1
|
Ge H, Huang Y, Zhang L, Huang S, Wang G. The Cell States of Sea Urchin During Metamorphosis Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2025; 26:1059. [PMID: 39940825 PMCID: PMC11817407 DOI: 10.3390/ijms26031059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Metamorphosis is a key process in the life history of sea urchin Heliocidaris crassispina. However, the understanding of its molecular mechanisms is still lacking, especially the basic cell biology pre-metamorphosis and post-metamorphosis. Therefore, we employed single-cell RNA sequencing to delineate the cellular states of larvae and juveniles of H. crassispina. Our investigation revealed that the cell composition in sea urchins comprises six primary populations, encompassing nerve cells, skeletogenic cells, immune cells, digestive cells, germ cells, and muscle cells. Subsequently, we identified subpopulations within these cells. Our findings indicated that the larval peripheral nerves were discarded during metamorphosis. A decrease in the number of spicules was observed during this process. Additionally, we examined the differences between larval and adult pigment cells. Meanwhile, cellulase is highlighted as an essential factor for the development of competent juveniles. In summary, this study not only serves as a valuable resource for future research on sea urchins but also deepens our understanding of the intricate metamorphosis process.
Collapse
Affiliation(s)
- Hui Ge
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China
| | - Yongyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Lili Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Shiyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Guodong Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| |
Collapse
|
2
|
Hu MY, Bassarab TM, Chang WWJ, Tetzlaff SL, Strohbach F, Dupont S, Stumpp M. Calcification in sea urchin larvae is associated with low metabolic costs. J Exp Biol 2025; 228:jeb248145. [PMID: 39445511 DOI: 10.1242/jeb.248145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
The energetic costs of generating calcium carbonate skeletons and shells in marine organisms remain largely speculative because of the scarcity of empirical data. However, this information is critical for estimating energetic limitations of marine calcifiers that can explain their sensitivity to changes in sea water carbonate chemistry in past, present and future marine systems. Here, the cost of calcification was evaluated using larval stages of the purple sea urchin, Strongylocentrotus purpuratus. We developed a skeleton re-mineralization assay, in which the skeleton was dissolved in live larvae followed by a re-mineralization over a few days. During skeleton re-mineralization, energetic costs were estimated through the measurement of key metabolic parameters including whole-animal metabolic rate, citrate synthase (CS) enzyme activity and mRNA expression as well as mitochondrial density in the calcifying primary mesenchyme cells (PMCs). Minor increases in CS activity and a 10-15% increase in mitochondrial density in PMCs were observed in re-mineralizing larvae as compared with control larvae. Re-mineralization under three different pH conditions (pH 8.1, pH 7.6 and pH 7.1) decreased with decreasing pH, accompanied by pronounced increases in CS expression levels and increased mitochondrial density in PMCs at pH 7.6. Despite a prominent increase in mitochondrial density of primary mesenchyme cells, particularly in the calcifying cohort of this cell type, this work demonstrated a low overall metabolic response to increased mineralization rates at the whole-animal level under both high and low pH conditions. We conclude that calcification in sea urchin larvae is compromised under low pH conditions, associated with low energetic efforts to fuel compensatory processes.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Tina M Bassarab
- Institute of Zoology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - William W J Chang
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Smilla L Tetzlaff
- Institute of Zoology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Feli Strohbach
- Institute of Zoology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Sam Dupont
- Department for Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil 45178, Sweden
- Radioecology Laboratory, International Atomic Energy Agency - Marine Environment Laboratories, Monaco 98000, Monaco
| | - Meike Stumpp
- Institute of Zoology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| |
Collapse
|
3
|
Tate HM, Barone V, Schrankel CS, Hamdoun A, Lyons DC. Localization and origins of juvenile skeletogenic cells in the sea urchin Lytechinuspictus. Dev Biol 2024; 514:12-27. [PMID: 38862087 DOI: 10.1016/j.ydbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
The development of the sea urchin larval body plan is well understood from extensive studies of embryonic patterning. However, fewer studies have investigated the late larval stages during which the unique pentaradial adult body plan develops. Previous work on late larval development highlights major tissue changes leading up to metamorphosis, but the location of specific cell types during juvenile development is less understood. Here, we improve on technical limitations by applying highly sensitive hybridization chain reaction fluorescent in situ hybridization (HCR-FISH) to the fast-developing and transparent sea urchin Lytechinus pictus, with a focus on skeletogenic cells. First, we show that HCR-FISH can be used in L. pictus to precisely localize skeletogenic cells in the rudiment. In doing so, we provide a detailed staging scheme for the appearance of skeletogenic cells around the rudiment prior to and during biomineralization and show that many skeletogenic cells unassociated with larval rods localize outside of the rudiment prior to localizing inside. Second, we show that downstream biomineralization genes have similar expression patterns during larval and juvenile skeletogenesis, suggesting some conservation of skeletogenic mechanisms during development between stages. Third, we find co-expression of blastocoelar and skeletogenic cell markers around juvenile skeleton located outside of the rudiment, which is consistent with data showing that cells from the non-skeletogenic mesoderm embryonic lineage contribute to the juvenile skeletogenic cell lineage. This work sets the foundation for subsequent studies of other cell types in the late larva of L. pictus to better understand juvenile body plan development, patterning, and evolution.
Collapse
Affiliation(s)
- Heidi M Tate
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Vanessa Barone
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Catherine S Schrankel
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA; San Diego State University, San Diego, CA, USA
| | - Amro Hamdoun
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Khor JM, Guerrero-Santoro J, Ettensohn CA. Molecular compartmentalization in a syncytium: restricted mobility of proteins within the sea urchin skeletogenic mesenchyme. Development 2023; 150:dev201804. [PMID: 37902109 DOI: 10.1242/dev.201804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
Multinucleated cells, or syncytia, are found in diverse taxa. Their biological function is often associated with the compartmentalization of biochemical or cellular activities within the syncytium. How such compartments are generated and maintained is poorly understood. The sea urchin embryonic skeleton is secreted by a syncytium, and local patterns of skeletal growth are associated with distinct sub-domains of gene expression within the syncytium. For such molecular compartments to be maintained and to control local patterns of skeletal growth: (1) the mobility of TFs must be restricted to produce stable differences in the transcriptional states of nuclei within the syncytium; and (2) the mobility of biomineralization proteins must also be restricted to produce regional differences in skeletal growth. To test these predictions, we expressed fluorescently tagged forms of transcription factors and biomineralization proteins in sub-domains of the skeletogenic syncytium. We found that both classes of proteins have restricted mobility within the syncytium and identified motifs that limit their mobility. Our findings have general implications for understanding the functional and molecular compartmentalization of syncytia.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| | - Jennifer Guerrero-Santoro
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| |
Collapse
|
5
|
Descoteaux AE, Zuch DT, Bradham CA. Polychrome labeling reveals skeletal triradiate and elongation dynamics and abnormalities in patterning cue-perturbed embryos. Dev Biol 2023; 498:1-13. [PMID: 36948411 DOI: 10.1016/j.ydbio.2023.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
The larval skeleton of the sea urchin Lytechinus variegatus is an ideal model system for studying skeletal patterning; however, our understanding of the etiology of skeletal patterning in sea urchin larvae is limited due to the lack of approaches to live-image skeleton formation. Calcium-binding fluorochromes have been used to study the temporal dynamics of bone growth and healing. To date, only calcein green has been used in sea urchin larvae to fluorescently label the larval skeleton. Here, we optimize labeling protocols for two additional calcium-binding fluorochromes: xylenol orange and calcein blue- and demonstrate that these fluorochromes can be used individually or in nested pulse-chase experiments to understand the temporal dynamics of skeletogenesis and patterning. Using a pulse-chase approach, we show that the initiation of skeletogenesis begins around 15 h post fertilization. We also assess the timing of triradiate formation in embryos treated with a range of patterning perturbagens and demonstrate that triradiate formation is delayed and asynchronous in embryos ventralized via treatment with either nickel or chlorate. Finally, we measure the extent of fluorochrome incorporation in triple-labeled embryos to determine the elongation rate of numerous skeletal elements throughout early skeletal patterning and compare this to the rate of skeletal growth in embryos treated with axitinib to inhibit VEGFR. We find that skeletal elements elongate much more slowly in axitinib-treated embryos, and that axitinib treatment is sufficient to induce abnormal orientation of the triradiates.
