1
|
Sánchez-Corrales YE, Blanchard GB, Röper K. Correct regionalization of a tissue primordium is essential for coordinated morphogenesis. eLife 2021; 10:e72369. [PMID: 34723792 PMCID: PMC8612734 DOI: 10.7554/elife.72369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022] Open
Abstract
During organ development, tubular organs often form from flat epithelial primordia. In the placodes of the forming tubes of the salivary glands in the Drosophila embryo, we previously identified spatially defined cell behaviors of cell wedging, tilting, and cell intercalation that are key to the initial stages of tube formation. Here, we address what the requirements are that ensure the continuous formation of a narrow symmetrical tube from an initially asymmetrical primordium whilst overall tissue geometry is constantly changing. We are using live-imaging and quantitative methods to compare wild-type placodes and mutants that either show disrupted cell behaviors or an initial symmetrical placode organization, with both resulting in severe impairment of the invagination. We find that early transcriptional patterning of key morphogenetic transcription factors drives the selective activation of downstream morphogenetic modules, such as GPCR signaling that activates apical-medial actomyosin activity to drive cell wedging at the future asymmetrically placed invagination point. Over time, transcription of key factors expands across the rest of the placode and cells switch their behavior from predominantly intercalating to predominantly apically constricting as their position approaches the invagination pit. Misplacement or enlargement of the initial invagination pit leads to early problems in cell behaviors that eventually result in a defective organ shape. Our work illustrates that the dynamic patterning of the expression of transcription factors and downstream morphogenetic effectors ensures positionally fixed areas of cell behavior with regards to the invagination point. This patterning in combination with the asymmetric geometrical setup ensures functional organ formation.
Collapse
Affiliation(s)
- Yara E Sánchez-Corrales
- MRC Laboratory of Molecular Biology,Cambridge Biomedical CampusCambridgeUnited Kingdom
- Genetics and Genomic Medicine Programme, Institute of Child Health, University College LondonLondonUnited Kingdom
| | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Katja Röper
- MRC Laboratory of Molecular Biology,Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
2
|
Rossi AM, Jafari S, Desplan C. Integrated Patterning Programs During Drosophila Development Generate the Diversity of Neurons and Control Their Mature Properties. Annu Rev Neurosci 2021; 44:153-172. [PMID: 33556251 DOI: 10.1146/annurev-neuro-102120-014813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During the approximately 5 days of Drosophila neurogenesis (late embryogenesis to the beginning of pupation), a limited number of neural stem cells produce approximately 200,000 neurons comprising hundreds of cell types. To build a functional nervous system, neuronal types need to be produced in the proper places, appropriate numbers, and correct times. We discuss how neural stem cells (neuroblasts) obtain so-called area codes for their positions in the nervous system (spatial patterning) and how they keep time to sequentially produce neurons with unique fates (temporal patterning). We focus on specific examples that demonstrate how a relatively simple patterning system (Notch) can be used reiteratively to generate different neuronal types. We also speculate on how different modes of temporal patterning that operate over short versus long time periods might be linked. We end by discussing how specification programs are integrated and lead to the terminal features of different neuronal types.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, NY 10003, USA; .,Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA;
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|
3
|
Crews ST. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation. Genetics 2019; 213:1111-1144. [PMID: 31796551 PMCID: PMC6893389 DOI: 10.1534/genetics.119.300974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
The Drosophila embryonic central nervous system (CNS) is a complex organ consisting of ∼15,000 neurons and glia that is generated in ∼1 day of development. For the past 40 years, Drosophila developmental neuroscientists have described each step of CNS development in precise molecular genetic detail. This has led to an understanding of how an intricate nervous system emerges from a single cell. These studies have also provided important, new concepts in developmental biology, and provided an essential model for understanding similar processes in other organisms. In this article, the key genes that guide Drosophila CNS development and how they function is reviewed. Features of CNS development covered in this review are neurogenesis, gliogenesis, cell fate specification, and differentiation.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Integrative Program for Biological and Genome Sciences, School of Medicine, The University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
4
|
Bridi JC, Ludlow ZN, Hirth F. Lineage-specific determination of ring neuron circuitry in the central complex of Drosophila. Biol Open 2019; 8:bio.045062. [PMID: 31285267 PMCID: PMC6679397 DOI: 10.1242/bio.045062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ellipsoid body (EB) of the Drosophila central complex mediates sensorimotor integration and action selection for adaptive behaviours. Insights into its physiological function are steadily accumulating, however the developmental origin and genetic specification have remained largely elusive. Here we identify two stem cells in the embryonic neuroectoderm as precursor cells of neuronal progeny that establish EB circuits in the adult brain. Genetic tracing of embryonic neuroblasts ppd5 and mosaic analysis with a repressible cell marker identified lineage-related progeny as Pox neuro (Poxn)-expressing EB ring neurons, R1-R4. During embryonic brain development, engrailed function is required for the initial formation of Poxn-expressing ppd5-derived progeny. Postembryonic determination of R1-R4 identity depends on lineage-specific Poxn function that separates neuronal subtypes of ppd5-derived progeny into hemi-lineages with projections either terminating in the EB ring neuropil or the superior protocerebrum (SP). Poxn knockdown in ppd5-derived progeny results in identity transformation of engrailed-expressing hemi-lineages from SP to EB-specific circuits. In contrast, lineage-specific knockdown of engrailed leads to reduced numbers of Poxn-expressing ring neurons. These findings establish neuroblasts ppd5-derived ring neurons as lineage-related sister cells that require engrailed and Poxn function for the proper formation of EB circuitry in the adult central complex of Drosophila.
