1
|
Kessler S, Minoux M, Joshi O, Ben Zouari Y, Ducret S, Ross F, Vilain N, Salvi A, Wolff J, Kohler H, Stadler MB, Rijli FM. A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in cranial neural crest. Nat Commun 2023; 14:3242. [PMID: 37277355 DOI: 10.1038/s41467-023-38953-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Enhancer-promoter interactions preferentially occur within boundary-insulated topologically associating domains (TADs), limiting inter-TAD interactions. Enhancer clusters in linear proximity, termed super-enhancers (SEs), ensure high target gene expression levels. Little is known about SE topological regulatory impact during craniofacial development. Here, we identify 2232 genome-wide putative SEs in mouse cranial neural crest cells (CNCCs), 147 of which target genes establishing CNCC positional identity during face formation. In second pharyngeal arch (PA2) CNCCs, a multiple SE-containing region, partitioned into Hoxa Inter-TAD Regulatory Element 1 and 2 (HIRE1 and HIRE2), establishes long-range inter-TAD interactions selectively with Hoxa2, that is required for external and middle ear structures. HIRE2 deletion in a Hoxa2 haploinsufficient background results in microtia. HIRE1 deletion phenocopies the full homeotic Hoxa2 knockout phenotype and induces PA3 and PA4 CNCC abnormalities correlating with Hoxa2 and Hoxa3 transcriptional downregulation. Thus, SEs can overcome TAD insulation and regulate anterior Hoxa gene collinear expression in a CNCC subpopulation-specific manner during craniofacial development.
Collapse
Affiliation(s)
- Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- INSERM UMR 1121, Université de Strasbourg, Faculté de Chirurgie Dentaire, 8, rue Sainte Elisabeth, 67 000, Strasbourg, France
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Yousra Ben Zouari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Fiona Ross
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Adwait Salvi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joachim Wolff
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Abstract
Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Rikki M Garner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
3
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
4
|
Fuiten AM, Cresko WA. Evolutionary divergence of a Hoxa2b hindbrain enhancer in syngnathids mimics results of functional assays. Dev Genes Evol 2021; 231:57-71. [PMID: 34003345 DOI: 10.1007/s00427-021-00676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Hoxa2 genes provide critical patterning signals during development, and their regulation and function have been extensively studied. We report a previously uncharacterized significant sequence divergence of a highly conserved hindbrain hoxa2b enhancer element in the family syngnathidae (pipefishes, seahorses, pipehorses, seadragons). We compared the hox cis-regulatory element variation in the Gulf pipefish and two species of seahorse against eight other species of fish, as well as human and mouse. We annotated the hoxa2b enhancer element binding sites across three species of seahorse, four species of pipefish, and one species of ghost pipefish. Finally, we performed in situ hybridization analysis of hoxa2b expression in Gulf pipefish embryos. We found that all syngnathid fish examined share a modified rhombomere 4 hoxa2b enhancer element, despite the fact that this element has been found to be highly conserved across all vertebrates examined previously. Binding element sequence motifs and spacing between binding elements have been modified for the hoxa2b enhancer in several species of pipefish and seahorse, and that the loss of the Prep/Meis binding site and further space shortening happened after ghost pipefish split from the rest of the syngnathid clade. We showed that expression of this gene in rhombomere 4 is lower relative to the surrounding rhombomeres in developing Gulf pipefish embryos, reflecting previously published functional tests for this enhancer. Our findings highlight the benefits of studying highly derived, diverse taxa for understanding of gene regulatory evolution and support the hypothesis that natural mutations can occur in deeply conserved pathways in ways potentially related to phenotypic diversity.
Collapse
Affiliation(s)
- Allison M Fuiten
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
- Present address: Department of Dermatology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
5
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Cambronero F, Ariza‐McNaughton L, Wiedemann LM, Krumlauf R. Inter‐rhombomeric interactions reveal roles for fibroblast growth factors signaling in segmental regulation of
EphA4
expression. Dev Dyn 2019; 249:354-368. [DOI: 10.1002/dvdy.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Leanne M. Wiedemann
- Stowers Institute for Medical Research Kansas City Missouri
- Department of Pathology and Laboratory MedicineKansas University Medical Center Kansas City Kansas
| | - Robb Krumlauf
- Stowers Institute for Medical Research Kansas City Missouri
- Division of Developmental NeurobiologyNational Institute for Medical Research London UK
- Department of Anatomy and Cell BiologyKansas University Medical School Kansas City Kansas
| |
Collapse
|
7
|
A Hox-TALE regulatory circuit for neural crest patterning is conserved across vertebrates. Nat Commun 2019; 10:1189. [PMID: 30867425 PMCID: PMC6416258 DOI: 10.1038/s41467-019-09197-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
In jawed vertebrates (gnathostomes), Hox genes play an important role in patterning head and jaw formation, but mechanisms coupling Hox genes to neural crest (NC) are unknown. Here we use cross-species regulatory comparisons between gnathostomes and lamprey, a jawless extant vertebrate, to investigate conserved ancestral mechanisms regulating Hox2 genes in NC. Gnathostome Hoxa2 and Hoxb2 NC enhancers mediate equivalent NC expression in lamprey and gnathostomes, revealing ancient conservation of Hox upstream regulatory components in NC. In characterizing a lamprey hoxα2 NC/hindbrain enhancer, we identify essential Meis, Pbx, and Hox binding sites that are functionally conserved within Hoxa2/Hoxb2 NC enhancers. This suggests that the lamprey hoxα2 enhancer retains ancestral activity and that Hoxa2/Hoxb2 NC enhancers are ancient paralogues, which diverged in hindbrain and NC activities. This identifies an ancestral mechanism for Hox2 NC regulation involving a Hox-TALE regulatory circuit, potentiated by inputs from Meis and Pbx proteins and Hox auto-/cross-regulatory interactions.
Collapse
|
8
|
LaVallee J, Grant T, D'Angelo-Early S, Kletsov S, Berry NA, Abt KM, Bloch CP, Muscedere ML, Adams KW. Refining the nuclear localization signal within the Egr transcriptional coregulator NAB2. FEBS Lett 2018; 593:107-118. [PMID: 30411343 DOI: 10.1002/1873-3468.13288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
NAB1 and 2 are coregulators for early growth response (Egr) transcription factors. The NAB1 nuclear localization signal (NLS) was previously described as a bipartite NLS of sequence R(X2 )K(X11 )KRXK. The sequence is conserved in NAB2 as K(X2 )R(X11 )KKXK; however, whether it functions as the NAB2 NLS has not been tested. We show that the KKXK motif in NAB2 is necessary and sufficient to mediate nuclear localization. Mutation of the KKXK motif to AAXA causes cytoplasmic localization of NAB2, while Lys/Arg-to-Ala mutations of the upstream K(X2 )R motif have no effect. Fusion of the KKXK motif to cytoplasmic protein eIF2Bε causes nuclear localization. Altogether, this study refines our knowledge of the NAB2 NLS, demonstrating that KKXK343-346 is necessary and sufficient for nuclear localization.
Collapse
Affiliation(s)
- Jacquelyn LaVallee
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Terrain Grant
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | | | - Sergey Kletsov
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Nicole A Berry
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Kimberly M Abt
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Christopher P Bloch
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | | | - Kenneth W Adams
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| |
Collapse
|
9
|
Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest. Dev Biol 2018; 444 Suppl 1:S67-S78. [PMID: 29571614 DOI: 10.1016/j.ydbio.2018.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
Abstract
The neural crest is a transient population of cells that forms within the developing central nervous system and migrates away to generate a wide range of derivatives throughout the body during vertebrate embryogenesis. These cells are of evolutionary and clinical interest, constituting a key defining trait in the evolution of vertebrates and alterations in their development are implicated in a high proportion of birth defects and craniofacial abnormalities. In the hindbrain and the adjacent cranial neural crest cells (cNCCs), nested domains of Hox gene expression provide a combinatorial'Hox-code' for specifying regional properties in the developing head. Hox genes have been shown to play important roles at multiple stages in cNCC development, including specification, migration, and differentiation. However, relatively little is known about the underlying gene-regulatory mechanisms involved, both upstream and downstream of Hox genes. Furthermore, it is still an open question as to how the genes of the neural crest GRN are linked to Hox-dependent pathways. In this review, we describe Hox gene expression, function and regulation in cNCCs with a view to integrating these genes within the emerging gene regulatory network for cNCC development. We highlight early roles for Hox1 genes in cNCC specification, proposing that this may be achieved, in part, by regulation of the balance between pluripotency and differentiation in precursor cells within the neuro-epithelium. We then describe what is known about the regulation of Hox gene expression in cNCCs and discuss this from the perspective of early vertebrate evolution.
