences indicate the roles of redox stress sensing and coping mechanisms in mediating the balance between NSPC self-renewal and differentiation. Such mechanisms involve direct cysteine modification, signaling and metabolic reprogramming, epigenetic alterations and transcription changes leading to adaptive responses like autophagy. Here, we discuss emerging findings on the involvement of redox sensors and effectors and their mechanisms in influencing changes in cellular redox potential and NSPC fate.
Collapse
Affiliation(s)
- Inah Hwang
- R&D Center, OneCureGEN Co., Ltd, Daejeon, 34141, Republic of Korea; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Deanna Tang
- University of Chicago, Chicago, IL, 60637, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
21
|
Alnoud MAH, Chen W, Liu N, Zhu W, Qiao J, Chang S, Wu Y, Wang S, Yang Y, Sun Q, Kang J. Sirt7-p21 Signaling Pathway Mediates Glucocorticoid-Induced Inhibition of Mouse Neural Stem Cell Proliferation. Neurotox Res 2021; 39:444-455. [PMID: 33025360 DOI: 10.1007/s12640-020-00294-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/24/2022]
Abstract
Prenatal glucocorticoid (GC) overexposure impacts fetal hippocampal neural stem cells (NSCs) and increases the risk for relative cognitive and mood disorders in offspring. However, the precise underlying mechanisms remain elusive. Here, we treated mouse hippocampal NSCs with dexamethasone (DEX) in vitro and found that DEX inhibited cell proliferation and Sirt7 expression. In addition, prenatal mouse overexposure to DEX induced the suppression of Sirt7 in the hippocampus of offspring. Sirt7 knockdown significantly decreased the percentage of proliferating cells but did not further reduce the NSC proliferation rate in the presence of DEX, whereas Sirt7 overexpression rescued DEX-induced inhibition of hippocampal NSC proliferation. Moreover, DEX inhibited Sirt7 expression through the glucocorticoid receptor (GR), and p21 was found to mediate the functional effect of DEX-induced Sirt7 suppression. In conclusion, our data demonstrate for the first time the effect of DEX on the Sirt7-p21 pathway in hippocampal NSCs, identifying a new potential therapeutic target for prenatal GC overexposure-related neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Mohammed A H Alnoud
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shujuan Chang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shanshan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
22
|
Matsuno H, Tsuchimine S, Fukuzato N, O'Hashi K, Kunugi H, Sohya K. Sirtuin 6 is a regulator of dendrite morphogenesis in rat hippocampal neurons. Neurochem Int 2021; 145:104959. [PMID: 33444676 DOI: 10.1016/j.neuint.2021.104959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023]
Abstract
Sirtuin 6 (SIRT6), a member of the Sirtuin family, acts as nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase, mono-adenosine diphosphate (ADP)-ribosyltransferase, and fatty acid deacylase, and plays critical roles in inflammation, aging, glycolysis, and DNA repair. Accumulating evidence has suggested that SIRT6 is involved in brain functions such as neuronal differentiation, neurogenesis, and learning and memory. However, the precise molecular roles of SIRT6 during neuronal circuit formation are not yet well understood. In this study, we tried to elucidate molecular roles of SIRT6 on neurite development by using primary-cultured hippocampal neurons. We observed that SIRT6 was abundantly localized in the nucleus, and its expression was markedly increased during neurite outgrowth and synaptogenesis. By using shRNA-mediated SIRT6-knockdown, we show that both dendritic length and the number of dendrite branches were significantly reduced in the SIRT6-knockdown neurons. Microarray and subsequent gene ontology analysis revealed that reducing SIRT6 caused the downregulation of immediate early genes (IEGs) and alteration of several biological processes including MAPK (ERK1/2) signaling. We found that nuclear accumulation of phosphorylated ERK1/2 was significantly reduced in SIRT6-knockdown neurons. Overexpression of SIRT6 promoted dendritic length and branching, but the mutants lacking deacetylase activity had no significant effect on the dendritic morphology. Collectively, the presented findings reveal a role of SIRT6 in dendrite morphogenesis, and suggest that SIRT6 may act as an important regulator of ERK1/2 signaling pathway that mediates IEG expression, which leads to dendritic development.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Shoko Tsuchimine
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Noriko Fukuzato
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazunori O'Hashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Psychiatry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuhiro Sohya
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
23
|
Audesse AJ, Webb AE. Mechanisms of enhanced quiescence in neural stem cell aging. Mech Ageing Dev 2020; 191:111323. [PMID: 32781077 DOI: 10.1016/j.mad.2020.111323] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of neural stem cell function is vital to ensure neurogenesis throughout adulthood. During aging, there is a significant reduction in adult neurogenesis that correlates with a decline in cognitive function. Although recent studies have revealed novel extrinsic and intrinsic mechanisms that regulate the adult neural stem cell (NSC) pool and lineage progression, the precise molecular mechanisms that drive dysregulation of adult neurogenesis in the context of aging are only beginning to emerge. Recent studies have shed light on mechanisms that regulate the earliest step of adult neurogenesis, the activation of quiescent NSCs. Interestingly, the ability of NSCs to enter the cell cycle in the aged brain significantly declines suggesting a deepend state of quiescence. Given the likely contribution of adult neurogenesis to supporting cognitive function in humans, enhancing neurogenesis may be a strategy to combat age-related cognitive decline. This review highlights the mechanisms that regulate the NSC pool throughout adulthood and discusses how dysregulation of these processes may contribute to the decline in neurogenesis and cognitive function throughout aging.
