1
|
Moran HR, Nyarko OO, O’Rourke R, Ching RCK, Riemslagh FW, Peña B, Burger A, Sucharov CC, Mosimann C. The pericardium forms as a distinct structure during heart formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613484. [PMID: 39345600 PMCID: PMC11429720 DOI: 10.1101/2024.09.18.613484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The heart integrates diverse cell lineages into a functional unit, including the pericardium, a mesothelial sac that supports heart movement, homeostasis, and immune responses. However, despite its critical roles, the developmental origins of the pericardium remain uncertain due to disparate models. Here, using live imaging, lineage tracking, and single-cell transcriptomics in zebrafish, we find the pericardium forms within the lateral plate mesoderm from dedicated anterior mesothelial progenitors and distinct from the classic heart field. Imaging of transgenic reporters in zebrafish documents lateral plate mesoderm cells that emerge lateral of the classic heart field and among a continuous mesothelial progenitor field. Single-cell transcriptomics and trajectories of hand2-expressing lateral plate mesoderm reveal distinct populations of mesothelial and cardiac precursors, including pericardial precursors that are distinct from the cardiomyocyte lineage. The mesothelial gene expression signature is conserved in mammals and carries over to post-natal development. Light sheet-based live-imaging and machine learning-supported cell tracking documents that during heart tube formation, pericardial precursors that reside at the anterior edge of the heart field migrate anteriorly and medially before fusing, enclosing the embryonic heart to form a single pericardial cavity. Pericardium formation proceeds even upon genetic disruption of heart tube formation, uncoupling the two structures. Canonical Wnt/β-catenin signaling modulates pericardial cell number, resulting in a stretched pericardial epithelium with reduced cell number upon canonical Wnt inhibition. We connect the pathological expression of secreted Wnt antagonists of the SFRP family found in pediatric dilated cardiomyopathy to increased pericardial stiffness: sFRP1 in the presence of increased catecholamines causes cardiomyocyte stiffness in neonatal rats as measured by atomic force microscopy. Altogether, our data integrate pericardium formation as an independent process into heart morphogenesis and connect disrupted pericardial tissue properties such as pericardial stiffness to pediatric cardiomyopathies.
Collapse
Affiliation(s)
- Hannah R. Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Obed O. Nyarko
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca O’Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ryenne-Christine K. Ching
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Frederike W. Riemslagh
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Brisa Peña
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Institute, Division of Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Bioengineering Department, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Liu W, Zeng M, Zhan C, Wen J, Wang J. Polystyrene nanoplastics exert cardiotoxicity through the Notch and Wnt pathways in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173253. [PMID: 38761935 DOI: 10.1016/j.scitotenv.2024.173253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The ubiquity of micro(nano)plastics has raised significant concerns among people. Their accumulation in the cardiovascular system necessitates attention to their cardiotoxicity. However, research on the cardiotoxicity of micro(nano)plastics remains scarce. Our study exposed zebrafish embryos to four different concentrations (0, 1, 10, 100 μg/mL) of polystyrene nanoplastics (PSNPs) for a period of 7 days. The results indicated that PSNPs noticeably decreased the hatching and survival rates of zebrafish and also induced cardiac developmental abnormalities. The mRNA level analysis revealed significant upregulations of heart development-related genes nkx2.5, cmlc-2, and myh-7 in response to PSNPs. Additionally, PSNPs significantly up-regulated the mRNA level associated with the Notch signaling pathway (notch-1a, jag-1a, and her-7) while remarkably suppressing the expression of the Wnt signaling pathway gene (wnt-3a). Further research showed that PSNPs significantly increased the expression of endoplasmic reticulum stress genes atf-6 and chop, while noticeably inhibiting mitochondrial copy numbers. Moreover, PSNPs were found to decrease calcium ion level and superoxide dismutase (SOD) activity in zebrafish larvae. Additionally, prolonged exposure to PSNPs for 7 days exacerbated abnormalities in various indicators compared to a 4-day exposure. In conclusion, our study demonstrates that PSNPs induce oxidative stress in zebrafish larvae, thereby activating endoplasmic reticulum stress and inhibiting mitochondrial activity, ultimately disrupting the Notch and Wnt signaling pathways. These disruptions result in abnormalities in cardiac developmental genes, ultimately leading to cardiac developmental abnormalities in zebrafish. The present research contributes to a novel understanding of the cardiotoxicity of PSNPs.
Collapse
Affiliation(s)
- Wanjing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Min Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunhua Zhan
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jing Wen
- School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
3
|
Auman HJ, Fernandes IH, Berríos-Otero CA, Colombo S, Yelon D. Zebrafish smarcc1a mutants reveal requirements for BAF chromatin remodeling complexes in distinguishing the atrioventricular canal from the cardiac chambers. Dev Dyn 2024; 253:157-172. [PMID: 37083132 PMCID: PMC10589389 DOI: 10.1002/dvdy.595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/13/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Essential patterning processes transform the heart tube into a compartmentalized organ with distinct chambers separated by an atrioventricular canal (AVC). This transition involves the refinement of expression of genes that are first found broadly throughout the heart tube and then become restricted to the AVC. Despite the importance of cardiac patterning, we do not fully understand the mechanisms that limit gene expression to the AVC. RESULTS We show that the zebrafish gene smarcc1a, encoding a BAF chromatin remodeling complex subunit homologous to mammalian BAF155, is critical for cardiac patterning. In smarcc1a mutants, myocardial differentiation and heart tube assembly appear to proceed normally. Subsequently, the smarcc1a mutant heart fails to exhibit refinement of gene expression patterns to the AVC, and the persistence of broad gene expression is accompanied by failure of chamber expansion. In addition to their cardiac defects, smarcc1a mutants lack pectoral fins, indicating similarity to tbx5a mutants. However, comparison of smarcc1a and tbx5a mutants suggests that perturbation of tbx5a function is not sufficient to cause the smarcc1a mutant phenotype. CONCLUSIONS Our data indicate an important role for Smarcc1a-containing chromatin remodeling complexes in regulating the changes in gene expression and morphology that distinguish the AVC from the cardiac chambers.
Collapse
Affiliation(s)
- Heidi J. Auman
- Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Ivy H. Fernandes
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Sophie Colombo
- Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Deborah Yelon
- Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Chhatwal K, Smith JJ, Bola H, Zahid A, Venkatakrishnan A, Brand T. Uncovering the Genetic Basis of Congenital Heart Disease: Recent Advancements and Implications for Clinical Management. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:464-480. [PMID: 38205435 PMCID: PMC10777202 DOI: 10.1016/j.cjcpc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.
Collapse
Affiliation(s)
- Karanjot Chhatwal
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Jacob J. Smith
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Harroop Bola
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Abeer Zahid
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Ashwin Venkatakrishnan
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| |
Collapse
|
5
|
Langenbacher AD, Lu F, Tsang L, Huang ZYS, Keer B, Tian Z, Eide A, Pellegrini M, Nakano H, Nakano A, Chen JN. Rtf1-dependent transcriptional pausing regulates cardiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562296. [PMID: 37873297 PMCID: PMC10592831 DOI: 10.1101/2023.10.13.562296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During heart development, a well-characterized network of transcription factors initiates cardiac gene expression and defines the precise timing and location of cardiac progenitor specification. However, our understanding of the post-initiation transcriptional events that regulate cardiac gene expression is still incomplete. The PAF1C component Rtf1 is a transcription regulatory protein that modulates pausing and elongation of RNA Pol II, as well as cotranscriptional histone modifications. Here we report that Rtf1 is essential for cardiogenesis in fish and mammals, and that in the absence of Rtf1 activity, cardiac progenitors arrest in an immature state. We found that Rtf1's Plus3 domain, which confers interaction with the transcriptional pausing and elongation regulator Spt5, was necessary for cardiac progenitor formation. ChIP-seq analysis further revealed changes in the occupancy of RNA Pol II around the transcription start site (TSS) of cardiac genes in rtf1 morphants reflecting a reduction in transcriptional pausing. Intriguingly, inhibition of pause release in rtf1 morphants and mutants restored the formation of cardiac cells and improved Pol II occupancy at the TSS of key cardiac genes. Our findings highlight the crucial role that transcriptional pausing plays in promoting normal gene expression levels in a cardiac developmental context.
Collapse
Affiliation(s)
- Adam D. Langenbacher
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Fei Lu
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Luna Tsang
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zi Yi Stephanie Huang
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Benjamin Keer
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zhiyu Tian
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alette Eide
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jau-Nian Chen
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
7
|
Capon SJ, Uribe V, Dominado N, Ehrlich O, Smith KA. Endocardial identity is established during early somitogenesis by Bmp signalling acting upstream of npas4l and etv2. Development 2022; 149:275317. [PMID: 35531980 PMCID: PMC9148566 DOI: 10.1242/dev.190421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. To investigate what regulates endocardial identity, we employed npas4l, etv2 and scl loss-of-function models. Endocardial expression is lost in npas4l mutants, significantly reduced in etv2 mutants and only modestly affected upon scl loss-of-function. Bmp signalling was also examined: overactivation of Bmp signalling increased endocardial expression, whereas Bmp inhibition decreased expression. Finally, epistasis experiments showed that overactivation of Bmp signalling was incapable of restoring endocardial expression in etv2 mutants. By contrast, overexpression of either npas4l or etv2 was sufficient to rescue endocardial expression upon Bmp inhibition. Together, these results describe the differentiation of the endocardium, distinct from vasculature, and place npas4l and etv2 downstream of Bmp signalling in regulating its differentiation. Summary: A zebrafish transgenic reporter of the endocardium is identified, permitting transcriptomic analysis and identification of new endocardial markers. Epistasis experiments demonstrate npas4l and etv2 act downstream of Bmp signalling to regulate endocardial differentiation.
Collapse
Affiliation(s)
- Samuel J Capon
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Veronica Uribe
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicole Dominado
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ophelia Ehrlich
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Song M, Yuan X, Racioppi C, Leslie M, Stutt N, Aleksandrova A, Christiaen L, Wilson MD, Scott IC. GATA4/5/6 family transcription factors are conserved determinants of cardiac versus pharyngeal mesoderm fate. SCIENCE ADVANCES 2022; 8:eabg0834. [PMID: 35275720 PMCID: PMC8916722 DOI: 10.1126/sciadv.abg0834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was substantially altered. In addition to the expected absence of cardiac mesoderm, we confirmed a concomitant expansion of cranial-pharyngeal mesoderm. Moreover, Gata5/6 loss led to extensive changes in chromatin accessibility near cardiac and pharyngeal genes. Functional analyses in zebrafish and the tunicate Ciona, which has a single GATA4/5/6 homolog, revealed that GATA4/5/6 acts upstream of tbx1 to exert essential and cell-autonomous roles in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, cardiac and pharyngeal mesoderm fate choices are achieved through an evolutionarily conserved GATA4/5/6 regulatory network.
