1
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol 2023; 24:816-834. [PMID: 37491579 DOI: 10.1038/s41580-023-00631-w] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
The formation of new blood vessels, called angiogenesis, is an essential pathophysiological process in which several families of regulators have been implicated. Among these, vascular endothelial growth factor A (VEGFA; also known as VEGF) and its two tyrosine kinase receptors, VEGFR1 and VEGFR2, represent a key signalling pathway mediating physiological angiogenesis and are also major therapeutic targets. VEGFA is a member of the gene family that includes VEGFB, VEGFC, VEGFD and placental growth factor (PLGF). Three decades after its initial isolation and cloning, VEGFA is arguably the most extensively investigated signalling system in angiogenesis. Although many mediators of angiogenesis have been identified, including members of the FGF family, angiopoietins, TGFβ and sphingosine 1-phosphate, all current FDA-approved anti-angiogenic drugs target the VEGF pathway. Anti-VEGF agents are widely used in oncology and, in combination with chemotherapy or immunotherapy, are now the standard of care in multiple malignancies. Anti-VEGF drugs have also revolutionized the treatment of neovascular eye disorders such as age-related macular degeneration and ischaemic retinal disorders. In this Review, we emphasize the molecular, structural and cellular basis of VEGFA action as well as recent findings illustrating unexpected interactions with other pathways and provocative reports on the role of VEGFA in regenerative medicine. We also discuss clinical and translational aspects of VEGFA. Given the crucial role that VEGFA plays in regulating angiogenesis in health and disease, this molecule is largely the focus of this Review.
Collapse
Affiliation(s)
- Lorena Pérez-Gutiérrez
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Mo S, Qu K, Huang J, Li Q, Zhang W, Yen K. Cross-species transcriptomics reveals bifurcation point during the arterial-to-hemogenic transition. Commun Biol 2023; 6:827. [PMID: 37558796 PMCID: PMC10412572 DOI: 10.1038/s42003-023-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Characterization of this AECs subpopulation and whether this phenomenon is conserved across species remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages refined mouse information to explore under-studied human EHT. Utilizing single-cell transcriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship between these two species, with minimal pre-HSC signals observed in human cells. The pre-HE stage contains a conserved bifurcation point between the two species, where cells progress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting hemogenic choice using a human in vitro differentiation system. Our findings advance human arterial-to-hemogenic transition understanding and offer valuable insights for manipulating HSC generation using in vitro models.
Collapse
Affiliation(s)
- Shaokang Mo
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Kengyuan Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junfeng Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Qiwei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Kuangyu Yen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Mehdizadeh R, Ansari AM, Forouzesh F, Ghadirian R, Shahriari F, Shariatpanahi SP, Javidi MA. Cross-talk between non-ionizing electromagnetic fields and metastasis; EMT and hybrid E/M may explain the anticancer role of EMFs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00060-3. [PMID: 37302516 DOI: 10.1016/j.pbiomolbio.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Recent studies have shown that non-ionizing electromagnetic fields (NIEMFs) in a specific frequency, intensity, and exposure time can have anti-cancer effects on various cancer cells; however, the underlying precise mechanism of action is not transparent. Most cancer deaths are due to metastasis. This important phenomenon plays an inevitable role in different steps of cancer including progression and development. It has different stages including invasion, intravasation, migration, extravasation, and homing. Epithelial-mesenchymal transition (EMT), as well as hybrid E/M state, are biological processes, that involve both natural embryogenesis and tissue regeneration, and abnormal conditions including organ fibrosis or metastasis. In this context, some evidence reveals possible footprints of the important EMT-related pathways which may be affected in different EMFs treatments. In this article, critical EMT molecules and/or pathways which can be potentially affected by EMFs (e.g., VEGFR, ROS, P53, PI3K/AKT, MAPK, Cyclin B1, and NF-кB) are discussed to shed light on the mechanism of EMFs anti-cancer effect.
Collapse
Affiliation(s)
- Romina Mehdizadeh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Madjid Ansari
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhane Ghadirian
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Xu M, Chen X, Yu Z, Li X. Receptors that bind to PEDF and their therapeutic roles in retinal diseases. Front Endocrinol (Lausanne) 2023; 14:1116136. [PMID: 37139333 PMCID: PMC10149954 DOI: 10.3389/fendo.2023.1116136] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Retinal neovascular, neurodegenerative, and inflammatory diseases represented by diabetic retinopathy are the main types of blinding eye disorders that continually cause the increased burden worldwide. Pigment epithelium-derived factor (PEDF) is an endogenous factor with multiple effects including neurotrophic activity, anti-angiogenesis, anti-tumorigenesis, and anti-inflammatory activity. PEDF activity depends on the interaction with the proteins on the cell surface. At present, seven independent receptors, including adipose triglyceride lipase, laminin receptor, lipoprotein receptor-related protein, plexin domain-containing 1, plexin domain-containing 2, F1-ATP synthase, and vascular endothelial growth factor receptor 2, have been demonstrated and confirmed to be high affinity receptors for PEDF. Understanding the interactions between PEDF and PEDF receptors, their roles in normal cellular metabolism and the response the initiate in disease will be accommodating for elucidating the ways in which inflammation, angiogenesis, and neurodegeneration exacerbate disease pathology. In this review, we firstly introduce PEDF receptors comprehensively, focusing particularly on their expression pattern, ligands, related diseases, and signal transduction pathways, respectively. We also discuss the interactive ways of PEDF and receptors to expand the prospective understanding of PEDF receptors in the diagnosis and treatment of retinal diseases.
Collapse
|
6
|
Abstract
Formation of the vasculature is a critical step within the developing embryo and its disruption causes early embryonic lethality. This complex process is driven by a cascade of signaling events that controls differentiation of mesodermal progenitors into primordial endothelial cells and their further specification into distinct subtypes (arterial, venous, hemogenic) that are needed to generate a blood circulatory network. Hemogenic endothelial cells give rise to hematopoietic stem and progenitor cells that generate all blood cells in the body during embryogenesis and postnatally. We focus our discussion on the regulation of endothelial cell differentiation, and subsequent hemogenic specification, and highlight many of the signaling pathways involved in these processes, which are conserved across vertebrates. Gaining a better understanding of the regulation of these processes will yield insights needed to optimize the treatment of vascular and hematopoietic disease and generate human stem cell-derived vascular and hematopoietic cells for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jordon W Aragon
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Departments of Medicine and Genetics, Yale University School of Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut 06520, USA
| |
Collapse
|
7
|
Thambyrajah R, Bigas A. Notch Signaling in HSC Emergence: When, Why and How. Cells 2022; 11:cells11030358. [PMID: 35159166 PMCID: PMC8833884 DOI: 10.3390/cells11030358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic stem cell (HSC) sustains blood homeostasis throughout life in vertebrates. During embryonic development, HSCs emerge from the aorta-gonads and mesonephros (AGM) region along with hematopoietic progenitors within hematopoietic clusters which are found in the dorsal aorta, the main arterial vessel. Notch signaling, which is essential for arterial specification of the aorta, is also crucial in hematopoietic development and HSC activity. In this review, we will present and discuss the evidence that we have for Notch activity in hematopoietic cell fate specification and the crosstalk with the endothelial and arterial lineage. The core hematopoietic program is conserved across vertebrates and here we review studies conducted using different models of vertebrate hematopoiesis, including zebrafish, mouse and in vitro differentiated Embryonic stem cells. To fulfill the goal of engineering HSCs in vitro, we need to understand the molecular processes that modulate Notch signaling during HSC emergence in a temporal and spatial context. Here, we review relevant contributions from different model systems that are required to specify precursors of HSC and HSC activity through Notch interactions at different stages of development.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, 08003 Barcelona, Spain
- Correspondence: (R.T.); (A.B.); Tel.: +34-933160437 (R.T.); +34-933160440 (A.B.)
