1
|
Teeters G, Weasner BM, Ordway AJ, Weasner BP, Kumar JP. Control of fate specification within the dorsal head of Drosophila melanogaster. Development 2024; 151:dev199885. [PMID: 39190554 PMCID: PMC11385744 DOI: 10.1242/dev.199885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/11/2024] [Indexed: 08/29/2024]
Abstract
During development, unique combinations of transcription factors and signaling pathways carve the nascent eye-antennal disc of the fruit fly Drosophila melanogaster into several territories that will eventually develop into the compound eye, ocelli, head epidermis, bristles, antenna and maxillary palpus of the adult head. Juxtaposed patterns of Hedgehog (Hh) and Decapentaplegic (Dpp) initiate compound eye development, while reciprocal domains of Dpp and Wingless (Wg) induce formation of the antennal and maxillary palp fields. Hh and Wg signaling, but not Dpp, contribute to the patterning of the dorsal head vertex. Here, we show that combinatorial reductions of the Pax6 transcription factor Twin of Eyeless and either the Wg pathway or the Mirror (Mirr) transcription factor trigger a transformation of the ocelli into a compound eye and the neighboring head epidermis into an antenna. These changes in fate are accompanied by the ectopic expression of Dpp, which might be expected to trigger these changes in fate. However, the transformation of the field cannot be replicated by increasing Dpp levels alone despite the recreation of adjacent Hh-Dpp and Wg-Dpp domains. As such, the emergence of these ectopic organs occurs through a unique regulatory path.
Collapse
Affiliation(s)
- Gary Teeters
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alison J. Ordway
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Zhang X, Wang Y, Zhao W, Yang S, Moussian B, Zhao Z, Zhang J, Dong W. Excess Dally-like Induces Malformation of Drosophila Legs. Cells 2024; 13:1199. [PMID: 39056781 PMCID: PMC11274743 DOI: 10.3390/cells13141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Glypicans are closely associated with organ development and tumorigenesis in animals. Dally-like (Dlp), a membrane-bound glypican, plays pivotal roles in various biological processes in Drosophila. In this study, we observed that an excess of Dlp led to the malformation of legs, particularly affecting the distal part. Accordingly, the leg disc was shrunken and frequently exhibited aberrant morphology. In addition, elevated Dlp levels induced ectopic cell death with no apparent cell proliferation changes. Furthermore, Dlp overexpression in the posterior compartment significantly altered Wingless (Wg) distribution. We observed a marked expansion of Wg distribution within the posterior compartment, accompanied by a corresponding decrease in the anterior compartment. It appears that excess Dlp guides Wg to diffuse to cells with higher Dlp levels. In addition, the distal-less (dll) gene, which is crucial for leg patterning, was up-regulated significantly. Notably, dachshund (dac) and homothorax (hth) expression, also essential for leg patterning and development, only appeared to be negligibly affected. Based on these findings, we speculate that excess Dlp may contribute to malformations of the distal leg region of Drosophila, possibly through its influence on Wg distribution, dll expression and induced cell death. Our research advances the understanding of Dlp function in Drosophila leg development.
Collapse
Affiliation(s)
- Xubo Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Yi Wang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Wenting Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Shumin Yang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Bernard Moussian
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, Sophia Antipolis, Université Côte d′Azur, 06108 Nice, France
| | - Zhangwu Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Wei Dong
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Blunk S, Garcia-Verdugo H, O’Sullivan S, Camp J, Haines M, Coalter T, Williams TA, Nagy LM. Functional Divergence of the Tribolium castaneum engrailed and invected Paralogs. INSECTS 2023; 14:691. [PMID: 37623401 PMCID: PMC10455198 DOI: 10.3390/insects14080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Engrailed (en) and invected (inv) encode paralogous transcription factors found as a closely linked tandem duplication within holometabolous insects. Drosophila en mutants segment normally, then fail to maintain their segments. Loss of Drosophila inv is viable, while loss of both genes results in asegmental larvae. Surprisingly, the knockdown of Oncopeltus inv can result in the loss or fusion of the entire abdomen and en knockdowns in Tribolium show variable degrees of segmental loss. The consequence of losing or knocking down both paralogs on embryogenesis has not been studied beyond Drosophila. To further investigate the relative functions of each paralog and the mechanism behind the segmental loss, Tribolium double and single knockdowns of en and inv were analyzed. The most common cuticular phenotype of the double knockdowns was small, limbless, and open dorsally, with all but a single, segmentally iterated row of bristles. Less severe knockdowns had fused segments and reduced appendages. The Tribolium paralogs appear to act synergistically: the knockdown of either Tribolium gene alone was typically less severe, with all limbs present, whereas the most extreme single knockdowns mimic the most severe double knockdown phenotype. Morphological abnormalities unique to either single gene knockdown were not found. inv expression was not affected in the Tribolium en knockdowns, but hh expression was unexpectedly increased midway through development. Thus, while the segmental expression of en/inv is broadly conserved within insects, the functions of en and inv are evolving independently in different lineages.
Collapse
Affiliation(s)
- Summer Blunk
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Hector Garcia-Verdugo
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Sierra O’Sullivan
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - James Camp
- Biology Department, Trinity College, Hartford, CT 06106, USA (T.A.W.)
| | - Michael Haines
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Tara Coalter
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Terri A. Williams
- Biology Department, Trinity College, Hartford, CT 06106, USA (T.A.W.)
| | - Lisa M. Nagy
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| |
Collapse
|
4
|
Ruiz-Losada M, Pérez-Reyes C, Estella C. Role of the Forkhead Transcription Factors Fd4 and Fd5 During Drosophila Leg Development. Front Cell Dev Biol 2021; 9:723927. [PMID: 34409041 PMCID: PMC8365472 DOI: 10.3389/fcell.2021.723927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Appendage development requires the coordinated function of signaling pathways and transcription factors to pattern the leg along the three main axes: the antero-posterior (AP), proximo-distal (PD), and dorso-ventral (DV). The Drosophila leg DV axis is organized by two morphogens, Decapentaplegic (Dpp), and Wingless (Wg), which direct dorsal and ventral cell fates, respectively. However, how these signals regulate the differential expression of its target genes is mostly unknown. In this work, we found that two members of the Drosophila forkhead family of transcription factors, Fd4 and Fd5 (also known as fd96Ca and fd96Cb), are identically expressed in the ventro-lateral domain of the leg imaginal disc in response to Dpp signaling. Here, we analyze the expression regulation and function of these genes during leg development. We have generated specific mutant alleles for each gene and a double fd4/fd5 mutant chromosome to study their function during development. We highlight the redundant role of the fd4/fd5 genes during the formation of the sex comb, a male specific structure that appears in the ventro-lateral domain of the prothoracic leg.