Collapse
Affiliation(s)
- Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nathan Stutt
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anastasiia Aleksandrova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| |
Collapse
|
9
|
Xia B, Sui Q, Du Y, Wang L, Jing J, Zhu L, Zhao X, Sun X, Booth AM, Chen B, Qu K, Xing B. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127421. [PMID: 34653869 DOI: 10.1016/j.jhazmat.2021.127421] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Irregular-shaped and partially degraded secondary microplastics (SMP) account for the majority of MPs in marine environments, yet little is known about their effects on marine organisms. In this study, we investigated the embryotoxicity of polyvinyl chloride SMP and primary microplastics (PMP) to the marine medaka Oryzias melastigma. This study aimed to determine the physical impacts of MPs and, for the first time, elucidate the underlying mechanisms of physical toxicity. SMP shortened hatching time and induced higher teratogenic effects on larvae relative to PMP, indicating a higher toxicity from SMP. Physical damage from SMP to the chorion surface appears to be the main toxicity mechanism, caused by their irregular shape and reduced aggregation relative to PMP. In contrast, real-time changes in oxygen demonstrated that hypoxia caused by greater PMP adsorption to the chorion surface contributes to the toxicological responses of this material relative to SMP. Modulation of genes involved in hypoxia-response, cardiac development and hatching confirmed the toxicity mechanisms of PMP and SMP. The chemical contribution to observed toxicity was negligible, confirming impacts derived from physical toxicity. Our findings highlight the negative effects of environmentally relevant SMP on the marine ecosystems.
Collapse
Affiliation(s)
- Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| | - Qi Sui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yushan Du
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Wang
- SINTEF Energy Research, Trondheim, 7034, Norway
| | - Jing Jing
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Xinguo Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Andy M Booth
- SINTEF Ocean, Department of Climate and Environment, Trondheim, 7465, Norway.
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Hong JH, Zhang HG. Transcription Factors Involved in the Development and Prognosis of Cardiac Remodeling. Front Pharmacol 2022; 13:828549. [PMID: 35185581 PMCID: PMC8849252 DOI: 10.3389/fphar.2022.828549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
To compensate increasing workload, heart must work harder with structural changes, indicated by increasing size and changing shape, causing cardiac remodeling. However, pathological and unlimited compensated cardiac remodeling will ultimately lead to decompensation and heart failure. In the past decade, numerous studies have explored many signaling pathways involved in cardiac remodeling, but the complete mechanism of cardiac remodeling is still unrecognized, which hinders effective treatment and drug development. As gene transcriptional regulators, transcription factors control multiple cellular activities and play a critical role in cardiac remodeling. This review summarizes the regulation of fetal gene reprogramming, energy metabolism, apoptosis, autophagy in cardiomyocytes and myofibroblast activation of cardiac fibroblasts by transcription factors, with an emphasis on their potential roles in the development and prognosis of cardiac remodeling.
Collapse
|
11
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
12
|
Shimizu H, Huber S, Langenbacher AD, Crisman L, Huang J, Wang K, Wilting F, Gudermann T, Schredelseker J, Chen JN. Glutamate 73 Promotes Anti-arrhythmic Effects of Voltage-Dependent Anion Channel Through Regulation of Mitochondrial Ca 2+ Uptake. Front Physiol 2021; 12:724828. [PMID: 34483974 PMCID: PMC8416314 DOI: 10.3389/fphys.2021.724828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondria critically regulate a range of cellular processes including bioenergetics, cellular metabolism, apoptosis, and cellular Ca2+ signaling. The voltage-dependent anion channel (VDAC) functions as a passageway for the exchange of ions, including Ca2+, across the outer mitochondrial membrane. In cardiomyocytes, genetic or pharmacological activation of isoform 2 of VDAC (VDAC2) effectively potentiates mitochondrial Ca2+ uptake and suppresses Ca2+ overload-induced arrhythmogenic events. However, molecular mechanisms by which VDAC2 controls mitochondrial Ca2+ transport and thereby influences cardiac rhythmicity remain elusive. Vertebrates express three highly homologous VDAC isoforms. Here, we used the zebrafish tremblor/ncx1h mutant to dissect the isoform-specific roles of VDAC proteins in Ca2+ handling. We found that overexpression of VDAC1 or VDAC2, but not VDAC3, suppresses the fibrillation-like phenotype in zebrafish tremblor/ncx1h mutants. A chimeric approach showed that moieties in the N-terminal half of VDAC are responsible for their divergent functions in cardiac biology. Phylogenetic analysis further revealed that a glutamate at position 73, which was previously described to be an important regulator of VDAC function, is sevolutionarily conserved in VDAC1 and VDAC2, whereas a glutamine occupies position 73 (Q73) of VDAC3. To investigate whether E73/Q73 determines VDAC isoform-specific anti-arrhythmic effect, we mutated E73 to Q in VDAC2 (VDAC2E73Q) and Q73 to E in VDAC3 (VDAC3Q73E). Interestingly, VDAC2E73Q failed to restore rhythmic cardiac contractions in ncx1 deficient hearts, while the Q73E conversion induced a gain of function in VDAC3. In HL-1 cardiomyocytes, VDAC2 knockdown diminished the transfer of Ca2+ from the SR into mitochondria and overexpression of VDAC2 or VDAC3Q73E restored SR-mitochondrial Ca2+ transfer in VDAC2 deficient HL-1 cells, whereas this rescue effect was absent for VDAC3 and drastically compromised for VDAC2E73Q. Collectively, our findings demonstrate a critical role for the evolutionary conserved E73 in determining the anti-arrhythmic effect of VDAC isoforms through modulating Ca2+ cross-talk between the SR and mitochondria in cardiomyocytes.
Collapse
Affiliation(s)
- Hirohito Shimizu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Simon Huber
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Adam D Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lauren Crisman
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jie Huang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin Wang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fabiola Wilting
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functional analysis of novel genetic variants of NKX2-5 associated with nonsyndromic congenital heart disease. Am J Med Genet A 2021; 185:3644-3663. [PMID: 34214246 DOI: 10.1002/ajmg.a.62413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
NKX2-5, a master cardiac regulatory transcription factor was the first known genetic cause of congenital heart diseases (CHDs). To further investigate its role in CHD pathogenesis, we performed mutational screening of 285 CHD probands and 200 healthy controls. Five coding sequence variants were identified in six CHD cases (2.1%), including three in the N-terminal region (p.A61G, p.R95L, and p.E131K) and one each in homeodomain (HD) (p.A148E) and tyrosine-rich domain (p.P247A). Variant-p.A148E showed tertiary structure changes and differential DNA binding affinity of mutant compared to wild type. Two N-terminal variants-p.A61G and p.E131K along with HD variant p.A148E demonstrated significantly reduced transcriptional activity of Nppa and Actc1 promoters in dual luciferase promoter assay supported by their reduced expression in qRT-PCR. Nonetheless, variant p.R95L affected the synergy of NKX2-5 with serum response factor and TBX5 leading to significantly decreased Actc1 promoter activity depicting a distinctive role of this region. The aberrant expression of other target genes-Irx4, Mef2c, Bmp10, Myh6, Myh7, and Myocd is also observed in response to NKX2-5 variants, possibly due to the defective gene regulatory network. Severely impaired downstream promoter activities and abnormal expression of target genes due to N-terminal variants supports the emerging role of this region during cardiac-developmental pathways.
Collapse
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, India
| | - Vijayalakshmi I Balekundri
- Super Speciality Hospital, Pradhan Mantri Swasthya Suraksha Yojana (PMSSY), Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Damyanti Agrawal
- Department of Cardiothoracic and Vascular Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
14
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
15
|
Du ZC, Xia ZS, Huang YF, Peng Y, Cao BB, Li CQ, Liang YF, Zhao FH, Zhang MZ, Chen ZM, Hou XT, Hao EW, Deng JG. Cardiotoxicity induced by Cochinchina momordica seed extract in zebrafish. J Appl Toxicol 2021; 41:1222-1231. [PMID: 33445225 DOI: 10.1002/jat.4108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023]
Abstract
Momordica cochinchinensis (Lour.) Spreng is an indigenous South Asian edible fruit, and seeds of Momordica cochinchinensis have been used therapeutically in traditional Chinese medicine. Previous studies have shown that M. cochinchinensis seed (Momordicae Semen) has various pharmaceutical properties such as antioxidant and anti-ulcer effects as well as contains secondary metabolites with potential anticancer activities such as triterpenoids and saponins. Recent studies reported that water extract and ethanol extract of M. cochinchinensi seed were tested on mammals using an acute toxic classic method as OECD guidelines 420. No matter injected intravenously or intramuscularly, animals died within several days. In this study, zebrafish embryos were exposed to various doses of Cochinchina momordica seed extract (CMSE) from 2 dpf (days post fertilization, dpf) to 3 dpf. CMSE-induced cardiotoxicity such as pericardial edema, cardiac apoptosis, increased ROS production, cardiac neutrophil infiltration, decreased blood flow velocity, and reduced expression of three marker genes of cardiac functions were found in zebrafish roughly in a dose-dependent manner. These results suggest that CMSE may induce cardiotoxicity through pathways involved in inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Zheng-Cai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Zhong-Shang Xia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Yan-Feng Huang
- Hunter Biotechnology, Inc., Transfarland, Hangzhou, China
| | - Yi Peng
- Hunter Biotechnology, Inc., Transfarland, Hangzhou, China
| | - Bing-Bing Cao
- Hunter Biotechnology, Inc., Transfarland, Hangzhou, China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc., Transfarland, Hangzhou, China
| | - Yun-Fei Liang
- Guangxi Wuzhou Pharmaceutical Group Co., Ltd., Wuzhou, China
| | - Fang-Hui Zhao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Ming-Zhe Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Zhang-Mei Chen
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Xiao-Tao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Er-Wei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China.,Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Jia-Gang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China.,Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Traditional Chinese Medicine, Nanning, China
| |
Collapse
|
16
|
Budine TE, de Sena-Tomás C, Williams MLK, Sepich DS, Targoff KL, Solnica-Krezel L. Gon4l/Udu regulates cardiomyocyte proliferation and maintenance of ventricular chamber identity during zebrafish development. Dev Biol 2020; 462:223-234. [PMID: 32272116 PMCID: PMC10318589 DOI: 10.1016/j.ydbio.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 01/26/2020] [Accepted: 03/02/2020] [Indexed: 01/03/2023]
Abstract
Vertebrate heart development requires spatiotemporal regulation of gene expression to specify cardiomyocytes, increase the cardiomyocyte population through proliferation, and to establish and maintain atrial and ventricular cardiac chamber identities. The evolutionarily conserved chromatin factor Gon4-like (Gon4l), encoded by the zebrafish ugly duckling (udu) locus, has previously been implicated in cell proliferation, cell survival, and specification of mesoderm-derived tissues including blood and somites, but its role in heart formation has not been studied. Here we report two distinct roles of Gon4l/Udu in heart development: regulation of cell proliferation and maintenance of ventricular identity. We show that zygotic loss of udu expression causes a significant reduction in cardiomyocyte number at one day post fertilization that becomes exacerbated during later development. We present evidence that the cardiomyocyte deficiency in udu mutants results from reduced cell proliferation, unlike hematopoietic deficiencies attributed to TP53-dependent apoptosis. We also demonstrate that expression of the G1/S-phase cell cycle regulator, cyclin E2 (ccne2), is reduced in udu mutant hearts, and that the Gon4l protein associates with regulatory regions of the ccne2 gene during early embryogenesis. Furthermore, udu mutant hearts exhibit a decrease in the proportion of ventricular cardiomyocytes compared to atrial cardiomyocytes, concomitant with progressive reduction of nkx2.5 expression. We further demonstrate that udu and nkx2.5 interact to maintain the proportion of ventricular cardiomyocytes during development. However, we find that ectopic expression of nkx2.5 is not sufficient to restore ventricular chamber identity suggesting that Gon4l regulates cardiac chamber patterning via multiple pathways. Together, our findings define a novel role for zygotically-expressed Gon4l in coordinating cardiomyocyte proliferation and chamber identity maintenance during cardiac development.