Collapse
Affiliation(s)
- Abigail E Descoteaux
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Daniel T Zuch
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States
| | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States; Program in Bioinformatics, Boston University, Boston, MA, 02215, United States.
| |
Collapse
|
6
|
Zito F, Bonaventura R, Costa C, Russo R. Carbonic anhydrases in development: morphological observations and gene expression profiling in sea urchin embryos exposed to acetazolamide. Open Biol 2023; 13:220254. [PMID: 36597694 PMCID: PMC9811153 DOI: 10.1098/rsob.220254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carbonic anhydrases (CANs) are conserved metalloenzymes catalysing the reversible hydration of carbon dioxide into protons and bicarbonate, with important roles in cells physiology. Some CAN-coding genes were found in sea urchin genome, although only one involved in embryonic skeletogenesis was described in Paracentrotus lividus. Here, we investigated gene expression patterns of P. lividus embryos cultured in the presence of acetazolamide (AZ), a CAN inhibitor, to combine morphological defects with their molecular underpinning. CAN inhibition blocked skeletogenesis, affected the spatial/temporal expression of some biomineralization-related genes, inhibited embryos swimming. A comparative analysis on the expression of 127 genes in control and 3 h/24 h AZ-treated embryos, using NanoString technology, showed the differential expression of genes encoding for structural/regulatory proteins, with different embryonic roles: biomineralization, transcriptional regulation, signalling, development and defence response. The study of the differentially expressed genes and the signalling pathways affected, besides in silico analyses and a speculative 'interactomic model', leads to predicting the presence of various CAN isoforms, possibly involved in different physiological processes/activities in sea urchin embryo, and their potential target genes/proteins. Our findings provide new valuable molecular data for further studies in several biological fields: developmental biology (biomineralization, axes patterning), cell differentiation (neural development) and drug toxicology (AZ effects on embryos/tissues).
Collapse
Affiliation(s)
- Francesca Zito
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Rosa Bonaventura
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Caterina Costa
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Roberta Russo
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| |
Collapse
|
7
|
Tarsis K, Gildor T, Morgulis M, Ben-Tabou de-Leon S. Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo. Dev Dyn 2022; 251:1322-1339. [PMID: 35403290 PMCID: PMC9543741 DOI: 10.1002/dvdy.474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Background Understanding how gene regulatory networks (GRNs) control developmental progression is a key to the mechanistic understanding of morphogenesis. The sea urchin larval skeletogenesis provides an excellent platform to tackle this question. In the early stages of sea urchin skeletogenesis, skeletogenic genes are uniformly expressed in the skeletogenic lineage. Yet, during skeletal elongation, skeletogenic genes are expressed in distinct spatial sub‐domains. The regulation of differential gene expression during late skeletogenesis is not well understood. Results Here we reveal the dynamic expression of the skeletogenic regulatory genes that define a specific regulatory state for each pair of skeletal rods, in the sea urchin Paracentrotus lividus. The vascular endothelial growth factor (VEGF) signaling, essential for skeleton formation, specifically controls the migration of cells that form the postoral and distal anterolateral skeletogenic rods. VEGF signaling also controls the expression of regulatory genes in cells at the tips of the postoral rods, including the transcription factors Pitx1 and MyoD1. Pitx1 activity is required for normal skeletal elongation and for the expression of some of VEGF target genes. Conclusions Our study illuminates the fine‐tuning of the regulatory system during the transition from early to late skeletogenesis that gives rise to rod‐specific regulatory states. The skeletogenic transcription factors form specific regulatory states in various skeletogenic sub‐populations. Late VEGF signaling controls the regulatory states at the tips of the post‐oral and anterolateral skeletal rods. VEGF signaling controls the expression of the transcription factors, MyoD1 and Pitx1. Pitx1 activity is required for normal skeletal elongation and for the expression of some of VEGF target genes.
Collapse
Affiliation(s)
- Kristina Tarsis
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Miri Morgulis
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Ettensohn CA, Guerrero-Santoro J, Khor JM. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution. Curr Top Dev Biol 2022; 146:113-148. [PMID: 35152981 DOI: 10.1016/bs.ctdb.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The skeleton-forming cells of sea urchins and other echinoderms have been studied by developmental biologists as models of cell specification and morphogenesis for many decades. The gene regulatory network (GRN) deployed in the embryonic skeletogenic cells of euechinoid sea urchins is one of the best understood in any developing animal. Recent comparative studies have leveraged the information contained in this GRN, bringing renewed attention to the diverse patterns of skeletogenesis within the phylum and the evolutionary basis for this diversity. The homeodomain-containing transcription factor, Alx1, was originally shown to be a core component of the skeletogenic GRN of the sea urchin embryo. Alx1 has since been found to be key regulator of skeletal cell identity throughout the phylum. As such, Alx1 is currently serving as a lens through which multiple developmental processes are being investigated. These include not only GRN organization and evolution, but also cell reprogramming, cell type evolution, and the gene regulatory control of morphogenesis. This review summarizes our current state of knowledge concerning Alx1 and highlights the insights it is yielding into these important developmental and evolutionary processes.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| | | | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
9
|
The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks. Cells 2022; 11:cells11040595. [PMID: 35203246 PMCID: PMC8870065 DOI: 10.3390/cells11040595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/05/2022] Open
Abstract
Biomineralization is the process in which organisms use minerals to generate hard structures like teeth, skeletons and shells. Biomineralization is proposed to have evolved independently in different phyla through the co-option of pre-existing developmental programs. Comparing the gene regulatory networks (GRNs) that drive biomineralization in different species could illuminate the molecular evolution of biomineralization. Skeletogenesis in the sea urchin embryo was extensively studied and the underlying GRN shows high conservation within echinoderms, larval and adult skeletogenesis. The organic scaffold in which the calcite skeletal elements form in echinoderms is a tubular compartment generated by the syncytial skeletogenic cells. This is strictly different than the organic cartilaginous scaffold that vertebrates mineralize with hydroxyapatite to make their bones. Here I compare the GRNs that drive biomineralization and tubulogenesis in echinoderms and in vertebrates. The GRN that drives skeletogenesis in the sea urchin embryo shows little similarity to the GRN that drives bone formation and high resemblance to the GRN that drives vertebrates’ vascular tubulogenesis. On the other hand, vertebrates’ bone-GRNs show high similarity to the GRNs that operate in the cells that generate the cartilage-like tissues of basal chordate and invertebrates that do not produce mineralized tissue. These comparisons suggest that biomineralization in deuterostomes evolved through the phylum specific co-option of GRNs that control distinct organic scaffolds to mineralization.
Collapse
|
10
|
Chang WL, Su YH. Zygotic hypoxia-inducible factor alpha regulates spicule elongation in the sea urchin embryo. Dev Biol 2022; 484:63-74. [DOI: 10.1016/j.ydbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
|
11
|
An otopetrin family proton channel promotes cellular acid efflux critical for biomineralization in a marine calcifier. Proc Natl Acad Sci U S A 2021; 118:2101378118. [PMID: 34301868 DOI: 10.1073/pnas.2101378118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Otopetrins comprise a family of proton-selective channels that are critically important for the mineralization of otoliths and statoconia in vertebrates but whose underlying cellular mechanisms remain largely unknown. Here, we demonstrate that otopetrins are critically involved in the calcification process by providing an exit route for protons liberated by the formation of CaCO3 Using the sea urchin larva, we examined the otopetrin ortholog otop2l, which is exclusively expressed in the calcifying primary mesenchymal cells (PMCs) that generate the calcitic larval skeleton. otop2l expression is stimulated during skeletogenesis, and knockdown of otop2l impairs spicule formation. Intracellular pH measurements demonstrated Zn2+-sensitive H+ fluxes in PMCs that regulate intracellular pH in a Na+/HCO3 --independent manner, while Otop2l knockdown reduced membrane proton permeability. Furthermore, Otop2l displays unique features, including strong activation by high extracellular pH (>8.0) and check-valve-like outwardly rectifying H+ flux properties, making it into a cellular proton extrusion machine adapted to oceanic living conditions. Our results provide evidence that otopetrin family proton channels are a central component of the cellular pH regulatory machinery in biomineralizing cells. Their ubiquitous occurrence in calcifying systems across the animal kingdom suggest a conserved physiological function by mediating pH at the site of mineralization. This important role of otopetrin family proton channels has strong implications for our view on the cellular mechanisms of biomineralization and their response to changes in oceanic pH.
Collapse
|
12
|
Sampilo NF, Stepicheva NA, Song JL. microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1. Dev Biol 2021; 472:98-114. [PMID: 33484703 PMCID: PMC7956219 DOI: 10.1016/j.ydbio.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
13
|
Thompson JR, Paganos P, Benvenuto G, Arnone MI, Oliveri P. Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution. EvoDevo 2021; 12:3. [PMID: 33726833 PMCID: PMC7968366 DOI: 10.1186/s13227-021-00174-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Understanding the molecular and cellular processes that underpin animal development are crucial for understanding the diversity of body plans found on the planet today. Because of their abundance in the fossil record, and tractability as a model system in the lab, skeletons provide an ideal experimental model to understand the origins of animal diversity. We herein use molecular and cellular markers to understand the growth and development of the juvenile sea urchin (echinoid) skeleton. Results We developed a detailed staging scheme based off of the first ~ 4 weeks of post-metamorphic life of the regular echinoid Paracentrotus lividus. We paired this scheme with immunohistochemical staining for neuronal, muscular, and skeletal tissues, and fluorescent assays of skeletal growth and cell proliferation to understand the molecular and cellular mechanisms underlying skeletal growth and development of the sea urchin body plan. Conclusions Our experiments highlight the role of skeletogenic proteins in accretionary skeletal growth and cell proliferation in the addition of new metameric tissues. Furthermore, this work provides a framework for understanding the developmental evolution of sea urchin body plans on macroevolutionary timescales. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-021-00174-1.