Collapse
Affiliation(s)
- Jessika C Bridi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Zoe N Ludlow
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| |
Collapse
|
5
|
Sen SQ, Chanchani S, Southall TD, Doe CQ. Neuroblast-specific open chromatin allows the temporal transcription factor, Hunchback, to bind neuroblast-specific loci. eLife 2019; 8:44036. [PMID: 30694180 PMCID: PMC6377230 DOI: 10.7554/elife.44036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Spatial and temporal cues are required to specify neuronal diversity, but how these cues are integrated in neural progenitors remains unknown. Drosophila progenitors (neuroblasts) are a good model: they are individually identifiable with relevant spatial and temporal transcription factors known. Here we test whether spatial/temporal factors act independently or sequentially in neuroblasts. We used Targeted DamID to identify genomic binding sites of the Hunchback temporal factor in two neuroblasts (NB5-6 and NB7-4) that make different progeny. Hunchback targets were different in each neuroblast, ruling out the independent specification model. Moreover, each neuroblast had distinct open chromatin domains, which correlated with differential Hb-bound loci in each neuroblast. Importantly, the Gsb/Pax3 spatial factor, expressed in NB5-6 but not NB7-4, had genomic binding sites correlated with open chromatin in NB5-6, but not NB7-4. Our data support a model in which early-acting spatial factors like Gsb establish neuroblast-specific open chromatin domains, leading to neuroblast-specific temporal factor binding and the production of different neurons in each neuroblast lineage. The human brain is considered to be the most complicated object in the universe, but it only takes a handful of stem cells to make one. The process depends on two types of information: signals separated across space and time. Spatial cues tell a stem cell what type of cell it is going to be, while temporal cues work as molecular clocks to generate a sequence of different neurons over time. Together, these cues generate the large array of cell types in the nervous system. Each stem cell occupies its own space in the developing body and receives its own spatial cues, but they all follow the same timeline. For example, proteins called transcription factors act as molecular clocks and interact with specific genes, telling the cell when to turn them on or off. The same series of transcription factors operates in different stem cells, but they have different effects. So far, it has been unclear whether spatial and temporal signals work independently or sequentially to generate new cell types. To find out, Sen et al. studied two distinct, developing stem cells in fruit flies, which receive different spatial signals. Transcription factors only work if they are able to get to their target genes. Cells can open or close access to different genes by changing the structure of the chromatin wrapping that surrounds the genes. In the experiments, a marker was used to reveal the areas of open chromatin in each of the cells. Another marker was used to track the transcription factors. The results showed that the areas of open chromatin varied between stem cells. Moreover, although both cells used the same transcription factor called Hunchback, it targeted different genes in each stem cell. This was due to changes in the chromatin wrapping: Hunchback only acted in areas where the chromatin was open. This suggests that the spatial cues first sculpt the chromatin, making some genes easier to get to than others. Then, the same transcription factors go to the accessible gene, which will differ from one stem cell to another. These findings help us to understand how different types of brain cells develop, which may also aid us in finding a way how to engineer specific cell types. If we could turn stem cells into different types of brain cells, it might help us to treat brain diseases. This may involve giving the right spatial signal before starting the temporal cues.
Collapse
Affiliation(s)
- Sonia Q Sen
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Sachin Chanchani
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| |
Collapse
|
6
|
Stollewerk A. A flexible genetic toolkit for arthropod neurogenesis. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150044. [PMID: 26598727 DOI: 10.1098/rstb.2015.0044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arthropods show considerable variations in early neurogenesis. This includes the pattern of specification, division and movement of neural precursors and progenitors. In all metazoans with nervous systems, including arthropods, conserved genes regulate neurogenesis, which raises the question of how the various morphological mechanisms have emerged and how the same genetic toolkit might generate different morphological outcomes. Here I address this question by comparing neurogenesis across arthropods and show how variations in the regulation and function of the neural genes might explain this phenomenon and how they might have facilitated the evolution of the diverse morphological mechanisms of neurogenesis.