Collapse
Affiliation(s)
- Terin E Budine
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carmen de Sena-Tomás
- Division of Pediatric Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Margot L K Williams
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Diane S Sepich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kimara L Targoff
- Division of Pediatric Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Lila Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Wang W, Wang B, Liu Z, Xia X. Developmental toxicity and alteration of gene expression in zebrafish embryo exposed to 6-benzylaminopurine. CHEMOSPHERE 2019; 233:336-346. [PMID: 31176896 DOI: 10.1016/j.chemosphere.2019.05.261] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
6-benzylaminopurine (6-BA) is widely used in agriculture and horticulture as plant growth regulator. Its excessive use may pose a potential risk to both environment and human health, which is causing great concern. This study was undertaken to assess the acute developmental toxicity of 6-BA to zebrafish embryos based on OECD protocols and mortality, hatching rate and malformation were investigated. Results showed that the 96 h-LC50 and 96 h- EC50 values were 63.29 mg/L and 41.86 mg/L, respectively. No mortality or teratogenic effects were found at concentrations lower than 10 mg/L 6-BA at concentrations higher than 50 mg/L significantly inhibited hatchability and embryo development, induced serious toxicity characterized by morphologic abnormalities (elongated pericardium, heart and yolk sac edema, spine curvature) and functional failure (slow spontaneous movement and heart rate, growth retardation, yolk sac absorption retention). Moreover, 6-BA-induced apoptosis was observed in embryos by the acridine orange staining and confirmed by the apoptotic-related genes, all of which p53 was significantly up-regulated at concentrations higher than 10 mg/L, bax at concentrations higher than 12.5 mg/L, while bcl2 was down-regulated at concentrations higher than 25 mg/L. As for genes of cardiac development, qPCR results demonstrated that nkx2.5, gata5, and amhc were significantly down-regulated at concentrations higher than 25 mg/L, vmhc and atp2a2a at concentration of 50 mg/L, in contrast, hand2 was up-regulated at concentration of 50 mg/L. Our data indicate that 6-BA induces a dose-dependent toxicity resulting in apoptosis through the involvement of p53-dependent pathways and hindering normal heart development in zebrafish embryos.
Collapse
Affiliation(s)
- Weixiang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, PR China.
| | - Binrong Wang
- School of Food and Bioengineering, Xihua University, Chengdu, PR China
| | - Zihao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, PR China
| | - Xuemei Xia
- School of Food and Bioengineering, Xihua University, Chengdu, PR China
| |
Collapse
|
18
|
Genetic evolution and codon usage analysis of NKX-2.5 gene governing heart development in some mammals. Genomics 2019; 112:1319-1329. [PMID: 31377427 DOI: 10.1016/j.ygeno.2019.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022]
Abstract
NKX-2.5 gene is responsible for cardiac development and its targeted disruption apprehends cardiac development at the linear heart tube stage. Bioinformatic analysis was employed to investigate the codon usage pattern and dN/dS of mammalian NKX-2.5 gene. The relative synonymous codon usage analysis revealed variation in codon usage and two synonymous codons namely ATA (Ile) and GTA (Val) were absent in NKX-2.5 gene across selected mammalian species suggesting that these two codons were possibly selected against during evolution. Parity rule 2 analysis of two and four fold amino acids showed CT bias whereas six-fold amino acids revealed GA bias. Neutrality analysis suggests that selection played a prominent role while mutation had a minor role. The dN/dS analysis suggests synonymous substitution played a significant role and it negatively correlated with p-distance of the gene. Purifying natural selection played a dominant role in the genetic evolution of NKX-2.5 gene in mammals.
Collapse
|
19
|
Wang H, Holland PWH, Takahashi T. Gene profiling of head mesoderm in early zebrafish development: insights into the evolution of cranial mesoderm. EvoDevo 2019; 10:14. [PMID: 31312422 PMCID: PMC6612195 DOI: 10.1186/s13227-019-0128-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background The evolution of the head was one of the key events that marked the transition from invertebrates to vertebrates. With the emergence of structures such as eyes and jaws, vertebrates evolved an active and predatory life style and radiated into diversity of large-bodied animals. These organs are moved by cranial muscles that derive embryologically from head mesoderm. Compared with other embryonic components of the head, such as placodes and cranial neural crest cells, our understanding of cranial mesoderm is limited and is restricted to few species. Results Here, we report the expression patterns of key genes in zebrafish head mesoderm at very early developmental stages. Apart from a basic anterior–posterior axis marked by a combination of pitx2 and tbx1 expression, we find that most gene expression patterns are poorly conserved between zebrafish and chick, suggesting fewer developmental constraints imposed than in trunk mesoderm. Interestingly, the gene expression patterns clearly show the early establishment of medial–lateral compartmentalisation in zebrafish head mesoderm, comprising a wide medial zone flanked by two narrower strips. Conclusions In zebrafish head mesoderm, there is no clear molecular regionalisation along the anteroposterior axis as previously reported in chick embryos. In contrast, the medial–lateral regionalisation is formed at early developmental stages. These patterns correspond to the distinction between paraxial mesoderm and lateral plate mesoderm in the trunk, suggesting a common groundplan for patterning head and trunk mesoderm. By comparison of these expression patterns to that of amphioxus homologues, we argue for an evolutionary link between zebrafish head mesoderm and amphioxus anteriormost somites. Electronic supplementary material The online version of this article (10.1186/s13227-019-0128-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijia Wang
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Peter W H Holland
- 2Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Tokiharu Takahashi
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
20
|
Gibb N, Lazic S, Yuan X, Deshwar AR, Leslie M, Wilson MD, Scott IC. Hey2 regulates the size of the cardiac progenitor pool during vertebrate heart development. Development 2018; 145:dev.167510. [PMID: 30355727 DOI: 10.1242/dev.167510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/13/2018] [Indexed: 01/04/2023]
Abstract
A key event in heart development is the timely addition of cardiac progenitor cells, defects in which can lead to congenital heart defects. However, how the balance and proportion of progenitor proliferation versus addition to the heart is regulated remains poorly understood. Here, we demonstrate that Hey2 functions to regulate the dynamics of cardiac progenitor addition to the zebrafish heart. We found that the previously noted increase in myocardial cell number found in the absence of Hey2 function was due to a pronounced expansion in the size of the cardiac progenitor pool. Expression analysis and lineage tracing of hey2-expressing cells showed that hey2 is active in cardiac progenitors. Hey2 acted to limit proliferation of cardiac progenitors, prior to heart tube formation. Use of a transplantation approach demonstrated a likely cell-autonomous (in cardiac progenitors) function for Hey2. Taken together, our data suggest a previously unappreciated role for Hey2 in controlling the proliferative capacity of cardiac progenitors, affecting the subsequent contribution of late-differentiating cardiac progenitors to the developing vertebrate heart.
Collapse
Affiliation(s)
- Natalie Gibb
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Savo Lazic
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Ashish R Deshwar
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Ian C Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada.,Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada.,Heart and Stroke Richard Lewar Centres of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| |
Collapse
|
21
|
Segert J, Schneider I, Berger IM, Rottbauer W, Just S. Mediator complex subunit Med12 regulates cardiac jelly development and AV valve formation in zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:20-31. [PMID: 30036562 DOI: 10.1016/j.pbiomolbio.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 11/25/2022]
Abstract
The molecular mechanism essential for the formation of heart valves involves complex interactions of signaling molecules and transcription factors. The Mediator Complex (MC) functions as multi-subunit machinery to orchestrate gene transcription, especially for tissue-specific fine-tuning of transcriptional processes during development, also in the heart. Here, we analyzed the role of the MC subunit Med12 during atrioventricular canal (AVC) development and endocardial cushion formation, using the Med12-deficient zebrafish mutant trapped (tpd). Whereas primary heart formation was only slightly affected in tpd, we identified defects in AVC development and cardiac jelly formation. We found that although misexpression of bmp4 and versican in tpd hearts can be restored by overexpression of a modified version of the Sox9b transcription factor (harboring VP16 transactivation domain) that functions independent of its co-activator Med12, endocardial cushion development in tpd was not reconstituted. Interestingly, expression of tbx2b and its target hyaluronan synthase 2 (has2) - the synthase of hyaluronan (HA) in the heart - was absent in both uninjected and Sox9b-VP16 overexpressing tpd hearts. HA is a major ECM component of the cardiac jelly and required for endocardial cushion formation. Furthermore, we found secreted phosphoprotein 1 (spp1), an endocardial marker of activated AV endocardial cells, completely absent in tpd hearts, suggesting that crucial steps of the transformation of AV endocardial cells into endocardial cushions is blocked. We demonstrate that Med12 controls cardiac jelly formation Sox9-independently by regulating tbx2b and has2 expression and therefore the production of the glycosaminoglycan HA at the AVC to guarantee proper endocardial cushion development.