Collapse
Affiliation(s)
- Jeffrey R Thompson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK. .,UCL Center for Life's Origins and Evolution, London, UK.
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK. .,UCL Center for Life's Origins and Evolution, London, UK.
| |
Collapse
|
14
|
Tsironis I, Paganos P, Gouvi G, Tsimpos P, Stamopoulou A, Arnone MI, Flytzanis CN. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus. Dev Biol 2021; 475:131-144. [PMID: 33484706 DOI: 10.1016/j.ydbio.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Coup-TF, a member of the nuclear receptor super-family, is present in the pool of maternal mRNAs and proteins in the sea urchin egg. The presence of this protein seems to be essential for the execution of the early developmental program, leading to all three embryonic layers. Our results demonstrate that Pl-Coup-TF morphants, i.e. Pl-Coup-TF morpholino knockdown embryos, resemble blastulae that lack archenteron at 24 hpf (hours post fertilization), a stage at which normal embryos reach the end of gastrulation in Paracentrotus lividus. At 48 hpf, when normal embryos reach the pluteus larva stage, the morphants are seemingly underdeveloped and lack the characteristic skeletal rods. Nevertheless, the morphant embryos express vegetal endomesodermal marker genes, such as Pl-Blimp1, Pl-Endo16, Pl-Alx1 and Pl-Tbr as judged by in situ hybridization experiments. The anterior neuroectoderm genes, Pl-FoxQ2, Pl-Six3 and Pl-Pax6, are also expressed in the morphant embryos, but Pl-Hbn and Pl-Fez mRNAs, which encode proteins significant for the differentiation of serotonergic neurons, are not detected. Consequently, Pl-Coup-TF morphants at 48 hpf lack serotonergic neurons, whereas normal 48 hpf plutei exhibit the formation of two bilateral pairs of such neurons in the apical organ. Furthermore, genes indicative of the ciliary band formation, Pl-Hnf6, Pl-Dri, Pl-FoxG and Pl-Otx, are not expressed in Pl-Coup-TF morphants, suggesting the disruption of this neurogenic territory as well. In addition, the Pl-SynB gene, a marker of differentiated neurons, is silent leading to the hypothesis that Pl-Coup-TF morphants might lack all types of neurons. On the contrary, the genes expressing signaling molecules, which establish the ventral/dorsal axis, Pl-Nodal and Pl-Lefty show the characteristic ventral lateral expression pattern, Pl-Bmp2/4, which activates the dorsal ectoderm GRN is down-regulated and Pl-Chordin is aberrantly over-expressed in the entire ectoderm. The identity of ectodermal cells in Pl-Coup-TF morphant embryos, was probed for expression of the ventral marker Pl-Gsc which was over-expressed and dorsal markers, Pl-IrxA and Pl-Hox7, which were silent. Therefore, we propose that maternal Pl-Coup-TF is essential for correct dissemination of the early embryonic signaling along both animal/vegetal and ventral/dorsal axes. Limiting Pl-Coup-TF's quantity, results in an embryo without digestive and nervous systems, skeleton and ciliary band that cannot survive past the initial 48 h of development.
Collapse
Affiliation(s)
- Ioannis Tsironis
- Department of Biology, University of Patras, Patras, 26500, Greece
| | - Periklis Paganos
- Department of Biology, University of Patras, Patras, 26500, Greece; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Georgia Gouvi
- Department of Biology, University of Patras, Patras, 26500, Greece
| | | | | | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|
15
|
Kahil K, Varsano N, Sorrentino A, Pereiro E, Rez P, Weiner S, Addadi L. Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae. Proc Natl Acad Sci U S A 2020; 117:30957-30965. [PMID: 33229583 PMCID: PMC7733801 DOI: 10.1073/pnas.1918195117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. The primary mesenchyme cells (PMCs) are the cells that are responsible for spicule formation. PMCs endocytose sea water from the larval internal body cavity into a network of vacuoles and vesicles, where calcium ions are concentrated until they precipitate in the form of amorphous calcium carbonate (ACC). The mineral is subsequently transferred to the syncytium, where the spicule forms. Using cryo-soft X-ray microscopy we imaged intracellular calcium-containing particles in the PMCs and acquired Ca-L2,3 X-ray absorption near-edge spectra of these Ca-rich particles. Using the prepeak/main peak (L2'/ L2) intensity ratio, which reflects the atomic order in the first Ca coordination shell, we determined the state of the calcium ions in each particle. The concentration of Ca in each of the particles was also determined by the integrated area in the main Ca absorption peak. We observed about 700 Ca-rich particles with order parameters, L2'/ L2, ranging from solution to hydrated and anhydrous ACC, and with concentrations ranging between 1 and 15 M. We conclude that in each cell the calcium ions exist in a continuum of states. This implies that most, but not all, water is expelled from the particles. This cellular process of calcium concentration may represent a widespread pathway in mineralizing organisms.
Collapse
Affiliation(s)
- Keren Kahil
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Neta Varsano
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Andrea Sorrentino
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Peter Rez
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
16
|
Cunningham B, Torres-Duarte C, Cherr G, Adams N. Effects of three zinc-containing sunscreens on development of purple sea urchin (Strongylocentrotus purpuratus) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105355. [PMID: 31790937 DOI: 10.1016/j.aquatox.2019.105355] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 05/20/2023]
Abstract
The growing popularity of physical sunscreens will lead to an increased release of ingredients from zinc oxide (ZnO) sunscreens into marine environments. Though zinc (Zn) is a necessary micronutrient in the ocean, greater than natural Zn concentrations may be released into marine environments by use of sunscreens. The extent of the consequences of this addition of Zn to the ocean are not fully understood. We investigated the effects of materials released by ZnO- sunscreens on the development of California purple sea urchin, Strongylocentrotus purpuratus. Embryos incubated in various concentrations of Zn (0.01, 0.05, 0.1, 0.5, and 1 mg/L), the sources of which included zinc-containing compounds: ZnO and zinc sulfate (ZnSO4); and ZnO sunscreens: All Good, Badger, and Raw Elements brands. Based on EC50 values, ZnO-containing sunscreens were slightly, but not significantly, more toxic than ZnO and ZnSO4, suggesting that sunscreens may release additional unknown materials that are detrimental to sea urchin embryo development. All concentrations of Zn-exposure resulted in significant malformations (skeletal abnormality, stage arrest, axis determination disruption), which were identified using light and fluorescence confocal microscopy. The concentration of Zn2+ internalized by the developing embryos correlated positively with the concentration of Zn in seawater. Additionally, exposure to both ZnO sunscreens and ZnO and ZnSO4 at 1 mg/L Zn, significantly increased calcein-AM (CAM) accumulation, indicating decreased multidrug resistant (MDR) transporter activity. This is one of the first studies documenting ZnO-containing sunscreens release high concentrations of Zn that are internalized by and have detrimental effects on aquatic organisms.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, United States.
| | - Cristina Torres-Duarte
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, 94923, United States; CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. (CIATEJ), Guadalajara, 44270, Mexico
| | - Gary Cherr
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, 94923, United States; Departments of Environmental Toxicology and Nutrition, University of California Davis, Davis, CA, United States
| | - Nikki Adams
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, United States
| |
Collapse
|
17
|
PI3K inhibition highlights new molecular interactions involved in the skeletogenesis of Paracentrotus lividus embryos. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118558. [PMID: 31525406 DOI: 10.1016/j.bbamcr.2019.118558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 02/02/2023]
Abstract
The sea urchin embryo develops a well-defined biomineralized endoskeleton, synthesized exclusively by the skeletogenic cells, supported by ectodermal cues for the correct skeleton patterning. The biomineralization process is tightly regulated via a hierarchical order of gene expression, including transcription and growth factors, biomineralization proteins. Recently, the role of kinases and intracellular signaling pathways in sea urchin skeletogenesis has been addressed, although the downstream components still remain unknown. In this study, we investigated the role of phosphatidylinositide 3-kinase (PI3K)-mediated signaling pathway in Paracentrotus lividus, to identify its genes/proteins targets. The effects of LY294002 (LY), a PI3K-specific inhibitor, were evaluated at morphological and molecular levels. Treatment with 40 μM LY from the blastula stage completely blocked skeleton deposition, which was reversed by wash out experiments. Besides, LY caused a slight delay in the tripartite gut development. Despite the skeleton absence, a few skeleton-specific proteins/mRNAs were regularly expressed and localized in LY-treated embryos, as shown for MSP130 and SM50 by immunofluorescence and in situ hybridization experiments. QPCR analyses showed that LY differently affected the expression of genes coding for other biomineralization proteins, transcription and growth factors. SM30 and carbonic anhydrase expression was severely downregulated, while almost all the transcription factors analyzed were upregulated. Based on the present results and in silico analyses, we propose an "interactomic" model simulating PI3K connections in P. lividus embryos. Our findings define a novel regulatory step in the embryonic skeletogenesis, and provide valuable molecular data for further studies on the role of PI3K signaling in invertebrate biomineralization.
