1
|
Szemes T, Sabaté San José A, Azouz A, Sitte M, Salinas G, Achouri Y, Kricha S, Ris L, Red-Horse K, Bellefroid EJ, Desiderio S. Temporal refinement of Dach1 expression contributes to the development of somatosensory neurons. EMBO J 2025; 44:2882-2905. [PMID: 40205161 DOI: 10.1038/s44318-025-00427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
During somatosensory neurogenesis, neurons are born in an unspecialized transcriptional state. Several transcription factors in these cells follow a broad-to-restricted expression trajectory as development proceeds, giving rise to neuron subtypes with different identities. The relevance of this temporal refinement of transcription factor expression remains unclear as the functions of transcription factors with broad-to-restricted expression patterns have been mostly studied in those neuron subtypes in which they remain active. Here we show that Dach1 encodes a bona fide transcription factor with a broad-to-restricted expression pattern retained and required in tactile somatosensory neurons. In developing nociceptors, Prdm12 contributes to Dach1 silencing. Using genetic approaches to prevent its temporal restriction during mouse somatosensory development, we reveal that Dach1 expression refinement is a prerequisite for the acquisition of an appropriate transcriptional profile in those somatosensory neuron subtypes in which it becomes ultimately silenced. These findings highlight the essential role played by Dach1 during somatosensory neuron development and demonstrate that the temporal pattern of broad-to-restricted expression followed by several transcription factors is physiologically important for the development of somatosensory neurons.
Collapse
Affiliation(s)
- Tünde Szemes
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratory of Neuroscience, UMONS Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alba Sabaté San José
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Maren Sitte
- NGS Integrative Genomics, Institute of Pathology at the University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics, Institute of Pathology at the University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sadia Kricha
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Laurence Ris
- Laboratory of Neuroscience, UMONS Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Eric J Bellefroid
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | - Simon Desiderio
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
2
|
Tsimpos P, Desiderio S, Cabochette P, Poelvoorde P, Kricha S, Vanhamme L, Poulard C, Bellefroid EJ. Loss of G9a does not phenocopy the requirement for Prdm12 in the development of the nociceptive neuron lineage. Neural Dev 2024; 19:1. [PMID: 38167468 PMCID: PMC10759634 DOI: 10.1186/s13064-023-00179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Prdm12 is an epigenetic regulator expressed in developing and mature nociceptive neurons, playing a key role in their specification during neurogenesis and modulating pain sensation at adulthood. In vitro studies suggested that Prdm12 recruits the methyltransferase G9a through its zinc finger domains to regulate target gene expression, but how Prdm12 interacts with G9a and whether G9a plays a role in Prdm12's functional properties in sensory ganglia remain unknown. Here we report that Prdm12-G9a interaction is likely direct and that it involves the SET domain of G9a. We show that both proteins are largely co-expressed in dorsal root ganglia during early murine development, opening the possibility that G9a plays a role in DRG and may act as a mediator of Prdm12's function in the development of nociceptive sensory neurons. To test this hypothesis, we conditionally inactivated G9a in neural crest using a Wnt1-Cre transgenic mouse line. We found that the specific loss of G9a in the neural crest lineage does not lead to dorsal root ganglia hypoplasia due to the loss of somatic nociceptive neurons nor to the ectopic expression of the visceral determinant Phox2b as observed upon Prdm12 ablation. These findings suggest that Prdm12 function in the initiation of the nociceptive lineage does not critically involves its interaction with G9a.
Collapse
Affiliation(s)
- Panagiotis Tsimpos
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Simon Desiderio
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Pauline Cabochette
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Sadia Kricha
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, Lyon, F-69000, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| | - Eric J Bellefroid
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium.
| |
Collapse
|
3
|
Vermeiren S, Cabochette P, Dannawi M, Desiderio S, San José AS, Achouri Y, Kricha S, Sitte M, Salinas-Riester G, Vanhollebeke B, Brunet JF, Bellefroid EJ. Prdm12 represses the expression of the visceral neuron determinants Phox2a/b in developing somatosensory ganglia. iScience 2023; 26:108364. [PMID: 38025786 PMCID: PMC10663820 DOI: 10.1016/j.isci.2023.108364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.
Collapse
Affiliation(s)
- Simon Vermeiren
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Pauline Cabochette
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Maya Dannawi
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Simon Desiderio
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Alba Sabaté San José
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, Institut de Duve, Brussels, Belgium
| | - Sadia Kricha
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Maren Sitte
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Gabriela Salinas-Riester
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Benoit Vanhollebeke
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Jean-François Brunet
- Institut de Biologie de l’ENS (IBENS), Inserm, CNRS, École Normale Supérieure, PSL Research University, 75005 Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, 75005 Paris, France
- Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| | - Eric J. Bellefroid
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| |
Collapse
|
4
|
Lamanna F, Hervas-Sotomayor F, Oel AP, Jandzik D, Sobrido-Cameán D, Santos-Durán GN, Martik ML, Stundl J, Green SA, Brüning T, Mößinger K, Schmidt J, Schneider C, Sepp M, Murat F, Smith JJ, Bronner ME, Rodicio MC, Barreiro-Iglesias A, Medeiros DM, Arendt D, Kaessmann H. A lamprey neural cell type atlas illuminates the origins of the vertebrate brain. Nat Ecol Evol 2023; 7:1714-1728. [PMID: 37710042 PMCID: PMC10555824 DOI: 10.1038/s41559-023-02170-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
The vertebrate brain emerged more than ~500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey-a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits-based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of cell types, tissue structures and gene expression programs of the ancestral vertebrate brain. However, our analyses also revealed key tissues and cell types that arose later in evolution. For example, the ancestral brain was probably devoid of cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter emerged from astrocyte-like evolutionary precursors in the jawed vertebrate lineage. Altogether, our work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and provides a foundation for exploring its diversification during evolution.
Collapse
Affiliation(s)
- Francesco Lamanna
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | - A Phillip Oel
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Zoology, Comenius University, Bratislava, Slovakia
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gabriel N Santos-Durán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Megan L Martik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen A Green
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thoomke Brüning
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Katharina Mößinger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Celine Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
5
|
Donoso V, Whitson J, Lom B. Developmental exposure to the pesticide malathion enhances expression of Prdm12, a regulator of nociceptor development, in Xenopus laevis. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000786. [PMID: 37033708 PMCID: PMC10074175 DOI: 10.17912/micropub.biology.000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
The transcription factor Prdm12 exerts important influences on the development of nociceptors, peripheral touch and pain-sensing neurons, and has been implicated in human pain sensation disorders. We examined the consequences of exposing developing Xenopus laevis embryos to the commonly used pesticide malathion on Prdm12 expression. Using qPCR and western blot analysis we observed that malathion treatment for the first six days of tadpole development significantly increased both prdm12 mRNA levels and Prdm12 protein levels compared to controls. Consequently, early exposure to this pesticide has potential to alter nociceptor development.