Collapse
Affiliation(s)
- Julia Segert
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Isabelle Schneider
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Ina M Berger
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.
| |
Collapse
|
22
|
The developmental origin of heart size and shape differences in Astyanax mexicanus populations. Dev Biol 2018; 441:272-284. [PMID: 29940142 PMCID: PMC6142174 DOI: 10.1016/j.ydbio.2018.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
Abstract
Regulation of heart size and shape is one of the least understood processes in developmental biology. We have for the first time analysed the hearts of Astyanax mexicanus and identified several differences in heart morphology between the surface (epigean morph) and cave-dwelling (troglomorph) morphs. Examination of the adult revealed that the troglomorph possesses a smaller heart with a rounder ventricle in comparison to the epigean morph. The size differences identified appear to arise early in development, as early as 24 h post-fertilisation (hpf), while shape differences begin to appear at 2 days post-fertilisation. The heart of the first-generation cross between the cave-dwelling and river-dwelling morph shows uncoupling of different phenotypes observed in the parental populations and indicates that the cardiac differences have become embedded in the genome during evolution. The differences in heart morphology are accompanied by functional changes between the two morphs, with the cave-dwelling morph exhibiting a slower heart rate than the river-dwelling morph. The identification of morphological and functional differences in the A. mexicanus heart could allow us to gain more insight into how such parameters are regulated during cardiac development, with potential relevance to cardiac pathologies in humans. Differences in heart size, shape and tissue structure between Astyanax populations. Furthermore, differences in cardiac melanophore and adipocyte numbers. Heart size and shape differences are apparent early in development. Surface and Pachón show differences in heart rate during development and adulthood. F1 hybrids show uncoupling of features observed in surface and Pachón populations.
Collapse
|
23
|
Continuous addition of progenitors forms the cardiac ventricle in zebrafish. Nat Commun 2018; 9:2001. [PMID: 29784942 PMCID: PMC5962599 DOI: 10.1038/s41467-018-04402-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/27/2018] [Indexed: 01/10/2023] Open
Abstract
The vertebrate heart develops from several progenitor lineages. After early-differentiating first heart field (FHF) progenitors form the linear heart tube, late-differentiating second heart field (SHF) progenitors extend the atrium and ventricle, and form inflow and outflow tracts (IFT/OFT). However, the position and migration of late-differentiating progenitors during heart formation remains unclear. Here, we track zebrafish heart development using transgenics based on the cardiopharyngeal gene tbx1. Live imaging uncovers a tbx1 reporter-expressing cell sheath that continuously disseminates from the lateral plate mesoderm towards the forming heart tube. High-speed imaging and optogenetic lineage tracing corroborates that the zebrafish ventricle forms through continuous addition from the undifferentiated progenitor sheath followed by late-phase accrual of the bulbus arteriosus (BA). FGF inhibition during sheath migration reduces ventricle size and abolishes BA formation, refining the window of FGF action during OFT formation. Our findings consolidate previous end-point analyses and establish zebrafish ventricle formation as a continuous process. Late-differentiating second heart field progenitors contribute to atrium, ventricle, and outflow tract in the zebrafish heart but how remains unclear. Here, the authors image heart formation in transgenics based on the cardiopharyngeal gene tbx1 and show that progenitors are continuously added.
Collapse
|
24
|
Pursani V, Bhartiya D, Tanavde V, Bashir M, Sampath P. Transcriptional activator DOT1L putatively regulates human embryonic stem cell differentiation into the cardiac lineage. Stem Cell Res Ther 2018; 9:97. [PMID: 29631608 PMCID: PMC5891944 DOI: 10.1186/s13287-018-0810-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background Commitment of pluripotent stem cells into differentiated cells and associated gene expression necessitate specific epigenetic mechanisms that modify the DNA and corresponding histone proteins to render the chromatin in an open or closed state. This in turn dictates the associated genetic machinery, including transcription factors, acknowledging the cellular signals provided. Activating histone methyltransferases represent crucial enzymes in the epigenetic machinery that cause transcription initiation by delivering the methyl mark on histone proteins. A number of studies have evidenced the vital role of one such histone modifier, DOT1L, in transcriptional regulation. Involvement of DOT1L in differentiating pluripotent human embryonic stem (hES) cells into the cardiac lineage has not yet been investigated. Methods The study was conducted on in-house derived (KIND1) and commercially available (HES3) human embryonic stem cell lines. Chromatin immunoprecipitation (ChIP) was performed followed by sequencing to uncover the cardiac genes harboring the DOT1L specific mark H3K79me2. Following this, dual immunofluorescence was employed to show the DOT1L co-occupancy along with the cardiac progenitor specific marker. DOT1L was knocked down by siRNA to further confirm its role during cardiac differentiation. Results ChIP sequencing revealed a significant number of peaks characterizing H3K79me2 occupancy in the proximity of the transcription start site. This included genes like MYOF, NR2F2, NKX2.5, and HAND1 in cardiac progenitors and cardiomyocytes, and POU5F1 and NANOG in pluripotent hES cells. Consistent with this observation, we also show that DOT1L co-localizes with the master cardiac transcription factor NKX2.5, suggesting its direct involvement during gene activation. Knockdown of DOT1L did not alter the pluripotency of hES cells, but it led to the disruption of cardiac differentiation observed morphologically as well as at transcript and protein levels. Conclusions Collectively, our data suggests the crucial role of H3K79me2 methyltransferase DOT1L for activation of NKX2.5 during the cardiac differentiation of hES cells. Electronic supplementary material The online version of this article (10.1186/s13287-018-0810-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Varsha Pursani
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400 012, India.
| | - Vivek Tanavde
- Division of Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Ahmedabad, 380009, India.,Genome and Gene Expression Data Analysis Division, A* Star-Bioinformatics Institute, Singapore, 138671, Singapore
| | - Mohsin Bashir
- Division of Translational Control of Disease, A* Star-Institute of Medical Biology, Singapore, 138648, Singapore
| | - Prabha Sampath
- Division of Translational Control of Disease, A* Star-Institute of Medical Biology, Singapore, 138648, Singapore
| |
Collapse
|
25
|
Folkerts EJ, Blewett TA, He Y, Goss GG. Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1477-1487. [PMID: 28928018 DOI: 10.1016/j.envpol.2017.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 05/23/2023]
Abstract
Hydraulic fracturing to extract oil and natural gas reserves is an increasing practice in many international energy sectors. Hydraulic fracturing flowback and produced water (FPW) is a hyper saline wastewater returned to the surface from a fractured well containing chemical species present in the initial fracturing fluid, geogenic contaminants, and potentially newly synthesized chemicals formed in the fracturing well environment. However, information on FPW toxicological mechanisms of action remain largely unknown. Both cardiotoxic and respirometric responses were explored in zebrafish (Danio rerio) embryos after either an acute sediment-free (FPW-SF) or raw/sediment containing (FPW-S) fraction exposure of 24 and 48 h at 2.5% and 5% dilutions. A 48 h exposure to either FPW fraction in 24-72 h post fertilization zebrafish embryos significantly increased occurrences of pericardial edema, yolk-sac edema, and tail/spine curvature. In contrast, larval heart rates significantly decreased after FPW fraction exposures. FPW-S, but not FPW-SF, at 2.5% doses significantly reduced embryonic respiration/metabolic rates (MO2), while for 5% FPW, both fractions reduced MO2. Expression of select cardiac genes were also significantly altered in each FPW exposure group, implicating a cardiovascular system compromise as the potential cause for reduced embryonic MO2. Collectively, these results support our hypothesis that organics are major contributors to cardiac and respiratory responses to FPW exposure in zebrafish embryos. Our study is the first to investigate cardiac and respiratory sub-lethal effects of FPW exposure, demonstrating that FPW effects extend beyond initial osmotic stressors and verifies the use of respirometry as a potential marker for FPW exposure.
Collapse
Affiliation(s)
- Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Yuhe He
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; National Institute for Nanotechnology, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Embryonic Ethanol Exposure Affects Early- and Late-Added Cardiac Precursors and Produces Long-Lasting Heart Chamber Defects in Zebrafish. TOXICS 2017; 5:toxics5040035. [PMID: 29194345 PMCID: PMC5750563 DOI: 10.3390/toxics5040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/28/2022]
Abstract
Drinking mothers expose their fetuses to ethanol, which produces birth defects: craniofacial defects, cognitive impairment, sensorimotor disabilities and organ deformities, collectively termed as fetal alcohol spectrum disorder (FASD). Various congenital heart defects (CHDs) are present in FASD patients, but the mechanisms of alcohol-induced cardiogenesis defects are not completely understood. This study utilized zebrafish embryos and older larvae to understand FASD-associated CHDs. Ethanol-induced cardiac chamber defects initiated during embryonic cardiogenesis persisted in later zebrafish life. In addition, myocardial damage was recognizable in the ventricle of the larvae that were exposed to ethanol during embryogenesis. Our studies of the pathogenesis revealed that ethanol exposure delayed differentiation of first and second heart fields and reduced the number of early- and late-added cardiomyocytes in the heart. Ethanol exposure also reduced the number of endocardial cells. Together, this study showed that ethanol-induced heart defects were present in late-stage zebrafish larvae. Reduced numbers of cardiomyocytes partly accounts for the ethanol-induced zebrafish heart defects.
Collapse
|
27
|
Liang X, Li J, Martyniuk CJ, Wang J, Mao Y, Lu H, Zha J. Benzotriazole ultraviolet stabilizers alter the expression of the thyroid hormone pathway in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2017; 182:22-30. [PMID: 28486152 DOI: 10.1016/j.chemosphere.2017.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 05/14/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widely used in industrial products as well as personal-hygiene products to protect the material or skin from harmful UV-radiation. Due to their persistence and bioaccumulation, BUVSs have been ubiquitously detected in aquatic environments. Although the toxicological effects of BUVSs in aquatic organisms have been previously examined, the effects of BUVSs on the thyroid system have not been adequately addressed. In this study, we assessed putative thyroid disrupting effects of BUVSs (UV-234, UV-326, UV-329 and UV-P) in zebrafish embryos at 1, 10 and 100 μg/L for 96 h. The heart rate was assessed in zebrafish and was observed to be decreased by 6.9%-21.4% in exposure of tested BUVSs. We also observed that the transcript levels of HPT axis-related genes were affected by the 4 BUVSs tested in different ways. Specifically, mRNA levels of thyroid hormone receptors (thraa and thrb) in zebrafish embryos were differentially expressed and the direction of change in these transcripts was isoform and BUVSs dependent. Pathway analysis of the targeted genes measured indicated that cellular processes putatively affected by BUVSs included response to organic substance, regulation of transcription from RNA polymerase II promoter, intracellular receptor signaling pathway, and hypothyroidism. Upon expansion of the network, novel genes involved in this predicted gene network may provide insight into the mechanisms of thyroid disrupting mechanisms of BUVSs. Taken together, our results indicate that BUVSs can potentially impact the thyroid system, and that this is dependent upon the type or structure of BUVSs.