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, 08003 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08003 Barcelona, Spain
- Correspondence: (R.T.); (A.B.); Tel.: +34-933160437 (R.T.); +34-933160440 (A.B.)
| |
Collapse
|
8
|
Crippa S, Santi L, Berti M, De Ponti G, Bernardo ME. Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Front Cell Dev Biol 2021; 9:663316. [PMID: 34017834 PMCID: PMC8129582 DOI: 10.3389/fcell.2021.663316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Overall, the human organism requires the production of ∼1 trillion new blood cells per day. Such goal is achieved via hematopoiesis occurring within the bone marrow (BM) under the tight regulation of hematopoietic stem and progenitor cell (HSPC) homeostasis made by the BM microenvironment. The BM niche is defined by the close interactions of HSPCs and non-hematopoietic cells of different origin, which control the maintenance of HSPCs and orchestrate hematopoiesis in response to the body’s requirements. The activity of the BM niche is regulated by specific signaling pathways in physiological conditions and in case of stress, including the one induced by the HSPC transplantation (HSCT) procedures. HSCT is the curative option for several hematological and non-hematological diseases, despite being associated with early and late complications, mainly due to a low level of HSPC engraftment, impaired hematopoietic recovery, immune-mediated graft rejection, and graft-versus-host disease (GvHD) in case of allogenic transplant. Mesenchymal stromal cells (MSCs) are key elements of the BM niche, regulating HSPC homeostasis by direct contact and secreting several paracrine factors. In this review, we will explore the several mechanisms through which MSCs impact on the supportive activity of the BM niche and regulate HSPC homeostasis. We will further discuss how the growing understanding of such mechanisms have impacted, under a clinical point of view, on the transplantation field. In more recent years, these results have instructed the design of clinical trials to ameliorate the outcome of HSCT, especially in the allogenic setting, and when low doses of HSPCs were available for transplantation.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| |
Collapse
|
9
|
Michigami M, Takahashi K, Yamashita H, Ye Z, Nakase I, Fujii I. A "ligand-targeting" peptide-drug conjugate: Targeted intracellular drug delivery by VEGF-binding helix-loop-helix peptides via receptor-mediated endocytosis. PLoS One 2021; 16:e0247045. [PMID: 33630870 PMCID: PMC7906330 DOI: 10.1371/journal.pone.0247045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/29/2021] [Indexed: 12/27/2022] Open
Abstract
As a new alternative to antibody-drug conjugates, we generated “ligand-targeting” peptide-drug conjugates (PDCs), which utilize receptor-mediated endocytosis for targeted intracellular drug delivery. The PDC makes a complex with an extracellular ligand and then binds to the receptor on the cell surface to stimulate intracellular uptake via the endocytic pathway. A helix-loop-helix (HLH) peptide was designed as the drug carrier and randomized to give a conformationally constrained peptide library. The phage-displayed library was screened against vascular endothelial growth factor (VEGF) to yield the binding peptide M49, which exhibited strong binding affinity (KD = 0.87 nM). The confocal fluorescence microscopy revealed that peptide M49 formed a ternary complex with VEGF and its receptor, which was then internalized into human umbilical vein endothelial cells (HUVECs) via VEGF receptor-mediated endocytosis. The backbone-cyclized peptide M49K was conjugated with a drug, monomethyl auristatin E, to afford a PDC, which inhibited VEGF-induced HUVEC proliferation. HLH peptides and their PDCs have great potential as a new modality for targeted molecular therapy.
Collapse
Affiliation(s)
- Masataka Michigami
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Kentaro Takahashi
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Haruna Yamashita
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | - Ikuhiko Nakase
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Ikuo Fujii
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
- * E-mail:
| |
Collapse
|
10
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
11
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Bowler E, Oltean S. Alternative Splicing in Angiogenesis. Int J Mol Sci 2019; 20:E2067. [PMID: 31027366 PMCID: PMC6540211 DOI: 10.3390/ijms20092067] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing of pre-mRNA allows the generation of multiple splice isoforms from a given gene, which can have distinct functions. In fact, splice isoforms can have opposing functions and there are many instances whereby a splice isoform acts as an inhibitor of canonical isoform function, thereby adding an additional layer of regulation to important processes. Angiogenesis is an important process that is governed by alternative splicing mechanisms. This review focuses on the alternative spliced isoforms of key genes that are involved in the angiogenesis process; VEGF-A, VEGFR1, VEGFR2, NRP-1, FGFRs, Vasohibin-1, Vasohibin-2, HIF-1α, Angiopoietin-1 and Angiopoietin-2.
Collapse
Affiliation(s)
- Elizabeth Bowler
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| |
Collapse
|
13
|
Bisht K, Brunck ME, Matsumoto T, McGirr C, Nowlan B, Fleming W, Keech T, Magor G, Perkins AC, Davies J, Walkinshaw G, Flippin L, Winkler IG, Levesque JP. HIF prolyl hydroxylase inhibitor FG-4497 enhances mouse hematopoietic stem cell mobilization via VEGFR2/KDR. Blood Adv 2019; 3:406-418. [PMID: 30733301 PMCID: PMC6373754 DOI: 10.1182/bloodadvances.2018017566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
In normoxia, hypoxia-inducible transcription factors (HIFs) are rapidly degraded within the cytoplasm as a consequence of their prolyl hydroxylation by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes. We have previously shown that hematopoietic stem and progenitor cells (HSPCs) require HIF-1 for effective mobilization in response to granulocyte colony-stimulating factor (G-CSF) and CXCR4 antagonist AMD3100/plerixafor. Conversely, HIF PHD inhibitors that stabilize HIF-1 protein in vivo enhance HSPC mobilization in response to G-CSF or AMD3100 in a cell-intrinsic manner. We now show that extrinsic mechanisms involving vascular endothelial growth factor receptor-2 (VEGFR2), via bone marrow (BM) endothelial cells, are also at play. PTK787/vatalanib, a tyrosine kinase inhibitor selective for VEGFR1 and VEGFR2, and neutralizing anti-VEGFR2 monoclonal antibody DC101 blocked enhancement of HSPC mobilization by FG-4497. VEGFR2 was absent on mesenchymal and hematopoietic cells and was detected only in Sca1+ endothelial cells in the BM. We propose that HIF PHD inhibitor FG-4497 enhances HSPC mobilization by stabilizing HIF-1α in HSPCs as previously demonstrated, as well as by activating VEGFR2 signaling in BM endothelial cells, which facilitates HSPC egress from the BM into the circulation.