Collapse
Affiliation(s)
- Valeria Donoso
- Biology, Davidson College, Davidson, North Carolina, United States
- Preventative Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jeremy Whitson
- Biology, Davidson College, Davidson, North Carolina, United States
- Biology, High Point University, High Point, North Carolina, United States
| | - Barbara Lom
- Biology, Davidson College, Davidson, North Carolina, United States
- Correspondence to: Barbara Lom (
)
| |
Collapse
|
6
|
Latragna A, Sabaté San José A, Tsimpos P, Vermeiren S, Gualdani R, Chakrabarti S, Callejo G, Desiderio S, Shomroni O, Sitte M, Kricha S, Luypaert M, Vanhollebeke B, Laumet G, Salinas G, Smith ESJ, Ris L, Bellefroid EJ. Prdm12 modulates pain-related behavior by remodeling gene expression in mature nociceptors. Pain 2022; 163:e927-e941. [PMID: 34961757 PMCID: PMC9341233 DOI: 10.1097/j.pain.0000000000002536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Prdm12 is a conserved epigenetic transcriptional regulator that displays restricted expression in nociceptors of the developing peripheral nervous system. In mice, Prdm12 is required for the development of the entire nociceptive lineage. In humans, PRDM12 mutations cause congenital insensitivity to pain, likely because of the loss of nociceptors. Prdm12 expression is maintained in mature nociceptors suggesting a yet-to-be explored functional role in adults. Using Prdm12 inducible conditional knockout mouse models, we report that in adult nociceptors Prdm12 is no longer required for cell survival but continues to play a role in the transcriptional control of a network of genes, many of them encoding ion channels and receptors. We found that disruption of Prdm12 alters the excitability of dorsal root ganglion neurons in culture. Phenotypically, we observed that mice lacking Prdm12 exhibit normal responses to thermal and mechanical nociceptive stimuli but a reduced response to capsaicin and hypersensitivity to formalin-induced inflammatory pain. Together, our data indicate that Prdm12 regulates pain-related behavior in a complex way by modulating gene expression in adult nociceptors and controlling their excitability. The results encourage further studies to assess the potential of Prdm12 as a target for analgesic development.
Collapse
Affiliation(s)
- Aurore Latragna
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratory of Neuroscience, UMONS Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alba Sabaté San José
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Panagiotis Tsimpos
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Simon Vermeiren
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Roberta Gualdani
- Laboratory of Neuroscience, UMONS Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | | | - Gerard Callejo
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Simon Desiderio
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Orr Shomroni
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sadia Kricha
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Maëlle Luypaert
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Benoit Vanhollebeke
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Gabriela Salinas
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Laurence Ris
- Laboratory of Neuroscience, UMONS Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Eric J. Bellefroid
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
7
|
Prdm12 regulates inhibitory neuron differentiation in mouse embryonal carcinoma cells. Cytotechnology 2022; 74:329-339. [PMID: 35464160 PMCID: PMC8975904 DOI: 10.1007/s10616-022-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022] Open
Abstract
The epigenetic regulatory system significant influences the fate determination of cells during developmental processes. Prdm12 is a transcriptional regulator that modulates gene expression epigenetically. The Prdm12 gene has been shown to be expressed in neural tissues, specifically during development, but its detailed function is not fully understood. This study investigated the function of the Prdm12 gene in P19 mouse embryonic tumor cells as a model for neural differentiation. A decrease in the expression of neuron-specific genes and the alterations of dendrites and axons morphology was confirmed in Prdm12-knockout P19 cells. In addition, almost no astrocytes were generated in Prdm12-knockout P19 cells. Comprehensive gene expression analysis revealed that there was a reduction in the expression of the inhibitory neuron-specific genes Gad1/2 and Glyt2, but not the excitatory neuron-specific gene VGLUT2, in Prdm12-knockout P19 cells. Furthermore, the expression of inhibitory neuron-related factors, Ptf1a, Dbx1, and Gsx1/2, decreased in Prdm12-knockout P19 cells. Gene expression analysis also revealed that the Ptf1a, Hic1, and Foxa1 genes were candidate targets of Prdm12 during neurogenesis. These results suggest that Prdm12 regulates the differentiation of inhibitory neurons and astrocytes by controlling the expression of these genes during the neural differentiation of P19 cells.
Collapse
|
8
|
Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. PLoS Genet 2022; 18:e1010012. [PMID: 35041640 PMCID: PMC8797249 DOI: 10.1371/journal.pgen.1010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2022] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
Ribosomes are essential nanomachines responsible for protein production. Although ribosomes are present in every living cell, ribosome biogenesis dysfunction diseases, called ribosomopathies, impact particular tissues specifically. Here, we evaluate the importance of the box C/D snoRNA-associated ribosomal RNA methyltransferase fibrillarin (Fbl) in the early embryonic development of Xenopus laevis. We report that in developing embryos, the neural plate, neural crest cells (NCCs), and NCC derivatives are rich in fbl transcripts. Fbl knockdown leads to striking morphological defects affecting the eyes and craniofacial skeleton, due to lack of NCC survival caused by massive p53-dependent apoptosis. Fbl is required for efficient pre-rRNA processing and 18S rRNA production, which explains the early developmental defects. Using RiboMethSeq, we systematically reinvestigated ribosomal RNA 2’-O methylation in X. laevis, confirming all 89 previously mapped sites and identifying 15 novel putative positions in 18S and 28S rRNA. Twenty-three positions, including 10 of the new ones, were validated orthogonally by low dNTP primer extension. Bioinformatic screening of the X. laevis transcriptome revealed candidate box C/D snoRNAs for all methylated positions. Mapping of 2’-O methylation at six developmental stages in individual embryos indicated a trend towards reduced methylation at specific positions during development. We conclude that fibrillarin knockdown in early Xenopus embryos causes reduced production of functional ribosomal subunits, thus impairing NCC formation and migration. Ribosomes are essential nanomachines responsible for protein production in all cells. Ribosomopathies are diseases caused by improper ribosome formation due to mutations in ribosomal proteins or ribosome assembly factors. Such diseases primarily affect the brain and blood, and it is unclear how malfunctioning of a process as general as ribosome formation can lead to tissue-specific diseases. Here we have examined how fibrillarin, an enzyme which modifies ribosomal RNA by adding methyl groups at specific sites, affects early embryonic development in the frog Xenopus laevis. We have revealed its importance in the maturation of cells forming an embryonic structure called the neural crest. Fibrillarin depletion leads to reduced eye size and abnormal head shape, reminiscent of other conditions such as Treacher Collins syndrome. Molecularly, the observed phenotypes are explainable by increased p53-dependent programmed cell death triggered by inhibition of certain pre-rRNA processing steps. Our systematic investigation of the ribosomal RNA 2’-O methylation repertoire across development has further revealed hypomodification at a late stage of development, which might play a role in late developmental transitions involving differential translation by compositionally different ribosomes.