Collapse
Affiliation(s)
- Xuefang Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Jiajia Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Juan Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yufeng Mao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Huan Lu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
28
|
Shi G, Cui Q, Pan Y, Sheng N, Sun S, Guo Y, Dai J. 6:2 Chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:67-75. [PMID: 28187362 DOI: 10.1016/j.aquatox.2017.02.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 05/25/2023]
Abstract
As an alternative to perfluorooctanesulfonate (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (commercial name: F-53B) has been used as a mist suppressant in Chinese electroplating industries for over 30 years. It has been found in the environment and fish, and one acute assay indicated F-53B was moderately toxic. However, the toxicological information on this compound was incomplete and insufficient for assessment of their environment impact. The object of this study was to examine the developmental toxicity of F-53B using zebrafish embryos. Zebrafish embryos were incubated in 6-well plates with various concentrations of F-53B (1.5, 3, 6, and 12mg/L) from 6 to 132h post fertilization (hpf). Results showed that F-53B exposure induced developmental toxicity, including delayed hatching, increased occurrence of malformations, and reduced survival. Malformations, including pericardial and yolk sac edemas, abnormal spines, bent tails, and uninflated swim bladders, appeared at 84 hpf, and increased with time course and dose. A decrease in survival percentages was noted in the 6 and 12mg/L F-53B-treated groups at 132 hpf. Continuous exposure to 3mg/L F-53B resulted in high accumulation levels in zebrafish embryos, suggesting an inability for embryos to eliminate this compound and a high cumulative risk to fish. We also examined the cardiac function of embryos at specific developmental stages following exposure to different concentrations, and found that F-53B induced cardiac toxicity and reduced heart rate. Even under low F-53B concentration, o-dianisidine staining results showed significant decrease of relative erythrocyte number at 72 hpf before the appearance of observed effects of F-53B on the heart. To elucidate the underlying molecular changes, genes involved in normal cardiac development were analyzed using real-time qPCR in the whole-body of zebrafish embryos. F-53B inhibited the mRNA expression of β-catenin (ctnnb2) and wnt3a. The mRNA levels of β-catenin targeted genes (nkx2.5 and sox9b), which play critical roles in cardiogenesis, were also reduced after exposure. Thus, exposure to F-53B impaired the development of zebrafish embryos and disrupted cardiac development, which might be mediated by effects on the Wnt signaling pathway and decrease of erythrocyte numbers.
Collapse
Affiliation(s)
- Guohui Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Sujie Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
29
|
Li K, Wu JQ, Jiang LL, Shen LZ, Li JY, He ZH, Wei P, Lv Z, He MF. Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. CHEMOSPHERE 2017; 171:40-48. [PMID: 28002765 DOI: 10.1016/j.chemosphere.2016.12.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 05/03/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is widely used in agriculture as herbicide/pesticide, plant growth regulator and fruit preservative agent. It progressively accumulates in the environment including surface water, air and soil. It could be detected in human food and urine, which poses great risk to the living organisms. In the present study, we investigated the developmental toxicity of 2,4-D on zebrafish (Danio rerio) embryo. 2,4-D exposure significantly decreased both the survival rate (LC50 = 46.71 mg/L) and hatching rate (IC50 = 46.26 mg/L) of zebrafish embryos. The most common developmental defect in 2,4-D treated embryos was pericardial edema. 2,4-D (25 mg/L) upregulated marker genes of cardiac development (vmhc, amhc, hand2, vegf, and gata1) and downregulated marker genes of oxidative stress (cat and gpx1a). Whole mount in situ hybridization confirmed the vmhc and amhc upregulation by 2,4-D treatment. LC/MS/MS showed that the bioaccumulation of 2,4-D in zebrafish embryos were increased in a time-dependent manner after 25 mg/L of 2,4-D treatment. Taken together, our study investigated the toxic effects of 2,4-D on zebrafish embryonic development and its potential molecular mechanisms, gave evidence for the full understanding of 2,4-D toxicity on living organisms and shed light on its environmental impact.
Collapse
Affiliation(s)
- Kang Li
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Jia-Qi Wu
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Ling-Ling Jiang
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Li-Zhen Shen
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Jian-Ying Li
- Nanjing Emory Biotechnology Company, Nanjing, 210042, PR China
| | - Zhi-Heng He
- School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Ping Wei
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Zhuo Lv
- Shanxi Institute for Food and Drug Control, Xi'an, 710065, PR China
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| |
Collapse
|
30
|
Zhu D, Fang Y, Gao K, Shen J, Zhong TP, Li F. Vegfa Impacts Early Myocardium Development in Zebrafish. Int J Mol Sci 2017; 18:ijms18020444. [PMID: 28230770 PMCID: PMC5343978 DOI: 10.3390/ijms18020444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 11/16/2022] Open
Abstract
Vascular endothelial growth factor A (Vegfa) signaling regulates cardiovascular development. However, the cellular mechanisms of Vegfa signaling in early cardiogenesis remain poorly understood. The present study aimed to understand the differential functions and mechanisms of Vegfa signaling in cardiac development. A loss-of-function approach was utilized to study the effect of Vegfa signaling in cardiogenesis. Both morphants and mutants for vegfaa display defects in cardiac looping and chamber formation, especially the ventricle. Vegfa regulates the heart morphogenesis in a dose-dependent manner. Furthermore, the initial fusion of the bilateral myocardium population is delayed rather than endocardium. The results demonstrate that Vegfa signaling plays a direct impact on myocardium fusion, indicating that it is the initial cause of the heart defects. The heart morphogenesis is regulated by Vegfa in a dose-dependent manner, and later endocardium defects may be secondary to impaired myocardium–endocardium crosstalk.
Collapse
Affiliation(s)
- Diqi Zhu
- Department of Pediatric Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Yabo Fang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Kun Gao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Jie Shen
- Department of Pediatric Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
31
|
Lu F, Langenbacher A, Chen JN. Tbx20 drives cardiac progenitor formation and cardiomyocyte proliferation in zebrafish. Dev Biol 2016; 421:139-148. [PMID: 27940156 DOI: 10.1016/j.ydbio.2016.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
Tbx20 is a T-box transcription factor that plays essential roles in the development and maintenance of the heart. Although it is expressed by cardiac progenitors in all species examined, an involvement of Tbx20 in cardiac progenitor formation in vertebrates has not been previously described. Here we report the identification of a zebrafish tbx20 mutation that results in an inactive, truncated protein lacking any functional domains. The cardiac progenitor population is strongly diminished in this mutant, leading to the formation of a small, stretched-out heart. We found that overexpression of Tbx20 results in an enlarged heart with significantly more cardiomyocytes. Interestingly, this increase in cell number is caused by both enhanced cardiac progenitor cell formation and the proliferation of differentiated cardiomyocytes, and is dependent upon the activity of Tbx20's T-box and transcription activation domains. Together, our findings highlight a previously unappreciated role for Tbx20 in promoting cardiac progenitor formation in vertebrates and reveal a novel function for its activation domain in cardiac cell proliferation during embryogenesis.
Collapse
Affiliation(s)
- Fei Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, United States
| | - Adam Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, United States
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, United States.
| |
Collapse
|
32
|
Mespaa can potently induce cardiac fates in zebrafish. Dev Biol 2016; 418:17-27. [PMID: 27554166 DOI: 10.1016/j.ydbio.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/12/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023]
Abstract
The Mesp family of transcription factors have been implicated in the early formation and migration of the cardiac lineage, although the precise molecular mechanisms underlying this process remain unknown. In this study we examine the function of Mesp family members in zebrafish cardiac development and find that Mespaa is remarkably efficient at promoting cardiac fates in normally non-cardiogenic cells. However, Mespaa is dispensable for normal cardiac formation. Despite no overt defects in cardiovascular specification, we find a consistent defect in cardiac laterality in mespaa null embryos. This is further exacerbated by the depletion of other mesp paralogues, highlighting a conserved role for the mesp family in left-right asymmetry, distinct from a function in cardiac specification. Despite an early requirement for mespaa to promote cardiogenesis, cells over-expressing mespaa are found to both exhibit unique cellular behaviors and activate the transcription of gata5 only after the completion of gastrulation. We propose that while mespaa remains capable of driving cardiac progenitor formation in zebrafish, it may not play an essential role in the cardiac regulatory network. Furthermore, the late activation of migration and cardiac gene transcription in mespaa over-expressing cells challenges previous studies on the timing of these events and provides intriguing questions for future study.
Collapse
|
33
|
Rodius S, Fournier A, Götz L, Liechti R, Crespo I, Merz S, Nazarov PV, de Klein N, Jeanty C, González-Rosa JM, Muller A, Bernardin F, Niclou SP, Vallar L, Mercader N, Ibberson M, Xenarios I, Azuaje F. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish. Sci Rep 2016; 6:26822. [PMID: 27241320 PMCID: PMC4886216 DOI: 10.1038/srep26822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.