Collapse
|
10
|
Losa M, Latorre V, Andrabi M, Ladam F, Sagerström C, Novoa A, Zarrineh P, Bridoux L, Hanley NA, Mallo M, Bobola N. A tissue-specific, Gata6-driven transcriptional program instructs remodeling of the mature arterial tree. eLife 2017; 6:31362. [PMID: 28952437 PMCID: PMC5630260 DOI: 10.7554/elife.31362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/25/2017] [Indexed: 01/23/2023] Open
Abstract
Connection of the heart to the systemic circulation is a critical developmental event that requires selective preservation of embryonic vessels (aortic arches). However, why some aortic arches regress while others are incorporated into the mature aortic tree remains unclear. By microdissection and deep sequencing in mouse, we find that neural crest (NC) only differentiates into vascular smooth muscle cells (SMCs) around those aortic arches destined for survival and reorganization, and identify the transcription factor Gata6 as a crucial regulator of this process. Gata6 is expressed in SMCs and its target genes activation control SMC differentiation. Furthermore, Gata6 is sufficient to promote SMCs differentiation in vivo, and drive preservation of aortic arches that ought to regress. These findings identify Gata6-directed differentiation of NC to SMCs as an essential mechanism that specifies the aortic tree, and provide a new framework for how mutations in GATA6 lead to congenital heart disorders in humans.
Collapse
Affiliation(s)
- Marta Losa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Victor Latorre
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Munazah Andrabi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Franck Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Charles Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Ana Novoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Peyman Zarrineh
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Laure Bridoux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Neil A Hanley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Nicoletta Bobola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
12
|
Di Bonito M, Studer M. Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development. Front Neural Circuits 2017; 11:18. [PMID: 28469562 PMCID: PMC5395578 DOI: 10.3389/fncir.2017.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways.
Collapse
|
13
|
Parker HJ, Bronner ME, Krumlauf R. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. Bioessays 2016; 38:526-38. [PMID: 27027928 DOI: 10.1002/bies.201600010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
14
|
Davis A, Reubens MC, Stellwag EJ. Functional and Comparative Genomics of Hoxa2 Gene cis-Regulatory Elements: Evidence for Evolutionary Modification of Ancestral Core Element Activity. J Dev Biol 2016; 4:jdb4020015. [PMID: 29615583 PMCID: PMC5831782 DOI: 10.3390/jdb4020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
Hoxa2 is an evolutionarily conserved developmental regulatory gene that functions to specify rhombomere (r) and pharyngeal arch (PA) identities throughout the Osteichthyes. Japanese medaka (Oryzias latipes) hoxa2a, like orthologous Hoxa2 genes from other osteichthyans, is expressed during embryogenesis in r2–7 and PA2-7, whereas the paralogous medaka pseudogene, ψhoxa2b, is expressed in noncanonical Hoxa2 domains, including the pectoral fin buds. To understand the evolution of cis-regulatory element (CRE) control of gene expression, we conducted eGFP reporter gene expression studies with extensive functional mapping of several conserved CREs upstream of medaka hoxa2a and ψhoxa2b in transient and stable-line transgenic medaka embryos. The CREs tested were previously shown to contribute to directing mouse Hoxa2 gene expression in r3, r5, and PA2-4. Our results reveal the presence of sequence elements embedded in the medaka hoxa2a and ψhoxa2b upstream enhancer regions (UERs) that mediate expression in r4 and the PAs (hoxa2a r4/CNCC element) or in r3–7 and the PAs ψhoxa2b r3–7/CNCC element), respectively. Further, these elements were shown to be highly conserved among osteichthyans, which suggests that the r4 specifying element embedded in the UER of Hoxa2 is a deeply rooted rhombomere specifying element and the activity of this element has been modified by the evolution of flanking sequences that redirect its activity to alternative developmental compartments.
Collapse
Affiliation(s)
- Adam Davis
- Department of Biology and Physical Sciences, Gordon State College, Barnesville, GA 30204, USA.
| | - Michael C Reubens
- The Scripps Research Institute, 10550 N, Torrey Pines Road, MB3, La Jolla, CA 92037, USA.
| | - Edmund J Stellwag
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
15
|
McEllin JA, Alexander TB, Tümpel S, Wiedemann LM, Krumlauf R. Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis-regulatory modules during vertebrate evolution. Dev Biol 2016; 409:530-42. [DOI: 10.1016/j.ydbio.2015.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
|
16
|
Kitazawa T, Fujisawa K, Narboux-Nême N, Arima Y, Kawamura Y, Inoue T, Wada Y, Kohro T, Aburatani H, Kodama T, Kim KS, Sato T, Uchijima Y, Maeda K, Miyagawa-Tomita S, Minoux M, Rijli FM, Levi G, Kurihara Y, Kurihara H. Distinct effects of Hoxa2 overexpression in cranial neural crest populations reveal that the mammalian hyomandibular-ceratohyal boundary maps within the styloid process. Dev Biol 2015; 402:162-74. [PMID: 25889273 DOI: 10.1016/j.ydbio.2015.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Most gnathostomata craniofacial structures derive from pharyngeal arches (PAs), which are colonized by cranial neural crest cells (CNCCs). The anteroposterior and dorsoventral identities of CNCCs are defined by the combinatorial expression of Hox and Dlx genes. The mechanisms associating characteristic Hox/Dlx expression patterns with the topology and morphology of PAs derivatives are only partially known; a better knowledge of these processes might lead to new concepts on the origin of taxon-specific craniofacial morphologies and of certain craniofacial malformations. Here we show that ectopic expression of Hoxa2 in Hox-negative CNCCs results in distinct phenotypes in different CNCC subpopulations. Namely, while ectopic Hoxa2 expression is sufficient for the morphological and molecular transformation of the first PA (PA1) CNCC derivatives into the second PA (PA2)-like structures, this same genetic alteration does not provoke the transformation of derivatives of other CNCC subpopulations, but severely impairs their development. Ectopic Hoxa2 expression results in the transformation of the proximal Meckel's cartilage and of the malleus, two ventral PA1 CNCCs derivatives, into a supernumerary styloid process (SP), a PA2-derived mammalian-specific skeletal structure. These results, together with experiments to inactivate and ectopically activate the Edn1-Dlx5/6 pathway, indicate a dorsoventral PA2 (hyomandibular/ceratohyal) boundary passing through the middle of the SP. The present findings suggest context-dependent function of Hoxa2 in CNCC regional specification and morphogenesis, and provide novel insights into the evolution of taxa-specific patterning of PA-derived structures.