Collapse
|
9
|
Rienzo M, Di Zazzo E, Casamassimi A, Gazzerro P, Perini G, Bifulco M, Abbondanza C. PRDM12 in Health and Diseases. Int J Mol Sci 2021; 22:ijms222112030. [PMID: 34769459 PMCID: PMC8585061 DOI: 10.3390/ijms222112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
PRDM12 is a member of the PRDI-BF1 (positive regulatory domain I-binding factor 1) homologous domain (PRDM)-containing protein family, a subfamily of Kruppel-like zinc finger proteins, controlling key processes in the development of cancer. PRDM12 is expressed in a spatio-temporal manner in neuronal systems where it exerts multiple functions. PRDM12 is essential for the neurogenesis initiation and activation of a cascade of downstream pro-neuronal transcription factors in the nociceptive lineage. PRDM12 inactivation, indeed, results in a complete absence of the nociceptive lineage, which is essential for pain perception. Additionally, PRDM12 contributes to the early establishment of anorexigenic neuron identity and the maintenance of high expression levels of pro-opiomelanocortin, which impacts on the program bodyweight homeostasis. PRDMs are commonly involved in cancer, where they act as oncogenes/tumor suppressors in a “Yin and Yang” manner. PRDM12 is not usually expressed in adult normal tissues but its expression is re-activated in several cancer types. However, little information is currently available on PRDM12 expression in cancers and its mechanism of action has not been thoroughly described. In this review, we summarize the recent findings regarding PRDM12 by focusing on four main biological processes: neurogenesis, pain perception, oncogenesis and cell metabolism. Moreover, we wish to highlight the importance of future studies focusing on the PRDM12 signaling pathway(s) and its role in cancer onset and progression.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy;
- Correspondence:
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Salerno, Italy;
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy;
| |
Collapse
|
10
|
Kokotović T, Langeslag M, Lenartowicz EM, Manion J, Fell CW, Alehabib E, Tafakhori A, Darvish H, Bellefroid EJ, Neely GG, Kress M, Penninger JM, Nagy V. PRDM12 Is Transcriptionally Active and Required for Nociceptor Function Throughout Life. Front Mol Neurosci 2021; 14:720973. [PMID: 34646120 PMCID: PMC8502974 DOI: 10.3389/fnmol.2021.720973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
PR domain-containing member 12 (PRDM12) is a key developmental transcription factor in sensory neuronal specification and survival. Patients with rare deleterious variants in PRDM12 are born with congenital insensitivity to pain (CIP) due to the complete absence of a subtype of peripheral neurons that detect pain. In this paper, we report two additional CIP cases with a novel homozygous PRDM12 variant. To elucidate the function of PRDM12 during mammalian development and adulthood, we generated temporal and spatial conditional mouse models. We find that PRDM12 is expressed throughout the adult nervous system. We observed that loss of PRDM12 during mid-sensory neurogenesis but not in the adult leads to reduced survival. Comparing cellular biophysical nociceptive properties in developmental and adult-onset PRDM12 deletion mouse models, we find that PRDM12 is necessary for proper nociceptive responses throughout life. However, we find that PRDM12 regulates distinct age-dependent transcriptional programs. Together, our results implicate PRDM12 as a viable therapeutic target for specific pain therapies even in adults.
Collapse
Affiliation(s)
- Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michiel Langeslag
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.,Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ewelina M Lenartowicz
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Manion
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elham Alehabib
- Student Research Committee, Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Eric J Bellefroid
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michaela Kress
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC - Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Landy MA, Goyal M, Casey KM, Liu C, Lai HC. Loss of Prdm12 during development, but not in mature nociceptors, causes defects in pain sensation. Cell Rep 2021; 34:108913. [PMID: 33789102 PMCID: PMC8048104 DOI: 10.1016/j.celrep.2021.108913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Prdm12 is a key transcription factor in nociceptor neurogenesis. Mutations of Prdm12 cause congenital insensitivity to pain (CIP) from failure of nociceptor development. However, precisely how deletion of Prdm12 during development or adulthood affects nociception is unknown. Here, we employ tissue- and temporal-specific knockout mouse models to test the function of Prdm12 during development and in adulthood. We find that constitutive loss of Prdm12 causes deficiencies in proliferation during sensory neurogenesis. We also demonstrate that conditional knockout from dorsal root ganglia (DRGs) during embryogenesis causes defects in nociception. In contrast, we find that, in adult DRGs, Prdm12 is dispensable for most pain-sensation and injury-induced hypersensitivity. Using transcriptomic analysis, we find mostly unique changes in adult Prdm12 knockout DRGs compared with embryonic knockout and that PRDM12 is likely a transcriptional activator in the adult. Overall, we find that the function of PRDM12 changes over developmental time.
Collapse
Affiliation(s)
- Mark A Landy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Goyal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine M Casey
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chen Liu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Hypothalamic Research Center, Dallas, TX 75390, USA
| | - Helen C Lai
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Di Tullio F, Schwarz M, Zorgati H, Mzoughi S, Guccione E. The duality of PRDM proteins: epigenetic and structural perspectives. FEBS J 2021; 289:1256-1275. [PMID: 33774927 DOI: 10.1111/febs.15844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
PRDF1 and RIZ1 homology domain containing (PRDMs) are a subfamily of Krüppel-like zinc finger proteins controlling key processes in metazoan development and in cancer. PRDMs exhibit unique dualities: (a) PR domain/ZNF arrays-their structure combines a SET-like domain known as a PR domain, typically found in methyltransferases, with a variable array of C2H2 zinc fingers (ZNF) characteristic of DNA-binding transcription factors; (b) transcriptional activators/repressors-their physiological function is context- and cell-dependent; mechanistically, some PRDMs have a PKMT activity and directly catalyze histone lysine methylation, while others are rather pseudomethyltransferases and act by recruiting transcriptional cofactors; (c) oncogenes/tumor suppressors-their pathological function depends on the specific PRDM isoform expressed during tumorigenesis. This duality is well known as the 'Yin and Yang' of PRDMs and involves a complex regulation of alternative splicing or alternative promoter usage, to generate full-length or PR-deficient isoforms with opposing functions in cancer. In conclusion, once their dualities are fully appreciated, PRDMs represent a promising class of targets in oncology by virtue of their widespread upregulation across multiple tumor types and their somatic dispensability, conferring a broad therapeutic window and limited toxic side effects. The recent discovery of a first-in-class compound able to inhibit PRDM9 activity has paved the way for the identification of further small molecular inhibitors able to counteract PRDM oncogenic activity.