Collapse
Affiliation(s)
- Mireya Ruiz-Losada
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristian Pérez-Reyes
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Estella
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Gavory G, Baril C, Laberge G, Bidla G, Koonpaew S, Sonea T, Sauvageau G, Therrien M. A genetic screen in Drosophila uncovers the multifaceted properties of the NUP98-HOXA9 oncogene. PLoS Genet 2021; 17:e1009730. [PMID: 34383740 PMCID: PMC8384169 DOI: 10.1371/journal.pgen.1009730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/24/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukemia (AML) underlies the uncontrolled accumulation of immature myeloid blasts. Several cytogenetic abnormalities have been associated with AML. Among these is the NUP98-HOXA9 (NA9) translocation that fuses the Phe-Gly repeats of nucleoporin NUP98 to the homeodomain of the transcription factor HOXA9. The mechanisms enabling NA9-induced leukemia are poorly understood. Here, we conducted a genetic screen in Drosophila for modifiers of NA9. The screen uncovered 29 complementation groups, including genes with mammalian homologs known to impinge on NA9 activity. Markedly, the modifiers encompassed a diversity of functional categories, suggesting that NA9 perturbs multiple intracellular events. Unexpectedly, we discovered that NA9 promotes cell fate transdetermination and that this phenomenon is greatly influenced by NA9 modifiers involved in epigenetic regulation. Together, our work reveals a network of genes functionally connected to NA9 that not only provides insights into its mechanism of action, but also represents potential therapeutic targets. Acute myeloid leukemia or AML is a cancer of blood cells. Despite significant progress in recent years, a majority of afflicted individuals still succumbs to the disease. A variety of genetic defects have been associated to AML. Among these are chromosomal translocations, which entail the fusion of two genes, leading to the production of cancer-inducing chimeric proteins. A representative example is the NUP98-HOXA9 oncoprotein, which results from the fusion of the NUP98 and HOXA9 genes. The mechanism of action of NUP98-HOXA9 remains poorly understood. Given the evolutionarily conservation of NUP98 and HOXA9 as well as basic cellular processes across multicellular organisms, we took advantage of Drosophila fruit flies as a genetic tool to identify genes that impinge on the activity of human NUP98-HOXA9. Surprisingly, this approach identified a relatively large spectrum of conserved genes that engaged in functional interplay with NUP98-HOXA9, which indicated the pervasive effects that this oncogene has on basic cellular events. While some genes have been previously linked to NUP98-HOXA9, thus validating our experimental approach, several others are novel and as such represent potentially new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Gwenaëlle Gavory
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Gino Laberge
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Gawa Bidla
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Surapong Koonpaew
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thomas Sonea
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.,Département de médecine, Université de Montréal, Montréal, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.,Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
6
|
Xu Y, Wei W, Lin G, Yan S, Zhang J, Shen J, Wang D. The Ras/MAPK pathway is required for regenerative growth of wing discs in the black cutworm Agrotis ypsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103552. [PMID: 33577967 DOI: 10.1016/j.ibmb.2021.103552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Regeneration is a common phenomenon in various organisms by which tissues restore the damaged or naturally detached parts. In insects, appendage regeneration takes place during the embryonic, larval and pupal stages for individual survival. The wing disc of black cutworm Agrotis ypsilon has the capacity of regeneration after ablation, but understanding of molecular mechanisms in wing disc regeneration is still limited. After ablation of partial or whole wing discs before the fifth instar larval stage, the adult wings appeared to be normal. In the last two larval stages, ablation of the left wing disc led to smaller corresponding adult wing. Cell proliferation was reduced in the ablated wing disc but was gradually recovered two days post ablation. Transcriptome analysis found that genes in the mitogen-activated protein kinase (MAPK) pathway were upregulated. Repression of gene expression in this pathway, including Ras oncogene at 64B (Ras64B), Downstream of raf1 (Dsor1), and cAMP-dependent protein kinase catalytic subunit 3 (Pka-C3) by RNA interference after ablation, led to diminishment of both adult wings, suggesting that the MAPK signaling is essential for wing growth. Additionally, cell proliferation was still decelerated by injecting Ras64B, Dsor, or Pka-C3 dsRNA two days after ablation, indicating that the MAPK signaling-regulated cell proliferation is essential for growth. These results provide molecular clues to the regulation of cell proliferation during regeneration in lepidopteran insects.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wei Wei
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangze Lin
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Junzheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Fan Z, Zhang J, Wang D, Shen J. T-box transcription factors Dorsocross and optomotor-blind control Drosophila leg patterning in a functionally redundant manner. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103516. [PMID: 33412239 DOI: 10.1016/j.ibmb.2020.103516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
The T-box genes are essential transcription factors during limb development. In Drosophila, Dorsocross (Doc) and optomotor-blind (omb), members of the Tbx2 and Tbx6 families, are best studied in the Drosophila wing development. Despite prominently expressed in leg discs, the specific function of these genes in leg growth is still not revealed. Here we demonstrated that Doc and omb regulated the morphogenesis of leg intermediate regions in a functionally redundant manner. Loss of Doc or omb individually did not result in any developmental defects of the legs, but loss of both genes induced significant defects in femur and proximal tibia of the adult legs. These genes located in the dorsal domain, where the Doc region expanded and cross-overlapped with the omb region corresponding to the presumptive leg intermediate region. We detected that the normal epithelial folds in the leg discs were disrupted along with dorsal repression of cell proliferation and activation of cell apoptosis when Doc and omb were both reduced. Furthermore, the dorsal expression of dachshund (dac), a canonical leg developmental gene specifying the leg intermediate region, was maintained by Doc and omb. Meanwhile, the Notch pathway was compromised in the dorsal domain when these genes were reduced, which might contribute to the joint defect of the adult leg intermediate regions. Our study provides cytological and genetic evidence for understanding the redundant function of Doc and omb in leg morphogenesis.
Collapse
Affiliation(s)
- Zongyang Fan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - JunZheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Zhang XB, Dong W, Li KX, Wang JJ, Shen J, Moussian B, Zhang JZ. Flexible manipulation of Omb levels in the endogenous expression region of Drosophila wing by combinational overexpression and suppression strategy. INSECT SCIENCE 2020; 27:14-21. [PMID: 31246335 DOI: 10.1111/1744-7917.12705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Manipulating an exogenous or endogenous gene of interest at a defined level is critical for a wide variety of experiments. The Gal4/UAS system has been widely used to direct gene expression for studying complex genetic and biological problems in Drosophila melanogaster and other model organisms. Driven by a given tissue-specific Gal4, expressing UAS-transgene or UAS-RNAi (RNA interference) could be used to up- or down-regulate target gene expression, respectively. However, the efficiency of the Gal4/UAS system is roughly predefined by properties of transposon vector constructs and the insertion site in the transgenic stock. Here, we describe a simple way to modulate optomotor blind (omb) expression levels in its endogenous expression region of the wing disc. We co-expressed UAS-omb and UAS-omb-RNAi together under the control of dpp-Gal4 driver which is expressed in the omb expression region of the wing pouch. The repression effect is more sensitive to temperature than that of overexpression. At low temperature, overexpression plays a dominant role but the efficiency is attenuated by UAS-omb-RNAi. In contrast, at high temperature RNAi predominates in gene expression regulation. By this strategy, we could manipulate omb expression levels at a moderate level. It allows us to manipulate omb expression levels in the same tissue between overexpression and repression at different stages by temperature control.
Collapse
Affiliation(s)
- Xu-Bo Zhang
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| | - Wei Dong
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
- Applied Zoology, Technical University Dresden, Zellescher Weg 20b, Dresden, Germany
- iBV, University of Nice Sophia-Antipolis, Parc Valrose, Nice, France
| | - Kai-Xia Li
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| | - Juan-Juan Wang
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| | - Jie Shen
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Bernard Moussian
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
- Applied Zoology, Technical University Dresden, Zellescher Weg 20b, Dresden, Germany
- iBV, University of Nice Sophia-Antipolis, Parc Valrose, Nice, France
| | - Jian-Zhen Zhang
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
9
|
Role of Notch Signaling in Leg Development in Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:103-127. [PMID: 32060874 DOI: 10.1007/978-3-030-34436-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Notch pathway plays diverse and fundamental roles during animal development. One of the most relevant, which arises directly from its unique mode of activation, is the specification of cell fates and tissue boundaries. The development of the leg of Drosophila melanogaster is a fine example of this Notch function, as it is required to specify the fate of the cells that will eventually form the leg joints, the flexible structures that separate the different segments of the adult leg. Notch activity is accurately activated and maintained at the distal end of each segment in response to the proximo-distal patterning gene network of the developing leg. Region-specific downstream targets of Notch in turn regulate the formation of the different types of joints. We discuss recent findings that shed light on the molecular and cellular mechanisms that are ultimately governed by Notch to achieve epithelial fold and joint morphogenesis. Finally, we briefly summarize the role that Notch plays in inducing the nonautonomous growth of the leg. Overall, this book chapter aims to highlight leg development as a useful model to study how patterning information is translated into specific cell behaviors that shape the final form of an adult organ.
Collapse
|
10
|
Svendsen PC, Phillips LA, Deshwar AR, Ryu JR, Najand N, Brook WJ. The selector genes midline and H15 control ventral leg pattern by both inhibiting Dpp signaling and specifying ventral fate. Dev Biol 2019; 455:19-31. [PMID: 31299230 DOI: 10.1016/j.ydbio.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/27/2019] [Accepted: 05/28/2019] [Indexed: 01/13/2023]
Abstract
mid and H15 encode Tbx20 transcription factors that specify ventral pattern in the Drosophila leg. We find that there are at least two pathways for mid and H15 specification of ventral fate. In the first pathway, mid and H15 negatively regulate Dpp, the dorsal signal in leg development. mid and H15 block the dorsalizing effects of Dpp signaling in the ventral leg. In loss- and gain-of-function experiments in imaginal discs, we show that mid and H15 block the accumulation of phospho-Mad, the activated form of the Drosophila pSmad1/5 homolog. In a second pathway, we find mid and H15 must also directly promote ventral fate because simultaneously blocking Dpp signaling in mid H15 mutants does not rescue the ventral to dorsal transformation in most ventral leg structures. We show that mid and H15 act as transcriptional repressors in ventral leg development. The two genes repress the Dpp target gene Dad, the laterally expressed gene Upd, and the mid VLE enhancer. This repression depends on the eh1 domain, a binding site for the Groucho co-repressor, and is likely direct because Mid localizes to target gene enhancers in PCR-ChIP assays. A mid allele mutant for the repressing domain (eh1), mideh1, was found to be compromised in gain-of-function assays and in rescue of mid H15 loss-of-function. We propose that mid and H15 specify ventral fate through inhibition of Dpp signaling and through coordinating the repression of genes in the ventral leg.