Collapse
Affiliation(s)
- Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kou Fujisawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nicolas Narboux-Nême
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris Cedex 05, France
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yumiko Kawamura
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tsuyoshi Inoue
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Youichiro Wada
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Takahide Kohro
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Department of Translational Research for Healthcare and Clinical Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Ki-Sung Kim
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Sato
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kazuhiro Maeda
- Division of Cardiovascular Development and Differentiation, Medical Research Institute, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sachiko Miyagawa-Tomita
- Division of Cardiovascular Development and Differentiation, Medical Research Institute, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculté de chirurgie dentaire, 1, place de l'hôpital, 67 000 Strasbourg, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, CH-4056 Basel, Switzerland
| | - Giovanni Levi
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris Cedex 05, France
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan; Institute for Biology and Mathematics of Dynamical Cell Processes (iBMath), The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan.
| |
Collapse
|
17
|
Hoxa2 selectively enhances Meis binding to change a branchial arch ground state. Dev Cell 2015; 32:265-77. [PMID: 25640223 PMCID: PMC4333904 DOI: 10.1016/j.devcel.2014.12.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/18/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023]
Abstract
Hox transcription factors (TFs) are essential for vertebrate development, but how these evolutionary conserved proteins function in vivo remains unclear. Because Hox proteins have notoriously low binding specificity, they are believed to bind with cofactors, mainly homeodomain TFs Pbx and Meis, to select their specific targets. We mapped binding of Meis, Pbx, and Hoxa2 in the branchial arches, a series of segments in the developing vertebrate head. Meis occupancy is largely similar in Hox-positive and -negative arches. Hoxa2, which specifies second arch (IIBA) identity, recognizes a subset of Meis prebound sites that contain Hox motifs. Importantly, at these sites Meis binding is strongly increased. This enhanced Meis binding coincides with active enhancers, which are linked to genes highly expressed in the IIBA and regulated by Hoxa2. These findings show that Hoxa2 operates as a tissue-specific cofactor, enhancing Meis binding to specific sites that provide the IIBA with its anatomical identity. Meis provides a ground state that is common to all the branchial arches Hoxa2 recognizes Meis prebound sites in the second arch that contain Hox motifs Hoxa2 enhances Meis binding, which coincides with active enhancers, at these sites Hoxa2 modulates the ground-state binding of Meis to instruct second arch identity
Collapse
|
18
|
A novel function for Egr4 in posterior hindbrain development. Sci Rep 2015; 5:7750. [PMID: 25583070 PMCID: PMC4291570 DOI: 10.1038/srep07750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/09/2014] [Indexed: 02/08/2023] Open
Abstract
Segmentation of the vertebrate hindbrain is an evolutionarily conserved process. Here, we identify the transcription factor early growth response 4 (egr4) as a novel regulator of posterior hindbrain development in Xenopus. egr4 is specifically and transiently expressed in rhombomeres 5 and 6 (r5/r6), and Egr4 knockdown causes a loss of mafb/kreisler and krox20/egr2 expression in r5/r6 and r5, respectively. This phenotype can be fully rescued by injection of frog or mouse Egr4 mRNA. Moreover Egr4-depleted embryos exhibit a specific loss of the neural crest stream adjacent to r5, and have inner ear defects. While the homeodomain protein vHnf1/Hnf1b directly activates Mafb and Krox20 expression in the mouse hindbrain to specify r5, we show that in Xenopus this process is indirect through the activation of Egr4. We provide evidence that rearrangements in the regulatory sequences around egr4 and mafb genes may account for this difference.
Collapse
|
19
|
A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature 2014; 514:490-3. [PMID: 25219855 PMCID: PMC4209185 DOI: 10.1038/nature13723] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022]
Abstract
A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.
Collapse
|
20
|
Soshnikova N. Hox genes regulation in vertebrates. Dev Dyn 2013; 243:49-58. [PMID: 23832853 DOI: 10.1002/dvdy.24014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022] Open
Abstract
Hox genes encode transcription factors defining cellular identities along the major and secondary body axes. Their coordinated expression in both space and time is critical for embryonic patterning. Accordingly, Hox genes transcription is tightly controlled at multiple levels, and involves an intricate combination of local and long-range cis-regulatory elements. Recent studies revealed that in addition to transcription factors, dynamic patterns of histone marks and higher-order chromatin structure are important determinants of Hox gene regulation. Furthermore, the emerging picture suggests an involvement of various species of non-coding RNA in targeting activating and repressive complexes to Hox clusters. I review these recent developments and discuss their relevance to the control of Hox gene expression in vivo, as well as to our understanding of transcriptional regulatory mechanisms.
Collapse
|
21
|
Kayam G, Kohl A, Magen Z, Peretz Y, Weisinger K, Bar A, Novikov O, Brodski C, Sela-Donenfeld D. A novel role for Pax6 in the segmental organization of the hindbrain. Development 2013; 140:2190-202. [PMID: 23578930 DOI: 10.1242/dev.089136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complex patterns and networks of genes coordinate rhombomeric identities, hindbrain segmentation and neuronal differentiation and are responsible for later brainstem functions. Pax6 is a highly conserved transcription factor crucial for neuronal development, yet little is known regarding its early roles during hindbrain segmentation. We show that Pax6 expression is highly dynamic in rhombomeres, suggesting an early function in the hindbrain. Utilization of multiple gain- and loss-of-function approaches in chick and mice revealed that loss of Pax6 disrupts the sharp expression borders of Krox20, Kreisler, Hoxa2, Hoxb1 and EphA and leads to their expansion into adjacent territories, whereas excess Pax6 reduces these expression domains. A mutual negative cross-talk between Pax6 and Krox20 allows these genes to be co-expressed in the hindbrain through regulation of the Krox20-repressor gene Nab1 by Pax6. Rhombomere boundaries are also distorted upon Pax6 manipulations, suggesting a mechanism by which Pax6 acts to set hindbrain segmentation. Finally, FGF signaling acts upstream of the Pax6-Krox20 network to regulate Pax6 segmental expression. This study unravels a novel role for Pax6 in the segmental organization of the early hindbrain and provides new evidence for its significance in regional organization along the central nervous system.
Collapse
Affiliation(s)
- Galya Kayam
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Morquette P, Lavoie R, Fhima MD, Lamoureux X, Verdier D, Kolta A. Generation of the masticatory central pattern and its modulation by sensory feedback. Prog Neurobiol 2012; 96:340-55. [PMID: 22342735 DOI: 10.1016/j.pneurobio.2012.01.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/16/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
The basic pattern of rhythmic jaw movements produced during mastication is generated by a neuronal network located in the brainstem and referred to as the masticatory central pattern generator (CPG). This network composed of neurons mostly associated to the trigeminal system is found between the rostral borders of the trigeminal motor nucleus and facial nucleus. This review summarizes current knowledge on the anatomical organization, the development, the connectivity and the cellular properties of these trigeminal circuits in relation to mastication. Emphasis is put on a population of rhythmogenic neurons in the dorsal part of the trigeminal sensory nucleus. These neurons have intrinsic bursting capabilities, supported by a persistent Na(+) current (I(NaP)), which are enhanced when the extracellular concentration of Ca(2+) diminishes. Presented evidence suggest that the Ca(2+) dependency of this current combined with its voltage-dependency could provide a mechanism for cortical and sensory afferent inputs to the nucleus to interact with the rhythmogenic properties of its neurons to adjust and adapt the rhythmic output. Astrocytes are postulated to contribute to this process by modulating the extracellular Ca(2+) concentration and a model is proposed to explain how functional microdomains defined by the boundaries of astrocytic syncitia may form under the influence of incoming inputs.
Collapse
Affiliation(s)
- Philippe Morquette
- Groupe de Recherche sur le Système Nerveux Central du FRSQ, Université de Montréal and Faculté de médecine dentaire, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Donaldson IJ, Amin S, Hensman JJ, Kutejova E, Rattray M, Lawrence N, Hayes A, Ward CM, Bobola N. Genome-wide occupancy links Hoxa2 to Wnt-β-catenin signaling in mouse embryonic development. Nucleic Acids Res 2012; 40:3990-4001. [PMID: 22223247 PMCID: PMC3351182 DOI: 10.1093/nar/gkr1240] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The regulation of gene expression is central to developmental programs and largely depends on the binding of sequence-specific transcription factors with cis-regulatory elements in the genome. Hox transcription factors specify the spatial coordinates of the body axis in all animals with bilateral symmetry, but a detailed knowledge of their molecular function in instructing cell fates is lacking. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) to identify Hoxa2 genomic locations in a time and space when it is actively instructing embryonic development in mouse. Our data reveals that Hoxa2 has large genome coverage and potentially regulates thousands of genes. Sequence analysis of Hoxa2-bound regions identifies high occurrence of two main classes of motifs, corresponding to Hox and Pbx-Hox recognition sequences. Examination of the binding targets of Hoxa2 faithfully captures the processes regulated by Hoxa2 during embryonic development; in addition, it uncovers a large cluster of potential targets involved in the Wnt-signaling pathway. In vivo examination of canonical Wnt-β-catenin signaling reveals activity specifically in Hoxa2 domain of expression, and this is undetectable in Hoxa2 mutant embryos. The comprehensive mapping of Hoxa2-binding sites provides a framework to study Hox regulatory networks in vertebrate developmental processes.