Collapse
Affiliation(s)
- Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
7
|
Li HH, Kroll JR, Lennox SM, Ogundeyi O, Jeter J, Depasquale G, Truman JW. A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep 2014; 8:897-908. [PMID: 25088417 DOI: 10.1016/j.celrep.2014.06.065] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/13/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022] Open
Abstract
We report the larval CNS expression patterns for 6,650 GAL4 lines based on cis-regulatory regions (CRMs) from the Drosophila genome. Adult CNS expression patterns were previously reported for this collection, thereby providing a unique resource for determining the origins of adult cells. An illustrative example reveals the origin of the astrocyte-like glia of the ventral CNS. Besides larval neurons and glia, the larval CNS contains scattered lineages of immature, adult-specific neurons. Comparison of lineage expression within this large collection of CRMs provides insight into the codes used for designating neuronal types. The CRMs encode both dense and sparse patterns of lineage expression. There is little correlation between brain and thoracic lineages in patterns of sparse expression, but expression in the two regions is highly correlated in the dense mode. The optic lobes, by comparison, appear to use a different set of genetic instructions in their development.
Collapse
Affiliation(s)
- Hsing-Hsi Li
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Jason R Kroll
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Sara M Lennox
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Omotara Ogundeyi
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Jennifer Jeter
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gina Depasquale
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - James W Truman
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
8
|
Manning L, Heckscher ES, Purice MD, Roberts J, Bennett AL, Kroll JR, Pollard JL, Strader ME, Lupton JR, Dyukareva AV, Doan PN, Bauer DM, Wilbur AN, Tanner S, Kelly JJ, Lai SL, Tran KD, Kohwi M, Laverty TR, Pearson JC, Crews ST, Rubin GM, Doe CQ. A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep 2012; 2:1002-13. [PMID: 23063363 PMCID: PMC3523218 DOI: 10.1016/j.celrep.2012.09.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 01/03/2023] Open
Abstract
Here, we describe the embryonic central nervous system expression of 5,000 GAL4 lines made using molecularly defined cis-regulatory DNA inserted into a single attP genomic location. We document and annotate the patterns in early embryos when neurogenesis is at its peak, and in older embryos where there is maximal neuronal diversity and the first neural circuits are established. We note expression in other tissues, such as the lateral body wall (muscle, sensory neurons, and trachea) and viscera. Companion papers report on the adult brain and larval imaginal discs, and the integrated data sets are available online (http://www.janelia.org/gal4-gen1). This collection of embryonically expressed GAL4 lines will be valuable for determining neuronal morphology and function. The 1,862 lines expressed in small subsets of neurons (<20/segment) will be especially valuable for characterizing interneuronal diversity and function, because although interneurons comprise the majority of all central nervous system neurons, their gene expression profile and function remain virtually unexplored.
Collapse
Affiliation(s)
- Laurina Manning
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Ellie S. Heckscher
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Maria D. Purice
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Jourdain Roberts
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Alysha L. Bennett
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Jason R. Kroll
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Jill L. Pollard
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Marie E. Strader
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Josh R. Lupton
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Anna V. Dyukareva
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Phuong Nam Doan
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - David M. Bauer
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Allison N. Wilbur
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Stephanie Tanner
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Jimmy J. Kelly
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Sen-Lin Lai
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Khoa D. Tran
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Minoree Kohwi
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Todd R. Laverty
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Joseph C. Pearson
- Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephen T. Crews
- Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gerald M. Rubin
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Chris Q. Doe
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| |
Collapse
|
9
|
Abstract
Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution.
Collapse
Affiliation(s)
- Johannes Jaeger
- Centre de Regulació Genòmica, Universtitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
10
|
Biehs B, Kechris K, Liu S, Kornberg TB. Hedgehog targets in the Drosophila embryo and the mechanisms that generate tissue-specific outputs of Hedgehog signaling. Development 2010; 137:3887-98. [PMID: 20978080 DOI: 10.1242/dev.055871] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Paracrine Hedgehog (Hh) signaling regulates growth and patterning in many Drosophila organs. We mapped chromatin binding sites for Cubitus interruptus (Ci), the transcription factor that mediates outputs of Hh signal transduction, and we analyzed transcription profiles of control and mutant embryos to identify genes that are regulated by Hh. Putative targets that we identified included several Hh pathway components, mostly previously identified targets, and many targets that are novel. Every Hh target we analyzed that is not a pathway component appeared to be regulated by Hh in a tissue-specific manner; analysis of expression patterns of pathway components and target genes provided evidence of autocrine Hh signaling in the optic primordium of the embryo. We present evidence that tissue specificity of Hh targets depends on transcription factors that are Hh-independent, suggesting that `pre-patterns' of transcription factors partner with Ci to make Hh-dependent gene expression position specific.