Collapse
Affiliation(s)
- Kavita Bisht
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Marion E Brunck
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Taichi Matsumoto
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Faculty of Pharmacological Sciences, Fukuoka University, Fukuoka, Japan
| | - Crystal McGirr
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Bianca Nowlan
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Whitney Fleming
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Thomas Keech
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Graham Magor
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Andrew C Perkins
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Julie Davies
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | | | | | - Ingrid G Winkler
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Jean-Pierre Levesque
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
14
|
Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects. Stem Cells Int 2018; 2018:9847015. [PMID: 30581475 PMCID: PMC6276490 DOI: 10.1155/2018/9847015] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
With the discovery of endothelial progenitor cells (EPCs) in the late 1990s, a paradigm shift in the concept of neoangiogenesis occurred. The identification of circulating EPCs in peripheral blood marked the beginning of a new era with enormous potential in the rapidly transforming regenerative field. Overwhelmed with the revelation, researchers across the globe focused on isolating, defining, and interpreting the role of EPCs in various physiological and pathological conditions. Consequently, controversies emerged regarding the isolation techniques and classification of EPCs. Nevertheless, the potential of using EPCs in tissue engineering as an angiogenic source has been extensively explored. Concomitantly, the impact of EPCs on various diseases, such as diabetes, cancer, and cardiovascular diseases, has been studied. Within the limitations of the current knowledge, this review attempts to delineate the concept of EPCs in a sequential manner from the speculative history to a definitive presence (origin, sources of EPCs, isolation, and identification) and significance of these EPCs. Additionally, this review is aimed at serving as a guide for investigators, identifying potential research gaps, and summarizing our current and future prospects regarding EPCs.
Collapse
|
15
|
Spinal cord organogenesis model reveals role of Flk1 + cells in self-organization of neural progenitor cells into complex spinal cord tissue. Stem Cell Res 2018; 33:156-165. [PMID: 30368192 DOI: 10.1016/j.scr.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
A platform for studying spinal cord organogenesis in vivo where embryonic stem cell (ESC)-derived neural progenitor cells (NPC) self-organize into spinal cord-like tissue after transplantation in subarachnoid space of the spinal cord has been described. We advance the applicability of this platform by imaging in vivo the formed graft through T2w magnetic resonance imaging (MRI). Furthermore, we used diffusion tensor imaging (DTI) to verify the stereotypical organization of the graft showing that it mimics the host spinal cord. Within the graft white matter (WM) we identified astrocytes that form glial limitans, myelinating oligodendrocytes, and myelinated axons with paranodes. Within the graft grey matter (GM) we identified cholinergic, glutamatergic, serotonergic and dopaminergic neurons. Furthermore, we demonstrate the presence of ESC-derived complex vasculature that includes the presence of blood brain barrier. In addition to the formation of mature spinal cord tissue, we describe factors that drive this process. Specifically, we identify Flk1+ cells as necessary for spinal cord formation, and synaptic connectivity with the host spinal cord and formation of host-graft chimeric vasculature as contributing factors. This model can be used to study spinal cord organogenesis, and as an in vivo drug discovery platform for screening potential therapeutic compounds and their toxicity.
Collapse
|
16
|
Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, Woolard J. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J Mol Sci 2018; 19:E1264. [PMID: 29690653 PMCID: PMC5979509 DOI: 10.3390/ijms19041264] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGFxxxa or VEGFxxxb isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF165a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Viviane W Mignone
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Maria Augusta Arruda
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Diana C Alcobia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| |
Collapse
|
17
|
Taberner L, Bañón A, Alsina B. Anatomical map of the cranial vasculature and sensory ganglia. J Anat 2017; 232:431-439. [PMID: 29235648 DOI: 10.1111/joa.12762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/29/2022] Open
Abstract
There is growing evidence of a direct influence of vasculature on the development of neurons in the brain. The development of the cranial vasculature has been well described in zebrafish but its anatomical relationship with the adjacent developing sensory ganglia has not been addressed. Here, by 3D imaging of fluorescently labelled blood vessels and sensory ganglia, we describe for the first time the spatial organization of the cranial vasculature in relation to the cranial ganglia during zebrafish development. We show that from 24 h post-fertilization (hpf) onwards, the statoacoustic ganglion (SAG) develops in direct contact with two main blood vessels, the primordial hindbrain channel and the lateral dorsal aortae (LDA). At 48 hpf, the LDA is displaced medially, losing direct contact with the SAG. The relationship of the other cranial ganglia with the vasculature is evident for the medial lateral line ganglion and for the vagal ganglia that grow along the primary head sinus (PHS). We also observed that the innervation of the anterior macula runs over the PHS vessel. Our spatiotemporal anatomical map of the cranial ganglia and the head vasculature indicates physical interactions between both systems and suggests a possible functional interaction during development.
Collapse
Affiliation(s)
- Laura Taberner
- Laboratory of Developmental Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-PRBB, 08003, Barcelona, Spain
| | - Aitor Bañón
- Laboratory of Developmental Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-PRBB, 08003, Barcelona, Spain
| | - Berta Alsina
- Laboratory of Developmental Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-PRBB, 08003, Barcelona, Spain
| |
Collapse
|
18
|
McGarvey AC, Rybtsov S, Souilhol C, Tamagno S, Rice R, Hills D, Godwin D, Rice D, Tomlinson SR, Medvinsky A. A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation. J Exp Med 2017; 214:3731-3751. [PMID: 29093060 PMCID: PMC5716029 DOI: 10.1084/jem.20162012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Through transcriptional profiling of the mouse AGM region, McGarvey et al. identify potential niche regulators of HSC development. They show a new function of BMPER in regulating HSC maturation, likely via its modulation of BMP signalling. In the developing embryo, hematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region, but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA sequencing over these spatiotemporal transitions in the AGM region and supportive OP9 cell line. Screening several proteins through an ex vivo reaggregate culture system, we identify BMPER as a novel positive regulator of HSC development. We demonstrate that BMPER is associated with BMP signaling inhibition, but is transcriptionally induced by BMP4, suggesting that BMPER contributes to the precise control of BMP activity within the AGM region, enabling the maturation of HSCs within a BMP-negative environment. These findings and the availability of our transcriptional data through an accessible interface should provide insight into the maintenance and potential derivation of HSCs in culture.