Collapse
Affiliation(s)
- Ian J Donaldson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Raincrow JD, Dewar K, Stocsits C, Prohaska SJ, Amemiya CT, Stadler PF, Chiu CH. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:451-64. [PMID: 21688387 DOI: 10.1002/jez.b.21420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/27/2011] [Accepted: 04/24/2011] [Indexed: 12/12/2022]
Abstract
Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.
Collapse
Affiliation(s)
- Jeremy D Raincrow
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Sarko DK, Rice FL, Reep RL. Mammalian tactile hair: divergence from a limited distribution. Ann N Y Acad Sci 2011; 1225:90-100. [DOI: 10.1111/j.1749-6632.2011.05979.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Inactivation of Six2 in mouse identifies a novel genetic mechanism controlling development and growth of the cranial base. Dev Biol 2010; 344:720-30. [PMID: 20515681 DOI: 10.1016/j.ydbio.2010.05.509] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 05/03/2010] [Accepted: 05/24/2010] [Indexed: 12/17/2022]
Abstract
The cranial base is essential for integrated craniofacial development and growth. It develops as a cartilaginous template that is replaced by bone through the process of endochondral ossification. Here, we describe a novel and specific role for the homeoprotein Six2 in the growth and elongation of the cranial base. Six2-null newborn mice display premature fusion of the bones in the cranial base. Chondrocyte differentiation is abnormal in the Six2-null cranial base, with reduced proliferation and increased terminal differentiation. Gain-of-function experiments indicate that Six2 promotes cartilage development and growth in other body areas and appears therefore to control general regulators of chondrocyte differentiation. Our data indicate that the main factors restricting Six2 function to the cranial base are tissue-specific transcription of the gene and compensatory effects of other Six family members. The comparable expression during human embryogenesis and the high protein conservation from mouse to human implicate SIX2 loss-of-function as a potential congenital cause of anterior cranial base defects in humans.
Collapse
|
27
|
|
28
|
Chambers D, Wilson LJ, Alfonsi F, Hunter E, Saxena U, Blanc E, Lumsden A. Rhombomere-specific analysis reveals the repertoire of genetic cues expressed across the developing hindbrain. Neural Dev 2009; 4:6. [PMID: 19208226 PMCID: PMC2649922 DOI: 10.1186/1749-8104-4-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 02/10/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Hox family of homeodomain transcription factors comprises pivotal regulators of cell specification and identity during animal development. However, despite their well-defined roles in the establishment of anteroposterior pattern and considerable research into their mechanism of action, relatively few target genes have been identified in the downstream regulatory network. We have sought to investigate this issue, focussing on the developing hindbrain and the cranial motor neurons that arise from this region. The reiterated anteroposterior compartments of the developing hindbrain (rhombomeres (r)) are normally patterned by the combinatorial action of distinct Hox genes. Alteration in the normal pattern of Hox cues in this region results in a transformation of cellular identity to match the remaining Hox profile, similar to that observed in Drosophila homeotic transformations. RESULTS To define the repertoire of genes regulated in each rhombomere, we have analysed the transcriptome of each rhombomere from wild-type mouse embryos and not those where pattern is perturbed by gain or loss of Hox gene function. Using microarray and bioinformatic methodologies in conjunction with other confirmatory techniques, we report here a detailed and comprehensive set of potential Hox target genes in r2, r3, r4 and r5. We have demonstrated that the data produced are both fully reflective and predictive of rhombomere identity and, thus, may represent some the of Hox targets. These data have been interrogated to generate a list of candidate genes whose function may contribute to the generation of neuronal subtypes characteristic of each rhombomere. Interestingly, the data can also be classified into genetic motifs that are predicted by the specific combinations of Hox genes and other regulators of hindbrain anteroposterior identity. The sets of genes described in each or combinations of rhombomeres span a wide functional range and suggest that the Hox genes, as well as other regulatory inputs, exert their influence across the full spectrum of molecular machinery. CONCLUSION We have performed a systematic survey of the transcriptional status of individual segments of the developing mouse hindbrain and identified hundreds of previously undescribed genes expressed in this region. The functional range of the potential candidate effectors or upstream modulators of Hox activity suggest multiple unexplored mechanisms. In particular, we present evidence of a potential new retinoic acid signalling system in ventral r4 and propose a model for the refinement of identity in this region. Furthermore, the rhombomeres demonstrate a molecular relationship to each other that is consistent with known observations about neurogenesis in the hindbrain. These findings give the first genome-wide insight into the complexity of gene expression during patterning of the developing hindbrain.
Collapse
Affiliation(s)
- David Chambers
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Leigh Jane Wilson
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Fabienne Alfonsi
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Ewan Hunter
- Infogen Bioinformatics Ltd, 83 South Middleton, Uphall, West Lothian, EH52 5GA, UK
| | - Uma Saxena
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Eric Blanc
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Andrew Lumsden
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
29
|
Tümpel S, Wiedemann LM, Krumlauf R. Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009; 88:103-37. [PMID: 19651303 DOI: 10.1016/s0070-2153(09)88004-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the vertebrate central nervous system, the hindbrain is an important center for coordinating motor activity, posture, equilibrium, sleep patterns, and essential unconscious functions, such as breathing rhythms and blood circulation. During development, the vertebrate hindbrain depends upon the process of segmentation or compartmentalization to create and organize regional properties essential for orchestrating its highly conserved functional roles. The process of segmentation in the hindbrain differs from that which functions in the paraxial mesoderm to generate somites and the axial skeleton. In the prospective hindbrain, cells in the neural epithelia transiently alter their ability to interact with their neighbors, resulting in the formation of seven lineage-restricted cellular compartments. These different segments or rhombomeres each go on to adopt unique characters in response to environmental signals. The Hox family of transcription factors is coupled to this process. Overlapping or nested patterns of Hox gene expression correlate with segmental domains and provide a combinatorial code and molecular framework for specifying the unique identities of hindbrain segments. The segmental organization and patterns of Hox expression and function are highly conserved among vertebrates and, as a consequence, comparative studies between different species have greatly enhanced our ability to build a picture of the regulatory cascades that control early hindbrain development. The purpose of this chapter is to review what is known about the regulatory mechanisms which establish and maintain Hox gene expression and function in hindbrain development.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
30
|
A regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2. Proc Natl Acad Sci U S A 2008; 105:20077-82. [PMID: 19104046 DOI: 10.1073/pnas.0806360105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we define a gene regulatory network for Hoxa2, responsible for temporal and spatial expression in hindbrain development. Hoxa2 plays an important role in regulating the regional identity of rhombomere 2 (r2) and is the only Hox gene expressed in this segment. In this study, we found that a Hoxa2 cis-regulatory module consists of five elements that direct expression in r2 of the developing hindbrain. Surprisingly, the module is imbedded in the second coding exon of Hoxa2 and therefore may be constrained by both protein coding and gene regulatory requirements. This highly conserved enhancer consists of two consensus Sox binding sites and several additional elements that act in concert to direct strong r2 specific expression. Our findings provide important insight into the regulation of segmental identity in the anterior hindbrain. Furthermore, they have broader implications in designing arrays and interpreting data from global analyses of gene regulation because regulatory input from coding regions needs to be considered.
Collapse
|
31
|
Japanese medakaHoxparalog group 2: insights into the evolution ofHoxPG2 gene composition and expression in the Osteichthyes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:623-41. [DOI: 10.1002/jez.b.21236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Wassef MA, Chomette D, Pouilhe M, Stedman A, Havis E, Desmarquet-Trin Dinh C, Schneider-Maunoury S, Gilardi-Hebenstreit P, Charnay P, Ghislain J. Rostral hindbrain patterning involves the direct activation of a Krox20 transcriptional enhancer by Hox/Pbx and Meis factors. Development 2008; 135:3369-78. [PMID: 18787068 DOI: 10.1242/dev.023614] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The morphogenesis of the vertebrate hindbrain involves the generation of metameric units called rhombomeres (r), and Krox20 encodes a transcription factor that is expressed in r3 and r5 and plays a major role in this segmentation process. Our knowledge of the basis of Krox20 regulation in r3 is rather confusing, especially concerning the involvement of Hox factors. To investigate this issue, we studied one of the Krox20 hindbrain cis-regulatory sequences, element C, which is active in r3-r5 and which is the only initiator element in r3. We show that element C contains multiple binding sites for Meis and Hox/Pbx factors and that these proteins synergize to activate the enhancer. Mutation of these binding sites allowed us to establish that Krox20 is under the direct transcriptional control of both Meis (presumably Meis2) and Hox/Pbx factors in r3. Furthermore, our data indicate that element C functions according to multiple modes, in Meis-independent or -dependent manners and with different Hox proteins, in r3 and r5. Finally, we show that the Hoxb1 and Krox20 expression domains transiently overlap in prospective r3, and that Hoxb1 binds to element C in vivo, supporting a cell-autonomous involvement of Hox paralogous group 1 proteins in Krox20 regulation. Altogether, our data clarify the molecular mechanisms of an essential step in hindbrain patterning. We propose a model for the complex regulation of Krox20, involving a novel mode of initiation, positive and negative controls by Hox proteins, and multiple direct and indirect autoregulatory loops.