Collapse
Affiliation(s)
- Brian Biehs
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2711, USA
| | | | | | | |
Collapse
|
11
|
García-Solache M, Jaeger J, Akam M. A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata. Dev Biol 2010; 344:306-18. [DOI: 10.1016/j.ydbio.2010.04.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 02/04/2023]
|
12
|
Role of en and novel interactions between msh, ind, and vnd in dorsoventral patterning of the Drosophila brain and ventral nerve cord. Dev Biol 2010; 346:332-45. [PMID: 20673828 DOI: 10.1016/j.ydbio.2010.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/14/2010] [Accepted: 07/17/2010] [Indexed: 12/27/2022]
Abstract
Subdivision of the neuroectoderm into discrete gene expression domains is essential for the correct specification of neural stem cells (neuroblasts) during central nervous system development. Here, we extend our knowledge on dorsoventral (DV) patterning of the Drosophila brain and uncover novel genetic interactions that control expression of the evolutionary conserved homeobox genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh). We show that cross-repression between Ind and Msh stabilizes the border between intermediate and dorsal tritocerebrum and deutocerebrum, and that both transcription factors are competent to inhibit vnd expression. Conversely, Vnd segment-specifically affects ind expression; it represses ind in the tritocerebrum but positively regulates ind in the deutocerebrum by suppressing Msh. These data provide further evidence that in the brain, in contrast to the trunc, the precise boundaries between DV gene expression domains are largely established through mutual inhibition. Moreover, we find that the segment-polarity gene engrailed (en) regulates the expression of vnd, ind, and msh in a segment-specific manner. En represses msh and ind but maintains vnd expression in the deutocerebrum, is required for down-regulation of Msh in the tritocerebrum to allow activation of ind, and is necessary for maintenance of Ind in truncal segments. These results indicate that input from the anteroposterior patterning system is needed for the spatially restricted expression of DV genes in the brain and ventral nerve cord.
Collapse
|
13
|
Williams C, Kim SH, Ni TT, Mitchell L, Ro H, Penn JS, Baldwin SH, Solnica-Krezel L, Zhong TP. Hedgehog signaling induces arterial endothelial cell formation by repressing venous cell fate. Dev Biol 2010; 341:196-204. [PMID: 20193674 PMCID: PMC3197743 DOI: 10.1016/j.ydbio.2010.02.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 01/27/2010] [Accepted: 02/19/2010] [Indexed: 01/27/2023]
Abstract
In vertebrate embryos, the dorsal aorta and the posterior cardinal vein form in the trunk to comprise the original circulatory loop. Previous studies implicate Hedgehog (Hh) signaling in the development of the dorsal aorta. However, the mechanism controlling specification of artery versus vein remains unclear. Here, we investigated the cell-autonomous mechanism of Hh signaling in angioblasts (endothelial progenitor cells) during arterial-venous specification utilizing zebrafish mutations in Smoothened (Smo), a G protein-coupled receptor essential for Hh signaling. smo mutants exhibit an absence of the dorsal aorta accompanied by a reciprocal expansion of the posterior cardinal vein. The increased number of venous cells is equivalent to the loss of arterial cells in embryos with loss of Smo function. Activation of Hh signaling expands the arterial cell population at the expense of venous cell fate. Time-lapse imaging reveals two sequential waves of migrating progenitor cells that contribute to the dorsal aorta and the posterior cardinal vein, respectively. Angioblasts deficient in Hh signaling fail to contribute to the arterial wave; instead, they all migrate medially as a single population to form the venous wave. Cell transplantation analyses demonstrate that Smo plays a cell-autonomous role in specifying angioblasts to become arterial cells, and Hh signaling-depleted angioblasts differentiate into venous cells instead. Collectively, these studies suggest that arterial endothelial cells are specified and formed via repressing venous cell fate at the lateral plate mesoderm by Hh signaling during vasculogenesis.
Collapse
Affiliation(s)
- Charles Williams
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Seok-Hyung Kim
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203
- Department of Biological Science, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Terri T. Ni
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Lauren Mitchell
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Hyunju Ro
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - John S. Penn
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203
- Department of Ophthalmology, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Scott H. Baldwin
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Lila Solnica-Krezel
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203
- Department of Biological Science, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Tao P. Zhong
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203
| |
Collapse
|
14
|
Ashyraliyev M, Siggens K, Janssens H, Blom J, Akam M, Jaeger J. Gene circuit analysis of the terminal gap gene huckebein. PLoS Comput Biol 2009; 5:e1000548. [PMID: 19876378 PMCID: PMC2760955 DOI: 10.1371/journal.pcbi.1000548] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/28/2009] [Indexed: 12/24/2022] Open
Abstract
The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network.