Collapse
|
18
|
Cappello T, Vitale V, Oliva S, Villari V, Mauceri A, Fasulo S, Maisano M. Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:20-27. [PMID: 28188896 DOI: 10.1016/j.cbpc.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 11/20/2022]
Abstract
The extensive use of copper oxide nanoparticles (CuO NPs) in many applications has raised concerns over their toxicity on environment and human health. Herein, the embryotoxicity of CuO NPs was assessed in the black sea urchin Arbacia lixula, an intertidal species commonly present in the Mediterranean. Fertilized eggs were exposed to 0.7, 10 and 20ppb of CuO NPs, until pluteus stage. Interferences with the normal neurotransmission pathways were observed in sea urchin embryos. In detail, evidence of cholinergic and serotoninergic systems affection was revealed by dose-dependent decreased levels of choline and N-acetyl serotonin, respectively, measured by nuclear magnetic resonance (NMR)-based metabolomics, applied for the first time to our knowledge on sea urchin embryos. The metabolic profile also highlighted a significant CuO NP dose-dependent increase of glycine, a component of matrix proteins involved in the biomineralization process, suggesting perturbed skeletogenesis accordingly to skeletal defects in spicule patterning observed previously in the same sea urchin embryos. However, the expression of skeletogenic genes, i.e. SM30 and msp130, did not differ among groups, and therefore altered primary mesenchyme cell (PMC) migration was hypothesized. Other unknown metabolites were detected from the NMR spectra, and their concentrations found to be reflective of the CuO NP exposure levels. Overall, these findings demonstrate the toxic potential of CuO NPs to interfere with neurotransmission and skeletogenesis of sea urchin embryos. The integrated use of embryotoxicity tests and metabolomics represents a highly sensitive and effective tool for assessing the impact of NPs on aquatic biota.
Collapse
Affiliation(s)
- Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Valeria Vitale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sabrina Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Valentina Villari
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Fasulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
19
|
Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis. Exp Cell Res 2017; 359:205-214. [PMID: 28782554 DOI: 10.1016/j.yexcr.2017.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 07/22/2017] [Indexed: 12/18/2022]
Abstract
The sea urchin larval embryo elaborates two calcitic endoskeletal elements called spicules. Spicules are synthesized by the primary mesenchyme cells (PMCs) and begin to form at early gastrula stage. It is known that the calcium comprising the spicules comes from the seawater and we wish to further consider the mode of calcium transport from the extracellular seawater to the PMCs and then onto the forming spicules. We used PMC in vitro cultures, calcein, fluorescently labeled dextran, and fluorescently labeled Wheat Germ Agglutinin (WGA) to track calcium transport from the seawater into PMCs and spicules and to determine how molecules from the surface of PMCs interact with the incoming calcium. Labeling of PMC endocytic vesicles and forming spicules by both calcein and fluorescently tagged dextran indicate that calcium is taken up from the seawater by endocytosis and directly incorporated into spicules. Calcein labeling studies also indicate that calcium from the extracellular seawater begins to be incorporated into spicules within 30min of uptake. In addition, we demonstrate that fluorescently labeled WGA and calcein are taken up by many of the same endocytic vesicles and are incorporated into growing spicules. These findings suggest that PMC specific surface molecules accompany calcium ions as they enter PMCs via endocytosis and are incorporated together in the growing spicule. Using anti-spicule matrix protein antibodies, we pinpoint a subset of spicule matrix proteins that may accompany calcium ions from the surface of the PMCs until they are incorporated into spicules. Msp130 is identified as one of these spicule matrix proteins.
Collapse
|
20
|
Sun Z, Ettensohn CA. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo. Dev Biol 2016; 421:149-160. [PMID: 27955944 DOI: 10.1016/j.ydbio.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Cell-cell signaling plays a prominent role in the formation of the embryonic skeleton of sea urchins, but the mechanisms are poorly understood. In the present study, we uncover an essential role for TGF-β sensu stricto signaling in this process. We show that TgfbrtII, a type II receptor dedicated to signaling through TGF-β sensu stricto, is expressed selectively in skeletogenic primary mesenchyme cells (PMCs) during skeleton formation. Morpholino (MO) knockdowns and studies with a specific TgfbrtII inhibitor (ITD-1) in both S. purpuratus and Lytechinus variegatus embryos show that this receptor is required for biomineral deposition. We provide pharmacological evidence that Alk4/5/7 is the cognate TGF-β type I receptor that pairs with TgfbrtII and show by inhibitor treatments of isolated micromeres cultured in vitro that both Alk4/5/7 and TgfbrtII function cell-autonomously in PMCs. Gene expression and gene knockdown studies suggest that TGF-β sensu stricto may be the ligand that interacts with TgfbrtII and support the view that this TGF-β superfamily ligand provides an essential, permissive cue for skeletogenesis, although it is unlikely to provide spatial patterning information. Taken together, our findings reveal that this model morphogenetic process involves an even more diverse suite of cell signaling pathways than previously appreciated and show that PMCs integrate a complex set of both generalized and spatially localized cues in assembling the endoskeleton.
Collapse
Affiliation(s)
- Zhongling Sun
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
21
|
Calcium transport into the cells of the sea urchin larva in relation to spicule formation. Proc Natl Acad Sci U S A 2016; 113:12637-12642. [PMID: 27791140 DOI: 10.1073/pnas.1612017113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the manner in which the sea urchin larva takes up calcium from its body cavity into the primary mesenchymal cells (PMCs) that are responsible for spicule formation. We used the membrane-impermeable fluorescent dye calcein and alexa-dextran, with or without a calcium channel inhibitor, and imaged the larvae in vivo with selective-plane illumination microscopy. Both fluorescent molecules are taken up from the body cavity into the PMCs and ectoderm cells, where the two labels are predominantly colocalized in particles, whereas the calcium-binding calcein label is mainly excluded from the endoderm and is concentrated in the spicules. The presence of vesicles and vacuoles inside the PMCs that have openings through the plasma membrane directly to the body cavity was documented using high-resolution cryo-focused ion beam-SEM serial imaging. Some of the vesicles and vacuoles are interconnected to form large networks. We suggest that these vacuolar networks are involved in direct sea water uptake. We conclude that the calcium pathway from the body cavity into cells involves nonspecific endocytosis of sea water with its calcium.
Collapse
|
22
|
Karakostis K, Costa C, Zito F, Brümmer F, Matranga V. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:384-395. [PMID: 27230618 DOI: 10.1007/s10126-016-9701-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- INSERM - UMR 1162, Institute de Génétique Moléculaire, Hôpital St. Louis, 27 rue Juliette Dodu, 75010, Paris, France
| | - Caterina Costa
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy.