Collapse
Affiliation(s)
- Pia C Svendsen
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Lindsay A Phillips
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Ashish R Deshwar
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Nima Najand
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - William J Brook
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
11
|
Connahs H, Tlili S, van Creij J, Loo TYJ, Banerjee TD, Saunders TE, Monteiro A. Activation of butterfly eyespots by Distal-less is consistent with a reaction-diffusion process. Development 2019; 146:dev169367. [PMID: 30992277 PMCID: PMC6526720 DOI: 10.1242/dev.169367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
Abstract
Eyespots on the wings of nymphalid butterflies represent colorful examples of pattern formation, yet the developmental origins and mechanisms underlying eyespot center differentiation are still poorly understood. Using CRISPR-Cas9 we re-examine the function of Distal-less (Dll) as an activator or repressor of eyespots, a topic that remains controversial. We show that the phenotypic outcome of CRISPR mutations depends upon which specific exon is targeted. In Bicyclus anynana, exon 2 mutations are associated with both missing and ectopic eyespots, and also exon skipping. Exon 3 mutations, which do not lead to exon skipping, produce only null phenotypes, including missing eyespots, lighter wing coloration and loss of scales. Reaction-diffusion modeling of Dll function, using Wnt and Dpp as candidate morphogens, accurately replicates these complex crispant phenotypes. These results provide new insight into the function of Dll as a potential activator of eyespot development, scale growth and melanization, and suggest that the tuning of Dll expression levels can generate a diversity of eyespot phenotypes, including their appearance on the wing.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Heidi Connahs
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Jelle van Creij
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Tricia Y J Loo
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Timothy E Saunders
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Yale-NUS College, Singapore 138527
| |
Collapse
|
12
|
Ruiz-Losada M, Blom-Dahl D, Córdoba S, Estella C. Specification and Patterning of Drosophila Appendages. J Dev Biol 2018; 6:jdb6030017. [PMID: 30011921 PMCID: PMC6162442 DOI: 10.3390/jdb6030017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophilamelanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.
Collapse
Affiliation(s)
- Mireya Ruiz-Losada
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - David Blom-Dahl
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Abidi SNF, Smith-Bolton RK. Cell fate changes induced by a Distal-less enhancer-trap transgene in the Drosophila antennal imaginal disc. Sci Rep 2018; 8:4950. [PMID: 29563503 PMCID: PMC5862905 DOI: 10.1038/s41598-018-23093-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/06/2018] [Indexed: 11/29/2022] Open
Abstract
The imaginal discs of the genetically tractable model organism Drosophila melanogaster have been used to study cell-fate specification and plasticity, including homeotic changes and regeneration-induced transdetermination. The identity of the reprogramming mechanisms that induce plasticity has been of great interest in the field. Here we identify a change from antennal fate to eye fate induced by a Distal-less-GAL4 (DllGAL4) P-element insertion that is a mutant allele of Dll and expresses GAL4 in the antennal imaginal disc. While this fate change is not induced by tissue damage, it appears to be a hybrid of transdetermination and homeosis as the GAL4 expression causes upregulation of Wingless, and the Dll mutation is required for the fate change. Neither GAL4 expression nor a Dll mutation on its own is able to induce antenna-to-eye fate changes. This plasticity appears to be unique to the DllGAL4 line, possibly due to cellular stress induced by the high GAL4 expression combined with the severity of the Dll mutation. Thus, we propose that even in the absence of tissue damage, other forms of cellular stress caused by high GAL4 expression can induce determined cell fates to change, and selector gene mutations can sensitize the tissue to these transformations.
Collapse
Affiliation(s)
- Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rachel K Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Worley MI, Alexander LA, Hariharan IK. CtBP impedes JNK- and Upd/STAT-driven cell fate misspecifications in regenerating Drosophila imaginal discs. eLife 2018; 7:30391. [PMID: 29372681 PMCID: PMC5823544 DOI: 10.7554/elife.30391] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Regeneration following tissue damage often necessitates a mechanism for cellular re-programming, so that surviving cells can give rise to all cell types originally found in the damaged tissue. This process, if unchecked, can also generate cell types that are inappropriate for a given location. We conducted a screen for genes that negatively regulate the frequency of notum-to-wing transformations following genetic ablation and regeneration of the wing pouch, from which we identified mutations in the transcriptional co-repressor C-terminal Binding Protein (CtBP). When CtBP function is reduced, ablation of the pouch can activate the JNK/AP-1 and JAK/STAT pathways in the notum to destabilize cell fates. Ectopic expression of Wingless and Dilp8 precede the formation of the ectopic pouch, which is subsequently generated by recruitment of both anterior and posterior cells near the compartment boundary. Thus, CtBP stabilizes cell fates following damage by opposing the destabilizing effects of the JNK/AP-1 and JAK/STAT pathways.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Larissa A Alexander
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
15
|
STAT, Wingless, and Nurf-38 determine the accuracy of regeneration after radiation damage in Drosophila. PLoS Genet 2017; 13:e1007055. [PMID: 29028797 PMCID: PMC5656321 DOI: 10.1371/journal.pgen.1007055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023] Open
Abstract
We report here a study of regeneration in Drosophila larval wing imaginal discs after damage by ionizing radiation. We detected faithful regeneration that restored a wing disc and abnormal regeneration that produced an extra wing disc. We describe a sequence of changes in cell number, location and fate that occur to produce an ectopic disc. We identified a group of cells that not only participate in ectopic disc formation but also recruit others to do so. STAT92E (Drosophila STAT3/5) and Nurf-38, which encodes a member of the Nucleosome Remodeling Factor complex, oppose each other in these cells to modulate the frequency of ectopic disc growth. The picture that emerges is one in which activities like STAT increase after radiation damage and fulfill essential roles in rebuilding the tissue. But such activities must be kept in check so that one and only one wing disc is regenerated. Accuracy in regeneration ensures that the original structures are restored, no more and no less. Prior studies in the wing primordia of Drosophila melanogaster larvae that have been damaged by high energy radiation show that regeneration occurs to restore the original structure. We report here that, in the same experimental system, abnormal regeneration can also occur to produce extra wing structures. We describe a series of cell rearrangements and fate changes that underlie abnormal regeneration, and identify genes responsible for these events. Modulation of such genes have the potential to mitigate abnormal regeneration that occurs after radiation damage to produce such side effects as ulcers and fibrosis.
Collapse
|
16
|
Hariharan IK, Serras F. Imaginal disc regeneration takes flight. Curr Opin Cell Biol 2017; 48:10-16. [PMID: 28376317 PMCID: PMC5591769 DOI: 10.1016/j.ceb.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
Abstract
Drosophila imaginal discs, the larval precursors of adult structures such as the wing and leg, are capable of regenerating after damage. During the course of regeneration, discs can sometimes generate structures that are appropriate for a different type of disc, a phenomenon termed transdetermination. Until recently, these phenomena were studied by physically fragmenting discs and then transplanting them into the abdomens of adult female flies. This field has experienced a renaissance following the development of genetic ablation systems that can damage precisely defined regions of the disc without the need for surgery. Together with more traditional approaches, these newer methods have generated many novel insights into wound healing, the mechanisms that drive regenerative growth, plasticity during regeneration and systemic effects of tissue damage and regeneration.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | - Florenci Serras
- Departament de Genètica, Facultat de Biologia and Institute de Biomedicina (IBUB), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
17
|
Fabian B, Schneeberg K, Beutel RG. Comparative thoracic anatomy of the wild type and wingless (wg 1cn 1) mutant of Drosophila melanogaster (Diptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:611-636. [PMID: 27720953 DOI: 10.1016/j.asd.2016.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/29/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Genetically modified organisms are crucial for our understanding of gene regulatory networks, physiological processes and ontogeny. With modern molecular genetic techniques allowing the rapid generation of different Drosophila melanogaster mutants, efficient in-depth morphological investigations become an important issue. Anatomical studies can elucidate the role of certain genes in developmental processes and point out which parts of gene regulatory networks are involved in evolutionary changes of morphological structures. The wingless mutation wg1 of D. melanogaster was discovered more than 40 years ago. While early studies addressed the external phenotype of these mutants, the documentation of the internal organization was largely restricted to the prominent indirect flight muscles. We used SEM micrographs, histological serial sections, μ-computed tomography, CLSM and 3D reconstructions to study and document the thoracic skeletomuscular system of the wild type and mutant. A recently introduced nomenclature for the musculature of neopteran insects was applied to facilitate comparisons with closely or more distantly related taxa. The mutation is phenotypically mainly characterized by the absence of one or both wings and halteres. The wing is partly or entirely replaced by duplications of mesonotal structures, whereas the haltere and its associated muscles are completely absent on body sides showing the reduction. Both the direct and indirect mesothoracic flight muscles are affected by loss and reorientation of bundles or fibers. Our observations lead to the conclusion that the wingless mutation causes a homeotic transformation in the imaginal discs of wings and halteres with a direct effect on the development of skeletal structures and an indirect effect on the associated muscular system.