Collapse
Affiliation(s)
- Federico Di Tullio
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan Schwarz
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Habiba Zorgati
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Slim Mzoughi
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Gonzalez Curto G, Der Vartanian A, Frarma YEM, Manceau L, Baldi L, Prisco S, Elarouci N, Causeret F, Korenkov D, Rigolet M, Aurade F, De Reynies A, Contremoulins V, Relaix F, Faklaris O, Briscoe J, Gilardi-Hebenstreit P, Ribes V. The PAX-FOXO1s trigger fast trans-differentiation of chick embryonic neural cells into alveolar rhabdomyosarcoma with tissue invasive properties limited by S phase entry inhibition. PLoS Genet 2020; 16:e1009164. [PMID: 33175861 PMCID: PMC7682867 DOI: 10.1371/journal.pgen.1009164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/23/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The chromosome translocations generating PAX3-FOXO1 and PAX7-FOXO1 chimeric proteins are the primary hallmarks of the paediatric fusion-positive alveolar subtype of Rhabdomyosarcoma (FP-RMS). Despite the ability of these transcription factors to remodel chromatin landscapes and promote the expression of tumour driver genes, they only inefficiently promote malignant transformation in vivo. The reason for this is unclear. To address this, we developed an in ovo model to follow the response of spinal cord progenitors to PAX-FOXO1s. Our data demonstrate that PAX-FOXO1s, but not wild-type PAX3 or PAX7, trigger the trans-differentiation of neural cells into FP-RMS-like cells with myogenic characteristics. In parallel, PAX-FOXO1s remodel the neural pseudo-stratified epithelium into a cohesive mesenchyme capable of tissue invasion. Surprisingly, expression of PAX-FOXO1s, similar to wild-type PAX3/7, reduce the levels of CDK-CYCLIN activity and increase the fraction of cells in G1. Introduction of CYCLIN D1 or MYCN overcomes this PAX-FOXO1-mediated cell cycle inhibition and promotes tumour growth. Together, our findings reveal a mechanism that can explain the apparent limited oncogenicity of PAX-FOXO1 fusion transcription factors. They are also consistent with certain clinical reports indicative of a neural origin of FP-RMS.
Collapse
Affiliation(s)
| | | | | | - Line Manceau
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Lorenzo Baldi
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Selene Prisco
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nabila Elarouci
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Daniil Korenkov
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Muriel Rigolet
- Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, Créteil, France
| | - Frédéric Aurade
- Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, Créteil, France
- Sorbonne Université, INSERM, UMRS974, Center for Research in Myology, Paris, France
| | - Aurélien De Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Vincent Contremoulins
- ImagoSeine core facility of Institut Jacques Monod and member of France-BioImaging, France
| | - Frédéric Relaix
- Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, Créteil, France
| | - Orestis Faklaris
- ImagoSeine core facility of Institut Jacques Monod and member of France-BioImaging, France
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London, United Kingdom
| | | | - Vanessa Ribes
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
14
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
15
|
Rahman MM, Kim IS, Ahn D, Tae HJ, Park BY. PR domaincontaining protein 12 (prdm12) is a downstream target of the transcription factor zic1 during cellular differentiation in the central nervous system: PR domain containing protein is the right form. Int J Dev Neurosci 2020; 80:528-537. [PMID: 32640092 DOI: 10.1002/jdn.10048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 11/05/2022] Open
Abstract
Transcription factor zic1 is an important regulator of neural plate patterning, formation of neural crest and cerebellar development, where its main function is neuronal cell differentiation. Among the genes identified, PR domain-containing 12 (prdm12) is a member of the prdm family and is expressed in the placode domain in the neurula stage. prdm12 is distinctly expressed in the dorsal part of the midbrain, trigeminal ganglion, and the motor neuron in the spinal cord. prdm12 knockdown results in the ventralization of the neural tube. zic1 knockdown results in the reduction of prdm12 expression in the midbrain, motor neuron and trigeminal ganglion, and overexpression of zic1 results in the expansion of prdm12 expression in the midbrain. zic1-activated wnt signaling is also a regulator of prdm12 expression in the midbrain. We propose that prdm12 is the downstream of zic1 and a novel player in the gene regulatory network controlling brain cell differentiation, along with some ganglions in Xenopus.
Collapse
Affiliation(s)
- Md Mahfujur Rahman
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - In-Shik Kim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
16
|
Scott K, O'Rourke R, Gillen A, Appel B. Prdm8 regulates pMN progenitor specification for motor neuron and oligodendrocyte fates by modulating the Shh signaling response. Development 2020; 147:dev191023. [PMID: 32680935 PMCID: PMC7473643 DOI: 10.1242/dev.191023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Spinal cord pMN progenitors sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Some OPCs differentiate rapidly as myelinating oligodendrocytes, whereas others remain into adulthood. How pMN progenitors switch from producing motor neurons to OPCs with distinct fates is poorly understood. pMN progenitors express prdm8, which encodes a transcriptional repressor, during motor neuron and OPC formation. To determine whether prdm8 controls pMN cell fate specification, we used zebrafish as a model system to investigate prdm8 function. Our analysis revealed that prdm8 mutant embryos have fewer motor neurons resulting from a premature switch from motor neuron to OPC production. Additionally, prdm8 mutant larvae have excess oligodendrocytes and a concomitant deficit of OPCs. Notably, pMN cells of mutant embryos have elevated Shh signaling, coincident with the motor neuron to OPC switch. Inhibition of Shh signaling restored the number of motor neurons to normal but did not rescue the proportion of oligodendrocytes. These data suggest that Prdm8 regulates the motor neuron-OPC switch by controlling the level of Shh activity in pMN progenitors, and also regulates the allocation of oligodendrocyte lineage cell fates.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Kayt Scott
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| | - Austin Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| |
Collapse
|
17
|
PRDM12: New Opportunity in Pain Research. Trends Mol Med 2020; 26:895-897. [PMID: 32828702 DOI: 10.1016/j.molmed.2020.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023]
Abstract
PRDM12 is a newly identified causative gene for a type of congenital insensitivity to pain disorder, which is characterized by the inability to perceive pain. Here, we discuss the (patho)physiology of PRDM12 function and the opportunities and challenges those data provide for novel therapeutic approaches in various pain disorders.