| | - Francesca Zito
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| | - Franz Brümmer
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| |
Collapse
|
23
|
Czarkwiani A, Ferrario C, Dylus DV, Sugni M, Oliveri P. Skeletal regeneration in the brittle star Amphiura filiformis. Front Zool 2016; 13:18. [PMID: 27110269 PMCID: PMC4841056 DOI: 10.1186/s12983-016-0149-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Brittle stars regenerate their whole arms post-amputation. Amphiura filiformis can now be used for molecular characterization of arm regeneration due to the availability of transcriptomic data. Previous work showed that specific developmental transcription factors known to take part in echinoderm skeletogenesis are expressed during adult arm regeneration in A. filiformis; however, the process of skeleton formation remained poorly understood. Here, we present the results of an in-depth microscopic analysis of skeletal morphogenesis during regeneration, using calcein staining, EdU labeling and in situ hybridization. Results To better compare different samples, we propose a staging system for the early A. filiformis arm regeneration stages based on morphological landmarks identifiable in living animals and supported by histological analysis. We show that the calcified spicules forming the endoskeleton first appear very early during regeneration in the dermal layer of regenerates. These spicules then mature into complex skeletal elements of the differentiated arm during late regeneration. The mesenchymal cells in the dermal area express the skeletal marker genes Afi-c-lectin, Afi-p58b and Afi-p19; however, EdU labeling shows that these dermal cells do not proliferate. Conclusions A. filiformis arms regenerate through a consistent set of developmental stages using a distalization-intercalation mode, despite variability in regeneration rate. Skeletal elements form in a mesenchymal cell layer that does not proliferate and thus must be supplied from a different source. Our work provides the basis for future cellular and molecular studies of skeleton regeneration in brittle stars. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Cinzia Ferrario
- Department of Biosciences, University of Milan, Milan, Italy
| | - David Viktor Dylus
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London, UK ; Present address: Department of Ecology and Evolution & Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Michela Sugni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
24
|
Sharmankina VV, Kiselev KV. Expression of SM30(A–F) genes encoding spicule matrix proteins in intact and damaged sea urchin Strongylocentrotus intermedius at the six-armed pluteus. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416020125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Morino Y, Koga H, Wada H. The conserved genetic background for pluteus arm development in brittle stars and sea urchin. Evol Dev 2016; 18:89-95. [DOI: 10.1111/ede.12174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yoshiaki Morino
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Hiroyuki Koga
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
26
|
Abstract
In the sea urchin morphogenesis follows extensive molecular specification. The specification controls the many morphogenetic events and these, in turn, precede patterning steps that establish the larval body plan. To understand how the embryo is built it was necessary to understand those series of molecular steps. Here an example of the historical sequence of those discoveries is presented as it unfolded over the last 50 years, the years during which major progress in understanding development of many animals and plants was documented by CTDB. In sea urchin development a rich series of experimental studies first established many of the phenomenological components of skeletal morphogenesis and patterning without knowledge of the molecular components. The many discoveries of transcription factors, signals, and structural proteins that contribute to the shape of the endoskeleton of the sea urchin larva then followed as molecular tools became available. A number of transcription factors and signals were discovered that were necessary for specification, morphogenesis, and patterning. Perturbation of the transcription factors and signals provided the means for assembling models of the gene regulatory networks used for specification and controlled the subsequent morphogenetic events. The earlier experimental information informed perturbation experiments that asked how patterning worked. As a consequence it was learned that ectoderm provides a series of patterning signals to the skeletogenic cells and as a consequence the skeletogenic cells secrete a highly patterned skeleton based on their ability to genotypically decode the localized reception of several signals. We still do not understand the complexity of the signals received by the skeletogenic cells, nor do we understand in detail how the genotypic information shapes the secreted skeletal biomineral, but the current knowledge at least outlines the sequence of events and provides a useful template for future discoveries.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
27
|
Torres-Duarte C, Adeleye AS, Pokhrel S, Mädler L, Keller AA, Cherr GN. Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos. Nanotoxicology 2015; 10:671-9. [PMID: 26643145 DOI: 10.3109/17435390.2015.1107145] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Copper oxide nanomaterials (nano-CuOs) are widely used and can be inadvertently introduced into estuarine and marine environments. We analyzed the effects of different nano-CuOs (a synthesized and a less-pure commercial form), as well as ionic copper (CuSO4) on embryo development in the white sea urchin, a well-known marine model. After 96 h of development with both nano-CuO exposures, we did not detect significant oxidative damage to proteins but did detect decreases in total antioxidant capacity. We show that the physicochemical characteristics of the two nano-CuOs play an essential role in their toxicities. Both nano-CuOs were internalized by embryos and their differential dissolution was the most important toxicological parameter. The synthesized nano-CuO showed greater toxicity (EC50 = 450 ppb of copper) and had increased dissolution (2.5% by weight over 96 h) as compared with the less-pure commercial nano-CuO (EC50 = 5395 ppb of copper, 0.73% dissolution by weight over 96 h). Copper caused specific developmental abnormalities in sea urchin embryos including disruption of the aboral-oral axis as a result in changes to the redox environment caused by dissolution of internalized nano-CuO. Abnormal skeleton formation also occurred.
Collapse
Affiliation(s)
| | - Adeyemi S Adeleye
- b Bren School of Environmental Science & Management, University of California , Santa Barbara , CA , USA
| | - Suman Pokhrel
- c Foundation Institute of Materials Science (IWT), Department of Production Engineering , University of Bremen , Bremen , Germany , and
| | - Lutz Mädler
- c Foundation Institute of Materials Science (IWT), Department of Production Engineering , University of Bremen , Bremen , Germany , and
| | - Arturo A Keller
- b Bren School of Environmental Science & Management, University of California , Santa Barbara , CA , USA
| | - Gary N Cherr
- a Bodega Marine Laboratory, University of California , Davis , Bodega Bay, CA , USA .,d Department of Environmental Toxicology and Nutrition , University of California , Davis , CA , USA
| |
Collapse
|
28
|
Katow H. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos. Tissue Barriers 2015; 3:e1059004. [PMID: 26716069 PMCID: PMC4681286 DOI: 10.1080/21688370.2015.1059004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology; Tohoku University; Asamushi, Aomori, Japan
| |
Collapse
|
29
|
Stepicheva NA, Song JL. microRNA-31 modulates skeletal patterning in the sea urchin embryo. Development 2015; 142:3769-80. [PMID: 26400092 DOI: 10.1242/dev.127969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that repress the translation and reduce the stability of target mRNAs in animal cells. microRNA-31 (miR-31) is known to play a role in cancer, bone formation and lymphatic development. However, studies to understand the function of miR-31 in embryogenesis have been limited. We examined the regulatory role of miR-31 in early development using the sea urchin as a model. miR-31 is expressed at all stages of development and its knockdown (KD) disrupts the patterning and function of primary mesenchyme cells (PMCs), which form the embryonic skeleton spicules. We identified that miR-31 directly represses Pmar1, Alx1, Snail and VegfR7 within the PMC gene regulatory network using reporter constructs. Further, blocking the miR-31-mediated repression of Alx1 and/or VegfR7 in the developing embryo resulted in defects in PMC patterning and skeletogenesis. The majority of the mislocalized PMCs in miR-31 KD embryos did not express VegfR10, indicating that miR-31 regulates VegfR gene expression within PMCs. In addition, miR-31 indirectly suppresses Vegf3 expression in the ectoderm. These results indicate that miR-31 coordinately suppresses genes within the PMCs and in the ectoderm to impact PMC patterning and skeletogenesis. This study identifies the novel function and molecular mechanism of miR-31-mediated regulation in the developing embryo.
Collapse
Affiliation(s)
- Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
30
|
Schatzberg D, Lawton M, Hadyniak SE, Ross EJ, Carney T, Beane WS, Levin M, Bradham CA. H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos. Dev Biol 2015; 406:259-70. [PMID: 26282894 DOI: 10.1016/j.ydbio.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/26/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus variegatus, we tested a range of ion channel inhibitors, and thereby identified SCH28080, a chemical inhibitor of the H(+)/K(+) ATPase (HKA), as an inhibitor of skeletogenesis. In sea urchin embryos, the primary mesodermal lineage, the PMCs, produce biomineral in response to signals from the ectoderm. However, in SCH28080-treated embryos, aside from randomization of the left-right axis, the ectoderm is normally specified and differentiated, indicating that the block to skeletogenesis observed in SCH28080-treated embryos is PMC-specific. HKA inhibition did not interfere with PMC specification, and was sufficient to block continuing biomineralization when embryos were treated with SCH28080 after the initiation of skeletogenesis, indicating that HKA activity is continuously required during biomineralization. Ion concentrations and voltage potential were abnormal in the PMCs in SCH28080-treated embryos, suggesting that these bioelectrical abnormalities prevent biomineralization. Our results indicate that this effect is due to the inhibition of amorphous calcium carbonate precipitation within PMC vesicles.
Collapse
Affiliation(s)
| | - Matthew Lawton
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Erik J Ross
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Tamara Carney
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Wendy S Beane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
31
|
Piacentino ML, Ramachandran J, Bradham CA. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos. Development 2015; 142:943-52. [PMID: 25633352 DOI: 10.1242/dev.114322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skeletal patterning in the sea urchin embryo requires a conversation between the skeletogenic primary mesenchyme cells (PMCs) and the overlying pattern-dictating ectoderm; however, our understanding of the molecular basis for this process remains incomplete. Here, we show that TGF-β-receptor signaling is required during gastrulation to pattern the anterior skeleton. To block TGF-β signaling, we used SB431542 (SB43), a specific inhibitor of the TGF-β type I receptor Alk4/5/7. Treatment with SB43 during gastrulation blocks anterior PMC positioning and the formation of the anterior skeleton, but does not perturb general ectoderm specification or development. This is the first example of a signaling event required for patterning of a specific part of the skeleton. Alk4/5/7 inhibition does not prevent the formation of a mouth, although SB43-treated plutei display reduced feeding ability, presumably due to the loss of the structural support for the mouth conferred by the anterior skeleton. Both Univin and Nodal are potential ligands for Alk4/5/7; however, Nodal is unilaterally expressed on only the right side, whereas Univin is bilaterally expressed in the ectoderm adjacent to the anterior skeleton during the relevant time period. Our results demonstrate that Univin is both necessary and sufficient for secondary skeletal development in a control background, consistent with the hypothesis that Univin is a relevant Alk4/5/7 ligand for anterior skeletal patterning. Taken together, our data demonstrate that Alk4/5/7 signaling during gastrulation is required to direct PMCs to the oral hood, and suggest that Univin is a relevant ligand for this signaling event.