Collapse
Affiliation(s)
- Amanda J Audesse
- Graduate Program in Neuroscience, Brown University, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
24
|
Li A, Yau SY, Machado S, Wang P, Yuan TF, So KF. Enhancement of Hippocampal Plasticity by Physical Exercise as a Polypill for Stress and Depression: A Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:294-306. [PMID: 30848219 DOI: 10.2174/1871527318666190308102804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/21/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Generation of newborn neurons that form functional synaptic connections in the dentate gyrus of adult mammals, known as adult hippocampal neurogenesis, has been suggested to play critical roles in regulating mood, as well as certain forms of hippocampus-dependent learning and memory. Environmental stress suppresses structural plasticity including adult neurogenesis and dendritic remodeling in the hippocampus, whereas physical exercise exerts opposite effects. Here, we review recent discoveries on the potential mechanisms concerning how physical exercise mitigates the stressrelated depressive disorders, with a focus on the perspective of modulation on hippocampal neurogenesis, dendritic remodeling and synaptic plasticity. Unmasking such mechanisms may help devise new drugs in the future for treating neuropsychiatric disorders involving impaired neural plasticity.
Collapse
Affiliation(s)
- Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sergio Machado
- Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program - Salgado de Oliveira University, Niteroi, Brazil
| | - Pingjie Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,State Key Laboratory of Brain and Cognitive Sciences, the University of Hong Kong, Hong Kong SAR, China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Spinelli M, Fusco S, Grassi C. Brain insulin resistance impairs hippocampal plasticity. VITAMINS AND HORMONES 2020; 114:281-306. [PMID: 32723548 DOI: 10.1016/bs.vh.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrient-related signals have been demonstrated to influence brain development and cognitive functions. In particular, insulin signaling has been shown to impact on molecular cascades underlying hippocampal plasticity, learning and memory. Alteration of brain insulin signaling interferes with the maintenance of neural stem cell niche and neuronal activity in the hippocampus. Brain insulin resistance is also emerging as key factor causing the cognitive impairment observed in metabolic and neurodegenerative diseases. Here, we review the molecular mechanisms involved in the insulin modulation of both adult neurogenesis and synaptic activity in the hippocampus. We also summarize the effects of altered insulin sensitivity on hippocampal plasticity. Finally, we reassume the experimental and epidemiological evidence highlighting the critical role of brain insulin resistance at the crossroad between type 2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
26
|
Ly CH, Lynch GS, Ryall JG. A Metabolic Roadmap for Somatic Stem Cell Fate. Cell Metab 2020; 31:1052-1067. [PMID: 32433923 DOI: 10.1016/j.cmet.2020.04.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 01/14/2023]
Abstract
While metabolism was initially thought to play a passive role in cell biology by generating ATP to meet bioenergetic demands, recent studies have identified critical roles for metabolism in the generation of new biomass and provision of obligate substrates for the epigenetic modification of histones and DNA. This review details how metabolites generated through glycolysis and the tricarboxylic acid cycle are utilized by somatic stem cells to support cell proliferation and lineage commitment. Importantly, we also discuss the evolving hypothesis that histones can act as an energy reservoir during times of energy stress. Finally, we discuss how cells integrate both extrinsic metabolic cues and intrinsic metabolic machinery to regulate cell fate.