Collapse
Affiliation(s)
- Michel A Wassef
- INSERM, U784, Laboratoire de Génétique Moléculaire du Développement and 46 rue d'Ulm, 75230 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lampe X, Samad OA, Guiguen A, Matis C, Remacle S, Picard JJ, Rijli FM, Rezsohazy R. An ultraconserved Hox-Pbx responsive element resides in the coding sequence of Hoxa2 and is active in rhombomere 4. Nucleic Acids Res 2008; 36:3214-25. [PMID: 18417536 PMCID: PMC2425489 DOI: 10.1093/nar/gkn148] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Hoxa2 gene has a fundamental role in vertebrate craniofacial and hindbrain patterning. Segmental control of Hoxa2 expression is crucial to its function and several studies have highlighted transcriptional regulatory elements governing its activity in distinct rhombomeres. Here, we identify a putative Hox–Pbx responsive cis-regulatory sequence, which resides in the coding sequence of Hoxa2 and is an important component of Hoxa2 regulation in rhombomere (r) 4. By using cell transfection and chromatin immunoprecipitation (ChIP) assays, we show that this regulatory sequence is responsive to paralogue group 1 and 2 Hox proteins and to their Pbx co-factors. Importantly, we also show that the Hox–Pbx element cooperates with a previously reported Hoxa2 r4 intronic enhancer and that its integrity is required to drive specific reporter gene expression in r4 upon electroporation in the chick embryo hindbrain. Thus, both intronic as well as exonic regulatory sequences are involved in Hoxa2 segmental regulation in the developing r4. Finally, we found that the Hox–Pbx exonic element is embedded in a larger 205-bp long ultraconserved genomic element (UCE) shared by all vertebrate genomes. In this respect, our data further support the idea that extreme conservation of UCE sequences may be the result of multiple superposed functional and evolutionary constraints.
Collapse
Affiliation(s)
- Xavier Lampe
- Unit of Developmental Genetics, Université Catholique de Louvain, 1200 Brussels, Belgium, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS/INSERM/ULP, Collège de France, BP 10142-CU de Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mishra RK, Yamagishi T, Vasanthi D, Ohtsuka C, Kondo T. Involvement of polycomb-group genes in establishing HoxD temporal colinearity. Genesis 2007; 45:570-6. [PMID: 17868118 DOI: 10.1002/dvg.20326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Temporal colinearity in mouse HoxD is dependent on repressive activity of sequences within the 5' end of the complex. We show that a 5-kb DNA fragment from this region represses transgenes when combined in mouse as well as in Drosophila melanogaster. Moreover, repressive activity in Drosophila depends on some members of the Polycomb-group (PcG) genes, for example, extra sex combs. We also showed direct association of these factors with the repressive fragment, both in transgenic flies and in the context of the native mouse HoxD complex. These results suggest that the global repressive region of the HoxD complex functions in two very different species and that some PcG genes are involved in establishing the early repressive state of the HoxD complex, thus contributing to temporal colinearity.
Collapse
Affiliation(s)
- Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | | | | | | |
Collapse
|
35
|
An EGR2/CITED1 transcription factor complex and the 14-3-3sigma tumor suppressor are involved in regulating ErbB2 expression in a transgenic-mouse model of human breast cancer. Mol Cell Biol 2007; 27:8648-57. [PMID: 17938205 DOI: 10.1128/mcb.00866-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amplification and elevated expression of the ErbB2 receptor tyrosine kinase occurs in 20% of human breast cancers and is associated with a poor prognosis. We have previously demonstrated that mammary tissue-specific expression of activated ErbB2 under the control of its endogenous promoter results in mammary tumor formation. Tumor development was associated with amplification and overexpression of ErbB2 at both the transcript and protein levels. Here we demonstrate that the EGR2/Krox20 transcription factor and its coactivator CITED1 are coordinately upregulated during ErbB2 tumor induction. We have identified an EGR2 binding site in the erbB2 promoter and demonstrated by chromatin immunoprecipitation assays that EGR2 and CITED1 associate specifically with this region of the promoter. EGR2 and CITED1 were shown to associate, and expression from an erbB2 promoter-reporter construct was stimulated by EGR2 and was further enhanced by CITED1 coexpression. Furthermore, expression of the 14-3-3sigma tumor suppressor led to downregulation of ErbB2 protein levels and relocalization of EGR2 from the nucleus to the cytoplasm. Taken together, these observations suggest that, in addition to an increased gene copy number and upregulation of EGR2 and CITED1, an elevated erbB2 transcript level involves the loss of 14-3-3sigma, which sequesters a key transcriptional regulator of the erbB2 promoter.
Collapse
|
36
|
Chatonnet F, Wrobel LJ, Mézières V, Pasqualetti M, Ducret S, Taillebourg E, Charnay P, Rijli FM, Champagnat J. Distinct roles of Hoxa2 and Krox20 in the development of rhythmic neural networks controlling inspiratory depth, respiratory frequency, and jaw opening. Neural Dev 2007; 2:19. [PMID: 17897445 PMCID: PMC2098766 DOI: 10.1186/1749-8104-2-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the involvement of molecular determinants of segmental patterning of rhombomeres (r) in the development of rhythmic neural networks in the mouse hindbrain. Here, we compare the phenotypes of mice carrying targeted inactivations of Hoxa2, the only Hox gene expressed up to r2, and of Krox20, expressed in r3 and r5. We investigated the impact of such mutations on the neural circuits controlling jaw opening and breathing in newborn mice, compatible with Hoxa2-dependent trigeminal defects and direct regulation of Hoxa2 by Krox20 in r3. RESULTS We found that Hoxa2 mutants displayed an impaired oro-buccal reflex, similarly to Krox20 mutants. In contrast, while Krox20 is required for the development of the rhythm-promoting parafacial respiratory group (pFRG) modulating respiratory frequency, Hoxa2 inactivation did not affect neonatal breathing frequency. Instead, we found that Hoxa2-/- but not Krox20-/- mutation leads to the elimination of a transient control of the inspiratory amplitude normally occurring during the first hours following birth. Tracing of r2-specific progenies of Hoxa2 expressing cells indicated that the control of inspiratory activity resides in rostral pontine areas and required an intact r2-derived territory. CONCLUSION Thus, inspiratory shaping and respiratory frequency are under the control of distinct Hox-dependent segmental cues in the mammalian brain. Moreover, these data point to the importance of rhombomere-specific genetic control in the development of modular neural networks in the mammalian hindbrain.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
- IGFL UMR 5242 CNRS/INRA/UCB/École Normale Supérieure de Lyon, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ludovic J Wrobel
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Valérie Mézières
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Massimo Pasqualetti
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
- Laboratori di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G Carducci, Pisa, Italy
| | - Sébastien Ducret
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Emmanuel Taillebourg
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
- CEA, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, 38054 Grenoble, France
| | - Patrick Charnay
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
| | - Filippo M Rijli
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Jean Champagnat
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| |
Collapse
|
37
|
Sick S, Reinker S, Timmer J, Schlake T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 2006; 314:1447-50. [PMID: 17082421 DOI: 10.1126/science.1130088] [Citation(s) in RCA: 412] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mathematical reaction-diffusion models have been suggested to describe formation of animal pigmentation patterns and distribution of epidermal appendages. However, the crucial signals and in vivo mechanisms are still elusive. Here we identify WNT and its inhibitor DKK as primary determinants of murine hair follicle spacing, using a combined experimental and computational modeling approach. Transgenic DKK overexpression reduces overall appendage density. Moderate suppression of endogenous WNT signaling forces follicles to form clusters during an otherwise normal morphogenetic program. These results confirm predictions of a WNT/DKK-specific mathematical model and provide in vivo corroboration of the reaction-diffusion mechanism for epidermal appendage formation.