Collapse
Affiliation(s)
- Alison C McGarvey
- Stem Cell Bioinformatics Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Stanislav Rybtsov
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Céline Souilhol
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sara Tamagno
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ritva Rice
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David Hills
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Duncan Godwin
- Stem Cell Bioinformatics Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - David Rice
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Simon R Tomlinson
- Stem Cell Bioinformatics Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Alexander Medvinsky
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
19
|
Abouelnasr K, Hamed M, Lashen S, El-Adl M, Eltaysh R, Tagawa M. Enhancement of abdominal wall defect repair using allogenic platelet-rich plasma with commercial polyester/cotton fabric (Damour) in a canine model. J Vet Med Sci 2017; 79:1301-1309. [PMID: 28603214 PMCID: PMC5559380 DOI: 10.1292/jvms.17-0139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelet-rich plasma (PRP) has an important role in musculoskeletal surgery; however, it has been underutilized for accelerating the healing of abdominal wall defects in veterinary practice. Therefore, the aim of this study was
to evaluate the use of commercial polyester/cotton fabric (Damour) as a new composite mesh for the repair of experimentally induced abdominal wall defects in canine models, and to investigate the possible role of PRP for improving
such repair and reducing allied complications. For this purpose, abdominal wall defects were created in 24 healthy mongrel dogs and then repaired with mesh alone (control group) or mesh and allogenic PRP (PRP group). Dogs were
euthanized after 2 or 4 months for gross examination of implantation site, detection of adhesion score and hernia recurrence. Moreover, tissue samples were collected for histological and gene expression analyses for
neovascularization, collagen formation and tissue incorporation. Hernia recurrence was not recorded in PRP-treated dogs that also displayed significantly more neovascularization and less severe adhesion to the underlings (1.08 ±
0.51) in comparison to control group (2.08 ± 0.99). Histological and molecular evaluation confirmed the gross findings that collagen deposition, new vessel formation, and overexpression of angiogenic and myofibroplastic genes
(COL1α1, COL3α1, VEGF and TGFβ1) were observed more frequently in the PRP group, at both time points. In conclusion, we found that addition of allogenic PRP to
Damour mesh enhanced neovessel formation, and increased tissue deposition and incorporation, with subsequent reduction of peritoneal adhesion and recurrence rate.
Collapse
Affiliation(s)
- Khaled Abouelnasr
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Hamed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Samah Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha Eltaysh
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Michihito Tagawa
- Veterinary Medical Center, Department of Clinical Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
20
|
Naylor RW, Han HI, Hukriede NA, Davidson AJ. Wnt8a expands the pool of embryonic kidney progenitors in zebrafish. Dev Biol 2017; 425:130-141. [PMID: 28359809 DOI: 10.1016/j.ydbio.2017.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 01/15/2023]
Abstract
During zebrafish embryogenesis the pronephric kidney arises from a small population of posterior mesoderm cells that then undergo expansion during early stages of renal organogenesis. While wnt8 is required for posterior mesoderm formation during gastrulation, it is also transiently expressed in the post-gastrula embryo in the intermediate mesoderm, the precursor to the pronephros and some blood/vascular lineages. Here, we show that knockdown of wnt8a, using a low dose of morpholino that does not disrupt early mesoderm patterning, reduces the number of kidney and blood cells. For the kidney, wnt8a deficiency decreases renal progenitor growth during early somitogenesis, as detected by EdU incorporation, but has no effect on apoptosis. The depletion of the renal progenitor pool in wnt8a knockdown embryos leads to cellular deficits in the pronephros at 24 hpf that are characterised by a shortened distal-most segment and stretched proximal tubule cells. A pulse of the canonical Wnt pathway agonist BIO during early somitogenesis is sufficient to rescue the size of the renal progenitor pool while longer treatment expands the number of kidney cells. Taken together, these observations indicate that Wnt8, in addition to its well-established role in posterior mesoderm patterning, also plays a later role as a factor that expands the renal progenitor pool prior to kidney morphogenesis.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand.
| | - Hwa In Han
- Department of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Neil A Hukriede
- Department of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
21
|
Zhao H, Xu C, Lee TJ, Liu F, Choi K. ETS transcription factor ETV2/ER71/Etsrp in hematopoietic and vascular development, injury, and regeneration. Dev Dyn 2017; 246:318-327. [DOI: 10.1002/dvdy.24483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Haiyong Zhao
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Canxin Xu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Tae-Jin Lee
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Fang Liu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Kyunghee Choi
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
- Developmental; Regenerative, and Stem Cell Biology Program, Washington University School of Medicine; St. Louis Missouri
| |
Collapse
|
22
|
Garcia-Alegria E, Menegatti S, Batta K, Cuvertino S, Florkowska M, Kouskoff V. Emerging concepts for the in vitro derivation of murine haematopoietic stem and progenitor cells. FEBS Lett 2016; 590:4116-4125. [PMID: 27404333 DOI: 10.1002/1873-3468.12300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 02/11/2024]
Abstract
Well into the second decade of the 21st century, the field of regenerative medicine is bursting with hopes and promises to heal young and old. The bespoken generation of cells is thought to offer unprecedented cures for a vast range of diseases. Haematological disorders have already benefited tremendously from stem cell therapy in the form of bone marrow transplantation. However, lack of compatible donors often means that patients remain on transplantation waiting lists for too long. The in vitro derivation of haematopoietic stem cells offers the possibility to generate tailor-made cells for the treatment of these patients. Promising approaches to generate in vitro-derived blood progenitors include the directed differentiation of pluripotent stem cells and the reprogramming of somatic cells.
Collapse
Affiliation(s)
- Eva Garcia-Alegria
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Sara Menegatti
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Kiran Batta
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Sara Cuvertino
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Magdalena Florkowska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| |
Collapse
|
23
|
Abstract
Human induced pluripotent stem (hiPS) cells are very attractive tools for modeling diseases and regenerative medicine. However, to achieve them, the efficient differentiation methods of hiPS cells into aimed cell type in vitro are necessary. Because mesoderm cells are useful in particular, we have developed the differentiation of mouse embryonic stem (mES) cells into mesoderm cells previously. In this time, these methods were improved for hiPS cells and now human mesoderm cells are able to be obtained efficiently. It is certain that the new methods are applicable to various studies and therapies.
Collapse
|
24
|
Gritz E, Hirschi KK. Specification and function of hemogenic endothelium during embryogenesis. Cell Mol Life Sci 2016; 73:1547-67. [PMID: 26849156 PMCID: PMC4805691 DOI: 10.1007/s00018-016-2134-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
Hemogenic endothelium is a specialized subset of developing vascular endothelium that acquires hematopoietic potential and can give rise to multilineage hematopoietic stem and progenitor cells during a narrow developmental window in tissues such as the extraembryonic yolk sac and embryonic aorta-gonad-mesonephros. Herein, we review current knowledge about the historical and developmental origins of hemogenic endothelium, the molecular events that govern hemogenic specification of vascular endothelial cells, the generation of multilineage hematopoietic stem and progenitor cells from hemogenic endothelium, and the potential for translational applications of knowledge gained from further study of these processes.
Collapse
Affiliation(s)
- Emily Gritz
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Karen K Hirschi
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA.
| |
Collapse
|
25
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
26
|
Frame JM, Fegan KH, Conway SJ, McGrath KE, Palis J. Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity. Stem Cells 2016; 34:431-44. [PMID: 26418893 PMCID: PMC4755868 DOI: 10.1002/stem.2213] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/21/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022]
Abstract
Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic transition. HSC-producing arterial hemogenic endothelium relies on the establishment of embryonic blood flow and arterial identity, and requires β-catenin signaling. Specified prior to and during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid progenitors (EMPs). EMPs ensure embryonic survival prior to the establishment of a permanent hematopoietic system, and provide subsets of long-lived tissue macrophages. While an endothelial origin for these HSC-independent definitive progenitors is also accepted, the spatial location and temporal output of yolk sac hemogenic endothelium over developmental time remain undefined. We performed a spatiotemporal analysis of EMP emergence, and document the morphological steps of the endothelial-to-hematopoietic transition. Emergence of rounded EMPs from polygonal clusters of Kit(+) cells initiates prior to the establishment of arborized arterial and venous vasculature in the yolk sac. Interestingly, Kit(+) polygonal clusters are detected in both arterial and venous vessels after remodeling. To determine whether there are similar mechanisms regulating the specification of EMPs with other angiogenic signals regulating adult-repopulating HSCs, we investigated the role of embryonic blood flow and Wnt/β-catenin signaling during EMP emergence. In embryos lacking a functional circulation, rounded Kit(+) EMPs still fully emerge from unremodeled yolk sac vasculature. In contrast, canonical Wnt signaling appears to be a common mechanism regulating hematopoietic emergence from hemogenic endothelium. These data illustrate the heterogeneity in hematopoietic output and spatiotemporal regulation of primary embryonic hemogenic endothelium.