Collapse
Affiliation(s)
- C Hai Ly
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - James G Ryall
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
27
|
Benitah SA, Welz PS. Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell 2020; 26:817-831. [DOI: 10.1016/j.stem.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Intracranial Self-Stimulation Modulates Levels of SIRT1 Protein and Neural Plasticity-Related microRNAs. Mol Neurobiol 2020; 57:2551-2562. [PMID: 32219698 DOI: 10.1007/s12035-020-01901-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Deep brain stimulation (DBS) of reward system brain areas, such as the medial forebrain bundle (MFB), by means of intracranial self-stimulation (ICSS), facilitates learning and memory in rodents. MFB-ICSS has been found capable of modifying different plasticity-related proteins, but its underlying molecular mechanisms require further elucidation. MicroRNAs (miRNAs) and the longevity-associated SIRT1 protein have emerged as important regulatory molecules implicated in neural plasticity. Thus, we aimed to analyze the effects of MFB-ICSS on miRNAs expression and SIRT1 protein levels in hippocampal subfields and serum. We used OpenArray to select miRNA candidates differentially expressed in the dentate gyrus (DG) of ICSS-treated (3 sessions, 45' session/day) and sham rats. We further analyzed the expression of these miRNAs, together with candidates selected after bibliographic screening (miR-132-3p, miR-134-5p, miR-146a-5p, miR-181c-5p) in DG, CA1, and CA3, as well as in serum, by qRT-PCR. We also assessed tissue and serum SIRT1 protein levels by Western Blot and ELISA, respectively. Expression of miR-132-3p, miR-181c-5p, miR-495-3p, and SIRT1 protein was upregulated in DG of ICSS rats (P < 0.05). None of the analyzed molecules was regulated in CA3, while miR-132-3p was also increased in CA1 (P = 0.011) and serum (P = 0.048). This work shows for the first time that a DBS procedure, specifically MFB-ICSS, modulates the levels of plasticity-related miRNAs and SIRT1 in specific hippocampal subfields. The mechanistic role of these molecules could be key to the improvement of memory by MFB-ICSS. Moreover, regarding the proposed clinical applicability of DBS, serum miR-132 is suggested as a potential treatment biomarker.
Collapse
|
29
|
Radak Z, Suzuki K, Posa A, Petrovszky Z, Koltai E, Boldogh I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol 2020; 35:101467. [PMID: 32086007 PMCID: PMC7284913 DOI: 10.1016/j.redox.2020.101467] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022] Open
Abstract
Cellular energy demands are readily changed during physical exercise resulting in adaptive responses by signaling proteins of metabolic processes, including the NAD+ dependent lysine deacetylase SIRT1. Regular exercise results in systemic adaptation that restores the level of SIRT1 in the kidney, liver, and brain in patients with neurodegenerative diseases, and thereby normalizes cellular metabolic processes to attenuate the severity of these diseases. In skeletal muscle, over-expression of SIRT1 results in enhanced numbers of myonuclei improves the repair process after injury and is actively involved in muscle hypertrophy by up-regulating anabolic and downregulating catabolic processes. The present review discusses the different views of SIRT1 dependent deacetylation of PGC-α.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan; University of Szeged, Szeged, Hungary.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | | | | | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| |
Collapse
|
30
|
Spinelli M, Fusco S, Grassi C. Brain Insulin Resistance and Hippocampal Plasticity: Mechanisms and Biomarkers of Cognitive Decline. Front Neurosci 2019; 13:788. [PMID: 31417349 PMCID: PMC6685093 DOI: 10.3389/fnins.2019.00788] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, much attention has been devoted to the effects of nutrient-related signals on brain development and cognitive functions. A turning point was the discovery that brain areas other than the hypothalamus expressed receptors for hormones related to metabolism. In particular, insulin signaling has been demonstrated to impact on molecular cascades underlying hippocampal plasticity, learning and memory. Here, we summarize the molecular evidence linking alteration of hippocampal insulin sensitivity with changes of both adult neurogenesis and synaptic plasticity. We also review the epidemiological studies and experimental models emphasizing the critical role of brain insulin resistance at the crossroad between metabolic and neurodegenerative disease. Finally, we brief novel findings suggesting how biomarkers of brain insulin resistance, involving the study of brain-derived extracellular vesicles and brain glucose metabolism, may predict the onset and/or the progression of cognitive decline.