Collapse
Affiliation(s)
- Maksat Ashyraliyev
- Center for Mathematics and Computer Science, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
| | - Ken Siggens
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Hilde Janssens
- EMBL/CRG Research Unit in Systems Biology, CRG–Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joke Blom
- Center for Mathematics and Computer Science, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
| | - Michael Akam
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Johannes Jaeger
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- EMBL/CRG Research Unit in Systems Biology, CRG–Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
15
|
Desprat N, Supatto W, Pouille PA, Beaurepaire E, Farge E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell 2008; 15:470-477. [PMID: 18804441 DOI: 10.1016/j.devcel.2008.07.009] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 05/16/2008] [Accepted: 07/23/2008] [Indexed: 01/16/2023]
Abstract
Mechanical deformations associated with embryonic morphogenetic movements have been suggested to actively participate in the signaling cascades regulating developmental gene expression. Here we develop an appropriate experimental approach to ascertain the existence and the physiological relevance of this phenomenon. By combining the use of magnetic tweezers with in vivo laser ablation, we locally control physiologically relevant deformations in wild-type Drosophila embryonic tissues. We demonstrate that the deformations caused by germ band extension upregulate Twist expression in the stomodeal primordium. We find that stomodeal compression triggers Src42A-dependent nuclear translocation of Armadillo/beta-catenin, which is required for Twist mechanical induction in the stomodeum. Finally, stomodeal-specific RNAi-mediated silencing of Twist during compression impairs the differentiation of midgut cells, resulting in larval lethality. These experiments show that mechanically induced Twist upregulation in stomodeal cells is necessary for subsequent midgut differentiation.
Collapse
Affiliation(s)
- Nicolas Desprat
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Willy Supatto
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France; Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France
| | - Philippe-Alexandre Pouille
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France.
| |
Collapse
|
16
|
Zhang H, Syu LJ, Modica V, Yu Z, Von Ohlen T, Mellerick DM. The Drosophila homeodomain transcription factor, Vnd, associates with a variety of co-factors, is extensively phosphorylated and forms multiple complexes in embryos. FEBS J 2008; 275:5062-73. [PMID: 18795949 PMCID: PMC4055028 DOI: 10.1111/j.1742-4658.2008.06639.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vnd is a dual transcriptional regulator that is essential for Drosophila dorsal-ventral patterning. Yet, our understanding of the biochemical basis for its regulatory activity is limited. Consistent with Vnd's ability to repress target expression in embryos, endogenously expressed Vnd physically associates with the co-repressor, Groucho, in Drosophila Kc167 cells. Vnd exists as a single complex in Kc167 cells, in contrast with embryonic Vnd, which forms multiple high-molecular-weight complexes. Unlike its vertebrate homolog, Nkx2.2, full-length Vnd can bind its target in electrophoretic mobility shift assay, suggesting that co-factor availability may influence Vnd's weak regulatory activity in transient transfections. We identify the high mobility group 1-type protein, D1, and the novel helix-loop-helix protein, Olig, as novel Vnd-interacting proteins using co-immunoprecipitation assays. Furthermore, we demonstrate that both D1 and Olig are co-expressed with Vnd during Drosophila embryogenesis, consistent with a biological basis for this interaction. We also suggest that the phosphorylation state of Vnd influences its ability to interact with co-factors, because Vnd is extensively phosphorylated in embryos and can be phosphorylated by activated mitogen-activated protein kinase in vitro. These results highlight the complexities of Vnd-mediated regulation.
Collapse
Affiliation(s)
| | | | | | | | - Tonia Von Ohlen
- Division of Biology Kansas State University 104 Ackert Hall Manhattan KS 66502
| | - Dervla M. Mellerick
- Division of Biology Kansas State University 104 Ackert Hall Manhattan KS 66502
| |
Collapse
|
17
|
Hatton-Ellis E, Ainsworth C, Sushama Y, Wan S, VijayRaghavan K, Skaer H. Genetic regulation of patterned tubular branching in Drosophila. Proc Natl Acad Sci U S A 2007; 104:169-74. [PMID: 17190812 PMCID: PMC1765429 DOI: 10.1073/pnas.0606933104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Indexed: 11/18/2022] Open
Abstract
A common theme in organogenesis is the branching of epithelial tubes, for example in the lung, liver, or kidney. The later morphogenesis of these branched epithelia dictates the final form and function of the mature tissue. Epithelial branching requires the specification of branch cells, the eversion process itself, and, frequently, patterned morphogenesis to produce branches of specific shape and orientation. Using the branching of renal tubule primordia from the hindgut in Drosophila, we show that these aspects are coordinately regulated. Cell specification depends on Wnt signaling along the tubular gut and results in the spatially restricted coexpression of two transcription factors, Krüppel and Cut, in the hindgut, whose activity drives cells toward renal tubule fate. Significantly, these transcription factors also confer the competence to respond to a second signal; TGF-beta induces branching to form the four renal tubule buds. Differential activation of the TGF-beta pathway also patterns the tubules, resulting in the asymmetry in size and positioning that is characteristic of the two tubule pairs. High levels of TGF-beta promote the expression of Dorsocross1-3 and anterior tubule growth, whereas low levels allow the expression of the transcriptional repressor, Brinker, and thus promote posterior tubule identity. We show that patterning of the tubule primordium into two distinct pairs is critical for the eversion of tubule branches, as well as for their asymmetric morphogenesis.