Collapse
Affiliation(s)
- Jenna M. Frame
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine H. Fegan
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Simon J. Conway
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathleen E. McGrath
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
27
|
Zdzieblo D, Li X, Lin Q, Zenke M, Illich DJ, Becker M, Müller AM. Pcgf6, a polycomb group protein, regulates mesodermal lineage differentiation in murine ESCs and functions in iPS reprogramming. Stem Cells 2015; 32:3112-25. [PMID: 25187489 DOI: 10.1002/stem.1826] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/23/2014] [Indexed: 01/04/2023]
Abstract
Polycomb group (PcG) proteins comprise evolutionary conserved factors with essential functions for embryonic development and adult stem cells. PcG proteins constitute two main multiprotein polycomb repressive complexes (PRC1 and PRC2) that operate in a hierarchical manner to silence gene transcription. Functionally distinct PRC1 complexes are defined by Polycomb group RING finger protein (Pcgf) paralogs. So far, six Pcgf paralogs (Pcgf1-6) have been identified as defining components of different PCR1-type complexes. Paralog-specific functions are not well understood. Here, we show that Pcgf6 is the only Pcgf paralog with high expression in undifferentiated embryonic stem cells (ESCs). Upon differentiation Pcgf6 expression declines. Following Pcgf6 kockdown (KD) in ESCs, the expression of pluripotency genes decreased, while mesodermal- and spermatogenesis-specific genes were derepressed. Concomitantly with the elevated expression of mesodermal lineage markers, Pcgf6 KD ESCs showed increased hemangioblastic and hematopoietic activities upon differentiation suggesting a function of Pcgf6 in repressing mesodermal-specific lineage genes. Consistant with a role in pluripotency, Pcgf6 replaced Sox2 in the generation of germline-competent induced pluripotent stem (iPS) cells. Furthermore, Pcgf6 KD in mouse embryonic fibroblasts reduced the formation of ESC-like colonies in OSKM-driven reprogramming. Together, these analyses indicate that Pcgf6 is nonredundantly involved in maintaining the pluripotent nature of ESCs and it functions in iPS reprogramming.
Collapse
Affiliation(s)
- D Zdzieblo
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Yu YH, Narayanan G, Sankaran S, Ramasamy S, Chan SY, Lin S, Chen J, Yang H, Srivats H, Ahmed S. Purification, Visualization, and Molecular Signature of Neural Stem Cells. Stem Cells Dev 2015; 25:189-201. [PMID: 26464067 PMCID: PMC4770853 DOI: 10.1089/scd.2015.0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1 as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs. Using time-lapse microscopy, we are able to follow NSCs forming neurospheres, allowing their visualization. Finally, using single-cell polymerase chain reaction (PCR), we determine the molecular signature of NSCs. The single-cell PCR data suggest that along with the Notch and Shh pathways, the Hippo pathway plays an important role in NSC activity.
Collapse
Affiliation(s)
- Yuan Hong Yu
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Gunaseelan Narayanan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shvetha Sankaran
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Srinivas Ramasamy
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shi Yu Chan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shuping Lin
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Jinmiao Chen
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Henry Yang
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Hariharan Srivats
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Sohail Ahmed
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| |
Collapse
|
29
|
Collet G, Szade K, Nowak W, Klimkiewicz K, El Hafny-Rahbi B, Szczepanek K, Sugiyama D, Weglarczyk K, Foucault-Collet A, Guichard A, Mazan A, Nadim M, Fasani F, Lamerant-Fayel N, Grillon C, Petoud S, Beloeil JC, Jozkowicz A, Dulak J, Kieda C. Endothelial precursor cell-based therapy to target the pathologic angiogenesis and compensate tumor hypoxia. Cancer Lett 2015; 370:345-57. [PMID: 26577811 DOI: 10.1016/j.canlet.2015.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial precursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized, site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta-gonad-mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-formed vessels established blood flow. Intravenously injected, both MAgECs invaded Matrigel(TM)-plugs and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit tumor growth by vessel normalization resulting from tumor hypoxia alleviation.
Collapse
Affiliation(s)
- Guillaume Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Szade
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Witold Nowak
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Klimkiewicz
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Bouchra El Hafny-Rahbi
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Karol Szczepanek
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Daisuke Sugiyama
- Division of Hematopoietic Stem Cells, Kyushu University Faculty of Medical Sciences, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kazimierz Weglarczyk
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alexandra Foucault-Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alan Guichard
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Andrzej Mazan
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Mahdi Nadim
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Fabienne Fasani
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Nathalie Lamerant-Fayel
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Catherine Grillon
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Stéphane Petoud
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Jean-Claude Beloeil
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alicja Jozkowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland
| | - Jozef Dulak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| | - Claudine Kieda
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| |
Collapse
|
30
|
Bekhite MM, Müller V, Tröger SH, Müller JP, Figulla HR, Sauer H, Wartenberg M. Involvement of phosphoinositide 3-kinase class IA (PI3K 110α) and NADPH oxidase 1 (NOX1) in regulation of vascular differentiation induced by vascular endothelial growth factor (VEGF) in mouse embryonic stem cells. Cell Tissue Res 2015; 364:159-74. [PMID: 26553657 DOI: 10.1007/s00441-015-2303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 09/28/2015] [Indexed: 02/02/2023]
Abstract
The impact of reactive oxygen species and phosphoinositide 3-kinase (PI3K) in differentiating embryonic stem (ES) cells is largely unknown. Here, we show that the silencing of the PI3K catalytic subunit p110α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) by short hairpin RNA or pharmacological inhibition of NOX and ras-related C3 botulinum toxin substrate 1 (Rac1) abolishes superoxide production by vascular endothelial growth factor (VEGF) in mouse ES cells and in ES-cell-derived fetal liver kinase-1(+) (Flk-1(+)) vascular progenitor cells, whereas the mitochondrial complex I inhibitor rotenone does not have an effect. Silencing p110α or inhibiting Rac1 arrests vasculogenesis at initial stages in embryoid bodies, even under VEGF treatment, as indicated by platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive areas and branching points. In the absence of p110α, tube-like structure formation on matrigel and cell migration of Flk-1(+) cells in scratch migration assays are totally impaired. Silencing NOX1 causes a reduction in PECAM-1-positive areas, branching points, cell migration and tube length upon VEGF treatment, despite the expression of vascular differentiation markers. Interestingly, silencing p110α but not NOX1 inhibits the activation of Rac1, Ras homologue gene family member A (RhoA) and Akt leading to the abrogation of VEGF-induced lamellipodia structure formation. Thus, our data demonstrate that the PI3K p110α-Akt/Rac1 and NOX1 signalling pathways play a pivotal role in VEGF-induced vascular differentiation and cell migration. Rac1, RhoA and Akt phosphorylation occur downstream of PI3K and upstream of NOX1 underscoring a role of PI3K p110α in the regulation of cell polarity and migration.