Collapse
Affiliation(s)
- Benjamin Fabian
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, FSU Jena, Erbertstr. 1, 07743 Jena, Germany.
| | - Katharina Schneeberg
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, FSU Jena, Erbertstr. 1, 07743 Jena, Germany.
| | - Rolf Georg Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, FSU Jena, Erbertstr. 1, 07743 Jena, Germany.
| |
Collapse
|
18
|
Galli LM, Zebarjadi N, Li L, Lingappa VR, Burrus LW. Divergent effects of Porcupine and Wntless on WNT1 trafficking, secretion, and signaling. Exp Cell Res 2016; 347:171-183. [PMID: 27492485 DOI: 10.1016/j.yexcr.2016.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/12/2016] [Accepted: 07/31/2016] [Indexed: 12/30/2022]
Abstract
Loss-of-function studies have identified Porcupine (PORCN) and Wntless (WLS) as essential mediators of Wnt secretion and signaling. Whereas PORCN is thought to palmitoylate Wnt proteins, WLS is believed to transport palmitoylated Wnt proteins to the cell surface. However, little is known about how these two proteins cooperate to regulate Wnt palmitoylation, trafficking, secretion, and signaling. We first investigated possible interactions between PORCN, WLS, and WNT1, by carrying out co-immunoprecipitation studies. These studies demonstrate the existence of a complex containing PORCN and WLS. They further show that PORCN and WLS compete for binding to WNT1. Then, we used gain-of-function studies to investigate the cooperation between PORCN and WLS as well as possible biochemical interactions between PORCN, WLS, and WNT1. Consistent with the proposed roles for PORCN and WLS, we show that overexpression of PORCN promotes palmitoylation of WNT1 while overexpression of WLS does not. Overexpression of PORCN enhances the ability of WLS to promote WNT1 trafficking to the cell surface as well as secretion, but decreases the ability of WLS to activate WNT1 signaling in target cell. These observations suggest that the levels of WNT1 on the cell surface and in the media are not the sole determinants of the activation of Wnt signaling in target cells.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Navid Zebarjadi
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Lydia Li
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | | | - Laura W Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| |
Collapse
|
19
|
Abstract
The study of Drosophila imaginal discs has contributed to a number of discoveries in developmental and cellular biology. In addition to the elucidation of the role of tissue compartments and organ-specific master regulator genes during development, imaginal discs have also become well established as models for studying cellular interactions and complex genetic pathways. Here, we review key discoveries resulting from investigations of these epithelial precursor organs, ranging from cell fate determination and transdetermination to tissue patterning. Furthermore, the design of increasingly sophisticated genetic tools over the last decades has added value to the use of imaginal discs as model systems. As a result of tissue-specific genetic screens, several components of developmentally regulated signaling pathways were identified and epistasis revealed the levels at which they function. Discs have been widely used to assess cellular interactions in their natural tissue context, contributing to a better understanding of growth regulation, tissue regeneration, and cancer. With the continuous implementation of novel tools, imaginal discs retain significant potential as model systems to address emerging questions in biology and medicine.
Collapse
|
20
|
Svendsen PC, Ryu JR, Brook WJ. The expression of the T-box selector gene midline in the leg imaginal disc is controlled by both transcriptional regulation and cell lineage. Biol Open 2015; 4:1707-14. [PMID: 26581591 PMCID: PMC4736030 DOI: 10.1242/bio.013565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila Tbx20 homologs midline and H15 act as selector genes for ventral fate in Drosophila legs. midline and H15 expression defines the ventral domain of the leg and the two genes are necessary and sufficient for the development of ventral fate. Ventral-specific expression of midline and H15 is activated by Wingless (Wg) and repressed by Decapentaplegic (Dpp). Here we identify VLE, a 5 kb enhancer that drives ventral specific expression in the leg disc that is very similar to midline expression. Subdivision of VLE identifies two regions that mediate both activation and repression and third region that only mediates repression. Loss- and gain-of-function genetic mosaic analysis shows that the activating and repressing regions respond to Wg and Dpp signaling respectively. All three repression regions depend on the activity of Mothers-against-decapentaplegic, a Drosophila r-Smad that mediates Dpp signaling, and respond to ectopic expression of the Dpp target genes optomoter-blind and Dorsocross 3. However, only one repression region is responsive to loss of schnurri, a co-repressor required for direct repression by Dpp-signaling. Thus, Dpp signaling restricts midline expression through both direct repression and through the activation of downstream repressors. We also find that midline and H15 expression are both subject to cross-repression and feedback inhibition. Finally, a lineage analysis indicates that ventral midline-expressing cells and dorsal omb-expressing cells do not mix during development. Together this data indicates that the ventral-specific expression of midline results from both transcriptional regulation and from a lack of cell-mixing between dorsal and ventral cells.
Collapse
Affiliation(s)
- Pia C Svendsen
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| | - Jae-Ryeon Ryu
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| | - William J Brook
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| |
Collapse
|
21
|
Yang L, Meng F, Ma D, Xie W, Fang M. Bridging Decapentaplegic and Wingless signaling in Drosophila wings through repression of naked cuticle by Brinker. Development 2013; 140:413-22. [PMID: 23250215 DOI: 10.1242/dev.082578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnts and bone morphogenetic proteins (BMPs) are signaling elements that are crucial for a variety of events in animal development. In Drosophila, Wingless (Wg, a Wnt ligand) and Decapentaplegic (Dpp, a BMP homolog) are thought to function through distinct signal transduction pathways and independently direct the patterning of the wing. However, recent studies suggest that Mothers against Dpp (Mad), the key transducer of Dpp signaling, might serve as a node for the crosstalk between these two pathways, and both positive and negative roles of Mad in Wg signaling have been suggested. Here, we describe a novel molecular mechanism by which Dpp signaling suppresses Wg outputs. Brinker (Brk), a transcriptional repressor that is downregulated by Dpp, directly represses naked cuticle (nkd), which encodes a feedback inhibitor of Wg signaling, in vitro and in vivo. Through genetic studies, we demonstrate that Brk is required for Wg target gene expression in fly wing imaginal discs and that loss or gain of brk during wing development mimics loss or gain of Wg signaling, respectively. Finally, we show that Dpp positively regulates the expression of nkd and negatively regulates the Wg target gene Distal-less (Dll). These data support a model in which different signaling pathways interact via a negative-feedback mechanism. Such a mechanism might explain how organs coordinate inputs from multiple signaling cues.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing 210096, China
| | | | | | | | | |
Collapse
|
22
|
Ing T, Tseng A, Sustar A, Schubiger G. Sp1 modifies leg-to-wing transdetermination in Drosophila. Dev Biol 2013; 373:290-9. [PMID: 23165292 DOI: 10.1016/j.ydbio.2012.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/20/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
Abstract
During Drosophila development, the transcription factor Sp1 is necessary for proper leg growth and also to repress wing development. Here we test the role of Sp1 during imaginal disc regeneration. Ubiquitous expression of wg induces a regeneration blastema in the dorsal aspect of the leg disc. Within this outgrowth, the wing selector gene vg is activated in some cells, changing their fate to wing identity in a process known as transdetermination. In this report we demonstrate that reducing the gene copy number of Sp1 significantly increases both the frequency and the area of transdetermination in regenerating leg discs. By examining the expression of known Sp1 target genes, we also show that the proximo-distal patterning gene dachshund is downregulated dorsally, leading to a break in its normal ring-shaped expression pattern. We further report that transdetermination, as evidenced by Vg expression, is only observed when there is a broken ring of Dachshund expression. Combined, these studies establish a role for Sp1 in leg-to-wing transdetermination.
Collapse
Affiliation(s)
- Thomas Ing
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
23
|
Tursun B. Cellular reprogramming processes in Drosophila and C. elegans. Curr Opin Genet Dev 2012; 22:475-84. [PMID: 23063246 DOI: 10.1016/j.gde.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/05/2012] [Accepted: 09/17/2012] [Indexed: 12/30/2022]
Abstract
The identity of individual cell types in a multicellular organism appears to be continuously maintained through active processes but is not irreversible. Changes in the identity of individual cell types can be brought about through ectopic mis-expression of regulatory factors, but in a number of cases also occurs in normal development. I will review here these natural cellular reprogramming processes occurring in the invertebrate model organisms Caenorhabditis elegans and Drosophila melanogaster. Furthermore, I will discuss the issue of why only certain cell types can be converted during induced reprogramming processes evoked by ectopic expression of regulatory factors and how recent work in model systems have shown that this cellular context-dependency can be manipulated.