Collapse
Affiliation(s)
- E. Hatton-Ellis
- *Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - C. Ainsworth
- Center for Development and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; and
| | - Y. Sushama
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - S. Wan
- *Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - K. VijayRaghavan
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - H. Skaer
- *Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
18
|
Eriksson BJ, Larson ET, Thörnqvist PO, Tait NN, Budd GE. Expression of engrailed in the developing brain and appendages of the onychophoran euperipatoides kanangrensis (Reid). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:220-8. [PMID: 15834939 DOI: 10.1002/jez.b.21043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have cloned an engrailed-class gene in the onychophoran Euperipatoides kanangrensis and investigated its expression using in situ hybridisation. The expression pattern was found to differ drastically from that previously described for another onychophoran species. In the present investigation, engrailed transcripts were detected in a subset of developing neurons in the brain anlage, and in the mesoderm as well as ectoderm of the developing limb buds. The engrailed positive cells of the brain are of differing developmental maturity, ranging from subepidermal neuronal precursors to neurons located basally in the embryo with developing axons. The lack of the traditional expression in the posterior compartment of segments reported earlier in onychophorans is discussed, and we suggest that onychophorans may have acquired two copies of engrailed with different functions.
Collapse
Affiliation(s)
- B Joakim Eriksson
- Department of Earth Sciences, Palaeobiology Programme, Palaeontology Group, Uppsala University, Norbyvägen 22, SE-752 36 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Karcavich R, Doe CQ. Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol 2005; 481:240-51. [PMID: 15593370 DOI: 10.1002/cne.20371] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell lineage studies provide an important foundation for experimental analysis in many systems. Drosophila neural precursors (neuroblasts) sequentially generate ganglion mother cells (GMCs), which generate neurons and/or glia, but the birth order, or cell lineage, of each neuroblast is poorly understood. The best-characterized neuroblast is NB7-3, in which GMC-1 makes the EW1 serotonergic interneuron and GW motoneuron; GMC-2 makes the EW2 serotonergic interneuron and a programmed cell death; and GMC-3 gives rise to the EW3 interneuron. However, the end of this lineage has not been determined. Here, we use positively marked genetic clones, bromodeoxyuridine (BrdU) labeling, mutations that affect Notch signaling, and antibody markers to further define the end of the cell lineage of NB7-3. We provide evidence that GMC-3 directly differentiates into EW3 and that the sibling neuroblast undergoes programmed cell death. Our results confirm and extend previous work on the early portion of the NB7-3 lineage (Novotny et al. [2002] Development 129:1027-1036; Lundell et al. [ 2003] Development 130:4109-4121).
Collapse
Affiliation(s)
- Rachel Karcavich
- Institute of Neuroscience/Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
20
|
McGovern VL, Pacak CA, Sewell ST, Turski ML, Seeger MA. A targeted gain of function screen in the embryonic CNS of Drosophila. Mech Dev 2004; 120:1193-207. [PMID: 14568107 DOI: 10.1016/s0925-4773(03)00159-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to identify genes involved in the development of the central nervous system (CNS) we have undertaken a gain of function screen in the embryonic CNS of Drosophila. Transposable P-elements and the UAS/GAL4 system were used to initiate transcription of genes in a pan-neural pattern using scaGAL4. Over 4100 individual P-element insertion lines were screened with monoclonal antibodies BP102 and 1D4 to visualize axon pathways. Twenty-five P-element insertions corresponding to 18 genes resulted in aberrant CNS axon pathfinding when misexpressed with scaGAL4. Genes involved in axon guidance, embryonic patterning, and cell cycle regulation were isolated. In addition, we identified several zinc finger transcription factors not previously implicated in axon guidance or CNS development. This group includes Squeeze, Kruppel homolog-1, Hepatocyte nuclear factor 4, and two uncharacterized genes, CG11966 and CG9650. Calnexin99A, a putative molecular chaperone, was isolated as well.