Collapse
Affiliation(s)
- Stefanie Sick
- Max-Planck Institute of Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | | | | | | |
Collapse
|
38
|
Tümpel S, Cambronero F, Ferretti E, Blasi F, Wiedemann LM, Krumlauf R. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 2006; 302:646-60. [PMID: 17113575 DOI: 10.1016/j.ydbio.2006.10.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 01/08/2023]
Abstract
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation of Hoxa2 in rhombomere (r) 4. A highly conserved region in the Hoxa2 intron functions as an r4 enhancer. In vitro binding studies demonstrate that within the conserved region three bipartite Hox/Pbx binding sites (PH1-PH3) in combination with a single binding site for Pbx-Prep/Meis (PM) heterodimers co-operate to regulate enhancer activity in r4. Mutational analysis reveals that these sites are required for activity of the enhancer, suggesting that the r4 enhancer from Hoxa2 functions in vivo as a Hox-response module in combination with the Hox cofactors, Pbx and Prep/Meis. Furthermore, this r4 enhancer is capable of mediating a response to ectopic HOXB1 expression in the hindbrain. These findings reveal that Hoxa2 is a target gene of Hoxb1 and permit us to develop a gene regulatory network for r4, whereby Hoxa2, along with Hoxb1, Hoxb2 and Hoxa1, is integrated into a series of auto- and cross-regulatory loops between Hox genes. These data highlight the important role played by direct cross-talk between Hox genes in regulating hindbrain patterning.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
39
|
Schlake T. Krox20, a novel candidate for the regulatory hierarchy that controls hair shaft bending. Mech Dev 2006; 123:641-8. [PMID: 16875803 DOI: 10.1016/j.mod.2006.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 05/31/2006] [Accepted: 06/02/2006] [Indexed: 12/17/2022]
Abstract
Murine hair follicle morphogenesis gives rise to four distinct pelage follicle types that produce hair shafts differing in length, the number of medulla columns, and the presence and number of bends. Recently, Igfbp5 was identified as the first molecular marker that distinguishes among different hair follicle types and shown to mark zigzag hairs. Further, it was demonstrated that Igfbp5 expression is modulated by FGF signalling. Here, we identify Krox20 as a molecular marker whose expression in the proximal follicle appears to be restricted to zigzag hair follicles. Gene transcription occurs in precursors and early differentiating cells of the medulla. Spatial and temporal expression of Krox20 and Igfbp5 seem to be tightly co-regulated in wildtype follicles. This correlation also holds in transgenic mice in which Igfbp5 expression is disturbed. Inspection of the Igfbp5 promoter reveals several putative binding sites for KROX20. In transfection studies, KROX20 strongly stimulates transcription from a 1.5kb Igfbp5 promoter fragment which is significantly reduced by site-directed mutagenesis of putative KROX20 binding sites, indicating a potential role of KROX20 in activating Igfbp5 expression. Our data suggest Krox20 as a nodal point of FGF and IGF signalling pathways controlling Igfbp5 expression which is associated with hair shaft differentiation and may generate the periodicity of the zigzag hair.
Collapse
Affiliation(s)
- Thomas Schlake
- Max-Planck Institute of Immunobiology, Freiburg, Germany.
| |
Collapse
|
40
|
Garcia-Dominguez M, Gilardi-Hebenstreit P, Charnay P. PIASxbeta acts as an activator of Hoxb1 and is antagonized by Krox20 during hindbrain segmentation. EMBO J 2006; 25:2432-42. [PMID: 16675951 PMCID: PMC1478176 DOI: 10.1038/sj.emboj.7601122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 04/06/2006] [Indexed: 11/09/2022] Open
Abstract
The zinc-finger transcription factor Krox20 constitutes a key regulator of hindbrain development, essential for the formation and specification of rhombomeres (r) 3 and 5. It is in particular responsible for the respective activation and repression of odd- and even-numbered rhombomere-specific genes, which include Hox genes. In this study, we have identified PIASxbeta as a novel direct interactor of Krox20. In addition, we found that PIASxbeta is able to activate the r4-specific gene Hoxb1. Binding of Krox20 prevents this activation, providing a molecular basis for the repression of Hoxb1 by Krox20. The same domain in the Krox20 protein, the zinc-fingers, is involved in DNA binding for transcriptional activation and in interaction with PIASxbeta for transcriptional repression, although the actual precise contacts are different. Our findings add an additional level in the complexity of Hox gene regulation and provide an example of how a single regulator can coordinate the activation and repression of a set of genes by very different mechanisms, acting as a molecular switch to specify cell identity and fate.
Collapse
Affiliation(s)
- Mario Garcia-Dominguez
- INSERM, U 784, Ecole Normale Supérieure, Paris, France
- Instituto de Bioquimica Vegetal y Fotosintesis, Isla de la Cartuja, Sevilla, Spain
| | | | | |
Collapse
|
41
|
Srinivasan R, Mager GM, Ward RM, Mayer J, Svaren J. NAB2 Represses Transcription by Interacting with the CHD4 Subunit of the Nucleosome Remodeling and Deacetylase (NuRD) Complex. J Biol Chem 2006; 281:15129-37. [PMID: 16574654 DOI: 10.1074/jbc.m600775200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Early growth response (EGR) transactivators act as critical regulators of several physiological processes, including peripheral nerve myelination and progression of prostate cancer. The NAB1 and NAB2 (NGFI-A/EGR1-binding protein) transcriptional corepressors directly interact with three EGR family members (Egr1/NGFI-A/zif268, Egr2/Krox20, and Egr3) and repress activation of their target promoters. To understand the molecular mechanisms underlying NAB repression, we found that EGR activity is modulated by at least two repression domains within NAB2, one of which uniquely requires interaction with the CHD4 (chromodomain helicase DNA-binding protein 4) subunit of the NuRD (nucleosome remodeling and deacetylase) chromatin remodeling complex. Both NAB proteins can bind either CHD3 or CHD4, indicating that the interaction is conserved among these two protein families. Furthermore, we show that repression of the endogenous Rad gene by NAB2 involves interaction with CHD4 and demonstrate colocalization of NAB2 and CHD4 on the Rad promoter in myelinating Schwann cells. Finally, we show that interaction with CHD4 is regulated by alternative splicing of the NAB2 mRNA.