Collapse
Affiliation(s)
- Sophie Rodius
- Oncology Department, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, L-1526 Luxembourg
| | - Anna Fournier
- Oncology Department, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, L-1526 Luxembourg
- Present Address: Present address: Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg.,
| | - Lou Götz
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015 Switzerland
| | - Robin Liechti
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015 Switzerland
| | - Isaac Crespo
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015 Switzerland
| | - Susanne Merz
- Oncology Department, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, L-1526 Luxembourg
| | - Petr V. Nazarov
- Oncology Department, Genomics Research Unit, LIH, L-1526 Luxembourg Luxembourg
| | - Niek de Klein
- Oncology Department, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, L-1526 Luxembourg
- Vrije Universiteit Amsterdam, 1081 HV Amsterdam The Netherlands
- Present Address: Present address: Department of Genetics, University of Groningen, Groningen, 9700 RB, The Netherlands.,
| | - Céline Jeanty
- Oncology Department, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, L-1526 Luxembourg
| | - Juan M. González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Arnaud Muller
- Oncology Department, Genomics Research Unit, LIH, L-1526 Luxembourg Luxembourg
| | - Francois Bernardin
- Oncology Department, Genomics Research Unit, LIH, L-1526 Luxembourg Luxembourg
| | - Simone P. Niclou
- Oncology Department, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, L-1526 Luxembourg
| | - Laurent Vallar
- Oncology Department, Genomics Research Unit, LIH, L-1526 Luxembourg Luxembourg
| | - Nadia Mercader
- Epicardium Development and Regeneration group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC-ISCIII), 28029 Madrid Spain
- Present Address: Present address: Department of Development and Regeneration, Institute of Anatomy, Faculty of Medicine, University of Bern, Bern, Switzerland.,
| | - Mark Ibberson
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015 Switzerland
| | - Ioannis Xenarios
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015 Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, CH-1015 Switzerland
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Francisco Azuaje
- Oncology Department, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, L-1526 Luxembourg
| |
Collapse
|
34
|
Donnarumma D, Brodoline A, Alexandre D, Gross M. Blood flow imaging in zebrafish by laser doppler digital holography. Microsc Res Tech 2016; 81:153-161. [PMID: 27155205 DOI: 10.1002/jemt.22678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 11/08/2022]
Abstract
Microvessel blood flow imaging techniques are widely used in biomedical research and clinical diagnostics where many diseases have a vascular etiology or involvement. For testing purposes, zebrafish embryo provides an ideal animal model to achieve high-resolution imaging of superficial and deeply localized vessels. Moreover, the study of the formation of a closed circulatory system in vertebrates is a topic of recent interest in biophysics. However, most of the existing techniques are invasive due to the use of a contrast agent for imaging purposes. Recent developments in Digital Holography and Laser Doppler Holography techniques can be considered to alleviate this issue. Laser Doppler holography and transmission microscopy can be coupled to analyze blood flow in fish embryos by adapting a laser Doppler holographic setup to a standard bio-microscope: the two beams of the holographic interferometer (illumination of the object and reference), whose frequency offset is controlled, were addressed to the microscope by optical fibers. Multimodal acquisition and analysis of the data is made by acting on the frequency offset of the two beams, and on the location of the Fourier space filtered zone. In this work, we show that it is possible to select the signal of moving scatterers, and to image Red Blood Cells (RBCs) and blood vessels. Individual RBCs are imaged, and movies showing the RBC motion are obtained. Microsc. Res. Tech. 81:153-161, 2018. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dario Donnarumma
- Laboratoire Charles Coulomb-UMR 5221 CNRS-Universite Montpellier, Place Eugéne Bataillon, 34095, Montpellier, France
| | - Alexey Brodoline
- Laboratoire Charles Coulomb-UMR 5221 CNRS-Universite Montpellier, Place Eugéne Bataillon, 34095, Montpellier, France
| | - Daniel Alexandre
- Laboratoire Charles Coulomb-UMR 5221 CNRS-Universite Montpellier, Place Eugéne Bataillon, 34095, Montpellier, France
| | - Michel Gross
- Laboratoire Charles Coulomb-UMR 5221 CNRS-Universite Montpellier, Place Eugéne Bataillon, 34095, Montpellier, France
| |
Collapse
|
35
|
Deshwar AR, Chng SC, Ho L, Reversade B, Scott IC. The Apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development. eLife 2016; 5. [PMID: 27077952 PMCID: PMC4859801 DOI: 10.7554/elife.13758] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/11/2016] [Indexed: 01/07/2023] Open
Abstract
The Apelin receptor (Aplnr) is essential for heart development, controlling the early migration of cardiac progenitors. Here we demonstrate that in zebrafish Aplnr modulates Nodal/TGFβ signaling, a key pathway essential for mesendoderm induction and migration. Loss of Aplnr function leads to a reduction in Nodal target gene expression whereas activation of Aplnr by a non-peptide agonist increases the expression of these same targets. Furthermore, loss of Aplnr results in a delay in the expression of the cardiogenic transcription factors mespaa/ab. Elevating Nodal levels in aplnra/b morphant and double mutant embryos is sufficient to rescue cardiac differentiation defects. We demonstrate that loss of Aplnr attenuates the activity of a point source of Nodal ligands Squint and Cyclops in a non-cell autonomous manner. Our results favour a model in which Aplnr is required to fine-tune Nodal output, acting as a specific rheostat for the Nodal/TGFβ pathway during the earliest stages of cardiogenesis. DOI:http://dx.doi.org/10.7554/eLife.13758.001 In one of the first events that happens as an embryo develops, cells become the different stem cell populations that form the body’s organs. So what makes a cell become one stem cell type rather than another? In the case of the heart, the first important event is the activity of a signaling pathway called the Nodal/TGFβ pathway. Nodal signaling can drive cells to become many different stem cell types depending on its level of activity. Many different levels of regulation fine-tune Nodal signaling to produce these activity thresholds. Zebrafish that have a mutation in the gene that encodes a protein called the Apelin receptor have no heart. The loss of this receptor interferes with how heart stem cells (called cardiac progenitors) are made and how they move to where heart development occurs. Deshwar et al. have now studied mutant zebrafish in order to investigate how the Apelin receptor influences early heart development. This revealed that Nodal signaling levels are slightly lower in the mutant zebrafish embryos than in normal fish at the time when Nodal activity induces cardiac progenitors to form. When Nodal activity is experimentally boosted in zebrafish that lack the Apelin receptor, they become able to develop hearts. Deshwar et al. also found that the Apelin receptor does not work in cells that produce or receive Nodal signals. This suggests that the Apelin receptor modulates Nodal signaling levels by acting in cells that lie between the cells that release Nodal signals and the cardiac progenitors. An important question for future work to address is how this modulation works. As Nodal is a key determinant of many cell types in developing embryos, learning how Apelin receptors regulate its activity could help researchers to derive specific cell types from cultured stem cells for use in regenerative medicine. DOI:http://dx.doi.org/10.7554/eLife.13758.002
Collapse
Affiliation(s)
- Ashish R Deshwar
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Serene C Chng
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Lena Ho
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, School of Medicine, National University of Singapore, , Singapore
| | - Ian C Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Abstract
Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis.
Collapse
|
37
|
Foglia MJ, Cao J, Tornini VA, Poss KD. Multicolor mapping of the cardiomyocyte proliferation dynamics that construct the atrium. Development 2016; 143:1688-96. [PMID: 26989176 DOI: 10.1242/dev.136606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 01/13/2023]
Abstract
The orchestrated division of cardiomyocytes assembles heart chambers of distinct morphology. To understand the structural divergence of the cardiac chambers, we determined the contributions of individual embryonic cardiomyocytes to the atrium in zebrafish by multicolor fate-mapping and we compare our analysis to the established proliferation dynamics of ventricular cardiomyocytes. We find that most atrial cardiomyocytes become rod-shaped in the second week of life, generating a single-muscle-cell-thick myocardial wall with a striking webbed morphology. Inner pectinate myofibers form mainly by direct branching, unlike delamination events that create ventricular trabeculae. Thus, muscle clones assembling the atrial chamber can extend from wall to lumen. As zebrafish mature, atrial wall cardiomyocytes proliferate laterally to generate cohesive patches of diverse shapes and sizes, frequently with dominant clones that comprise 20-30% of the wall area. A subpopulation of cardiomyocytes that transiently express atrial myosin heavy chain (amhc) contributes substantially to specific regions of the ventricle, suggesting an unappreciated level of plasticity during chamber formation. Our findings reveal proliferation dynamics and fate decisions of cardiomyocytes that produce the distinct architecture of the atrium.
Collapse
Affiliation(s)
- Matthew J Foglia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingli Cao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Valerie A Tornini
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
38
|
Fuchs C, Gawlas S, Heher P, Nikouli S, Paar H, Ivankovic M, Schultheis M, Klammer J, Gottschamel T, Capetanaki Y, Weitzer G. Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the nkx2.5 gene. Biol Open 2016; 5:140-53. [PMID: 26787680 PMCID: PMC4823984 DOI: 10.1242/bio.014993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/13/2015] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Nkx2.5 and the intermediate filament protein desmin are simultaneously expressed in cardiac progenitor cells during commitment of primitive mesoderm to the cardiomyogenic lineage. Up-regulation of Nkx2.5 expression by desmin suggests that desmin may contribute to cardiogenic commitment and myocardial differentiation by directly influencing the transcription of the nkx2.5 gene in cardiac progenitor cells. Here, we demonstrate that desmin activates transcription of nkx2.5 reporter genes, rescues nkx2.5 haploinsufficiency in cardiac progenitor cells, and is responsible for the proper expression of Nkx2.5 in adult cardiac side population stem cells. These effects are consistent with the temporary presence of desmin in the nuclei of differentiating cardiac progenitor cells and its physical interaction with transcription factor complexes bound to the enhancer and promoter elements of the nkx2.5 gene. These findings introduce desmin as a newly discovered and unexpected player in the regulatory network guiding cardiomyogenesis in cardiac stem cells.
Collapse
Affiliation(s)
- Christiane Fuchs
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Sonja Gawlas
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Philipp Heher
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Sofia Nikouli
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 115 27, Greece
| | - Hannah Paar
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Mario Ivankovic
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Martina Schultheis
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Julia Klammer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Teresa Gottschamel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 115 27, Greece
| | - Georg Weitzer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| |
Collapse
|
39
|
van Marion DM, Domanska UM, Timmer-Bosscha H, Walenkamp AM. Studying cancer metastasis: Existing models, challenges and future perspectives. Crit Rev Oncol Hematol 2016; 97:107-17. [DOI: 10.1016/j.critrevonc.2015.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/05/2015] [Indexed: 02/03/2023] Open
|
40
|
Seto SW, Kiat H, Lee SMY, Bensoussan A, Sun YT, Hoi MPM, Chang D. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research. Eur J Pharmacol 2015; 768:77-86. [PMID: 26494630 DOI: 10.1016/j.ejphar.2015.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/02/2015] [Accepted: 10/16/2015] [Indexed: 01/12/2023]
Abstract
The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date.