Collapse
Affiliation(s)
- Mohamed M Bekhite
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany. .,Department of Zoology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Veronika Müller
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Sebastian H Tröger
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Reiner Figulla
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Maria Wartenberg
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| |
Collapse
|
31
|
Yan JD, Liu Y, Zhang ZY, Liu GY, Xu JH, Liu LY, Hu YM. Expression and prognostic significance of VEGFR-2 in breast cancer. Pathol Res Pract 2015; 211:539-43. [PMID: 25976977 DOI: 10.1016/j.prp.2015.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/13/2015] [Accepted: 04/01/2015] [Indexed: 12/28/2022]
Abstract
Breast cancer is one of the most common cancers among women in the world. Vascular endothelial growth factor receptor 2 (VEGFR-2) was not only found to play a key role in the development of tumor angiogenesis, but has also been located in tumor cells of a variety of tumors. This study investigated the expression pattern of VEGFR-2 in breast cancer tissue specimens in order to evaluate the role of VEGFR-2 in the prognosis of breast cancer. Expression and localization of VEGFR-2 in tumor cells of breast cancer specimens from 98 invasive breast cancer patients were determined by immunohistochemistry. The relationships between VEGFR-2 expression and clinicopathological features were also analyzed. The results showed that VEGFR-2 expression correlated positively with lymph node (LN) metastasis of breast cancer. Patients with high expression of VEGFR-2 had a significantly worse OS. It was also observed that the expression of epithelial-mesenchymal transition (EMT) marker, including Twist1 and Vimentin, was higher in the tumors with higher VEGFR-2 expression, while the E-cadherin expression was lower in the same tumors, suggesting that VEGFR-2 may serve as a possible mediator of EMT in breast cancer.
Collapse
Affiliation(s)
- Ji-Dong Yan
- Department of Thoracic Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Yanrong Liu
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhi-Yong Zhang
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China.
| | - Guang-Yin Liu
- Department of Mammary Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jin-Heng Xu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| | - Li-Yun Liu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| | - Yue-Ming Hu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
32
|
Dostal D, Glaser S, Baudino TA. Cardiac Fibroblast Physiology and Pathology. Compr Physiol 2015; 5:887-909. [DOI: 10.1002/cphy.c140053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, Diamanti E, Nishikawa SI, Piterman N, Kouskoff V, Theis FJ, Fisher J, Göttgens B. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 2015; 33:269-276. [PMID: 25664528 PMCID: PMC4374163 DOI: 10.1038/nbt.3154] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/16/2015] [Indexed: 11/16/2022]
Abstract
Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.
Collapse
Affiliation(s)
- Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Steven Woodhouse
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laleh Haghverdi
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Andrew J. Lilly
- Cancer Research UK Stem Cell Haematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Yosuke Tanaka
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Adam C. Wilkinson
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Florian Buettner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Iain C. Macaulay
- Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Wajid Jawaid
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Evangelia Diamanti
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Shin-Ichi Nishikawa
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Nir Piterman
- Department of Computer Science, University of Leicester, Leicester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Jasmin Fisher
- Microsoft Research Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, Sun X. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 2015; 24:1053-65. [PMID: 25517294 DOI: 10.1089/scd.2014.0347] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.
Collapse
Affiliation(s)
- Bing Song
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou City, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Increased VEGFR2 and MMP9 protein levels are associated with epithelial dysplasia grading. Pathol Res Pract 2014; 210:959-64. [DOI: 10.1016/j.prp.2014.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/17/2013] [Accepted: 06/24/2014] [Indexed: 01/10/2023]
|
36
|
Inoue-Yokoo T, Tani K, Sugiyama D. Mesodermal and hematopoietic differentiation from ES and iPS cells. Stem Cell Rev Rep 2014; 9:422-34. [PMID: 22684542 DOI: 10.1007/s12015-012-9388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Embryonic stem (ES) and induced pluripotent stem (iPS) cells can differentiate into any type of tissue when grown in a suitable culture environment and are considered valuable tools for regenerative medicine. In the field of hematology, generation of hematopoietic stem cells (HSCs) and mature hematopoietic cells (HCs) from ES and iPS cells through mesodermal cells, the ancestors of HCs, can facilitate transplantation and transfusion therapy. Several studies report generation of functional HCs from both mouse and human ES and iPS cells. This approach will likely be applied to individual patient-derived iPS cells for regenerative medicine approaches and drug screening in the future. Here, we summarize current studies of HC-generation from ES and iPS cells.
Collapse
Affiliation(s)
- Tomoko Inoue-Yokoo
- Division of Hematopoietic Stem Cells, Advanced Medical Initiatives, Department of Advanced Medical Initiatives, Kyushu University Faculty of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
37
|
Imanirad P, Dzierzak E. Hypoxia and HIFs in regulating the development of the hematopoietic system. Blood Cells Mol Dis 2013; 51:256-63. [PMID: 24103835 PMCID: PMC4604248 DOI: 10.1016/j.bcmd.2013.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/10/2013] [Indexed: 12/24/2022]
Abstract
Many physiologic processes during the early stages of mammalian ontogeny, particularly placental and vascular development, take place in the low oxygen environment of the uterus. Organogenesis is affected by hypoxia inducible factor (HIF) transcription factors that are sensors of hypoxia. In response to hypoxia, HIFs activate downstream target genes - growth and metabolism factors. During hematopoietic system ontogeny, blood cells and hematopoietic progenitor/stem cells are respectively generated from mesodermal precursors, hemangioblasts, and from a specialized subset of endothelial cells that are hemogenic. Since HIFs are known to play a central role in vascular development, and hematopoietic system development occurs in parallel to that of the vascular system, several studies have examined the role of HIFs in hematopoietic development. The response to hypoxia has been examined in early and mid-gestation mouse embryos through genetic deletion of HIF subunits. We review here the data showing that hematopoietic tissues of the embryo are hypoxic and express HIFs and HIF downstream targets, and that HIFs regulate the development and function of hematopoietic progenitor/stem cells.
Collapse
Affiliation(s)
- Parisa Imanirad
- Erasmus MC Stem Cell Institute, Dept. of Cell Biology, Rotterdam, Netherlands
| | - Elaine Dzierzak
- Erasmus MC Stem Cell Institute, Dept. of Cell Biology, Rotterdam, Netherlands
| |
Collapse
|
38
|
Jaipersad AS, Lip GYH, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2013; 63:1-11. [PMID: 24140662 DOI: 10.1016/j.jacc.2013.09.019] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023]
Abstract
New vessel formation inside the arterial wall and atherosclerotic plaques plays a critical role in pathogenesis of heart attacks and strokes. The 2 known mechanisms resulting in the formation of new vessels within the plaque are local ischemia and inflammation. Blood monocytes play an important role in both processes. First, they express receptors for vascular endothelial growth factor and some of them may serve as circulating ancestors of endothelial cells. Second, monocytes are associated with inflammation by synthesis of inflammatory molecules following their activation (e.g., after stimulation of Toll-like receptors). Neovascularization is a reparative response to ischemia, and includes 3 processes: angiogenesis, arteriogenesis, and vasculogenesis. Angiogenesis, the formation of new capillary vessels is known to occur in response to a hypoxic environment. The interaction between leukocytes and vascular wall via overexpression of various molecules facilitates the migration of inflammatory cells into the plaque microenvironment. Monocytes are intimately involved in tissue damage and repair and an imbalance of these processes may have detrimental consequences for plaque development and stability. Importantly, monocytes are comprised of distinct subsets with different cell surface markers and functional characteristics and this heterogeneity may be relevant to angiogenic processes in atherosclerosis. The aim of this review article is to present an overview of the available evidence supporting a role for monocytes in angiogenesis and atherosclerosis.