Collapse
|
18
|
Bartesaghi L, Wang Y, Fontanet P, Wanderoy S, Berger F, Wu H, Akkuratova N, Bouçanova F, Médard JJ, Petitpré C, Landy MA, Zhang MD, Harrer P, Stendel C, Stucka R, Dusl M, Kastriti ME, Croci L, Lai HC, Consalez GG, Pattyn A, Ernfors P, Senderek J, Adameyko I, Lallemend F, Hadjab S, Chrast R. PRDM12 Is Required for Initiation of the Nociceptive Neuron Lineage during Neurogenesis. Cell Rep 2020; 26:3484-3492.e4. [PMID: 30917305 PMCID: PMC7676307 DOI: 10.1016/j.celrep.2019.02.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/06/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
The sensation of pain is essential for the preservation of the functional integrity of the body. However, the key molecular regulators necessary for the initiation of the development of pain-sensing neurons have remained largely unknown. Here, we report that, in mice, inactivation of the transcriptional regulator PRDM12, which is essential for pain perception in humans, results in a complete absence of the nociceptive lineage, while proprioceptive and touch-sensitive neurons remain. Mechanistically, our data reveal that PRDM12 is required for initiation of neurogenesis and activation of a cascade of downstream pro-neuronal transcription factors, including NEUROD1, BRN3A, and ISL1, in the nociceptive lineage while it represses alternative fates other than nociceptors in progenitor cells. Our results thus demonstrate that PRDM12 is necessary for the generation of the entire lineage of pain-initiating neurons. The sensation of pain, temperature, and itch by neurons of the nociceptive lineage is essential for animal survival. Bartesaghi et al. report that the transcriptional regulator PRDM12 is indispensable in neural crest cells (NCCs) for the initiation of the sensory neuronal differentiation program that generates the entire nociceptive lineage.
Collapse
Affiliation(s)
- Luca Bartesaghi
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Yiqiao Wang
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Simone Wanderoy
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Finja Berger
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Haohao Wu
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden; Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg, 199034, Russia
| | - Filipa Bouçanova
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Jean-Jacques Médard
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Mark A Landy
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Philip Harrer
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Claudia Stendel
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Rolf Stucka
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Marina Dusl
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden; Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Laura Croci
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Helen C Lai
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, INSERM, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Jan Senderek
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden; Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Francois Lallemend
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden.
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden.
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, 17165, Sweden.
| |
Collapse
|
19
|
Gilchrist MJ, Cho KWY, Veenstra GJC. Genomics Methods for Xenopus Embryos and Tissues. Cold Spring Harb Protoc 2020; 2020:097915. [PMID: 32123020 DOI: 10.1101/pdb.top097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-throughput sequencing methods have created exciting opportunities to explore the regulatory landscape of the entire genome. Here we introduce methods to characterize the genomic locations of bound proteins, open chromatin, and sites of DNA-DNA contact in Xenopus embryos. These methods include chromatin immunoprecipitation followed by sequencing (ChIP-seq), a combination of DNase I digestion and sequencing (DNase-seq), the assay for transposase-accessible chromatin and sequencing (ATAC-seq), and the use of proximity-based DNA ligation followed by sequencing (Hi-C).
Collapse
Affiliation(s)
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697;
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
20
|
Hael CE, Rojo D, Orquera DP, Low MJ, Rubinstein M. The transcriptional regulator PRDM12 is critical for Pomc expression in the mouse hypothalamus and controlling food intake, adiposity, and body weight. Mol Metab 2020; 34:43-53. [PMID: 32180559 PMCID: PMC7011018 DOI: 10.1016/j.molmet.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Regulation of food intake and energy balance depends on a group of hypothalamic neurons that release anorexigenic melanocortins encoded by the Pomc gene. Although the physiological importance of central melanocortins is well appreciated, the genetic program that defines the functional identity of melanocortin neurons and assures high levels of hypothalamic Pomc expression is only beginning to be understood. This study assessed whether the transcriptional regulator PRDM12, identified as a highly expressed gene in adult mouse POMC neurons, plays an important role in the identity and function of melanocortin neurons. METHODS We first determined the cellular distribution of PRDM12 in the developing hypothalamus. Then we studied mutant mice with constitutively inactivated Prdm12 to evaluate possible changes in hypothalamic Pomc expression. In addition, we characterized conditional mutant mice specifically lacking Prdm12 in ISL1-positive or POMC neurons during development. Finally, we measured food intake, body weight progression up to 16 weeks of age, adiposity, and glucose tolerance in adult mice lacking Prdm12 selectively from POMC neurons. RESULTS PRDM12 co-expressed with POMC in mouse hypothalamic neurons from early development to adulthood. Mice lacking Prdm12 displayed greatly reduced Pomc expression in the developing hypothalamus. Selective ablation of Prdm12 from ISL1 neurons prevented hypothalamic Pomc expression. The conditional ablation of Prdm12 limited to POMC neurons greatly reduced Pomc expression in the developing hypothalamus and in adult mice led to increased food intake, adiposity, and obesity. CONCLUSIONS Altogether, our results demonstrate that PRDM12 plays an essential role in the early establishment of hypothalamic melanocortin neuron identity and the maintenance of high expression levels of Pomc. Its absence in adult mice greatly impairs Pomc expression and leads to increased food intake, adiposity, and obesity.
Collapse
Affiliation(s)
- Clara E Hael
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina
| | - Daniela Rojo
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina
| | - Daniela P Orquera
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Marcelo Rubinstein
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA; Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires, 1428 Buenos Aires, Argentina.
| |
Collapse
|
21
|
Tambalo M, Mitter R, Wilkinson DG. A single cell transcriptome atlas of the developing zebrafish hindbrain. Development 2020; 147:dev184143. [PMID: 32094115 PMCID: PMC7097387 DOI: 10.1242/dev.184143] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Segmentation of the vertebrate hindbrain leads to the formation of rhombomeres, each with a distinct anteroposterior identity. Specialised boundary cells form at segment borders that act as a source or regulator of neuronal differentiation. In zebrafish, there is spatial patterning of neurogenesis in which non-neurogenic zones form at boundaries and segment centres, in part mediated by Fgf20 signalling. To further understand the control of neurogenesis, we have carried out single cell RNA sequencing of the zebrafish hindbrain at three different stages of patterning. Analyses of the data reveal known and novel markers of distinct hindbrain segments, of cell types along the dorsoventral axis, and of the transition of progenitors to neuronal differentiation. We find major shifts in the transcriptome of progenitors and of differentiating cells between the different stages analysed. Supervised clustering with markers of boundary cells and segment centres, together with RNA-seq analysis of Fgf-regulated genes, has revealed new candidate regulators of cell differentiation in the hindbrain. These data provide a valuable resource for functional investigations of the patterning of neurogenesis and the transition of progenitors to neuronal differentiation.