Collapse
Affiliation(s)
- Baris Tursun
- Berlin Institute for Medical Systems Biology at Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany.
| |
Collapse
|
24
|
Worley MI, Setiawan L, Hariharan IK. Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 2012; 46:289-310. [PMID: 22934642 DOI: 10.1146/annurev-genet-110711-155637] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of regeneration in Drosophila imaginal discs provides an opportunity to use powerful genetic tools to address fundamental problems pertaining to tissue regeneration and cell plasticity. We present a historical overview of the field and describe how the application of modern methods has made the study of disc regeneration amenable to genetic analysis. Discs respond to tissue damage in several ways: (a) Removal of part of the disc elicits localized cell proliferation and regeneration of the missing tissue. (b) Damage at specific locations in the disc can cause cells to generate disc-inappropriate structures (e.g., wing instead of leg), a phenomenon known as transdetermination. (c) Diffuse damage to imaginal discs, results in compensatory proliferation of surviving cells. Candidate-gene approaches have implicated the JNK, Wingless, and Hippo pathways in regeneration. Recently developed systems will enable extensive genetic screens that could provide new insights into tissue regeneration, transdetermination and compensatory proliferation.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | | | |
Collapse
|
25
|
Estella C, Voutev R, Mann RS. A dynamic network of morphogens and transcription factors patterns the fly leg. Curr Top Dev Biol 2012; 98:173-98. [PMID: 22305163 DOI: 10.1016/b978-0-12-386499-4.00007-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Animal appendages require a proximodistal (PD) axis, which forms orthogonally from the two main body axes, anteroposterior and dorsoventral. In this review, we discuss recent advances that begin to provide insights into the molecular mechanisms controlling PD axis formation in the Drosophila leg. In this case, two morphogens, Wingless (Wg) and Decapentaplegic (Dpp), initiate a genetic cascade that, together with growth of the leg imaginal disc, establishes the PD axis. The analysis of cis-regulatory modules (CRMs) that control the expression of genes at different positions along the PD axis has been particularly valuable in dissecting this complex process. From these experiments, it appears that only one concentration of Wg and Dpp are required to initiate PD axis formation by inducing the expression of Distal-less (Dll), a homeodomain-encoding gene that is required for leg development. Once Dll is turned on, it activates the medially expressed gene dachshund (dac). Cross-regulation between Dll and dac, together with cell proliferation in the growing leg imaginal disc, results in the formation of a rudimentary PD axis. Wg and Dpp also initiate the expression of ligands for the EGFR pathway, which in turn induces the expression of a series of target genes that pattern the distal-most portion of the leg.
Collapse
Affiliation(s)
- Carlos Estella
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
26
|
Sustar A, Bonvin M, Schubiger M, Schubiger G. Drosophila twin spot clones reveal cell division dynamics in regenerating imaginal discs. Dev Biol 2011; 356:576-87. [PMID: 21722631 PMCID: PMC3144724 DOI: 10.1016/j.ydbio.2011.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 06/16/2011] [Indexed: 12/14/2022]
Abstract
Cell proliferation is required for tissue regeneration, yet the dynamics of proliferation during regeneration are not well understood. Here we investigated the proliferation of eye and leg regeneration in fragments of Drosophila imaginal discs. Using twin spot clones, we followed the proliferation and fates of sister cells arising from the same mother cell in the regeneration blastema. We show that the mother cell gives rise to two sisters that participate equally in regeneration. However, when cells switch disc identity and transdetermine to another fate, they fail to turn off the cell cycle and continue dividing long after regeneration is complete. We further demonstrate that the regeneration blastema moves as a sweep of proliferation, in which cells are displaced. Our results suggest that regenerating cells stop dividing once the missing parts are formed, but if they undergo a switch in cell fate, the proliferation clock is reset.
Collapse
Affiliation(s)
- Anne Sustar
- Dept of Biology, University of Washington, Seattle WA 98195
| | | | | | | |
Collapse
|
27
|
Fernández BG, Gaspar P, Brás-Pereira C, Jezowska B, Rebelo SR, Janody F. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 2011; 138:2337-46. [PMID: 21525075 DOI: 10.1242/dev.063545] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.
Collapse
|
28
|
Schubiger M, Sustar A, Schubiger G. Regeneration and transdetermination: the role of wingless and its regulation. Dev Biol 2010; 347:315-24. [PMID: 20816798 PMCID: PMC2976676 DOI: 10.1016/j.ydbio.2010.08.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 11/22/2022]
Abstract
Imaginal discs of Drosophila have the remarkable ability to regenerate. After fragmentation wound healing occurs, ectopic wg is induced and a blastema is formed. In some, but not all fragments, the blastema will replace missing structures and a few cells can become more plastic and transdetermine to structures of other discs. A series of systematic cuts through the first leg disc revealed that a cut must transect the dorsal-proximal disc area and that the fragment must also include wg-competent cells. Fragments that fail to both transdetermine and regenerate missing structures will do both when provided with exogenous Wg, demonstrating the necessity of Wg in regenerative processes. In intact leg discs ubiquitously expressed low levels of Wg also leads to blastema formation, regeneration and transdetermination. Two days after exogenous wg induction the endogenous gene is activated, leading to elevated levels of Wg in the dorsal aspect of the leg disc. We identified a wg enhancer that regulates ectopic wg expression. Deletion of this enhancer increases transdetermination, but lowers the amount of ectopic Wg. We speculate that this lessens repression of dpp dorsally, and thus creates a permissive condition under which the balance of ectopic Wg and Dpp is favorable for transdetermination.
Collapse
Affiliation(s)
- Margrit Schubiger
- Department of Biology, Box 351800, University of Washington, Seattle, WA 98105, USA.
| | | | | |
Collapse
|
29
|
Pechmann M, Khadjeh S, Sprenger F, Prpic NM. Patterning mechanisms and morphological diversity of spider appendages and their importance for spider evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:453-467. [PMID: 20696272 DOI: 10.1016/j.asd.2010.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/07/2010] [Accepted: 07/27/2010] [Indexed: 05/29/2023]
Abstract
The prosoma of spiders bears different gnathal (labrum, chelicerae, pedipalps) and locomotory appendages (legs). In most species these appendages are also used for additional functions, e.g. sensing, mating, and courtship. The opisthosoma is equipped with four pairs of highly specialized appendages. Two pairs of spinnerets are used for silk production and manipulation. The other two pairs of appendages are internalized during development and give rise to a complex respiratory system of book lungs and tracheae. Thus spiders have a number of different appendage types with radically different adult morphologies. Furthermore, all these appendage types display significant additional species specific diversity correlating with a large spectrum of functions of the appendages. Despite this importance of appendage diversity for the evolution of the spiders we know relatively little about the genetic patterning mechanisms producing this diversity of morphology. We review recent advances concerning the developmental genetics of spider appendage diversification, mainly concentrating on open questions and future directions of research. We conclude that the deeper understanding of appendage development and diversity in spiders can contribute significantly not only to evolutionary developmental biology, but also to behavioral biology, speciation research and population genetics, and the study of sexually dimorphic traits.
Collapse
Affiliation(s)
- Matthias Pechmann
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | | | | | | |
Collapse
|
30
|
Bergantiños C, Vilana X, Corominas M, Serras F. Imaginal discs: Renaissance of a model for regenerative biology. Bioessays 2010; 32:207-217. [PMID: 20127699 DOI: 10.1002/bies.200900105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many animals display a capacity to regenerate tissues or even a complete body. One of the main goals of regenerative biology is to identify the genes and genetic networks necessary for this process. Drosophila offers an ideal model system for such studies. The wide range of genetic and genomic approaches available for use in flies has helped in initiating the deciphering of the mechanisms underlying regeneration, and the results may be applicable to other organisms, including mammals. Moreover, most models of regeneration require experimental manipulation, whereas in Drosophila discrete domains can be ablated by genetically induced methods. Here, we present a summary of current research into imaginal disc regeneration and discuss the power of this tissue as a tool for understanding the genetics of regeneration.
Collapse
Affiliation(s)
- Cora Bergantiños
- Facultat de Biologia, Departament de Genètica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Xavier Vilana
- Facultat de Biologia, Departament de Genètica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Corominas
- Facultat de Biologia, Departament de Genètica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Florenci Serras
- Facultat de Biologia, Departament de Genètica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Yechoor V, Chan L. Minireview: beta-cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation. Mol Endocrinol 2010; 24:1501-11. [PMID: 20219891 DOI: 10.1210/me.2009-0311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic beta-cell failure underlies type 1 diabetes; it also contributes in an essential way to type 2 diabetes. beta-Cell replacement is an important component of any cure for diabetes. The current options of islet and pancreas transplantation are not satisfactory as definitive forms of therapy. Here, we review strategies for induced de novo pancreatic beta-cell formation, which depend on the targeted differentiation of cells into pancreatic beta-cells. With this objective in mind, one can manipulate the fate of three different types of cells: 1) from terminally differentiated cells, e.g. exocrine pancreatic cells, into beta-cells; 2) from multipotent adult stem cells, e.g. hepatic oval cells, into pancreatic islets; and 3) from pluripotent stem cells, e.g. embryonic stem cells and induced pluripotent stem cells, into beta-cells. We will examine the pros and cons of each strategy as well as the hurdles that must be overcome before these approaches to generate new beta-cells will be ready for clinical application.