Collapse
Affiliation(s)
- Michael L Piacentino
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | | | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
32
|
Gambardella C, Ferrando S, Morgana S, Gallus L, Ramoino P, Ravera S, Bramini M, Diaspro A, Faimali M, Falugi C. Exposure of Paracentrotus lividus male gametes to engineered nanoparticles affects skeletal bio-mineralization processes and larval plasticity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:181-191. [PMID: 25481784 DOI: 10.1016/j.aquatox.2014.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study is to contribute to the understanding of the mechanisms underlying nanoparticle (NP)-induced embryotoxicity in aquatic organisms. We previously demonstrated that exposure of male gametes to NPs causes non-dose-dependent skeletal damage in sea urchin (Paracentrotus lividus) larvae. In the present study, the molecular mechanisms responsible for these anomalies in sea urchin development from male gametes exposed to cobalt (Co), titanium dioxide (TiO2) and silver (Ag) NPs were investigated by histochemical, immunohistochemical and Western blot analyses. P. lividus sperm were exposed to different NP concentrations (from 0.0001 to 1 mg/L). The distribution of molecules related to skeletogenic cell identification, including ID5 immunoreactivity (IR), wheat germ agglutinin (WGA) affinity and fibronectin (FN) IR, were investigated by confocal laser scanning microscopy at the gastrula (24 h) and pluteus (72 h) stages. Our results identified a spatial correspondence among PMCs, ID5 IR and WGA affinity sites. The altered FN pattern suggests that it is responsible for the altered skeletogenic cell migration, while the Golgi apparatus of the skeletogenic cells, denoted by their WGA affinity, shows different aspects according to the degree of anomalies caused by NP concentrations. The ID5 IR, a specific marker of skeletogenic cells in sea urchin embryos (in particular of the msp130 protein responsible for Ca(2+) and Mg(2+) mineralization), localized in the cellular strands prefiguring the skeletal rods in the gastrula stage and, in the pluteus stage, was visible according to the degree of mineralization of the skeleton. In conclusion, the present study suggests that the investigated NPs suspended in seawater interfere with the bio-mineralization processes in marine organisms, and the results of this study offer a new series of specific endpoints for the mechanistic understanding of NP toxicity.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy.
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Silvia Morgana
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Paola Ramoino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Silvia Ravera
- Department of Pharmacy (DIFAR), Biochemistry Lab., University of Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Mattia Bramini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Marco Faimali
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Carla Falugi
- Department of Earth, Environment and Life Sciences (DISVA), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
33
|
Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. Gene Expr Patterns 2014; 16:93-103. [PMID: 25460514 DOI: 10.1016/j.gep.2014.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/23/2022]
Abstract
The endoskeleton of the sea urchin embryo is produced by primary mesenchyme cells (PMCs). Maternal inputs activate a complex gene regulatory network (GRN) in the PMC lineage in a cell-autonomous fashion during early development, initially creating a uniform population of prospective skeleton-forming cells. Previous studies showed that at post-blastula stages of development, several effector genes in the network exhibit non-uniform patterns of expression, suggesting that their regulation becomes subject to local, extrinsic cues. Other studies have identified the VEGF and MAPK pathways as regulators of PMC migration, gene expression, and biomineralization. In this study, we used whole mount in situ hybridization (WMISH) to examine the spatial expression patterns of 39 PMC-specific/enriched mRNAs in Strongylocentrotus purpuratus embryos at the late gastrula, early prism and pluteus stages. We found that all 39 mRNAs (including several regulatory genes) showed non-uniform patterns of expression within the PMC syncytium, revealing a global shift in the regulation of the skeletogenic GRN from a cell-autonomous to a signal-dependent mode. In general, localized regions of elevated gene expression corresponded to sites of rapid biomineral deposition. We used a VEGFR inhibitor (axitinib) and a MEK inhibitor (U0126) to show that VEGF signaling and the MAPK pathway are essential for maintaining high levels of gene expression in PMCs at the tips of rods that extend from the ventral region of the embryo. These inhibitors affected gene expression in the PMCs in similar ways, suggesting that VEGF acts via the MAPK pathway. In contrast, axitinib and U0126 did not affect the localized expression of genes in PMCs at the tips of the body rods, which form on the dorsal side of the embryo. Our results therefore indicate that multiple signaling pathways regulate the skeletogenic GRN during late stages of embryogenesis-VEGF/MAPK signaling on the ventral side and a separate, unidentified pathway on the dorsal side. These two signaling pathways appear to be activated sequentially (ventral followed by dorsal) and many effector genes are subject to regulation by both pathways.
Collapse
|
34
|
Rafiq K, Shashikant T, McManus CJ, Ettensohn CA. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 2014; 141:950-61. [PMID: 24496631 DOI: 10.1242/dev.105585] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand the transformation of genetic information into morphology. Elucidating the connections between genes and anatomy will require model morphogenetic processes that are amenable to detailed analysis of cell/tissue behaviors and to systems-level approaches to gene regulation. The formation of the calcified endoskeleton of the sea urchin embryo is a valuable experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. A transcriptional gene regulatory network (GRN) that underlies the specification of skeletogenic cells (primary mesenchyme cells, or PMCs) has recently been elucidated. In this study, we carried out a genome-wide analysis of mRNAs encoded by effector genes in the network and uncovered transcriptional inputs into many of these genes. We used RNA-seq to identify >400 transcripts differentially expressed by PMCs during gastrulation, when these cells undergo a striking sequence of behaviors that drives skeletal morphogenesis. Our analysis expanded by almost an order of magnitude the number of known (and candidate) downstream effectors that directly mediate skeletal morphogenesis. We carried out genome-wide analysis of (1) functional targets of Ets1 and Alx1, two pivotal, early transcription factors in the PMC GRN, and (2) functional targets of MAPK signaling, a pathway that plays an essential role in PMC specification. These studies identified transcriptional inputs into >200 PMC effector genes. Our work establishes a framework for understanding the genomic regulatory control of a major morphogenetic process and has important implications for reconstructing the evolution of biomineralization in metazoans.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
35
|
Adomako-Ankomah A, Ettensohn CA. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo. Genesis 2014; 52:158-72. [PMID: 24515750 DOI: 10.1002/dvg.22746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/24/2014] [Accepted: 02/05/2014] [Indexed: 12/16/2022]
Abstract
The early morphogenesis of the mesoderm is critically important in establishing the body plan of the embryo. Recent research has led to a better understanding of the mechanisms that underlie this process, and growth factor signaling pathways have emerged as key regulators of the directional movements of mesoderm cells during gastrulation. In this review, we undertake a comparative analysis of the various essential functions of growth factor signaling pathways in regulating early mesoderm morphogenesis, with an emphasis on recent advances in the sea urchin embryo. We focus on the roles of the vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) pathways in the migration of primary mesenchyme cells and the formation of the embryonic endoskeleton. We compare the functions of VEGF and FGF in sea urchins with the roles that these and other growth factors play in regulating mesoderm migration during gastrulation in Drosophila and vertebrates.
Collapse
|
36
|
McIntyre DC, Lyons DC, Martik M, McClay DR. Branching out: origins of the sea urchin larval skeleton in development and evolution. Genesis 2014; 52:173-85. [PMID: 24549853 PMCID: PMC3990003 DOI: 10.1002/dvg.22756] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/08/2022]
Abstract
It is a challenge to understand how the information encoded in DNA is used to build a three-dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here, we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, fibroblast growth factor, vascular endothelial growth factor, and Wnt5. Each is necessary for explicit tasks in skeleton production.