Collapse
Affiliation(s)
- Vicki L McGovern
- Department of Molecular Genetics and The Center for Molecular Neurobiology, 125 Rightmire Hall, The Ohio State University, 1060 Carmack Rd., Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
21
|
De Graeve F, Jagla T, Daponte JP, Rickert C, Dastugue B, Urban J, Jagla K. The ladybird homeobox genes are essential for the specification of a subpopulation of neural cells. Dev Biol 2004; 270:122-34. [PMID: 15136145 DOI: 10.1016/j.ydbio.2004.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/06/2004] [Accepted: 02/09/2004] [Indexed: 11/26/2022]
Abstract
In Drosophila, neurons and glial cells are produced by neural precursor cells called neuroblasts (NBs), which can be individually identified. Each NB generates a characteristic cell lineage specified by a precise spatiotemporal control of gene expression within the NB and its progeny. Here we show that the homeobox genes ladybird early and ladybird late are expressed in subsets of cells deriving from neuroblasts NB 5-3 and NB 5-6 and are essential for their correct development. Our analysis revealed that ladybird in Drosophila, like their vertebrate orthologous Lbx1 genes, play an important role in cell fate specification processes. Among those cells that express ladybird are NB 5-6-derived glial cells. In ladybird loss-of-function mutants, the NB 5-6-derived exit glial cells are absent while overexpression of these genes leads to supernumerary glial cells of this type. Furthermore, aberrant glial cell positioning and aberrant spacing of axonal fascicles in the nerve roots observed in embryos with altered ladybird function suggest that the ladybird genes might also control directed cell movements and cell-cell interactions within the developing Drosophila ventral nerve cord.
Collapse
|
22
|
Yaguchi S, Katow H. Expression of tryptophan 5-hydroxylase gene during sea urchin neurogenesis and role of serotonergic nervous system in larval behavior. J Comp Neurol 2003; 466:219-29. [PMID: 14528449 DOI: 10.1002/cne.10865] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tryptophan 5-hydroxylase (TPH) is the rate-limiting enzyme in the biosynthesis of serotonin. cDNA cloning of TPH was carried out, and the occurrence of spatiotemporal transcription of TPH message was examined in larvae of the sea urchin, Hemicentrotus pulcherrimus (HpTPH), with in situ hybridization by using the tyramide signal amplification (TSA) technique and Northern hybridization. Based on deduced amino acids sequence of HpTPH, phylogenetically sea urchin locates at the closest position to vertebrates among invertebrates, and HpTPH had common conserved sequences in a catalytic domain. Initiation of HpTPH transcription occurred at the late gastrula stage exclusively in serotonin cells of apical ganglion (SAG) that was composed of a cluster of HpTPH-positive cells and the negative cells in between. In situ hybridization showed that the mRNA expression pattern was similar to the immunohistochemical localization of serotonin cells reported before (Bisgrove and Burke [1986] Dev. Growth Differ. 28:557-569; Yaguchi et al. [2000] Dev. Growth Differ. 42:479-488). p-Chlorophenylalanine (CPA), an irreversible inhibitor of TPH activity, considerably decreased serotonin content in the serotonin cells, whereas the HpTPH expression pattern and timing, and the extension of neurofibers from SAG cells were apparently unaffected, suggesting CPA exclusively perturbed synthesis of serotonin but not nervous system organization. CPA-treated larvae did not swim, despite the occurrence of ciliary beating in culture chamber, suggesting that proper serotonin synthesis is necessary for normal swimming of the larvae.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Laboratory of Developmental and Cell Biology, Marine Biological Station, Graduate School of Life Sciences, University of Tohoku, Asamushi, Aomori, Aomori 039-3501, Japan
| | | |
Collapse
|
23
|
McDonald JA, Fujioka M, Odden JP, Jaynes JB, Doe CQ. Specification of motoneuron fate inDrosophila: Integration of positive and negative transcription factor inputs by a minimaleve enhancer. ACTA ACUST UNITED AC 2003; 57:193-203. [PMID: 14556285 DOI: 10.1002/neu.10264] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We are interested in the mechanisms that generate neuronal diversity within the Drosophila central nervous system (CNS), and in particular in the development of a single identified motoneuron called RP2. Expression of the homeodomain transcription factor Even-skipped (Eve) is required for RP2 to establish proper connectivity with its muscle target. Here we investigate the mechanisms by which eve is specifically expressed within the RP2 motoneuron lineage. Within the NB4-2 lineage, expression of eve first occurs in the precursor of RP2, called GMC4-2a. We identify a small 500 base pair eve enhancer that mediates eve expression in GMC4-2a. We show that four different transcription factors (Prospero, Huckebein, Fushi tarazu, and Pdm1) are all expressed in GMC4-2a, and are required to activate eve via this minimal enhancer, and that one transcription factor (Klumpfuss) represses eve expression via this element. All four positively acting transcription factors act independently, regulating eve but not each other. Thus, the eve enhancer integrates multiple positive and negative transcription factor inputs to restrict eve expression to a single precursor cell (GMC4-2a) and its RP2 motoneuron progeny.