Collapse
Affiliation(s)
- Rajini Srinivasan
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
42
|
Chomette D, Frain M, Cereghini S, Charnay P, Ghislain J. Krox20hindbrain cis-regulatory landscape: interplay between multiple long-range initiation and autoregulatory elements. Development 2006; 133:1253-62. [PMID: 16495311 DOI: 10.1242/dev.02289] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vertebrate hindbrain is subject to a transient segmentation process leading to the formation of seven or eight metameric territories termed rhombomeres (r). This segmentation provides the basis for the subsequent establishment of hindbrain neuronal organization and participates in the patterning of the neural crest involved in craniofacial development. The zinc-finger gene Krox20 is expressed in r3 and r5, and encodes a transcription factor that plays a key role in hindbrain segmentation,coordinating segment formation, specification of odd- and even-numbered rhombomeres, and cell segregation between adjacent segments, through the regulation of numerous downstream genes. In order to further elucidate the genetic network underlying hindbrain segmentation, we have undertaken the analysis of the cis-regulatory sequences governing Krox20 expression. We have found that the control of Krox20 transcription relies on three very long-range (200 kb) enhancer elements (A, B and C) that are conserved between chick, mouse and human genomes. Elements B and C are activated at the earliest stage of Krox20 expression in r5 and r3-r5,respectively, and do not require the Krox20 protein. These elements are likely to function as initiators of Krox20 expression. Element B contains a binding site for the transcription factor vHNF1, the mutation of which abolishes its activity, suggesting that vHNF1 is a direct initiator of Krox20 expression in r5. Element A contains Krox20-binding sites,which are required, together with the Krox20 protein, for its activity. This element therefore allows the establishment of a direct positive autoregulatory loop, which takes the relay of the initiator elements and maintains Krox20 expression. Together, our studies provide a basis for a model of the molecular mechanisms controlling Krox20 expression in the developing hindbrain and neural crest.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Body Patterning
- Chick Embryo
- Conserved Sequence
- Early Growth Response Protein 2/genetics
- Early Growth Response Protein 2/metabolism
- Enhancer Elements, Genetic
- Galactosides/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Genome, Human
- Hepatocyte Nuclear Factor 1-beta/genetics
- Hepatocyte Nuclear Factor 1-beta/metabolism
- Humans
- In Situ Hybridization
- Indoles/metabolism
- Lac Operon
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- Protein Binding
- Rhombencephalon/embryology
- Rhombencephalon/metabolism
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Initiation Site
Collapse
Affiliation(s)
- Diane Chomette
- INSERM, U784, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
43
|
Tümpel S, Cambronero F, Wiedemann LM, Krumlauf R. Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes). Proc Natl Acad Sci U S A 2006; 103:5419-24. [PMID: 16569696 PMCID: PMC1459370 DOI: 10.1073/pnas.0600993103] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence divergence in cis-regulatory elements is an important mechanism contributing to functional diversity of genes during evolution. Gene duplication and divergence provide an opportunity for selectively preserving initial functions and evolving new activities. Many vertebrates have 39 Hox genes organized into four clusters (Hoxa-Hoxd); however, some ray-finned fishes have extra Hox clusters. There is a single Hoxa2 gene in most vertebrates, whereas fugu (Takifugu rubripes) and medaka (Oryzias latipes) have two coparalogous genes [Hoxa2(a) and Hoxa2(b)]. In the hindbrain, both genes are expressed in rhombomere (r) 2, but only Hoxa2(b) is expressed in r3, r4, and r5. Multiple regulatory modules directing segmental expression of chicken and mouse Hoxa2 genes have been identified, and each module is composed of a series of discrete elements. We used these modules to investigate the basis of differential expression of duplicated Hoxa2 genes, as a model for understanding the divergence of cis-regulatory elements. Therefore, we cloned putative regulatory regions of the fugu and medaka Hoxa2(a) and -(b) genes and assayed their activity. We found that these modules direct reporter expression in a chicken assay, in a manner corresponding to their endogenous expression pattern in fugu. Although sequence comparisons reveal many differences between the two coparalogous genes, specific subtle changes in seven cis elements of the Hoxa2(a) gene restore segmental regulatory activity. Therefore, drift in subsets of the elements in the regulatory modules is responsible for the differential expression of the two coparalogous genes, thus providing insight into the evolution of cis elements.
Collapse
Affiliation(s)
- Stefan Tümpel
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
| | - Francisco Cambronero
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
| | - Leanne M. Wiedemann
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
- Pathology and Laboratory Medicine and
| | - Robb Krumlauf
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- To whom correspondence should be addressed at:
Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110. E-mail:
| |
Collapse
|
44
|
Chambers D, Mason I. A high throughput messenger RNA differential display screen identifies discrete domains of gene expression and novel patterning processes along the developing neural tube. BMC DEVELOPMENTAL BIOLOGY 2006; 6:9. [PMID: 16504111 PMCID: PMC1397802 DOI: 10.1186/1471-213x-6-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 02/24/2006] [Indexed: 11/15/2022]
Abstract
BACKGROUND During early development the vertebrate neural tube is broadly organized into the forebrain, midbrain, hindbrain and spinal cord regions. Each of these embryonic zones is patterned by a combination of genetic pathways and the influences of local signaling centres. However, it is clear that much remains to be learned about the complete set of molecular cues that are employed to establish the identity and intrinsic neuronal diversity of these territories. In order to address this, we performed a high-resolution messenger RNA differential display screen to identify molecules whose expression is regionally restricted along the anteroposterior (AP) neuraxis during early chick development, with particular focus on the midbrain and hindbrain vesicles. RESULTS This approach identified 44 different genes, with both known and unknown functions, whose transcription is differentially regulated along the AP axis. The identity and ontological classification of these genes is presented. The wide variety of functional classes of transcripts isolated in this screen reflects the diverse spectrum of known influences operating across these embryonic regions. Of these 44 genes, several have been selected for detailed in situ hybridization analysis to validate the screen and accurately define the expression domains. Many of the identified cDNAs showed no identity to the current databases of known or predicted genes or ESTs. Others represent genes whose embryonic expression has not been previously reported. Expression studies confirmed the predictions of the primary differential display data. Moreover, the nature of identified genes, not previously associated with regionalisation of the brain, identifies novel potential mechanisms in that process. CONCLUSION This study provides an insight into some of the varied and novel molecular networks that operate during the regionalization of embryonic neural tissue and expands our knowledge of molecular repertoire used during development.
Collapse
Affiliation(s)
- David Chambers
- MRC Centre for Developmental Neurobiology, 4Floor New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
- Wellcome Trust Functional Genomics Development Initiative, MRC Centre for Developmental Neurobiology, 4Floor New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Ivor Mason
- MRC Centre for Developmental Neurobiology, 4Floor New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
45
|
Sandell LL, Trainor PA. Neural crest cell plasticity. size matters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 589:78-95. [PMID: 17076276 DOI: 10.1007/978-0-387-46954-6_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patterning and morphogenesis of neural crest-derived tissues within a developing vertebrate embryo rely on a complex balance between signals acquired by neural crest cells in the neuroepithelium during their formation and signals from the tissues that the neural crest cells contact during their migration. Axial identity of hindbrain neural crest is controlled by a combinatorial pattern of Hox gene expression. Cellular interactions that pattern neural crest involve signals from the same key molecular families that regulate other aspects of patterning and morphogenesis within a developing embryo, namely the BMP, SHH and FGF pathways. The developmental program that regulates neural crest cell fate is both plastic and fixed. As a cohort of interacting cells, neural crest cells carry information that directs the axial pattern and species-specific morphology of the head and face. As individual cells, neural crest cells are responsive to signals from each other as well as from non-neural crest tissues in the environment. General rules and fundamental mechanisms have been important for the conservation of basic patterning of neural crest, but exceptions are notable and relevant. The key to furthering our understanding of important processes such as craniofacial development will require a better characterization of the molecular determinants of the endoderm, ectoderm and mesoderm and the effects that these molecules have on neural crest cell development.