Collapse
Affiliation(s)
- Anthony S Jaipersad
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Stanley Silverman
- Department of Vascular Surgery, City Hospital, Birmingham, United Kingdom
| | - Eduard Shantsila
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom.
| |
Collapse
|
39
|
Fraser ST. The modern primitives: applying new technological approaches to explore the biology of the earliest red blood cells. ISRN HEMATOLOGY 2013; 2013:568928. [PMID: 24222861 PMCID: PMC3814094 DOI: 10.1155/2013/568928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/25/2013] [Indexed: 01/01/2023]
Abstract
One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells.
Collapse
Affiliation(s)
- Stuart T. Fraser
- Disciplines of Physiology, Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, Medical Foundation Building K25, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
40
|
Moignard V, Woodhouse S, Fisher J, Göttgens B. Transcriptional hierarchies regulating early blood cell development. Blood Cells Mol Dis 2013; 51:239-47. [PMID: 23948234 DOI: 10.1016/j.bcmd.2013.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/25/2013] [Indexed: 11/15/2022]
Abstract
Hematopoiesis represents one of the paradigmatic systems for studying stem cell biology, but our understanding of how the hematopoietic system develops during embryogenesis is still incomplete. While many lessons have been learned from studying the mouse embryo, embryonic stem cells have come to the fore as an alternative and more tractable model to recapitulate hematopoietic development. Here we review what is known about the embryonic origin of blood from these complementary systems and how transcription factor networks regulate the emergence of hematopoietic tissue from the mesoderm. Furthermore, we have performed an integrated analysis of genome-wide microarray and ChIP-seq data sets from mouse embryos and embryonic stem (ES) cell lines deficient in key regulators and demonstrate how this type of analysis can be used to reconstruct regulatory hierarchies that both confirm existing regulatory linkages and suggest additional interactions.
Collapse
Affiliation(s)
- Victoria Moignard
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
| | | | | | | |
Collapse
|
41
|
Lee HJ, Li N, Evans SM, Diaz MF, Wenzel PL. Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling. Differentiation 2013; 86:92-103. [PMID: 23850217 DOI: 10.1016/j.diff.2013.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one's life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium provides a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
42
|
Pereda J, Sulz L, San Martin S, Godoy-Guzmán C. The human lung during the embryonic period: vasculogenesis and primitive erythroblasts circulation. J Anat 2013; 222:487-94. [PMID: 23520979 DOI: 10.1111/joa.12042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 12/11/2022] Open
Abstract
Vascularization and blood cell circulation are crucial steps during lung development. However, how blood vessels are generated and when lung circulation is initiated is still a matter of debate. A morpho-functional analysis of pulmonary vasculature was done using human lung samples between 31 and 56 days post-fertilization (pf). The immunolocalization and expression of CD31, CD34, FLT-1, KDR and the vascular growth factor (VEGF) were investigated. The results showed that at day 31 pf, a capillary plexus is already installed, and a few primitive erythroblasts were seen for the first time within the lumen of some blood vessels. Around day 45 pf, an increase in the amount of primitive erythroblasts was detected in the parenchyma surrounding the distal segment of the bronchial tree. The expression of FLT-1, KDR, CD31 and CD34 was observed in endothelial cells of the capillary plexus and the VEGF was detected in the endodermal epithelium. Our results support the hypothesis that the initial formation of the capillary plexus around the tip of the growing airway bud occurs by vasculogenesis, probably regulated by VEGF and KDR. We also showed a very early onset of blood circulation, starting from day 34 pf, concomitant with the generation of new lung buds. In addition, the increasing number of primitive erythroblasts from week 6 onward, associated with a change in the shape of the blood vessels, suggests a remodeling process and that the generation of new distal vessels at the tip of the lung bud occurs mainly by a process of angiogenesis.
Collapse
Affiliation(s)
- J Pereda
- Departamento de Embriología Humana, Escuela de Medicina, Universidad de Santiago de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
43
|
Sönmez TT, Vinogradov A, Zor F, Kweider N, Lippross S, Liehn EA, Naziroglu M, Hölzle F, Wruck C, Pufe T, Tohidnezhad M. The effect of platelet rich plasma on angiogenesis in ischemic flaps in VEGFR2-luc mice. Biomaterials 2013; 34:2674-82. [PMID: 23352038 DOI: 10.1016/j.biomaterials.2013.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022]
Abstract
To improve skin flap healing, one promising strategy in reconstructive surgery might be to optimize platelet rich plasma (PRP) bioactivity and the ischemia-altered expression of genes. We studied both the effect of PRP on ischemic flaps, and whether in vivo bioluminescence imaging (BLI) is a suitable method for the longitudinal monitoring of angiogenesis in surgical wounds. Axial murine skin flaps were created in four experimental groups. In vivo measurements of VEGFR2 expression levels were made every other day until the 14th day. The local VEGF level and microvessel density were quantified on the 14th day via ELISA and immunohistochemistry, and flap survival rates were measured. We demonstrated that PRP and induced ischemia have a beneficial influence on angiogenesis and flap healing. Combining the two resulted in a significantly robust increase in angiogenesis and flap survival rate that was corroborated by bioluminescence imaging of VEGFR2 activity. This study shows that angiogenic effects of PRP may be potentialized by the stimulus of induced ischemia during free flap harvesting, and thus the two procedures appear to have a synergistic effect on flap healing. This study further demonstrates that BLI of modulated genes in reconstructive surgery is a valuable model for longitudinal in vivo evaluation of angiogenesis.
Collapse
Affiliation(s)
- Tolga Taha Sönmez
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Goldie LC, Nix MK, Hirschi KK. Embryonic vasculogenesis and hematopoietic specification. Organogenesis 2012; 4:257-63. [PMID: 19337406 DOI: 10.4161/org.4.4.7416] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 02/15/2007] [Indexed: 01/13/2023] Open
Abstract
Vasculogenesis is the process by which blood vessels are formed de novo. In mammals, vasculogenesis occurs in parallel with hematopoiesis, the formation of blood cells. Thus, it is debated whether vascular endothelial cells and blood cells are derived from a common progenitor. Whether or not this is the case, there certainly is commonality among regulatory factors that control the differentiation and differentiated function of both cell lineages. VEGF is a major regulator of both cell types and plays a critical role, in coordination with other signaling pathways and transcriptional regulators, in controlling the differentiation and behavior of endothelial and blood cells during early embryonic development, as further discussed herein.