Collapse
Affiliation(s)
- Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Fusco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
31
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
32
|
Wu HN, Cao XL, Fang Z, Zhang YF, Han WJ, Yue KY, Cao Y, Zheng MH, Wang LL, Han H. Deficiency of Ttyh1 downstream to Notch signaling results in precocious differentiation of neural stem cells. Biochem Biophys Res Commun 2019; 514:842-847. [PMID: 31079925 DOI: 10.1016/j.bbrc.2019.04.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/27/2019] [Indexed: 12/18/2022]
Abstract
Mammalian neural stem cells (NSCs) are not only responsible for normal development of the central nervous system (CNS), but also participate in brain homeostasis and repair, thus hold promising clinical potentials in the treatment of neurodegenerative diseases and trauma. However the molecular networks regulating the stemness and differentiation of NSCs have not been fully understood. In this study, we show that Tweety-homolog 1 (Ttyh1), a five-pass transmembrane protein specifically expressed in mouse brain, is involved in maintaining stemness of murine NSCs. Blocking or activating Notch signal led to downregulation and upregulation of Ttyh1 in cultured NSCs, respectively, suggesting that Ttyh1 is under the control of Notch signaling. Knockdown of Ttyh1 in cultured NSCs resulted in a transient increase in the number and size of neurospheres, followed by a decrease of stemness as manifested by compromised neurosphere formation, downregulated stem cell markers, and increased neuronal differentiation. We generated Ttyh1 knockout mice by deleting its exon 4 using the CRISPR-Cas9 technology. Surprisingly, in contrast to a previous report, Ttyh1 knockout did not result in embryonic lethality. NSCs derived from Ttyh1 knockout mice phenocopied NSCs transfected with Ttyh1 siRNA. Immunofluorescence showed that loss of Ttyh1 leads to the increase of neurogenesis in adult mice. Taken together, these findings indicate that Ttyh1, which is likely downstream to Notch signaling, plays an important role in regulating NSCs.
Collapse
Affiliation(s)
- Hai-Ning Wu
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiu-Li Cao
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Fang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Fei Zhang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Juan Han
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Kang-Yi Yue
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Cao
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Min-Hua Zheng
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Li-Li Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Institute of Modern Separation Science, Northwest University, Shaanxi Key Laboratory of Modern Separation Science, Xi'an, 710069, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
33
|
Zhang S, Botchway BO, Zhang Y, Liu X. Resveratrol can inhibit Notch signaling pathway to improve spinal cord injury. Ann Anat 2019; 223:100-107. [DOI: 10.1016/j.aanat.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
|
34
|
Asad Z, Sachidanandan C. Chemical screens in a zebrafish model of CHARGE syndrome identifies small molecules that ameliorate disease-like phenotypes in embryo. Eur J Med Genet 2019; 63:103661. [PMID: 31051269 DOI: 10.1016/j.ejmg.2019.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 01/03/2023]
Abstract
CHARGE syndrome is an autosomal dominant congenital disorder caused primarily by mutations in the CHD7 gene. Using a small molecule screen in a zebrafish model of CHARGE syndrome, we identified 4 compounds that rescue embryos from disease-like phenotypes. Our screen yielded DAPT, a Notch signaling inhibitor that could ameliorate the craniofacial, cranial neuronal and myelination defects in chd7 morphant zebrafish embryos. We discovered that Procainamide, an inhibitor of DNA methyltransferase 1, was able to recover the pattern of expression of isl2a, a cranial neuronal marker while also reducing the effect on craniofacial cartilage and myelination. M344, an inhibitor of Histone deacetylases had a strong recovery effect on craniofacial cartilage defects and could also modestly revert the myelination defects in zebrafish embryos. CHIC-35, a SIRT1 inhibitor partially restored the expression of isl2a in cranial neurons while causing a partial reversion of myelination and craniofacial cartilage defects. Our results suggest that a modular approach to phenotypic rescue in multi-organ syndromes might be a more successful approach to treat these disorders. Our findings also open up the possibility of using these compounds for other disorders with shared phenotypes.