Collapse
Affiliation(s)
- Vijay Yechoor
- One Baylor Plaza, R614, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
32
|
Separable functions of wingless in distal and ventral patterning of the Tribolium leg. Dev Genes Evol 2009; 219:469-79. [PMID: 20024581 PMCID: PMC2811246 DOI: 10.1007/s00427-009-0310-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/23/2009] [Indexed: 11/29/2022]
Abstract
The gene wingless (wg) in Drosophila is an important factor in leg development. During embryonic development wg is involved in the allocation of the limb primordia. During imaginal disk development wg is involved in distal development and it has a separate role in ventral development. The expression pattern of wg is highly conserved in all arthropods (comprising data from insects, myriapods, crustaceans, and chelicerates), suggesting that its function in leg development is also conserved. However, recent work in other insects (e.g. the milkweed bug Oncopeltus fasciatus) argued against a role of wg in leg development. We have studied the role of wg in leg development of the flour beetle Tribolium castaneum. Using stage-specific staggered embryonic RNAi in wild-type and transgenic EGFP expressing enhancer trap lines we are able to demonstrate separable functions of Tribolium wg in distal and in ventral leg development. The distal role affects all podomeres distal to the coxa, whereas the ventral role is restricted to cells along the ventral midline of the legs. In addition, severe leg defects after injection into early embryonic stages are evidence that wg is also involved in proximal development and limb allocation in Tribolium. Our data suggest that the roles of wg in leg development are highly conserved in the holometabolous insects. Further studies will reveal the degree of conservation in other arthropod groups.
Collapse
|
33
|
Mob as tumor suppressor is activated at the cell membrane to control tissue growth and organ size in Drosophila. Dev Biol 2009; 337:274-83. [PMID: 19913529 DOI: 10.1016/j.ydbio.2009.10.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 01/05/2023]
Abstract
Growth inhibition mediated by Hippo (Hpo) signaling is essential for tissue growth and organ size control in Drosophila. However, the cellular mechanism by which the core components like Mob as tumor suppressor (Mats) and Warts (Wts) protein kinase are activated is poorly understood. In this work, we found that the endogenous Mats is located at the plasma membrane in developing tissues. Membrane targeting constitutively activates Mats to promote apoptosis and reduce cell proliferation, which leads to reduced tissue growth and organ size. Moreover, the ability of membrane-targeted Mats to inhibit tissue growth required the wts gene activity and Wts kinase activity was increased by the activated Mats in developing tissues. Consistent with the idea that Mats is a key component of the Hpo pathway, Mats is required and sufficient to regulate Yki nuclear localization. These results support a model in which the plasma membrane is an important site of action for Mats tumor suppressor to control tissue growth and organ size.
Collapse
|
34
|
Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nat Genet 2009; 41:1076-82. [DOI: 10.1038/ng.414] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/05/2009] [Indexed: 01/26/2023]
|
35
|
Abstract
Animal shape and size is controlled with amazing precision during development. External factors such as nutrient availability and crowding can alter overall animal size, but individual body parts scale reproducibly to match the body even with challenges from a changing environment. How is such precision achieved? Here, we review selected research from the last few years in Drosophila--arguably the premier genetic model for the study of animal growth--that sheds light on how body and tissue size are regulated by forces intrinsic to individual organs. We focus on two topics currently under intense study: the influence of pattern regulators on organ and tissue growth and the role of local competitive interactions between cells in tissue homeostasis and final size.
Collapse
Affiliation(s)
- Ricardo M. Neto-Silva
- Department of Genetics & Development, Columbia University, College of Physicians and Surgeons, 701 West 168 Street, HHSC 704, New York, NY USA 10032, Tel. 212-305-1688; Fax: 212-305-1752
| | - Brent S. Wells
- Department of Genetics & Development, Columbia University, College of Physicians and Surgeons, 701 West 168 Street, HHSC 704, New York, NY USA 10032, Tel. 212-305-1688; Fax: 212-305-1752
| | - Laura A. Johnston
- Department of Genetics & Development, Columbia University, College of Physicians and Surgeons, 701 West 168 Street, HHSC 704, New York, NY USA 10032, Tel. 212-305-1688; Fax: 212-305-1752
| |
Collapse
|
36
|
An antennal-specific role for bowl in repressing supernumerary appendage development in Drosophila. Mech Dev 2008; 125:809-21. [PMID: 18662773 DOI: 10.1016/j.mod.2008.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 11/22/2022]
Abstract
In Drosophila, antennae and legs are serially homologous appendages, and yet they develop into organs of very different structure and function. This implies that different genetic mechanisms operate onto a common developmental ground state to produce antennae and legs. Still few such mechanisms have been uncovered. During leg development, bowl, a member of the odd-skipped gene family, has been shown to participate in the formation of the leg segmental joints. Here we report that, in the antennal disc, bowl has a dramatically different role: bowl is expressed in the ventral antennal disc to prevent inappropriate expression of wg early during development. The removal of bowl function leads to the activation of wg in the dpp-expressing domain. This ectopic expression of wg, together with dpp, results in a new proximo-distal axis that promotes non-autonomous antennal duplications. The role of bowl in suppressing a supernumerary PD axis is maintained even when the antennal disc is homeotically transformed into a leg-like appendage. Therefore, bowl is part of a genetic program that suppresses the formation of supernumerary appendages specifically in the fly's head.
Collapse
|
37
|
McClure KD, Sustar A, Schubiger G. Three genes control the timing, the site and the size of blastema formation in Drosophila. Dev Biol 2008; 319:68-77. [PMID: 18485344 PMCID: PMC2483308 DOI: 10.1016/j.ydbio.2008.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
Regeneration is a vital process to maintain and repair tissues. Despite the importance of regeneration, the genes responsible for regenerative growth remain largely unknown. In Drosophila, imaginal disc regeneration can be induced either by fragmentation and in vivo culture or in situ by ubiquitous expression of wingless (wg/wnt1). Imaginal discs, like appendages in lower vertebrates, initiate regeneration by wound healing and proliferation at the wound site, forming a regeneration blastema. Most blastema cells maintain their disc-specific identity during regeneration; a few cells however, exhibit stem-cell like properties and switch to a different fate, in a phenomenon known as transdetermination. We identified three genes, regeneration (rgn), augmenter of liver regeneration (alr) and Matrix metalloproteinase-1 (Mmp1) expressed specifically in blastema cells during disc regeneration. Mutations in these genes affect both fragmentation- and wg-induced regeneration by either delaying, reducing or positioning the regeneration blastema. In addition to the modifications of blastema homeostasis, mutations in the three genes alter the rate of regeneration-induced transdetermination. We propose that these genes function in regenerative proliferation, growth and regulate cellular plasticity.
Collapse
Affiliation(s)
- Kimberly D McClure
- University of California, San Francisco, Department of Anatomy, 1550 4th Street, Rock Hall, Mail Code 2822, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
38
|
Ayala-Camargo A, Ekas LA, Flaherty MS, Baeg GH, Bach EA. The JAK/STAT pathway regulates proximo-distal patterning in Drosophila. Dev Dyn 2008; 236:2721-30. [PMID: 17626283 DOI: 10.1002/dvdy.21230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
JAK/STAT signaling is thought to control growth and proliferation. However, here we show a novel role for this pathway in the patterning of Drosophila appendages. Loss of Stat92E function results mainly in ventralizations and multiplications of the proximo-distal axis in leg and antenna, primarily through the ectopic misexpression of wingless. We also show that the pathway ligand Unpaired is expressed in two domains in leg and antenna that abuts those of wingless and decapentaplegic. We report that JAK/STAT signaling represses both wingless and decapentaplegic, restricting them to their respective domains in leg and antenna. In a reciprocal manner, we show that wingless and decapentaplegic restrict unpaired to its two domains. Thus, a main function of the JAK/STAT pathway in leg and antennal development is to promote the formation of a single proximo-distal axis per disc by constraining the intersection of wingless and decapentaplegic to the center of the disc.