Collapse
Affiliation(s)
- Lisa L Sandell
- Stowers Institute of Medical Research, 901 Volker Blvd., Kansas City, Missouri 64110, USA
| | | |
Collapse
|
46
|
Riley BB, Chiang MY, Storch EM, Heck R, Buckles GR, Lekven AC. Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain. Dev Dyn 2005; 231:278-91. [PMID: 15366005 DOI: 10.1002/dvdy.20133] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The vertebrate hindbrain develops from a series of segments (rhombomeres) distributed along the anteroposterior axis. We are studying the roles of Wnt and Delta-Notch signaling in maintaining rhombomere boundaries as organizing centers in the zebrafish hindbrain. Several wnt genes (wnt1, wnt3a, wnt8b, and wnt10b) show elevated expression at rhombomere boundaries, whereas several delta genes (dlA, dlB, and dlD) are expressed in transverse stripes flanking rhombomere boundaries. Partial disruption of Wnt signaling by knockdown of multiple wnt genes, or the Wnt mediator tcf3b, ablates boundaries and associated cell types. Expression of dlA is chaotic, and cell types associated with rhombomere centers are disorganized. Similar patterning defects are observed in segmentation mutants spiel-ohne-grenzen (spg) and valentino (val), which fail to form rhombomere boundaries due to faulty interactions between adjacent rhombomeres. Stripes of wnt expression are variably disrupted, with corresponding disturbances in metameric patterning. Mutations in dlA or mind bomb (mib) disrupt Delta-Notch signaling and cause a wide range of patterning defects in the hindbrain. Stripes of wnt1 are initially normal but subsequently dissipate, and metameric patterning becomes increasingly disorganized. Driving wnt1 expression using a heat-shock construct partially rescues metameric patterning in mib mutants. Thus, rhombomere boundaries act as Wnt signaling centers required for precise metameric patterning, and Delta signals from flanking cells provide feedback to maintain wnt expression at boundaries. Similar feedback mechanisms operate in the Drosophila wing disc and vertebrate limb bud, suggesting coaptation of a conserved signaling module that spatially organizes cells in complex organ systems.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas 77843-3258, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Akin ZN, Nazarali AJ. Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 2005; 25:697-741. [PMID: 16075387 PMCID: PMC11529567 DOI: 10.1007/s10571-005-3971-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/14/2004] [Indexed: 12/14/2022]
Abstract
1. Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. Since then over 1000 homeodomain proteins have been identified in several species. In vertebrates, 39 Hox genes have been identified as homologs of the original Drosophila complex, and like their Drosophila counterparts they are organized within chromosomal clusters. Vertebrate Hox genes have also been shown to play a critical role in embryonic development as transcriptional regulators. 2. Both the Drosophila and vertebrate Hox genes have been shown to interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. These protein-protein interactions are believed to contribute to enhancing the specificity of target gene recognition in a cell-type or tissue- dependent manner. The regulatory activity of a particular Hox protein on a specific regulatory element is highly variable and dependent on its interacting partners within the transcriptional complex. 3. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing CNS, both along the anterioposterior and dorsoventral axis of the embryo. Their restricted gene expression is suggestive of a regulatory role in patterning of the CNS, as well as in cell specification. Determining the precise function of individual Hox genes in CNS morphogenesis through classical mutational analyses is complicated due to functional redundancy between Hox genes. 4. Understanding the precise mechanisms through which Hox genes mediate embryonic morphogenesis requires the identification of their downstream target genes. Although Hox genes have been implicated in the regulation of several pathways, few target genes have been shown to be under their direct regulatory control. Development of methodologies used for the isolation of target genes and for the analysis of putative targets will be beneficial in establishing the genetic pathways controlled by Hox factors. 5. Within the developing CNS various cell adhesion molecules and signaling molecules have been identified as candidate downstream target genes of Hox proteins. These targets play a role in processes such as cell migration and differentiation, and are implicated in contributing to neuronal processes such as plasticity and/or specification. Hence, Hox genes not only play a role in patterning of the CNS during early development, but may also contribute to cell specification and identity.
Collapse
Affiliation(s)
- Z. N. Akin
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| | - A. J. Nazarali
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| |
Collapse
|
48
|
Watanabe T, Hongo I, Kidokoro Y, Okamoto H. Functional role of a novel ternary complex comprising SRF and CREB in expression of Krox-20 in early embryos of Xenopus laevis. Dev Biol 2005; 277:508-21. [PMID: 15617690 DOI: 10.1016/j.ydbio.2004.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2003] [Revised: 08/21/2004] [Accepted: 08/21/2004] [Indexed: 11/20/2022]
Abstract
Krox-20, originally identified as a member of "immediate-early" genes, plays a crucial role in the formation of two specific segments in the hindbrain during early development of the vertebrate nervous system. Here we cloned a genomic sequence of Xenopus Krox-20 (XKrox-20) and studied functions of a promoter element in the flanking sequence and associated transcription factors, which function in early Xenopus embryos. Using the luciferase reporter assay system, we showed that the 5' flanking sequence was sufficient to induce luciferase activities when the reporter construct was injected into embryos at the eight-cell stage. Deletion and mutagenesis analyses of the 5' flanking sequence revealed a minimal promoter element that included two known subelements, a CArG-box and cAMP response element (CRE) within a stretch of 22 bp nucleotide sequence (-72 to -51 from the transcription initiation site), both of which were essential for the promoter activity. The gel mobility shift assay indicated that these two subelements bound to some components in whole cell extracts prepared from stage 20 Xenopus embryos. Antibody supershift and competition experiments revealed that these components in cell extracts were serum response factor (SRF) and a member of CRE binding protein (CREB) family proteins that bound the CArG-box and CRE, respectively. They appeared to assemble on the minimal promoter element to produce a novel ternary complex. When we injected mRNA of a dominant-negative version of Xenopus SRF (XSRFDeltaC) into animal pole blastomeres at the eight-cell stage, expression of XKrox-20 in the nervous system as well as the minimal promoter activity was strongly suppressed. Suppression by XSRFDeltaC was counteracted by coexpressed wild-type XSRF. These results indicate that XSRF functions as an endogenous activator of XKrox-20 by forming a ternary complex with CREB on the minimal promoter element.
Collapse
Affiliation(s)
- Takashi Watanabe
- Institute for Behavioral Sciences, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | | | | | |
Collapse
|
49
|
Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR. The pathophysiology of HOX genes and their role in cancer. J Pathol 2005; 205:154-71. [PMID: 15643670 DOI: 10.1002/path.1710] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The HOM-C clustered prototype homeobox genes of Drosophila, and their counterparts, the HOX genes in humans, are highly conserved at the genomic level. These master regulators of development continue to be expressed throughout adulthood in various tissues and organs. The physiological and patho-physiological functions of this network of genes are being avidly pursued within the scientific community, but defined roles for them remain elusive. The order of expression of HOX genes within a cluster is co-ordinated during development, so that the 3' genes are expressed more anteriorly and earlier than the 5' genes. Mutations in HOXA13 and HOXD13 are associated with disorders of limb formation such as hand-foot-genital syndrome (HFGS), synpolydactyly (SPD), and brachydactyly. Haematopoietic progenitors express HOX genes in a pattern characteristic of the lineage and stage of differentiation of the cells. In leukaemia, dysregulated HOX gene expression can occur due to chromosomal translocations involving upstream regulators such as the MLL gene, or the fusion of a HOX gene to another gene such as the nucleoporin, NUP98. Recent investigations of HOX gene expression in leukaemia are providing important insights into disease classification and prediction of clinical outcome. Whereas the oncogenic potential of certain HOX genes in leukaemia has already been defined, their role in other neoplasms is currently being studied. Progress has been hampered by the experimental approach used in many studies in which the expression of small subsets of HOX genes was analysed, and complicated by the functional redundancy implicit in the HOX gene system. Attempts to elucidate the function of HOX genes in malignant transformation will be enhanced by a better understanding of their upstream regulators and downstream target genes.
Collapse
Affiliation(s)
- D G Grier
- Department of Child Health, Queen's University, Belfast, Grosvenor Road, Belfast BT12 6BA, UK
| | | | | | | | | | | |
Collapse
|
50
|
Lumsden A. Segmentation and compartition in the early avian hindbrain. Mech Dev 2005; 121:1081-8. [PMID: 15296973 DOI: 10.1016/j.mod.2004.04.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 04/19/2004] [Accepted: 04/26/2004] [Indexed: 11/16/2022]
Abstract
For the comparative embryologists of the early 20th century, the segment-like bulges that appear transiently during the early stages of vertebrate hindbrain development were both the object of fascination and the subject of vigorous dispute. Conflicting views were held as to the significance of these 'rhombomeres' to brain development and their more general relevance to head evolution. Whether rhombomeres are inconsequential bumps in the embryonic brain or true segments-iterative or metameric units-has only recently been resolved. A number of studies using more modern techniques (such as immunohistochemistry, in situ hybridisation, axonal tracing, single cell labelling, heterotopic and orthotopic grafting, and the manipulation of gene expression by electroporation) have shown that the hindbrain has a truly metameric cellular organisation. The avian embryo has played a particularly prominent role in such studies by virtue of its large size and accessibility, its amenability to microsurgery, and its well-described anatomy. Furthermore, electrophysiological studies, also on avian embryos, have shown that segmentation of the parent neuroepithelium into rhombomeres plays a crucial part in establishing the functional organization of the hindbrain. Segmentation suggests the early allocation of defined sets of precursor cells and is therefore presumed to allow a specific identity for each successive segment to emerge from a common ground plan. This short review will focus on the contribution the avian embryo has made to our understanding of this fly-like region of the vertebrate brain, in respect of its morphology and neuronal architecture, the cellular and molecular mechanisms involved in establishing and maintaining the segments, and the molecular controls of segmental identity.
Collapse
Affiliation(s)
- Andrew Lumsden
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|