Collapse
Affiliation(s)
- Sai-Wang Seto
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, NSW, Australia; School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia; Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Simon M Y Lee
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Alan Bensoussan
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yu-Ting Sun
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Maggie P M Hoi
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| |
Collapse
|
41
|
Fleury M, Eliades A, Carlsson P, Lacaud G, Kouskoff V. FOXF1 inhibits hematopoietic lineage commitment during early mesoderm specification. Development 2015; 142:3307-20. [PMID: 26293303 DOI: 10.1242/dev.124685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms orchestrating early mesoderm specification are still poorly understood. In particular, how alternate cell fate decisions are regulated in nascent mesoderm remains mostly unknown. In the present study, we investigated both in vitro in differentiating embryonic stem cells, and in vivo in gastrulating embryos, the lineage specification of early mesodermal precursors expressing or not the Forkhead transcription factor FOXF1. Our data revealed that FOXF1-expressing mesoderm is derived from FLK1(+) progenitors and that in vitro this transcription factor is expressed in smooth muscle and transiently in endothelial lineages, but not in hematopoietic cells. In gastrulating embryos, FOXF1 marks most extra-embryonic mesoderm derivatives including the chorion, the allantois, the amnion and a subset of endothelial cells. Similarly to the in vitro situation, FOXF1 expression is excluded from the blood islands and blood cells. Further analysis revealed an inverse correlation between hematopoietic potential and FOXF1 expression in vivo with increased commitment toward primitive erythropoiesis in Foxf1-deficient embryos, whereas FOXF1-enforced expression in vitro was shown to repress hematopoiesis. Altogether, our data establish that during gastrulation, FOXF1 marks all posterior primitive streak extra-embryonic mesoderm derivatives with the remarkable exception of the blood lineage. Our study further suggests that this transcription factor is implicated in actively restraining the specification of mesodermal progenitors to hematopoiesis.
Collapse
Affiliation(s)
- Maud Fleury
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Alexia Eliades
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
42
|
Nagelberg D, Wang J, Su R, Torres-Vázquez J, Targoff KL, Poss KD, Knaut H. Origin, Specification, and Plasticity of the Great Vessels of the Heart. Curr Biol 2015; 25:2099-110. [PMID: 26255850 PMCID: PMC4546555 DOI: 10.1016/j.cub.2015.06.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
The pharyngeal arch arteries (PAAs) are a series of paired embryonic blood vessels that give rise to several major arteries that connect directly to the heart. During development, the PAAs emerge from nkx2.5-expressing mesodermal cells and connect the dorsal head vasculature to the outflow tract of the heart. Despite their central role in establishing the circulatory system, the embryonic origins of the PAA progenitors are only coarsely defined, and the factors that specify them and their regenerative potential are unclear. Using fate mapping and mutant analysis, we find that PAA progenitors are derived from the tcf21 and nkx2.5 double-positive head mesoderm and require these two transcription factors for their specification and survival. Unexpectedly, cell ablation shows that the tcf21+; nkx2.5+ PAA progenitors are not required for PAA formation. We find that this compensation is due to the replacement of ablated tcf21+; nkx2.5+ PAA cells by endothelial cells from the dorsal head vasculature. Together, these studies assign the embryonic origin of the great vessel progenitors to the interface between the pharyngeal and cardiac mesoderm, identify the transcription factor code required for their specification, and reveal an unexpected plasticity in the formation of the great vessels.
Collapse
Affiliation(s)
- Danielle Nagelberg
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jinhu Wang
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, 349 Nanaline Duke Building, Durham, NC 27710, USA
| | - Rina Su
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jesús Torres-Vázquez
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Kimara L Targoff
- College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168(th) Street, New York, NY 10023, USA
| | - Kenneth D Poss
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, 349 Nanaline Duke Building, Durham, NC 27710, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
43
|
Cavanaugh AM, Huang J, Chen JN. Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart. Dev Biol 2015; 404:103-12. [PMID: 26086691 DOI: 10.1016/j.ydbio.2015.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/28/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022]
Abstract
Cardiac neural crest cells are essential for outflow tract remodeling in animals with divided systemic and pulmonary circulatory systems, but their contributions to cardiac development in animals with a single-loop circulatory system are less clear. Here we genetically labeled neural crest cells and examined their contribution to the developing zebrafish heart. We identified two populations of neural crest cells that contribute to distinct compartments of zebrafish cardiovascular system at different developmental stages. A stream of neural crest cells migrating through pharyngeal arches 1 and 2 integrates into the myocardium of the primitive heart tube between 24 and 30 h post fertilization and gives rise to cardiomyocytes. A second wave of neural crest cells migrating along aortic arch 6 envelops the endothelium of the ventral aorta and invades the bulbus arteriosus after three days of development. Interestingly, while inhibition of FGF signaling has no effect on the integration of neural crest cells to the primitive heart tube, it prevents these cells from contributing to the outflow tract, demonstrating disparate responses of neural crest cells to FGF signaling. Furthermore, neural crest ablation in zebrafish leads to multiple cardiac defects, including reduced heart rate, defective myocardial maturation and a failure to recruit progenitor cells from the second heart field. These findings add to our understanding of the contribution of neural crest cells to the developing heart and provide insights into the requirement for these cells in cardiac maturation.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles CA 90095, USA
| | - Jie Huang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles CA 90095, USA
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles CA 90095, USA.
| |
Collapse
|
44
|
Du Z, Wang G, Gao S, Wang Z. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: by disturbing expression of the transcriptional regulators. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:25-32. [PMID: 25661707 DOI: 10.1016/j.aquatox.2015.01.027] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 05/03/2023]
Abstract
As a result of the ban on some brominated flame retardants (BFRs), the use of organophosphate flame retardants (OPFRs) increases, and they are detected in multi-environment media at higher frequency and concentrations. However, the toxicity data of OPFRs, especially those on developmental toxicology are quite limited, which prevents an accurate evaluation of their environmental and health risk. Because a previous study reported that two aryl-OPFRs induced cardiotoxicity during zebrafish embryogenesis, we designed experiments to compare the heart developmental toxicity of a series of aryl-OPFRs with alkyl-OPFRs and explored possible internal mechanism. First, acute toxicity of 9 frequently used OPFRs were studied with zebrafish embryos (2-96 hpf). By comparing the LC50 and EC50 (pericardium edema) data, two aryl-OPFRs, triphenyl phosphate (TPhP) and cresyl diphenyl phosphate (CDP) showed greater heart developmental toxicity than the others. It was also found that the acute toxicity of OPFRs varied mainly depending on their hydrophobicity. Further study on the cardiotoxicity of TPhP and CDP showed that the cardiac looping progress can be impeded by 0.10mg/L TPhP or CDP exposure. Bradycardia and reduction of myocardium were also observed in 0.50 and 1.0mg/L TPhP groups and 0.10, 0.50, and 1.0mg/L CDP groups. 0-48 hpf is the vulnerable window of zebrafish cardiogenesis that can be easily affected by TPhP and CDP. RT-qPCR measurement on the expressions of key transcriptional regulators in cardiogenesis showed that BMP4, NKX2-5, and TBX5 were significantly inhibited at the exposure points of 12 hpf and 24 hpf which may be the internal factors related to the heart developmental toxicity. As zebrafish is a good model organism for human health study, the present results call for a greater attention to the health risk of fetus in pregnant women exposed to such OPFRs.
Collapse
Affiliation(s)
- Zhongkun Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Guowei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
45
|
Li J, Cao Y, Wu Y, Chen W, Yuan Y, Ma X, Huang G. The expression profile analysis of NKX2-5 knock-out embryonic mice to explore the pathogenesis of congenital heart disease. J Cardiol 2015; 66:527-31. [PMID: 25818641 DOI: 10.1016/j.jjcc.2014.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/09/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mutation of NKX2-5 could lead to the development of congenital heart disease (CHD) which is a common inherited disease. This study aimed to investigate the pathogenesis of CHD in NKX2-5 knock-out embryonic mice. METHODS The expression profile in the NKX2-5 knock-out embryonic mice (GSE528) was downloaded from Gene Expression Omnibus. The heart tissues from the null/heterozygous embryonic day 12.5 mice were compared with wild-type mice to identify differentially expressed genes (DEGs), and then DEGs corresponding to the transcriptional factors were filtered out based on the information in the TRANSFAC database. In addition, a transcriptional regulatory network was constructed according to transcription factor binding site information from the University of California Santa Cruz database. A pathway interaction network was constructed by latent pathways identification analysis. RESULTS The 42 DEGs corresponding to transcriptional factors from the null and heterozygous embryos were identified. The transcriptional regulatory networks included five down-regulated DEGs (SP1, SRY, JUND, STAT6, and GATA6), and six up-regulated DEGs [POU2F1, NFY (NFYA/NFYB/NFYC), USF2 and MAX]. Latent pathways analysis demonstrated that ribosome, glycolysis/gluconeogenesis, and dilated cardiomyopathy pathways significantly interacted. CONCLUSION The identified DEGs and latent pathways could provide new comprehensive view for understanding the pathogenesis of CHD.
Collapse
Affiliation(s)
- Jian Li
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defect, Shanghai 201102, China
| | - Yinyin Cao
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yao Wu
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Weicheng Chen
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yuan Yuan
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaojing Ma
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defect, Shanghai 201102, China.
| | - Guoying Huang
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defect, Shanghai 201102, China.
| |
Collapse
|
46
|
Chen M, Chen S, Du M, Tang S, Chen M, Wang W, Yang H, Chen Q, Chen J. Toxic effect of palladium on embryonic development of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:208-16. [PMID: 25550166 DOI: 10.1016/j.aquatox.2014.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/13/2014] [Accepted: 12/17/2014] [Indexed: 05/12/2023]
Abstract
Since palladium (Pd) is now increasingly used in modern industry, it progressively accumulates in the environment, especially in aquatic ecosystem. The potential toxicity of Pd has therefore caused extensive concern worldwidely. In the present study, we investigated the toxic effect of Pd on zebrafish development. Acute Pd exposure significantly decreased both the survival rate (LC50: 292.6 μg/L, viz. 2.75 μM) and hatching rate (IC50: 181.5 μg/L, viz. 1.71 μM) of zebrafish during embryonic development. The most common developmental defect observed in Pd treated embryos is pericardiac edema, which occurs in a dose-dependent manner. Whole mount immunostaining and histological studies revealed that Pd exposure would produce the elongated, string-like heart. The heartbeat rate of zebrafish embryos was also decreased after Pd exposure. Consistently, mRNA expression levels of several cardiac-related genes were affected by Pd, suggesting a potential molecular mechanism of Pd-induced cardiac malformation of zebrafish embryo. Moreover, similar to other metals, Pd exposure resulted in the elevated expression of general metal-inducible genes. It was also found that the expression of several antioxidant enzymes was significantly down-regulated in the presence of Pd. Taken together, our study investigated the effects of Pd on zebrafish embryonic development and its potential molecular mechanisms, paving the way for the full understanding of Pd toxicity.