Collapse
Affiliation(s)
- Aidee Ayala-Camargo
- Pharmacology Department, New York University School of Medicine, New York, New York 10016-6402, USA
| | | | | | | | | |
Collapse
|
39
|
McClure KD, Schubiger G. A screen for genes that function in leg disc regeneration in Drosophila melanogaster. Mech Dev 2008; 125:67-80. [PMID: 18036784 PMCID: PMC2225348 DOI: 10.1016/j.mod.2007.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 09/26/2007] [Accepted: 10/08/2007] [Indexed: 11/16/2022]
Abstract
Many diverse animal species regenerate parts of an organ or tissue after injury. However, the molecules responsible for the regenerative growth remain largely unknown. The screen reported here aimed to identify genes that function in regeneration and the transdetermination events closely associated with imaginal disc regeneration using Drosophila melanogaster. We screened a collection of 97 recessive lethal P-lacZ enhancer trap lines for two primary criteria: first, the ability to dominantly modify wg-induced leg-to-wing transdetermination and second, for the activation or repression of the lacZ reporter gene in the blastema during disc regeneration. Of the 97 P-lacZ lines, we identified six genes (Krüppel-homolog-1, rpd3, jing, combgap, Aly and S6 kinase) that met both criteria. Five of these genes suppress, while one enhances, leg-to-wing transdetermination and therefore affects disc regeneration. Two of the genes, jing and rpd3, function in concert with chromatin remodeling proteins of the Polycomb Group (PcG) and trithorax Group (trxG) genes during Drosophila development, thus linking chromatin remodeling with the process of regeneration.
Collapse
Affiliation(s)
- Kimberly D. McClure
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA 98195, USA
| | - Gerold Schubiger
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
40
|
Halachmi N, Schulze KL, Inbal A, Salzberg A. Additional sex combs affects antennal development by means of spatially restricted repression of Antp and wg. Dev Dyn 2007; 236:2118-30. [PMID: 17654717 DOI: 10.1002/dvdy.21239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Additional sex combs (Asx) is thought to function in protein complexes of both the Trithorax and Polycomb groups, but very little is known about its developmental roles. Here, we present a detailed analysis of Asx's role in antennal development. We show that loss of Asx in the antennal disc causes a complex phenotype, which consists of distal antenna-to-leg transformations and outgrowth of ectopic leg-like appendages from the Dpp-expressing domain of the disc. Our analyses suggest that these phenotypes are caused mainly by segment-specific de-repression of Antp and expansion of wg expression. We thus conclude that Asx functions normally to repress Antp and to restrict wg expression in specific regions of the developing disc. We also show that, in the absence of Asx's function, Antp expression does not lead to efficient repression of the antennal-determining gene hth, suggesting that Asx is also required for the repression of hth by Antp.
Collapse
Affiliation(s)
- Naomi Halachmi
- Department of Genetics, Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
41
|
McClure KD, Schubiger G. Transdetermination: Drosophila imaginal disc cells exhibit stem cell-like potency. Int J Biochem Cell Biol 2007; 39:1105-18. [PMID: 17317270 PMCID: PMC2000801 DOI: 10.1016/j.biocel.2007.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/29/2006] [Indexed: 11/22/2022]
Abstract
Drosophila imaginal discs, the primordia of the adult fly appendages, are an excellent system for studying developmental plasticity. Cells in the imaginal discs are determined for their disc-specific fate (wingness, legness) during embryogenesis. Disc cells maintain their determination during larval development, a time of extensive growth and proliferation. Only when prompted to regenerate do disc cells exhibit lability in their determined identity. Regeneration in the disc is mediated by a localized region of cell division, known as the regeneration blastema. Most regenerating disc cells strictly adhere to their disc-specific identity; some cells however, switch fate in a phenomenon known as transdetermination. Similar regeneration and transdetermination events can be induced in situ by misexpression of the signaling molecule wingless. Recent studies indicate that the plasticity of disc cells during regeneration is associated with high morphogen activity and the reorganization of chromatin structure. Here we provide both a historical perspective of imaginal disc transdetermination, as well as discuss recent findings on how imaginal disc cells acquire developmental plasticity and multipotency. We also highlight how an understanding of imaginal disc transdetermination can enhance an understanding of developmental potency exhibited by stem cells.
Collapse
Affiliation(s)
- Kimberly D McClure
- University of Washington, Department of Biology 24 Kincaid Hall, Box 351800 Seattle, WA 98195 (206)-543-8159
| | - Gerold Schubiger
- University of Washington, Department of Biology 24 Kincaid Hall, Box 351800 Seattle, WA 98195 (206)-543-8159
| |
Collapse
|
42
|
Theisen H, Syed A, Nguyen BT, Lukacsovich T, Purcell J, Srivastava GP, Iron D, Gaudenz K, Nie Q, Wan FY, Waterman ML, Marsh JL. Wingless directly represses DPP morphogen expression via an armadillo/TCF/Brinker complex. PLoS One 2007; 2:e142. [PMID: 17206277 PMCID: PMC1764032 DOI: 10.1371/journal.pone.0000142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 12/08/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spatially restricted morphogen expression drives many patterning and regeneration processes, but how is the pattern of morphogen expression established and maintained? Patterning of Drosophila leg imaginal discs requires expression of the DPP morphogen dorsally and the wingless (WG) morphogen ventrally. We have shown that these mutually exclusive patterns of expression are controlled by a self-organizing system of feedback loops that involve WG and DPP, but whether the feedback is direct or indirect is not known. METHODS/FINDINGS By analyzing expression patterns of regulatory DNA driving reporter genes in different genetic backgrounds, we identify a key component of this system by showing that WG directly represses transcription of the dpp gene in the ventral leg disc. Repression of dpp requires a tri-partite complex of the WG mediators armadillo (ARM) and dTCF, and the co-repressor Brinker, (BRK), wherein ARM.dTCF and BRK bind to independent sites within the dpp locus. CONCLUSIONS/SIGNIFICANCE Many examples of dTCF repression in the absence of WNT signaling have been described, but few examples of signal-driven repression requiring both ARM and dTCF binding have been reported. Thus, our findings represent a new mode of WG mediated repression and demonstrate that direct regulation between morphogen signaling pathways can contribute to a robust self-organizing system capable of dynamically maintaining territories of morphogen expression.
Collapse
Affiliation(s)
- Heidi Theisen
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Adeela Syed
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Baochi T. Nguyen
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Tamas Lukacsovich
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Judith Purcell
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Gyan Prakash Srivastava
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - David Iron
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Karin Gaudenz
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Frederic Y.M. Wan
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - J. Lawrence Marsh
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Wells BS, Yoshida E, Johnston LA. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 2006; 16:1606-15. [PMID: 16920621 PMCID: PMC1764442 DOI: 10.1016/j.cub.2006.07.046] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/12/2006] [Accepted: 07/14/2006] [Indexed: 12/17/2022]
Abstract
BACKGROUND The p53 transcription factor directs a transcriptional program that determines whether a cell lives or dies after DNA damage. Animal survival after extensive cellular damage often requires that lost tissue be replaced through compensatory growth or regeneration. In Drosophila, damaged imaginal disc cells can induce the proliferation of neighboring viable cells, but how this is controlled is not clear. Here we provide evidence that Drosophila p53 (dp53) has a previously unidentified role in coordinating the compensatory growth response to tissue damage. RESULTS We find that dp53, the sole p53 ortholog in Drosophila, is required for each component of the response to cellular damage, including two separate cell-cycle arrests, changes in patterning gene expression, cell proliferation, and growth. We demonstrate that these processes are regulated by dp53 in a manner that is independent of DNA-damage sensing but that requires the initiator caspase Dronc. Our results indicate that once induced, dp53 amplifies and sustains the response through a positive feedback loop with Dronc and the apoptosis-inducing factors Hid and Reaper. CONCLUSIONS How cell death and cell proliferation are coordinated during development and after stress is a fundamental question that is critical for an understanding of growth regulation. Our data suggest that dp53 may carry out an ancestral function that promotes animal survival through the coordination of responses leading to compensatory growth after tissue damage.
Collapse
Affiliation(s)
- Brent S Wells
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
44
|
Maurange C, Lee N, Paro R. Signaling meets chromatin during tissue regeneration in Drosophila. Curr Opin Genet Dev 2006; 16:485-9. [PMID: 16919444 DOI: 10.1016/j.gde.2006.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 08/03/2006] [Indexed: 11/20/2022]
Abstract
As transcription programs become stabilized in fate-determined cells by progressive patterning of chromatin structures, cells lose their plasticity and the ability to freely modify their identity in response to changing developmental cues. By contrast, stem cells maintain this flexibility, enabling them to embark on different determination pathways. However, regeneration of tissue requires an exception because determined cells are forced to switch their transcription programs to reconstruct the missing tissue. In Drosophila, proliferating cells in the regenerating imaginal discs can even switch to a new disc identity. New studies show that the increased plasticity observed during regeneration results from the action of multiple signaling pathways on chromatin malleability, cell-cycle profiles, and expression of 'stemness' genes. Understanding how signaling pathways can integrate to switch determined cells into multipotent cells has a great medical potential, especially in the field of tissue engineering and remodeling.