Collapse
Affiliation(s)
- Lauren C Goldie
- Department of Pediatrics and Molecular and Cellular Biology; Children's Nutrition Research Center; Center for Cell and Gene Therapy; Baylor College of Medicine; Houston, Texas USA
| | | | | |
Collapse
|
46
|
Furlani D, Donndorf P, Westien I, Ugurlucan M, Pittermann E, Wang W, Li W, Vollmar B, Steinhoff G, Kaminski A, Ma N. HMGB-1 induces c-kit+ cell microvascular rolling and adhesion via both toll-like receptor-2 and toll-like receptor-4 of endothelial cells. J Cell Mol Med 2012; 16:1094-105. [PMID: 21762373 PMCID: PMC4365888 DOI: 10.1111/j.1582-4934.2011.01381.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-mobility group box 1 (HMGB-1) is a strong chemo-attractive signal for both inflammatory and stem cells. The aim of this study is to evaluate the mechanisms regulating HMGB-1-mediated adhesion and rolling of c-kit(+) cells and assess whether toll-like receptor-2 (TLR-2) and toll-like receptor-4 (TLR-4) of endothelial cells or c-kit(+) cells are implicated in the activation of downstream migration signals to peripheral c-kit(+) cells. Effects of HMGB-1 on the c-kit(+) cells/endothelial interaction were evaluated by a cremaster muscle model in wild-type (WT), TLR-2 (-/-) and Tlr4 (LPS-del) mice. The mRNA and protein expression levels of endothelial nitric oxide synthase were determined by quantitative real-time PCR and immunofluorescence staining. Induction of crucial adhesion molecules for rolling and adhesion of stem cells and leukocytes were monitored in vivo and in vitro. Following local HMGB-1 administration, a significant increase in cell rolling was detected (32.4 ± 7.1% in 'WT' versus 9.9 ± 3.2% in 'control', P < 0.05). The number of firmly adherent c-kit(+) cells was more than 13-fold higher than that of the control group (14.6 ± 5.1 cells/mm(2) in 'WT' versus 1.1 ± 1.0 cells/mm(2) in 'control', P < 0.05). In knockout animals, the fraction of rolling cells did not differ significantly from control levels. Firm endothelial adhesion was significantly reduced in TLR-2 (-/-) and Tlr4 (LPS-del) mice compared to WT mice (1.5 ± 1.4 cells/mm(2) in 'TLR-2 (-/-)' and 2.4 ± 1.4 cells/mm(2) in 'Tlr4 (LPS-del)' versus 14.6 ± 5.1 cells/mm(2) in 'WT', P < 0.05). TLR-2 (-/-) and Tlr4 (LPS-del) stem cells in WT mice did not show significant reduction in rolling and adhesion compared to WT cells. HMGB-1 mediates c-kit(+) cell recruitment via endothelial TLR-2 and TLR-4.
Collapse
Affiliation(s)
- Dario Furlani
- Reference and Translation Centre for Cardiac Stem Cell Therapy, Department of Cardiac Surgery, University Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Laranjeiro R, Alcobia I, Neves H, Gomes AC, Saavedra P, Carvalho CC, Duarte A, Cidadão A, Parreira L. The notch ligand delta-like 4 regulates multiple stages of early hemato-vascular development. PLoS One 2012; 7:e34553. [PMID: 22514637 PMCID: PMC3326024 DOI: 10.1371/journal.pone.0034553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 03/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis. Methodology/Principal Findings Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis. Conclusions/Significance This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis.
Collapse
Affiliation(s)
- Ricardo Laranjeiro
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Alcobia
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hélia Neves
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia C. Gomes
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Saavedra
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina C. Carvalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Lisbon, Portugal
| | - António Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Lisbon, Portugal
| | - António Cidadão
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail:
| | - Leonor Parreira
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
48
|
Maéno M, Komiyama K, Matsuzaki Y, Hosoya J, Kurihara S, Sakata H, Izutsu Y. Distinct mechanisms control the timing of differentiation of two myeloid populations in Xenopus ventral blood islands. Dev Growth Differ 2012; 54:187-201. [PMID: 22470938 DOI: 10.1111/j.1440-169x.2011.01321.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous study has suggested that distinct populations of myeloid cells exist in the anterior ventral blood islands (aVBI) and posterior ventral blood islands (pVBI) in Xenopus neurula embryo. However, details for differentiation programs of these two populations have not been elucidated. In the present study, we examined the role of Wnt, vascular endothelial growth factor (VEGF) and fibroblast growth factor signals in the regulation of myeloid cell differentiation in the dorsal marginal zone and ventral marginal zone explants that are the sources of myeloid cells in the aVBI and pVBI. We found that regulation of Wnt activity is essential for the differentiation of myeloid cells in the aVBI but is not required for the differentiation of myeloid cells in the pVBI. Endogenous activity of the VEGF signal is necessary for differentiation of myeloid cells in the pVBI but is not involved in the differentiation of myeloid cells in the aVBI. Overall results reveal that distinct mechanisms are involved in the myeloid, erythroid and endothelial cell differentiation in the aVBI and pVBI.
Collapse
Affiliation(s)
- Mitsugu Maéno
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Zape JP, Zovein AC. Hemogenic endothelium: origins, regulation, and implications for vascular biology. Semin Cell Dev Biol 2011; 22:1036-47. [PMID: 22001113 DOI: 10.1016/j.semcdb.2011.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 12/31/2022]
Abstract
The study of endothelial development has been intertwined with hematopoiesis since the early 20th century when a bi-potential cell (hemangioblast) was noted to produce both endothelial and hematopoietic cells. Since then, ideas regarding the nature of connection between the vascular and hematopoietic systems have ranged from a tenuous association to direct lineage origination. In this review, historical data that spans hematopoietic development is examined within the context of hemogenic endothelium. Hemogenic endothelium, a specialized endothelial population capable of hematopoiesis, is an emerging theory that has recently gained momentum. Evidence across species and decades are reviewed, as are the possible modulators of the phenomenon, which include pathways that specify definitive hematopoiesis (Runx1), arterial identity (Notch1), as well as physiological and developmental factors.
Collapse
Affiliation(s)
- Joan P Zape
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
50
|
The vascular origin of hematopoietic cells. Dev Biol 2011; 362:1-10. [PMID: 21945862 DOI: 10.1016/j.ydbio.2011.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 11/23/2022]
Abstract
More than a century ago, several embryologists described sites of hematopoietic activity in the vascular wall of mid-gestation vertebrate embryos, and postulated the transient existence of a blood generating endothelium during ontogeny. This hypothesis gained significant attention in the 1970s when orthotopic transplantation experiments between quail and chick embryos revealed specific vascular areas as the site of the origin of definitive hematopoiesis. However, the vascular origin of hematopoietic precursors remained elusive and controversial for decades. Only recently, multiple experimental approaches have clearly documented that during vertebrate development definitive hematopoietic precursors arise from a subset of vascular endothelial cells. Interestingly, this differentiation is promoted by the intravascular fluid mechanical forces generated by the establishment of blood flow upon the initiation of heartbeat, and it is therefore connected with cardiovascular development in several critical aspects. In this review we present our current understanding of the relationship between vascular and definitive hematopoietic development through an historical analysis of the scientific evidence produced in this area of investigation.
Collapse
|