Collapse
Affiliation(s)
| | | | - Megan Martik
- Department of Biology, Duke University, Durham, NC
| | | |
Collapse
|
37
|
Vidavsky N, Addadi S, Mahamid J, Shimoni E, Ben-Ezra D, Shpigel M, Weiner S, Addadi L. Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc Natl Acad Sci U S A 2014; 111:39-44. [PMID: 24344263 PMCID: PMC3890786 DOI: 10.1073/pnas.1312833110] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellularly. Surprisingly, calcium carbonate deposits are distributed widely all over the embryo, including in the primary mesenchyme cells and in the surface epithelial cells. Using cryo-SEM, we show that the intracellular calcium carbonate deposits are contained in vesicles of diameter 0.5-1.5 μm. Using the newly developed airSEM, which allows direct correlation between fluorescence and energy dispersive spectroscopy, we confirmed the presence of solid calcium carbonate in the vesicles. This mineral phase appears as aggregates of 20-30-nm nanospheres, consistent with amorphous calcium carbonate. The aggregates finally are introduced into the spicule compartment, where they integrate into the growing spicule.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - David Ben-Ezra
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | - Muki Shpigel
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
38
|
McIntyre DC, Seay NW, Croce JC, McClay DR. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. Development 2013; 140:4881-9. [PMID: 24227654 DOI: 10.1242/dev.095844] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The border between the posterior ectoderm and the endoderm is a location where two germ layers meet and establish an enduring relationship that also later serves, in deuterostomes, as the anatomical site of the anus. In the sea urchin, a prototypic deuterostome, the ectoderm-endoderm boundary is established before gastrulation, and ectodermal cells at the boundary are thought to provide patterning inputs to the underlying mesenchyme. Here we show that a short-range Wnt5 signal from the endoderm actively patterns the adjacent boundary ectoderm. This signal activates a unique subcircuit of the ectoderm gene regulatory network, including the transcription factors IrxA, Nk1, Pax2/5/8 and Lim1, which are ultimately restricted to subregions of the border ectoderm (BE). Surprisingly, Nodal and BMP2/4, previously shown to be activators of ectodermal specification and the secondary embryonic axis, instead restrict the expression of these genes to subregions of the BE. A detailed examination showed that endodermal Wnt5 functions as a short-range signal that activates only a narrow band of ectodermal cells, even though all ectoderm is competent to receive the signal. Thus, cells in the BE integrate positive and negative signals from both the primary and secondary embryonic axes to correctly locate and specify the border ectoderm.
Collapse
|
39
|
Adomako-Ankomah A, Ettensohn CA. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation. Development 2013; 140:4214-25. [PMID: 24026121 DOI: 10.1242/dev.100479] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Growth factor signaling pathways provide essential cues to mesoderm cells during gastrulation in many metazoans. Recent studies have implicated the VEGF and FGF pathways in providing guidance and differentiation cues to primary mesenchyme cells (PMCs) during sea urchin gastrulation, although the relative contributions of these pathways and the cell behaviors they regulate are not fully understood. Here, we show that FGF and VEGF ligands are expressed in distinct domains in the embryonic ectoderm of Lytechinus variegatus. We find that PMC guidance is specifically disrupted in Lv-vegf3 morphants and these embryos fail to form skeletal elements. By contrast, PMC migration is unaffected in Lv-fgfa morphants, and well-patterned but shortened skeletal elements form. We use a VEGFR inhibitor, axitinib, to show that VEGF signaling is essential not only for the initial phase of PMC migration (subequatorial ring formation), but also for the second phase (migration towards the animal pole). VEGF signaling is not required, however, for PMC fusion. Inhibition of VEGF signaling after the completion of PMC migration causes significant defects in skeletogenesis, selectively blocking the elongation of skeletal rods that support the larval arms, but not rods that form in the dorsal region of the embryo. Nanostring nCounter analysis of ∼100 genes in the PMC gene regulatory network shows a decrease in the expression of many genes with proven or predicted roles in biomineralization in vegf3 morphants. Our studies lead to a better understanding of the roles played by growth factors in sea urchin gastrulation and skeletogenesis.
Collapse
|
40
|
Wilt F, Killian CE, Croker L, Hamilton P. SM30 protein function during sea urchin larval spicule formation. J Struct Biol 2013; 183:199-204. [PMID: 23583702 DOI: 10.1016/j.jsb.2013.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/20/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
A central issue in better understanding the process of biomineralization is to elucidate the function of occluded matrix proteins present in mineralized tissues. A potent approach to addressing this issue utilizes specific inhibitors of expression of known genes. Application of antisense oligonucleotides that specifically suppress translation of a given mRNA are capable of causing aberrant biomineralization, thereby revealing, at least in part, a likely function of the protein and gene under investigation. We have applied this approach to study the possible function(s) of the SM30 family of proteins, which are found in spicules, teeth, spines, and tests of Strongylocentrotus purpuratus as well as other euechinoid sea urchins. It is possible using the anti-SM30 morpholino-oligonucleotides (MO's) to reduce the level of these proteins to very low levels, yet the development of skeletal spicules in the embryo shows little or no aberration. This surprising result requires re-thinking about the role of these, and possibly other occluded matrix proteins.
Collapse
Affiliation(s)
- Fred Wilt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, United States.
| | | | | | | |
Collapse
|
41
|
Evans TG, Chan F, Menge BA, Hofmann GE. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Mol Ecol 2013; 22:1609-25. [PMID: 23317456 DOI: 10.1111/mec.12188] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/08/2012] [Accepted: 11/14/2012] [Indexed: 01/06/2023]
Abstract
Some marine ecosystems already experience natural declines in pH approximating those predicted with future anthropogenic ocean acidification (OA), the decline in seawater pH caused by the absorption of atmospheric CO2 . The molecular mechanisms that allow organisms to inhabit these low pH environments, particularly those building calcium carbonate skeletons, are unknown. Also uncertain is whether an enhanced capacity to cope with present day pH variation will confer resistance to future OA. To address these issues, we monitored natural pH dynamics within an intertidal habitat in the Northeast Pacific, demonstrating that upwelling exposes resident species to pH regimes not predicted to occur elsewhere until 2100. Next, we cultured the progeny of adult purple sea urchins (Strongylocentrotus purpuratus) collected from this region in CO2 -acidified seawater representing present day and near future ocean scenarios and monitored gene expression using transcriptomics. We hypothesized that persistent exposure to upwelling during evolutionary history will have selected for increased pH tolerance in this population and that their transcriptomic response to low pH seawater would provide insight into mechanisms underlying pH tolerance in a calcifying species. Resulting expression patterns revealed two important trends. Firstly, S. purpuratus larvae may alter the bioavailability of calcium and adjust skeletogenic pathways to sustain calcification in a low pH ocean. Secondly, larvae use different strategies for coping with different magnitudes of pH stress: initiating a robust transcriptional response to present day pH regimes but a muted response to near future conditions. Thus, an enhanced capacity to cope with present day pH variation may not translate into success in future oceans.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA.
| | | | | | | |
Collapse
|
42
|
Morino Y, Koga H, Tachibana K, Shoguchi E, Kiyomoto M, Wada H. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae. Evol Dev 2012; 14:428-36. [PMID: 22947316 DOI: 10.1111/j.1525-142x.2012.00563.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The evolution of the echinoderm larval skeleton was examined from the aspect of interactions between skeletogenic mesenchyme cells and surrounding epithelium. We focused on vascular endothelial growth factor (VEGF) signaling, which was reported to be essential for skeletogenesis in sea urchin larvae. Here, we examined the expression patterns of vegf and vegfr in starfish and brittle stars. During starfish embryogenesis, no expression of either vegfr or vegf was detected, which contrast with previous reports on the expression of starfish homologs of sea urchin skeletogenic genes, including Ets, Tbr, and Dri. In later stages, when adult skeletogenesis commenced, vegfr and vegf expression were upregulated in skeletogenic cells and in the adjacent epidermis, respectively. These expression patterns suggest that heterochronic activation of VEGF signaling is one of the key molecular evolutionary steps in the evolution of the larval skeleton. The absence of vegf or vegfr expression during early embryogenesis in starfish suggests that the evolution of the larval skeleton requires distinct evolutionary changes, both in mesoderm cells (activation of vegfr expression) and in epidermal cells (activation of vegf expression). In brittle stars, which have well-organized skeletons like the sea urchin, vegfr and vegf were expressed in the skeletogenic mesenchyme and the overlying epidermis, respectively, in the same manner as in sea urchins. Therefore, the distinct activation of vegfr and vegf may have occurred in two lineages, sea urchins and brittle stars.
Collapse
Affiliation(s)
- Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 305-8572, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Manno D, Carata E, Tenuzzo BA, Panzarini E, Buccolieri A, Filippo E, Rossi M, Serra A, Dini L. High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus. NANOTECHNOLOGY 2012; 23:495104. [PMID: 23165288 DOI: 10.1088/0957-4484/23/49/495104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins.