Collapse
Affiliation(s)
- Cédric Maurange
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | |
Collapse
|
45
|
Joulia L, Deutsch J, Bourbon HM, Cribbs DL. The specification of a highly derived arthropod appendage, the Drosophila labial palps, requires the joint action of selectors and signaling pathways. Dev Genes Evol 2006; 216:431-42. [PMID: 16773339 DOI: 10.1007/s00427-006-0086-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 05/01/2006] [Indexed: 11/25/2022]
Abstract
The remarkable diversity of form in arthropods reflects flexible genetic programs deploying many conserved genes. In the insect model Drosophila melanogaster, diversity of form can be observed between serially homologous appendages or when a single appendage is transformed by homeotic mutations, such as the adult labial mouthparts that can present alternative antennal, prothoracic, or maxillary identities. We have examined the roles of the Hox selector genes proboscipedia (pb) and Sex combs reduced (Scr), and the antennal selectors homothorax (hth) and spineless (ss) in labial specification, by tissue-directed mitotic recombination. Whereas loss of pb function transforms labium to prothoracic leg, loss of Scr, hth, or ss functions results in little or no change in labial specification. Results of analysis of single and multiple mutant combinations support a genetic hierarchy in which the homeotic pb gene possesses a primary role. It is surprising to note that while loss of ss activity alone had no detected effect, all mutant combinations lacking both pb and ss yielded the most severe phenotype observed: stunted, apparently tripartite legs that may correspond to a default state. The roles of the four selector genes are functionally linked to a cell nonautonomous mechanism involving the coupled activities of the decapentaplegic (dpp)/TGF-beta and wingless (wg)/Wnt signaling pathways. Accordingly, several mutant combinations impaired in dpp signaling were seen to reorient labial-to-leg transformations toward antennal aristae. A crucial aspect of selector function in development and evolution may be in regulating diffusible signals, including those emitted by dpp and wg.
Collapse
Affiliation(s)
- Laurent Joulia
- Centre de Biologie du Développement, CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 04, France.
| | | | | | | |
Collapse
|
46
|
Angelini DR, Kaufman TC. Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol 2005; 283:409-23. [PMID: 15939417 DOI: 10.1016/j.ydbio.2005.04.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 04/29/2005] [Accepted: 04/29/2005] [Indexed: 11/16/2022]
Abstract
Specification of the proximal-distal (PD) axis of insect appendages is best understood in Drosophila melanogaster, where conserved signaling molecules encoded by the genes decapentaplegic (dpp) and wingless (wg) play key roles. However, the development of appendages from imaginal discs as in Drosophila is a derived state, while more basal insects produce appendages from embryonic limb buds. Therefore, the universality of the Drosophila limb PD axis specification mechanism has been debated since dpp expression in more basal insect species differs dramatically from Drosophila. Here, we test the function of Wnt signaling in the development of the milkweed bug Oncopeltus fasciatus, a species with the basal state of appendage development from limb buds. RNA interference of wg and pangolin (pan) produce defects in the germband and eyes, but not in the appendages. Distal-less and dachshund, two genes regulated by Wg signaling in Drosophila and expressed in specific PD domains along the limbs of both species, are expressed normally in the limbs of pan-depleted Oncopeltus embryos. Despite these apparently paradoxical results, Armadillo protein, the transducer of Wnt signaling, does not accumulate properly in the nuclei of cells in the legs of pan-depleted embryos. In contrast, engrailed RNAi in Oncopeltus produces cuticular and appendage defects similar to Drosophila. Therefore, our data suggest that Wg signaling is functionally conserved in the development of the germband, while it is not essential in the specification of the limb PD axis in Oncopeltus and perhaps basal insects.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, Bloomington, 47405-7005, USA
| | | |
Collapse
|
47
|
Kankel MW, Duncan DM, Duncan I. A screen for genes that interact with the Drosophila pair-rule segmentation gene fushi tarazu. Genetics 2005; 168:161-80. [PMID: 15454535 PMCID: PMC1448101 DOI: 10.1534/genetics.104.027250] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pair-rule gene fushi tarazu (ftz) of Drosophila is expressed at the blastoderm stage in seven stripes that serve to define the even-numbered parasegments. ftz encodes a DNA-binding homeodomain protein and is known to regulate genes of the segment polarity, homeotic, and pair-rule classes. Despite intensive analysis in a number of laboratories, how ftz is regulated and how it controls its targets are still poorly understood. To help understand these processes, we conducted a screen to identify dominant mutations that enhance the lethality of a ftz temperature-sensitive mutant. Twenty-six enhancers were isolated, which define 21 genes. All but one of the mutations recovered show a maternal effect in their interaction with ftz. Three of the enhancers proved to be alleles of the known ftz protein cofactor gene ftz-f1, demonstrating the efficacy of the screen. Four enhancers are alleles of Atrophin (Atro), the Drosophila homolog of the human gene responsible for the neurodegenerative disease dentatorubral-pallidoluysian atrophy. Embryos from Atro mutant germ-line mothers lack the even-numbered (ftz-dependent) engrailed stripes and show strong ftz-like segmentation defects. These defects likely result from a reduction in Even-skipped (Eve) repression ability, as Atro has been shown to function as a corepressor for Eve. In this study, we present evidence that Atro is also a member of the trithorax group (trxG) of Hox gene regulators. Atro appears to be particularly closely related in function to the trxG gene osa, which encodes a component of the brahma chromatin remodeling complex. One additional gene was identified that causes pair-rule segmentation defects in embryos from homozygous mutant germ-line mothers. The single allele of this gene, called bek, also causes nuclear abnormalities similar to those caused by alleles of the Trithorax-like gene, which encodes the GAGA factor.
Collapse
Affiliation(s)
- Mark W Kankel
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
48
|
Sustar A, Schubiger G. A Transient Cell Cycle Shift in Drosophila Imaginal Disc Cells Precedes Multipotency. Cell 2005; 120:383-93. [PMID: 15707896 DOI: 10.1016/j.cell.2004.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 11/23/2004] [Accepted: 12/08/2004] [Indexed: 01/01/2023]
Abstract
When Drosophila imaginal discs regenerate, specific groups of cells can switch disc identity so that, for example, cells determined for leg identity switch to wing. Such switches in cell determination are known as transdetermination. We have developed a system by which individual cells are marked and monitored in vivo as they transdetermine so that their proliferation, cell sizes, and differentiation are accurately traced. Here, we document that when cells transdetermine, they do not convert to a younger cell cycle. Instead, cell cycle changes precede transdetermination and are different from those observed at any time in normal development. We propose that it is not a younger but a unique cell cycle progression and a big cell size that conditions the cells for developmental plasticity.
Collapse
Affiliation(s)
- Anne Sustar
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
49
|
Reis T, Edgar BA. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Cell 2004; 117:253-64. [PMID: 15084262 DOI: 10.1016/s0092-8674(04)00247-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 02/13/2004] [Accepted: 02/17/2004] [Indexed: 10/26/2022]
Abstract
Many types of cells compensate for induced alterations in the length of one cell cycle phase (G1, S, or G2) by altering the lengths of the other phases. Here we show that, when cells in Drosophila wing discs are delayed in G1, they maintain normal division rates by accelerating passage through S and G2. Similarly, when G2-->M progression is retarded, G1-->S progression accelerates. This compensation mechanism employs negative feedback in which the cyclin-dependent kinases Cdk1 and Cdk2 downregulate the transcription factor dE2F1. dE2F1, in turn, positively regulates cyclin E and string/cdc25, which activate the Cdks to drive cell cycle progression. This homeostatic mechanism coordinates rates of G1-->S and G2-->M progression, maintaining normal rates of proliferation when cell cycle controls are perturbed (e.g., by ectopic Dacapo, dWee1, dMyc, or Rheb). Without dE2F1, the compensatory mechanism fails, and treatments that alter Cdk activity cause aberrant cell cycle timing and cell death.
Collapse
Affiliation(s)
- Tânia Reis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
50
|
Maves L, Schubiger G. Transdetermination in Drosophila imaginal discs: a model for understanding pluripotency and selector gene maintenance. Curr Opin Genet Dev 2003; 13:472-9. [PMID: 14550411 DOI: 10.1016/j.gde.2003.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drosophila imaginal disc cells have the ability to undergo transdetermination, a process whereby determined disc cells change fate to that of another disc identity. For example, leg disc cells can transdetermine to develop as wing cells. Such events can occur after mechanical disc fragmentation and subsequent regeneration. A subset of transdetermination events can be induced in situ by misexpression of the signaling gene wingless. Both fragmentation and wingless induce transdetermination by altering the expression of selector genes, which drive disc-specific developmental programs. An important future goal is to address how signaling pathways interact with chromatin structure to regulate and maintain the proper expression of selector genes.
Collapse
Affiliation(s)
- Lisa Maves
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403-1254, USA.
| | | |
Collapse
|