Collapse
Affiliation(s)
- Zainab Asad
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
35
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
36
|
Fang Y, Tang S, Li X. Sirtuins in Metabolic and Epigenetic Regulation of Stem Cells. Trends Endocrinol Metab 2019; 30:177-188. [PMID: 30630664 PMCID: PMC6382540 DOI: 10.1016/j.tem.2018.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 02/08/2023]
Abstract
Sirtuins are highly conserved NAD+-dependent enzymes that are capable of removing a wide range of lipid lysine acyl-groups from protein substrates in a NAD+-dependent manner. These NAD+-dependent activities enable sirtuins to monitor cellular energy status and modulate gene transcription, genome stability, and energy metabolism in response to environmental signals. Consequently, sirtuins are important for cell survival, stress resistance, proliferation, and differentiation. In recent years, sirtuins are increasingly recognized as crucial regulators of stem cell biology in addition to their well-known roles in metabolism and aging. This review article highlights our current knowledge on sirtuins in stem cells, including their functions in pluripotent stem cells, embryogenesis, and development as well as their roles in adult stem cell maintenance, regeneration, and aging.
Collapse
Affiliation(s)
- Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; These authors contributed equally to this work
| | - Shuang Tang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Current address: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; These authors contributed equally to this work
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
37
|
Zhao S, Zhang L, Yang C, Li Z, Rong S. Procyanidins and Alzheimer’s Disease. Mol Neurobiol 2019; 56:5556-5567. [DOI: 10.1007/s12035-019-1469-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
38
|
Fawal MA, Davy A. Impact of Metabolic Pathways and Epigenetics on Neural Stem Cells. Epigenet Insights 2018; 11:2516865718820946. [PMID: 30627699 PMCID: PMC6311566 DOI: 10.1177/2516865718820946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Balancing self-renewal with differentiation is crucial for neural stem cells (NSC) functions to ensure tissue development and homeostasis. Over the last years, multiple studies have highlighted the coupling of either metabolic or epigenetic reprogramming to NSC fate decisions. Metabolites are essential as they provide the energy and building blocks for proper cell function. Moreover, metabolites can also function as substrates and/or cofactors for epigenetic modifiers. It is becoming more evident that metabolic alterations and epigenetics rewiring are highly intertwined; however, their relation regarding determining NSC fate is not well understood. In this review, we summarize the major metabolic pathways and epigenetic modifications that play a role in NSC. We then focus on the notion that nutrients availability can function as a switch to modify the epigenetic machinery and drive NSC sequential differentiation during embryonic neurogenesis.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI) and Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI) and Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
39
|
Fujita Y, Yamashita T. Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Front Neurosci 2018; 12:778. [PMID: 30416425 PMCID: PMC6213750 DOI: 10.3389/fnins.2018.00778] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 1 (SIRT1) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Sirtuin was originally studied as the lifespan-extending gene, silent information regulator 2 (SIRT2) in budding yeast. There are seven mammalian homologs of sirtuin (SIRT1–7), and SIRT1 is the closest homolog to SIRT2. SIRT1 modulates various key targets via deacetylation. In addition to histones, these targets include transcription factors, such as forkhead box O (FOXO), Ku70, p53, NF-κB, PPAR-gamma co-activator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor γ (PPARγ). SIRT1 has many biological functions, including aging, cell survival, differentiation, and metabolism. Genetic and physiological analyses in animal models have shown beneficial roles for SIRT1 in the brain during both development and adulthood. Evidence from in vivo and in vitro studies have revealed that SIRT1 regulates the cellular fate of neural progenitors, axon elongation, dendritic branching, synaptic plasticity, and endocrine function. In addition to its importance in physiological processes, SIRT1 has also been implicated in protection of neurons from degeneration in models of neurological diseases, such as traumatic brain injury and Alzheimer’s disease. In this review, we focus on the role of SIRT1 in the neuroendocrine system and neurodegenerative diseases. We also discuss the potential therapeutic implications of targeting the sirtuin pathway.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
40
|
Vellimana AK, Diwan D, Clarke J, Gidday JM, Zipfel GJ. SIRT1 Activation: A Potential Strategy for Harnessing Endogenous Protection Against Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Neurosurgery 2018; 65:1-5. [PMID: 31076789 DOI: 10.1093/neuros/nyy201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Julian Clarke
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| |
Collapse
|
41
|
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90:456-470. [DOI: 10.1016/j.neubiorev.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
42
|
Role of the epigenetic factor Sirt7 in neuroinflammation and neurogenesis. Neurosci Res 2018; 131:1-9. [DOI: 10.1016/j.neures.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
43
|
MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Mol Cell 2018; 70:825-841.e6. [PMID: 29861161 DOI: 10.1016/j.molcel.2018.04.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/26/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023]
Abstract
Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes.