Collapse
Affiliation(s)
- Daniela Manno
- Interdepartmental Laboratory of Physics Applied to Materials Science, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Knapp RT, Wu CH, Mobilia KC, Joester D. Recombinant sea urchin vascular endothelial growth factor directs single-crystal growth and branching in vitro. J Am Chem Soc 2012; 134:17908-11. [PMID: 23066927 DOI: 10.1021/ja309024b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomineralization in sea urchin embryos is a crystal growth process that results in oriented single-crystalline spicules with a complex branching shape and smoothly curving surfaces. Uniquely, the primary mesenchyme cells (PMCs) that construct the endoskeleton can be cultured in vitro. However, in the absence of morphogenetic cues secreted by other cells in the embryo, spicules deposited in PMC culture lack the complex branching behavior observed in the embryo. Herein we demonstrate that recombinant sea urchin vascular endothelial growth factor (rVEGF), a signaling molecule that interacts with a cell-surface receptor, induces spiculogenesis and controls the spicule shape in PMC culture. Depending on the rVEGF concentration, PMCs deposit linear, "h"- and "H"-shaped, or triradiate spicules. Remarkably, the change from linear to triradiate occurs with a switch from bidirectional crystal growth parallel to the calcite c axis to growth along the three a axes. This finding has implications for our understanding of how cells integrate morphogenesis on the multi-micrometer scale with control over lattice orientation on the atomic scale. The PMC model system is uniquely suited to investigate this mechanism and develop biotechnological approaches to single-crystal growth.
Collapse
Affiliation(s)
- Regina T Knapp
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
45
|
Hammond LM, Hofmann GE. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions. ACTA ACUST UNITED AC 2012; 215:2445-54. [PMID: 22723484 DOI: 10.1242/jeb.058008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ocean acidification, or the increased uptake of CO(2) by the ocean due to elevated atmospheric CO(2) concentrations, may variably impact marine early life history stages, as they may be especially susceptible to changes in ocean chemistry. Investigating the regulatory mechanisms of early development in an environmental context, or ecological development, will contribute to increased understanding of potential organismal responses to such rapid, large-scale environmental changes. We examined transcript-level responses to elevated seawater CO(2) during gastrulation and the initiation of spiculogenesis, two crucial developmental processes in the purple sea urchin, Strongylocentrotus purpuratus. Embryos were reared at the current, accepted oceanic CO(2) concentration of 380 microatmospheres (μatm), and at the elevated levels of 1000 and 1350 μatm, simulating predictions for oceans and upwelling regions, respectively. The seven genes of interest comprised a subset of pathways in the primary mesenchyme cell gene regulatory network (PMC GRN) shown to be necessary for the regulation and execution of gastrulation and spiculogenesis. Of the seven genes, qPCR analysis indicated that elevated CO(2) concentrations only had a significant but subtle effect on two genes, one important for early embryo patterning, Wnt8, and the other an integral component in spiculogenesis and biomineralization, SM30b. Protein levels of another spicule matrix component, SM50, demonstrated significant variable responses to elevated CO(2). These data link the regulation of crucial early developmental processes with the environment that these embryos would be developing within, situating the study of organismal responses to ocean acidification in a developmental context.
Collapse
Affiliation(s)
- LaTisha M Hammond
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA.
| | | |
Collapse
|
46
|
Shiomi K, Yamazaki A, Kagawa M, Kiyomoto M, Yamaguchi M. Par6 regulates skeletogenesis and gut differentiation in sea urchin larvae. Dev Genes Evol 2012; 222:269-78. [PMID: 22903233 DOI: 10.1007/s00427-012-0409-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/15/2012] [Indexed: 12/30/2022]
Abstract
Partitioning-defective (par) genes were originally identified as genes that are essential for the asymmetric division of the Caenorhabditis elegans zygote. Studies have since revealed that the gene products are part of an evolutionarily conserved PAR-atypical protein kinase C system involved in cell polarity in various biological contexts. In this study, we analyzed the function of par6 during sea urchin morphogenesis by morpholino-mediated knockdown and by manipulation swapping of the primary mesenchyme cells (PMCs). Loss of Par6 resulted in defects in skeletogenesis and gut differentiation in larvae. Phenotypic analyses of chimeras constructed by PMC swapping showed that Par6 in non-PMCs is required for differentiation of archenteron into functional gut. In contrast, Par6 in both PMCs and ectodermal cells cooperatively regulates skeletogenesis. We suggest that Par6 in PMCs plays an immediate role in the deposition of biomineral in the syncytial cable, whereas Par6 in ectoderm may stabilize skeletal rods via an unknown signal(s).
Collapse
Affiliation(s)
- Kosuke Shiomi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
47
|
Cameron CB, Bishop CD. Biomineral ultrastructure, elemental constitution and genomic analysis of biomineralization-related proteins in hemichordates. Proc Biol Sci 2012; 279:3041-8. [PMID: 22496191 PMCID: PMC3385480 DOI: 10.1098/rspb.2012.0335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022] Open
Abstract
Here, we report the discovery and characterization of biominerals in the acorn worms Saccoglossus bromophenolosus and Ptychodera flava galapagos (Phylum: Hemichordata). Using electron microscopy, X-ray microprobe analyses and confocal Raman spectroscopy, we show that hemichordate biominerals are small CaCO(3) aragonitic elements restricted to specialized epidermal structures, and in S. bromophenolosus, are apparently secreted by sclerocytes. Investigation of urchin biomineralizing proteins in the translated genome and expressed sequence tag (EST) libraries of Saccoglossus kowalevskii indicates that three members of the urchin MSP-130 family, a carbonic anhydrase and a matrix metaloprotease are present and transcribed during the development of S. kowalevskii. The SM family of proteins is absent from the hemichordate genome. These results increase the number of phyla known to biomineralize and suggest that some of the gene-regulatory 'toolkit', if not mineralized tissue themselves, may have been present in the common ancestor to hemichordates and echinoderms.
Collapse
Affiliation(s)
- C B Cameron
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Quebec, Canada, H3C 3J7.
| | | |
Collapse
|
48
|
Tester CC, Wu CH, Weigand S, Joester D. Precipitation of ACC in liposomes—a model for biomineralization in confined volumes. Faraday Discuss 2012. [DOI: 10.1039/c2fd20088k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Rafiq K, Cheers MS, Ettensohn CA. The genomic regulatory control of skeletal morphogenesis in the sea urchin. Development 2011; 139:579-90. [PMID: 22190640 DOI: 10.1242/dev.073049] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand how anatomy is encoded in the genome. Elucidating the genetic mechanisms that control the development of specific anatomical features will require the analysis of model morphogenetic processes and an integration of biological information at genomic, cellular and tissue levels. The formation of the endoskeleton of the sea urchin embryo is a powerful experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. The dynamic cellular behaviors that underlie skeletogenesis are well understood and a complex transcriptional gene regulatory network (GRN) that underlies the specification of embryonic skeletogenic cells (primary mesenchyme cells, PMCs) has recently been elucidated. Here, we link the PMC specification GRN to genes that directly control skeletal morphogenesis. We identify new gene products that play a proximate role in skeletal morphogenesis and uncover transcriptional regulatory inputs into many of these genes. Our work extends the importance of the PMC GRN as a model developmental GRN and establishes a unique picture of the genomic regulatory control of a major morphogenetic process. Furthermore, because echinoderms exhibit diverse programs of skeletal development, the newly expanded sea urchin skeletogenic GRN will provide a foundation for comparative studies that explore the relationship between GRN evolution and morphological evolution.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
50
|
Cavalieri V, Guarcello R, Spinelli G. Specific expression of a TRIM-containing factor in ectoderm cells affects the skeletal morphogenetic program of the sea urchin embryo. Development 2011; 138:4279-90. [PMID: 21896632 DOI: 10.1242/dev.066480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the indirect developing sea urchin embryo, the primary mesenchyme cells (PMCs) acquire most of the positional and temporal information from the overlying ectoderm for skeletal initiation and growth. In this study, we characterize the function of the novel gene strim1, which encodes a tripartite motif-containing (TRIM) protein, that adds to the list of genes constituting the epithelial-mesenchymal signaling network. We report that strim1 is expressed in ectoderm regions adjacent to the bilateral clusters of PMCs and that its misexpression leads to severe skeletal abnormalities. Reciprocally, knock down of strim1 function abrogates PMC positioning and blocks skeletogenesis. Blastomere transplantation experiments establish that the defects in PMC patterning, number and skeletal growth depend upon strim1 misexpression in ectoderm cells. Furthermore, clonal expression of strim1 into knocked down embryos locally restores skeletogenesis. We also provide evidence that the Otp and Pax2/5/8 regulators, as well as FGFA, but not VEGF, ligand act downstream to strim1 in ectoderm cells, and that strim1 triggers the expression of the PMC marker sm30, an ectoderm-signaling dependent gene. We conclude that the strim1 function elicits specific gene expression both in ectoderm cells and PMCs to guide the skeletal biomineralization during morphogenesis.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari STEMBIO, Università di Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy.
| | | | | |
Collapse
|