Collapse
Affiliation(s)
- Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Sangxia Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Mi Du
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Shaoheng Tang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen 361005, Fujian Province, China
| | - Mei Chen
- College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen 361005, Fujian Province, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Hui Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Qiaoyu Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen 361005, Fujian Province, China.
| |
Collapse
|
47
|
Shimizu H, Schredelseker J, Huang J, Lu K, Naghdi S, Lu F, Franklin S, Fiji HD, Wang K, Zhu H, Tian C, Lin B, Nakano H, Ehrlich A, Nakai J, Stieg AZ, Gimzewski JK, Nakano A, Goldhaber JI, Vondriska TM, Hajnóczky G, Kwon O, Chen JN. Mitochondrial Ca(2+) uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity. eLife 2015; 4. [PMID: 25588501 PMCID: PMC4293673 DOI: 10.7554/elife.04801] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/23/2014] [Indexed: 01/02/2023] Open
Abstract
Tightly regulated Ca2+ homeostasis is a prerequisite for proper cardiac function. To dissect the regulatory network of cardiac Ca2+ handling, we performed a chemical suppressor screen on zebrafish tremblor embryos, which suffer from Ca2+ extrusion defects. Efsevin was identified based on its potent activity to restore coordinated contractions in tremblor. We show that efsevin binds to VDAC2, potentiates mitochondrial Ca2+ uptake and accelerates the transfer of Ca2+ from intracellular stores into mitochondria. In cardiomyocytes, efsevin restricts the temporal and spatial boundaries of Ca2+ sparks and thereby inhibits Ca2+ overload-induced erratic Ca2+ waves and irregular contractions. We further show that overexpression of VDAC2 recapitulates the suppressive effect of efsevin on tremblor embryos whereas VDAC2 deficiency attenuates efsevin's rescue effect and that VDAC2 functions synergistically with MCU to suppress cardiac fibrillation in tremblor. Together, these findings demonstrate a critical modulatory role for VDAC2-dependent mitochondrial Ca2+ uptake in the regulation of cardiac rhythmicity. DOI:http://dx.doi.org/10.7554/eLife.04801.001 The heart is a large muscle that pumps blood around the body by maintaining a regular rhythm of contraction and relaxation. If the heart loses this regular rhythm it works less efficiently, which can lead to life-threatening conditions. Regular heart rhythms are maintained by changes in the concentration of calcium ions in the cytoplasm of the heart muscle cells. These changes are synchronised so that the heart cells contract in a controlled manner. In each cell, a contraction begins when calcium ions from outside the cell enter the cytoplasm by passing through a channel protein in the membrane that surrounds the cell. This triggers the release of even more calcium ions into the cytoplasm from stores within the cell. For the cells to relax, the calcium ions must then be pumped out of the cytoplasm to lower the calcium ion concentration back to the original level. Shimizu et al. studied a zebrafish mutant—called tremblor—that has irregular heart rhythms because its heart muscle cells are unable to efficiently remove calcium ions from the cytoplasm. Embryos of the tremblor mutant were treated with a wide variety of chemical compounds with the aim of finding some that could correct the heart defect. A compound called efsevin restores regular heart rhythms in tremblor mutants. Efsevin binds to a pump protein called VDAC2, which is found in compartments called mitochondria within the cell. Although mitochondria are best known for their role in supplying energy for the cell, they also act as internal stores for calcium. By binding to VDAC2, efsevin increases the rate at which calcium ions are pumped from the cytoplasm into the mitochondria. This restores rhythmic calcium ion cycling in the cytoplasm and enables the heart muscle cells to develop regular rhythms of contraction and relaxation. Increasing the levels of VDAC2 or another similar calcium ion pump protein in the heart cells can also restore a regular heart rhythm. Efsevin can also correct irregular heart rhythms in human and mouse heart muscle cells, therefore the new role for mitochondria in controlling heart rhythms found by Shimizu et al. appears to be shared in other animals. The experiments have also identified the VDAC family of proteins as potential new targets for drug therapies to treat people with irregular heart rhythms. DOI:http://dx.doi.org/10.7554/eLife.04801.002
Collapse
Affiliation(s)
- Hirohito Shimizu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Johann Schredelseker
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Jie Huang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Kui Lu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
| | - Shamim Naghdi
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States
| | - Fei Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Sarah Franklin
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, United States
| | - Hannah Dg Fiji
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
| | - Kevin Wang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Huanqi Zhu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
| | - Cheng Tian
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Billy Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Haruko Nakano
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Amy Ehrlich
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States
| | - Junichi Nakai
- Brain Science Institute, Saitama University, Saitama, Japan
| | - Adam Z Stieg
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, United States
| | - James K Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
| | - Atsushi Nakano
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | | | - Thomas M Vondriska
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, United States
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
48
|
George V, Colombo S, Targoff KL. An early requirement for nkx2.5 ensures the first and second heart field ventricular identity and cardiac function into adulthood. Dev Biol 2014; 400:10-22. [PMID: 25536398 DOI: 10.1016/j.ydbio.2014.12.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
Temporally controlled mechanisms that define the unique features of ventricular and atrial cardiomyocyte identities are essential for the construction of a coordinated, morphologically intact heart. We have previously demonstrated an important role for nkx genes in maintaining ventricular identity, however, the specific timing of nkx2.5 function in distinct cardiomyocyte populations has yet to be elucidated. Here, we show that heat-shock induction of a novel transgenic line, Tg(hsp70l:nkx2.5-EGFP), during the initial stages of cardiomyocyte differentiation leads to rescue of chamber shape and identity in nkx2.5(-/-) embryos as chambers emerge. Intriguingly, our findings link an early role of this essential cardiac transcription factor with a later function. Moreover, these data reveal that nkx2.5 is also required in the second heart field as the heart tube forms, reflecting the temporal delay in differentiation of this population. Thus, our results support a model in which nkx genes induce downstream targets that are necessary to maintain chamber-specific identity in both early- and late-differentiating cardiomyocytes at discrete stages in cardiac morphogenesis. Furthermore, we show that overexpression of nkx2.5 during the first and second heart field development not only rescues the mutant phenotype, but also is sufficient for proper function of the adult heart. Taken together, these results shed new light on the stage-dependent mechanisms that sculpt chamber-specific cardiomyocytes and, therefore, have the potential to improve in vitro generation of ventricular cells to treat myocardial infarction and congenital heart disease.
Collapse
Affiliation(s)
- Vanessa George
- Division of Pediatric Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032 USA
| | - Sophie Colombo
- Division of Pediatric Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032 USA
| | - Kimara L Targoff
- Division of Pediatric Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032 USA.
| |
Collapse
|
49
|
Yang R, Lao QC, Yu HP, Zhang Y, Liu HC, Luan L, Sun HM, Li CQ. Tween-80 and impurity induce anaphylactoid reaction in zebrafish. J Appl Toxicol 2014; 35:295-301. [PMID: 25345596 DOI: 10.1002/jat.3069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 11/11/2022]
Abstract
A number of recent reports suspected that Tween-80 in injectable medicines, including traditional Chinese medicine injections could cause life-threatening anaphylactoid reaction, but no sound conclusion was drawn. A drug-induced anaphylactoid reaction is hard to be assayed in vitro and in conventional animal models. In this study, we developed a microplate-based quantitative in vivo zebrafish assay for assessing anaphylactoid reaction and live whole zebrafish mast cell tryptase activity was quantitatively measured at a wavelength of 405 nm using N-benzoyl-dl-arginine p-nitroanilide as a substrate. We assessed 10 batches of Tween-80 solutions from various national and international suppliers and three Tween-80 impurities (ethylene glycol, 2-chloroethanol and hydrogen peroxide) in this model and found that three batches of Tween-80 (nos 2, 20080709 and 20080616) and one Tween-80 impurity, hydrogen peroxide (H2 O2 ), induced anaphylactoid reactions in zebrafish. Furthermore, we found that H2 O2 residue and peroxide value were much higher in Tween-80 samples 2, 20080709 and 20080616. These findings suggest that H2 O2 residue in combination with oxidized fatty acid residues (measured as peroxide value) or more likely the oxidized fatty acid residues in Tween-80 samples, but not Tween-80 itself, may induce anaphylactoid reaction. High-throughput zebrafish tryptase assay developed in this report could be used for assessing safety of Tween-80-containing injectable medicines and potentially for screening novel mast cell-modulating drugs.
Collapse
Affiliation(s)
- Rui Yang
- National Institutes for Food and Drug Control, China Food and Drug Administration (CFDA), No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Feldman B, Tuchman M, Caldovic L. A zebrafish model of hyperammonemia. Mol Genet Metab 2014; 113:142-7. [PMID: 25069822 PMCID: PMC4191821 DOI: 10.1016/j.ymgme.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Hyperammonemia is the principal consequence of urea cycle defects and liver failure, and the exposure of the brain to elevated ammonia concentrations leads to a wide range of neuro-cognitive deficits, intellectual disabilities, coma and death. Current treatments focus almost exclusively on either reducing ammonia levels through the activation of alternative pathways for ammonia disposal or on liver transplantation. Ammonia is toxic to most fish and its pathophysiology appears to be similar to that in mammals. Since hyperammonemia can be induced in fish simply by immersing them in water with elevated concentration of ammonia, we sought to develop a zebrafish (Danio rerio) model of hyperammonemia. When exposed to 3mM ammonium acetate (NH4Ac), 50% of 4-day old (dpf) fish died within 3hours and 4mM NH4Ac was 100% lethal. We used 4dpf zebrafish exposed to 4mM NH4Ac to test whether the glutamine synthetase inhibitor methionine sulfoximine (MSO) and/or NMDA receptor antagonists MK-801, memantine and ketamine, which are known to protect the mammalian brain from hyperammonemia, prolong survival of hyperammonemic fish. MSO, MK-801, memantine and ketamine all prolonged the lives of the ammonia-treated fish. Treatment with the combination of MSO and an NMDA receptor antagonist was more effective than either drug alone. These results suggest that zebrafish can be used to screen for ammonia-neuroprotective agents. If successful, drugs that are discovered in this screen could complement current treatment approaches to improve the outcome of patients with hyperammonemia.
Collapse
Affiliation(s)
- B Feldman
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - M Tuchman
- Children's National Medical Center, Washington DC, USA
| | - L Caldovic
- Children's National Medical Center, Washington DC, USA.
| |
Collapse
|