Collapse
|
44
|
Bai X, He T, Liu Y, Zhang J, Li X, Shi J, Wang K, Han F, Zhang W, Zhang Y, Cai W, Hu D. Acetylation-Dependent Regulation of Notch Signaling in Macrophages by SIRT1 Affects Sepsis Development. Front Immunol 2018; 9:762. [PMID: 29867921 PMCID: PMC5949384 DOI: 10.3389/fimmu.2018.00762] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/27/2018] [Indexed: 12/29/2022] Open
Abstract
SIRT1 is reported to participate in macrophage differentiation and affect sepsis, and Notch signaling is widely reported to influence inflammation and macrophage activation. However, the specific mechanisms through which SIRT1 regulates sepsis and the relationship between SIRT1 and Notch signaling remain poorly elucidated. In this study, we found that SIRT1 levels were decreased in sepsis both in vitro and in vivo and that SIRT1 regulation of Notch signaling affected inflammation. In lipopolysaccharide (LPS)-induced sepsis, the levels of Notch signaling molecules, including Notch1, Notch2, Hes1, and intracellular domain of Notch (NICD), were increased. However, NICD could be deacetylated by SIRT1, and this led to the suppression of Notch signaling. Notably, in macrophages from myeloid-specific RBP-J-/- mice, in which Notch signaling is inhibited, pro-inflammatory cytokines were expressed at lower levels than in macrophages from wild-type littermates and in RBP-J-/- macrophages, and the NF-κB pathway was also inhibited. Accordingly, in the case of RBP-J-/- mice, LPS-induced inflammation and mortality were lower than in wild-type mice. Our results indicate that SIRT1 inhibits Notch signaling through NICD deacetylation and thus ultimately alleviates sepsis.
Collapse
Affiliation(s)
- Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Julei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yijie Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Golubtsova NN, Filippov FN, Gunin AG. Age-Related Changes in the Content of Sirtuin 1 in Human Dermal Fibroblasts. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s207905701704004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Pajk M, Cselko A, Varga C, Posa A, Tokodi M, Boldogh I, Goto S, Radak Z. Exogenous nicotinamide supplementation and moderate physical exercise can attenuate the aging process in skeletal muscle of rats. Biogerontology 2017; 18:593-600. [PMID: 28477081 DOI: 10.1007/s10522-017-9705-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
Nicotinamide (NAM) could enhance the availability of NAD+ and be beneficial to cell function. However, NAM can inhibit the activities of SIRT1 and PARP. The effect of NAM supplementation on the aging process is not well known. In the present study exogenous NAM (1-0.5% in drinking water) was supplemented for 5 weeks and in the last 4 weeks moderate treadmill running was given to 5 mo and 28 mo old rats. The content of SIRT1 was not effected by NAM treatment alone. However, the activity of SIRT1, judged from the acetylated p53/p53 ratio, increased in both NAM treated age groups, suggesting beneficial effects of exogenous NAM. This was confirmed by the finding of increased PGC-1α and pCREB/CREB ratio in the gastrocnemius muscle of old but not young NAM treated animals. Our data suggest NAM administration can attenuate the aging process in skeletal muscle of rats, but NAM administration together with exercise training might be too great challenge to cope with in the old animals, since it leads to decreased levels of SIRT1.
Collapse
Affiliation(s)
- Melitta Pajk
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, Budapest, 1123, Hungary
| | - Alexandra Cselko
- Institute of Sport Sciences and Physical Education, University of Pecs, Pecs, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Margareta Tokodi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sataro Goto
- Department of Exercise Physiology, Graduate School of Health and Sports Science & Medicine, Juntendo University, Tokyo, Japan
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, Budapest, 1123, Hungary.
- Institute of Sport Sciences and Physical Education, University of Pecs, Pecs, Hungary.
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary.
| |
Collapse
|
47
|
Abstract
In mammals, recent studies have demonstrated that the brain, the hypothalamus in particular, is a key bidirectional integrator of humoral and neural information from peripheral tissues, thus influencing ageing both in the brain and at the 'systemic' level. CNS decline drives the progressive impairment of cognitive, social and physical abilities, and the mechanisms underlying CNS regulation of the ageing process, such as microglia-neuron networks and the activities of sirtuins, a class of NAD+-dependent deacylases, are beginning to be understood. Such mechanisms are potential targets for the prevention or treatment of age-associated dysfunction and for the extension of a healthy lifespan.