Collapse
Affiliation(s)
- Monica Tambalo
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
22
|
Hoang PT, Chalif JI, Bikoff JB, Jessell TM, Mentis GZ, Wichterle H. Subtype Diversification and Synaptic Specificity of Stem Cell-Derived Spinal Interneurons. Neuron 2019; 100:135-149.e7. [PMID: 30308166 DOI: 10.1016/j.neuron.2018.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022]
Abstract
Neuronal diversification is a fundamental step in the construction of functional neural circuits, but how neurons generated from single progenitor domains acquire diverse subtype identities remains poorly understood. Here we developed an embryonic stem cell (ESC)-based system to model subtype diversification of V1 interneurons, a class of spinal neurons comprising four clades collectively containing dozens of molecularly distinct neuronal subtypes. We demonstrate that V1 subtype diversity can be modified by extrinsic signals. Inhibition of Notch and activation of retinoid signaling results in a switch to MafA clade identity and enriches differentiation of Renshaw cells, a specialized MafA subtype that mediates recurrent inhibition of spinal motor neurons. We show that Renshaw cells are intrinsically programmed to migrate to species-specific laminae upon transplantation and to form subtype-specific synapses with motor neurons. Our results demonstrate that stem cell-derived neuronal subtypes can be used to investigate mechanisms underlying neuronal subtype specification and circuit assembly.
Collapse
Affiliation(s)
- Phuong T Hoang
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation & Regenerative Medicine, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua I Chalif
- Departments of Pathology and Cell Biology and Neurology, Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jay B Bikoff
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - George Z Mentis
- Departments of Pathology and Cell Biology and Neurology, Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation & Regenerative Medicine, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
23
|
Blanchard C, Boué-Grabot E, Massé K. Comparative Embryonic Spatio-Temporal Expression Profile Map of the Xenopus P2X Receptor Family. Front Cell Neurosci 2019; 13:340. [PMID: 31402854 PMCID: PMC6676501 DOI: 10.3389/fncel.2019.00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/10/2019] [Indexed: 01/27/2023] Open
Abstract
P2X receptors are ATP-gated cations channels formed by the homo or hetero-trimeric association from the seven cloned subunits (P2X1-7). P2X receptors are widely distributed in different organs and cell types throughout the body including the nervous system and are involved in a large variety of physiological but also pathological processes in adult mammals. However, their expression and function during embryogenesis remain poorly understood. Here, we report the cloning and the comparative expression map establishment of the entire P2X subunit family in the clawed frog Xenopus. Orthologous sequences for 6 mammalian P2X subunits were identified in both X. laevis and X. tropicalis, but not for P2X3 subunit, suggesting a potential loss of this subunit in the Pipidae family. Three of these genes (p2rx1, p2rx2, and p2rx5) exist as homeologs in the pseudoallotetraploid X. laevis, making a total of 9 subunits in this species. Phylogenetic analyses demonstrate the high level of conservation of these receptors between amphibian and other vertebrate species. RT-PCR revealed that all subunits are expressed during the development although zygotic p2rx6 and p2rx7 transcripts are mainly detected at late organogenesis stages. Whole mount in situ hybridization shows that each subunit displays a specific spatio-temporal expression profile and that these subunits can therefore be grouped into two groups, based on their expression or not in the developing nervous system. Overlapping expression in the central and peripheral nervous system and in the sensory organs suggests potential heteromerization and/or redundant functions of P2X subunits in Xenopus embryos. The developmental expression of the p2rx subunit family during early phases of embryogenesis indicates that these subunits may have distinct roles during vertebrate development, especially embryonic neurogenesis.
Collapse
Affiliation(s)
- Camille Blanchard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Eric Boué-Grabot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Karine Massé
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
24
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
25
|
Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA. Cell Rep 2019; 26:3522-3536.e5. [DOI: 10.1016/j.celrep.2019.02.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
|
26
|
Yildiz O, Downes GB, Sagerström CG. Zebrafish prdm12b acts independently of nkx6.1 repression to promote eng1b expression in the neural tube p1 domain. Neural Dev 2019; 14:5. [PMID: 30813944 PMCID: PMC6391800 DOI: 10.1186/s13064-019-0129-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functioning of the adult nervous system depends on the establishment of neural circuits during embryogenesis. In vertebrates, neurons that make up motor circuits form in distinct domains along the dorsoventral axis of the neural tube. Each domain is characterized by a unique combination of transcription factors (TFs) that promote a specific fate, while repressing fates of adjacent domains. The prdm12 TF is required for the expression of eng1b and the generation of V1 interneurons in the p1 domain, but the details of its function remain unclear. METHODS We used CRISPR/Cas9 to generate the first germline mutants for prdm12 and employed this resource, together with classical luciferase reporter assays and co-immunoprecipitation experiments, to study prdm12b function in zebrafish. We also generated germline mutants for bhlhe22 and nkx6.1 to examine how these TFs act with prdm12b to control p1 formation. RESULTS We find that prdm12b mutants lack eng1b expression in the p1 domain and also possess an abnormal touch-evoked escape response. Using luciferase reporter assays, we demonstrate that Prdm12b acts as a transcriptional repressor. We also show that the Bhlhe22 TF binds via the Prdm12b zinc finger domain to form a complex. However, bhlhe22 mutants display normal eng1b expression in the p1 domain. While prdm12 has been proposed to promote p1 fates by repressing expression of the nkx6.1 TF, we do not observe an expansion of the nkx6.1 domain upon loss of prdm12b function, nor is eng1b expression restored upon simultaneous loss of prdm12b and nkx6.1. CONCLUSIONS We conclude that prdm12b germline mutations produce a phenotype that is indistinguishable from that of morpholino-mediated loss of prdm12 function. In terms of prdm12b function, our results indicate that Prdm12b acts as transcriptional repressor and interacts with both EHMT2/G9a and Bhlhe22. However, bhlhe22 function is not required for eng1b expression in vivo, perhaps indicating that other bhlh genes can compensate during embryogenesis. Lastly, we do not find evidence for nkx6.1 and prdm12b acting as a repressive pair in formation of the p1 domain - suggesting that prdm12b is not solely required to repress non-p1 fates, but is specifically needed to promote p1 fates.
Collapse
Affiliation(s)
- Ozge Yildiz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 364 Plantation St/LRB815, Worcester, MA 01605 USA
| | - Gerald B. Downes
- Department of Biology, University of Massachusetts, Amherst, MA 01003 USA
| | - Charles G. Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 364 Plantation St/LRB815, Worcester, MA 01605 USA
| |
Collapse
|
27
|
Lara-Ramirez R, Pérez-González C, Anselmi C, Patthey C, Shimeld SM. A Notch-regulated proliferative stem cell zone in the developing spinal cord is an ancestral vertebrate trait. Development 2019; 146:dev.166595. [PMID: 30552127 DOI: 10.1242/dev.166595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
Abstract
Vertebrates have evolved the most sophisticated nervous systems we know. These differ from the nervous systems of invertebrates in several ways, including the evolution of new cell types, and the emergence and elaboration of patterning mechanisms to organise cells in time and space. Vertebrates also generally have many more cells in their central nervous systems than invertebrates, and an increase in neural cell number may have contributed to the sophisticated anatomy of the brain and spinal cord. Here, we study how increased cell number evolved in the vertebrate central nervous system, investigating the regulation of cell proliferation in the lamprey spinal cord. Markers of proliferation show that a ventricular progenitor zone is found throughout the lamprey spinal cord. We show that inhibition of Notch signalling disrupts the maintenance of this zone. When Notch is blocked, progenitor cells differentiate precociously, the proliferative ventricular zone is lost and differentiation markers become expressed throughout the spinal cord. Comparison with other chordates suggests that the emergence of a persistent Notch-regulated proliferative progenitor zone was a crucial step for the evolution of vertebrate spinal cord complexity.
Collapse
Affiliation(s)
- Ricardo Lara-Ramirez
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | | | - Chiara Anselmi
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Cedric Patthey
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
28
|
Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. PLoS Biol 2017; 15:e2004045. [PMID: 29049289 PMCID: PMC5663519 DOI: 10.1371/journal.pbio.2004045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 10/31/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022] Open
Abstract
During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research. Vertebrate embryo germ layers become progressively regionalized by evolutionarily conserved molecular processes. Catching the early steps of this dynamic spatial cell diversification at the scale of the transcriptome was challenging, even with the advent of efficient RNA sequencing. We have microdissected complementary and defined areas of a single germ layer, the developing ectoderm, and explored how the transcriptome changes over time and space in the ectoderm during the differentiation of frog epidermis, neural plate, and neural crest. We have created EctoMap, a searchable interface using these regional transcriptomes, to predict the expression of the 31 thousand genes expressed in neurulae and their networks of co-expression, predictive of functional relationships. Through several examples, we illustrate how these data provide insights in development, cancer, evolution and stem cell biology.
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
| | - Sofía Medina-Ruiz
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Caroline Borday
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Elsa Bernard
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Jean-Philippe Vert
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Richard M. Harland
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Anne H. Monsoro-Burq
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Universitaire de France, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Lai HC, Seal RP, Johnson JE. Making sense out of spinal cord somatosensory development. Development 2017; 143:3434-3448. [PMID: 27702783 DOI: 10.1242/dev.139592] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits.
Collapse
Affiliation(s)
- Helen C Lai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
30
|
Mona B, Uruena A, Kollipara RK, Ma Z, Borromeo MD, Chang JC, Johnson JE. Repression by PRDM13 is critical for generating precision in neuronal identity. eLife 2017; 6. [PMID: 28850031 PMCID: PMC5576485 DOI: 10.7554/elife.25787] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/26/2017] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that activate some genes while silencing others are critical to ensure precision in lineage specification as multipotent progenitors become restricted in cell fate. During neurodevelopment, these mechanisms are required to generate the diversity of neuronal subtypes found in the nervous system. Here we report interactions between basic helix-loop-helix (bHLH) transcriptional activators and the transcriptional repressor PRDM13 that are critical for specifying dorsal spinal cord neurons. PRDM13 inhibits gene expression programs for excitatory neuronal lineages in the dorsal neural tube. Strikingly, PRDM13 also ensures a battery of ventral neural tube specification genes such as Olig1, Olig2 and Prdm12 are excluded dorsally. PRDM13 does this via recruitment to chromatin by multiple neural bHLH factors to restrict gene expression in specific neuronal lineages. Together these findings highlight the function of PRDM13 in repressing the activity of bHLH transcriptional activators that together are required to achieve precise neuronal specification during mouse development.
Collapse
Affiliation(s)
- Bishakha Mona
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Ana Uruena
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, United States
| | - Zhenzhong Ma
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Mark D Borromeo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Joshua C Chang
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
31
|
Gard C, Gonzalez Curto G, Frarma YEM, Chollet E, Duval N, Auzié V, Auradé F, Vigier L, Relaix F, Pierani A, Causeret F, Ribes V. Pax3- and Pax7-mediated Dbx1 regulation orchestrates the patterning of intermediate spinal interneurons. Dev Biol 2017. [PMID: 28625870 DOI: 10.1016/j.ydbio.2017.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transcription factors are key orchestrators of the emergence of neuronal diversity within the developing spinal cord. As such, the two paralogous proteins Pax3 and Pax7 regulate the specification of progenitor cells within the intermediate neural tube, by defining a neat segregation between those fated to form motor circuits and those involved in the integration of sensory inputs. To attain insights into the molecular means by which they control this process, we have performed detailed phenotypic analyses of the intermediate spinal interneurons (IN), namely the dI6, V0D, V0VCG and V1 populations in compound null mutants for Pax3 and Pax7. This has revealed that the levels of Pax3/7 proteins determine both the dorso-ventral extent and the number of cells produced in each subpopulation; with increasing levels leading to the dorsalisation of their fate. Furthermore, thanks to the examination of mutants in which Pax3 transcriptional activity is skewed either towards repression or activation, we demonstrate that this cell diversification process is mainly dictated by Pax3/7 ability to repress gene expression. Consistently, we show that Pax3 and Pax7 inhibit the expression of Dbx1 and of its repressor Prdm12, fate determinants of the V0 and V1 interneurons, respectively. Notably, we provide evidence for the activity of several cis-regulatory modules of Dbx1 to be sensitive to Pax3 and Pax7 transcriptional activity levels. Altogether, our study provides insights into how the redundancy within a TF family, together with discrete dynamics of expression profiles of each member, are exploited to generate cellular diversity. Furthermore, our data supports the model whereby cell fate choices in the neural tube do not rely on binary decisions but rather on inhibition of multiple alternative fates.
Collapse
Affiliation(s)
- Chris Gard
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Gloria Gonzalez Curto
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Youcef El-Mokhtar Frarma
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Elodie Chollet
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Nathalie Duval
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France; Institut Pasteur, Department of Developmental and Stem Cell Biology, CNRS URA 2578, 75015 Paris, France
| | - Valentine Auzié
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Frédéric Auradé
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 47 bld de l'hôpital, 75013 Paris, France; INSERM IMRB U955-E10, UPEC - Université Paris Est, Faculté de Médicine, Créteil 94000, France
| | - Lisa Vigier
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Frédéric Relaix
- INSERM IMRB U955-E10, UPEC - Université Paris Est, Faculté de Médicine, Créteil 94000, France
| | - Alessandra Pierani
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Frédéric Causeret
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France.
| | - Vanessa Ribes
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France.