Collapse
|
48
|
Liu N, Li S, Wu N, Cho KS. Acetylation and deacetylation in cancer stem-like cells. Oncotarget 2017; 8:89315-89325. [PMID: 29179522 PMCID: PMC5687692 DOI: 10.18632/oncotarget.19167] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem-like cell (CSC) model has been established to investigate the underlying mechanisms of tumor initiation and progression. The imbalance between acetylation and deacetylation of histone or non-histone proteins, one of the important epigenetic modification processes, is closely associated with a wide variety of diseases including cancer. Acetylation and deacetylation are involved in various stemness-related signal pathways and drive the regulation of self-renewal and differentiation in normal developmental processes. Therefore, it is critical to explore their role in the maintenance of cancer stem-like cell traits. Here, we will review the extensive dysregulations of acetylation found in cancers and summarize their functional roles in sustaining CSC-like properties. Additionally, the use of deacetyltransferase inhibitors as an effective therapeutic strategy against CSCs is also discussed.
Collapse
Affiliation(s)
- Na Liu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiqi Li
- Center of biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Wu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
49
|
She DT, Jo DG, Arumugam TV. Emerging Roles of Sirtuins in Ischemic Stroke. Transl Stroke Res 2017; 8:10.1007/s12975-017-0544-4. [PMID: 28656393 DOI: 10.1007/s12975-017-0544-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is one of the leading causes of death worldwide. It is characterized by a sudden disruption of blood flow to the brain causing cell death and damage, which will lead to neurological impairments. In the current state, only one drug is approved to be used in clinical setting and new therapies that confer ischemic neuroprotection are desperately needed. Several targets and pathways have been indicated to be neuroprotective in ischemic stroke, among which the sirtuin family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases has emerged as important modulators of several processes in the normal physiology and pathological conditions such as stroke. Recent studies have identified some members of the sirtuin family are able to ameliorate the devastating consequences of ischemic stroke by conferring neuroprotection by means of reducing neuronal cell death, oxidative stress, and neuroinflammation whereas some sirtuins are found to be detrimental in the pathophysiology of ischemic stroke. This review summarizes implications of sirtuins in ischemic stroke and the experimental evidences that demonstrate the potential of sirtuin modulators as neuroprotective therapy for ischemic stroke.
Collapse
Affiliation(s)
- David T She
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
50
|
Abstract
Sirtuins are pleiotropic NAD+ dependent histone deacetylases involved in metabolism, DNA damage repair, inflammation and stress resistance. SIRT6, a member of the sirtuin family, regulates the process of normal aging and increases the lifespan of male mice over-expressing Sirt6 by 15%. Neurogenesis, the formation of new neurons within the hippocampus of adult mammals, involves several complex stages including stem cell proliferation, differentiation, migration and network integration. During aging, the number of newly generated neurons continuously declines, and this is correlated with a decline in neuronal plasticity and cognitive behavior. In this study we investigated the involvement of SIRT6 in adult hippocampal neurogenesis. Mice over-expressing Sirt6 exhibit increased numbers of young neurons and decreased numbers of mature neurons, without affecting glial differentiation. This implies of an involvement of SIRT6 in neuronal differentiation and maturation within the hippocampus. This work adds to the expanding body of knowledge on the regulatory mechanisms underlying adult hippocampal neurogenesis, and describes novel roles for SIRT6 as a regulator of cell fate during adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Eitan Okun
- The Mina and Everard Goodman faculty of Life sciences, Bar Ilan University, Ramat Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| | - Daniel Marton
- The Mina and Everard Goodman faculty of Life sciences, Bar Ilan University, Ramat Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Daniel Cohen
- The Mina and Everard Goodman faculty of Life sciences, Bar Ilan University, Ramat Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Kathleen Griffioen
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, United States of America
| | - Yariv Kanfi
- The Mina and Everard Goodman faculty of Life sciences, Bar Ilan University, Ramat Gan, Israel
| | - Tomer Illouz
- The Mina and Everard Goodman faculty of Life sciences, Bar Ilan University, Ramat Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Ravit Madar
- The Mina and Everard Goodman faculty of Life sciences, Bar Ilan University, Ramat Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Y. Cohen
- The Mina and Everard Goodman faculty of Life sciences, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|