| |
Collapse
|
32
|
Rehimi R, Nikolic M, Cruz-Molina S, Tebartz C, Frommolt P, Mahabir E, Clément-Ziza M, Rada-Iglesias A. Epigenomics-Based Identification of Major Cell Identity Regulators within Heterogeneous Cell Populations. Cell Rep 2016; 17:3062-3076. [DOI: 10.1016/j.celrep.2016.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/05/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
|
33
|
Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development. Proc Natl Acad Sci U S A 2016; 113:10103-8. [PMID: 27555585 DOI: 10.1073/pnas.1600770113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pax6 is a key transcription factor involved in eye, brain, and pancreas development. Although pax6 is expressed in the whole prospective retinal field, subsequently its expression becomes restricted to the optic cup by reciprocal transcriptional repression of pax6 and pax2 However, it remains unclear how Pax6 protein is removed from the eyestalk territory on time. Here, we report that Mid1, a member of the RBCC/TRIM E3 ligase family, which was first identified in patients with the X-chromosome-linked Opitz BBB/G (OS) syndrome, interacts with Pax6. We found that the forming eyestalk is a major domain of mid1 expression, controlled by the morphogen Sonic hedgehog (Shh). Here, Mid1 regulates the ubiquitination and proteasomal degradation of Pax6 protein. Accordantly, when Mid1 levels are knocked down, Pax6 expression is expanded and eyes are enlarged. Our findings indicate that remaining or misaddressed Pax6 protein is cleared from the eyestalk region to properly set the border between the eyestalk territory and the retina via Mid1. Thus, we identified a posttranslational mechanism, regulated by Sonic hedgehog, which is important to suppress Pax6 activity and thus breaks pax6 autoregulation at defined steps during the formation of the visual system.
Collapse
|
34
|
Karaz S, Courgeon M, Lepetit H, Bruno E, Pannone R, Tarallo A, Thouzé F, Kerner P, Vervoort M, Causeret F, Pierani A, D'Onofrio G. Neuronal fate specification by the Dbx1 transcription factor is linked to the evolutionary acquisition of a novel functional domain. EvoDevo 2016; 7:18. [PMID: 27525057 PMCID: PMC4983035 DOI: 10.1186/s13227-016-0055-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Dbx1 is a homeodomain transcription factor involved in neuronal fate specification belonging to a widely conserved family among bilaterians. In mammals, Dbx1 was proposed to act as a transcriptional repressor by interacting with the Groucho corepressors to allow the specification of neurons involved in essential biological functions such as locomotion or breathing. Results Sequence alignments of Dbx1 proteins from different species allowed us to identify two conserved domains related to the Groucho-dependent Engrailed repressor domain (RD), as well as a newly described domain composed of clusterized acidic residues at the C-terminus (Cter) which is present in tetrapods but also several invertebrates. Using a heterologous luciferase assay, we showed that the two putative repressor domains behave as such in a Groucho-dependent manner, whereas the Cter does not bear any intrinsic transcriptional activity. Consistently with in vitro data, we found that both RDs are involved in cell fate specification using in vivo electroporation experiments in the chick spinal cord. Surprisingly, we show that the Cter domain is required for Dbx1 function in vivo, acting as a modulator of its repressive activity and/or imparting specificity. Conclusion Our results strongly suggest that the presence of a Cter domain among tetrapods is essential for Dbx1 to regulate neuronal diversity and, in turn, nervous system complexity. Electronic supplementary material The online version of this article (doi:10.1186/s13227-016-0055-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sonia Karaz
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Maximilien Courgeon
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Hélène Lepetit
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Eugenia Bruno
- Dept. BEOM, Stazione Zoologica A. Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Raimondo Pannone
- Dept. BEOM, Stazione Zoologica A. Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Andrea Tarallo
- Dept. BEOM, Stazione Zoologica A. Dohrn, Villa Comunale, 80121 Naples, Italy
| | - France Thouzé
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Pierre Kerner
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Michel Vervoort
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Frédéric Causeret
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Alessandra Pierani
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Giuseppe D'Onofrio
- Dept. BEOM, Stazione Zoologica A. Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
35
|
Nagy V, Cole T, Van Campenhout C, Khoung TM, Leung C, Vermeiren S, Novatchkova M, Wenzel D, Cikes D, Polyansky AA, Kozieradzki I, Meixner A, Bellefroid EJ, Neely GG, Penninger JM. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception. Cell Cycle 2016; 14:1799-808. [PMID: 25891934 DOI: 10.1080/15384101.2015.1036209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.
Collapse
Key Words
- BSA, bovine serum albumin
- Brn3d, brain 3d
- CGNL1, cyclin L1
- ChIP, chromatin immunoprecipitation
- DAPI, 4′,6-diamidino-2-phenylindole
- DDK, DYKDDDDK epitope
- Drgx, dorsal root ganglia homeobox
- ECL, enhanced chemiluminescence
- En1, engrailed-1
- FDR, false discovery rate
- FPKM, fragments per kilobase exon
- GAPDH, glyceraldehyde 3-phospate dehydrogenase
- GEO, gene expression omnibus
- GFP, green fluorescent protein
- HEK293, human embryonic kidney cell 293
- HRP, horseraddish peroxidase
- HSAN, hereditary and sensory autonomic neuropathy
- Hamlet
- Hmx3, H6 family homeobox 3
- IL1R1, interleukin 1 receptor type 1
- MO, morpholino oligonucleotide
- NBT/BCIP, nitro blue tetrazolium / 5-bromo-4-chloro-3-indolyl-phosphate
- PBS, phosphate buffered saline
- PDB, protein data base
- PMID, pubmed identification.
- PRDM12
- PRDM12, PR homology domain-containing member 12
- RA, retinoic acid
- RT-qPCR, real-time quantitative polymerase chain reaction
- S1PR1, Sphi8ngosine-1-phosphate receptor 1
- SET, Su(var)3–9 and ‘Enhancer of zeste’
- Sncg, Synuclein Gamma (Breast Cancer-Specific Protein 1)
- TRH(DE), tryrotropin-releasing hormone degrading enzyme
- TRHDE
- TRHDE, tyrotropin-releasing hormone degrading enzyme
- Tlx3, T-cell leukemia homeobox 3
- nociception
- pCMV6, plasmid cytomegalovirus
- sensory neurons
Collapse
Affiliation(s)
- Vanja Nagy
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; UNSW Medicine, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chi J, Cohen P. The Multifaceted Roles of PRDM16: Adipose Biology and Beyond. Trends Endocrinol Metab 2016; 27:11-23. [PMID: 26688472 DOI: 10.1016/j.tem.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023]
Abstract
The PRDM [PRDI-BFI (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain containing] protein family is involved in a spectrum of biological processes including cell fate determination and development. These proteins regulate transcription through intrinsic chromatin-modifying activity or by complexing with histone-modifying or other nuclear proteins. Studies have indicated crucial roles for PRDM16 in the determination and function of brown and beige fat as well as in hematopoiesis and cardiac development, highlighting the importance of PRDM16 in developmental processes in different tissues. More recently, PRDM16 mutations were also identified in humans. The substantial progress in understanding the mechanism underlying the action of PRDM16 in adipose biology may have relevance to other PRDM family members, and this new knowledge has the potential to be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Jingyi Chi
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY 10065, USA
| | - Paul Cohen
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY 10065, USA.
| |
Collapse
|