Collapse
Affiliation(s)
- Jocelyn A McDonald
- Institutes of Neuroscience and Molecular Biology, HHMI, 1254 University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Cell signaling plays a key role in the development of all multicellular organisms. Numerous studies have established the importance of Hedgehog signaling in a wide variety of regulatory functions during the development of vertebrate and invertebrate organisms. Several reviews have discussed the signaling components in this pathway, their various interactions, and some of the general principles that govern Hedgehog signaling mechanisms. This review focuses on the developing systems themselves, providing a comprehensive survey of the role of Hedgehog signaling in each of these. We also discuss the increasing significance of Hedgehog signaling in the clinical setting.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
25
|
Eriksson BJ, Tait NN, Budd GE. Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol 2003; 255:1-23. [PMID: 12420318 DOI: 10.1002/jmor.10034] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The neuroectoderm of the Euperipatoides kanangrensis embryo becomes distinguishable during germ band formation when the antennal segment is evident externally. During later stages of development, the neuroectoderm proliferates extensively and, at the anterior part of the head, newly-formed neuron precursor cells occupy most of the volume. The antenna forms from the dorsolateral side of the anterior somite. The antenna has no neuroectoderm of its own at the onset of its formation, but instead, neurons migrate out to the appendage from the nearby region of the developing brain. When the antennal tract is formed it is positioned horizontally in the brain, in line with the antennal commissure. Only later, and coincidentally with the anterior repositioning of the antenna, is the tract's distal part bent anteriorly and positioned laterally. The eye starts to develop posteriorly to the antenna and the antennal commissure. This suggests that the segment(s) associated with the onychophoran eye and antenna are not serially homologous with segments carrying equivalent structures within the Euarthropoda. Evidence is presented to further support the presence of a terminal mouth in the ground plan of the Onychophora and, hence, an acron may not exist in the arthropod clade.
Collapse
Affiliation(s)
- B Joakim Eriksson
- Department of Earth Sciences, Historical Geology and Palaeontology, Uppsala University, SE-752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
26
|
Oh CT, Kwon SH, Jeon KJ, Han PL, Kim SH, Jeon SH. Local inhibition of Drosophila homeobox-containing neural dorsoventral patterning genes by Dpp. FEBS Lett 2002; 531:427-31. [PMID: 12435587 DOI: 10.1016/s0014-5793(02)03573-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An important step in Drosophila neurogenesis is to establish the neural dorsoventral (DV) patterning. Here we describe how dpp loss-of- and gain-of-function mutation affects the homeobox-containing neural DV patterning genes expressed in the ventral neuroectoderm. Ventral nervous system defective (vnd), intermediate neuroblast defective (ind), muscle-specific homeobox (msh), and orthodenticle (otd) genes participate in development of the central nervous system and peripheral nervous system, and encode homeodomain proteins. otd and msh genes were ectopically expressed in dpp loss-of-function mutation, but vnd and ind were not affected. However, when dpp was ectopically expressed in the ventral neuroectoderm by rho-GAL4/UAS-dpp system, it caused the repression of vnd, and msh expressions in ventral and dorsal columns of the neuroectoderm, respectively, but not that of ind. The later expression pattern of otd was also restricted by Dpp. The expression pattern of msh, vnd and otd in dpp loss-of-function and gain-of-function mutation indicates that Dpp activity does not reach to the ventral midline and it works locally to establish the dorsal boundary of the ventral neuroectoderm.
Collapse
Affiliation(s)
- Chun Taek Oh
- Department of Biological Sciences, Konkuk University, 1 Hwayang-Dong, Kwangjin-Gu, 143-701, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
27
|
Uhler J, Garbern J, Yang L, Kamholz J, Mellerick DM. Nk6, a novel Drosophila homeobox gene regulated by vnd. Mech Dev 2002; 116:105-16. [PMID: 12128210 DOI: 10.1016/s0925-4773(02)00155-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nk(x)-type homeobox genes are an evolutionarily conserved family that regulate diverse developmental processes. Here we describe a novel Drosophila gene, Nk6, which encodes an Nk-type transcription factor most homologous to vertebrate Nkx6.1 and Nkx6.2. The homeodomains and NK decapeptide domains of all three proteins are highly conserved. Nk6 is expressed in the embryonic brain, ventral nerve cord, hindgut, and internal head structures. Nerve cord expression is in midline precursors, several ventral and intermediate column neuroblasts, and later in neurons but not glia, similar to the known expression of Nkx6 genes in the neural tube. We show genetically that Nk6 is positively regulated, directly or indirectly, by vnd in brain precursors. In vnd mutants, head neuroectoderm Nk6 expression is abolished where it is normally co-expressed with vnd. Conversely, vnd-overexpression leads to ectopic Nk6 expression in the brain. These findings further highlight the importance of interactions between Nk(x)-type genes in regulating their expression.
Collapse
Affiliation(s)
- Jay Uhler
- Department of Pathology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Hedgehog (Hh) is a secreted signaling protein that regulates the development of many organ systems. It can travel from its site of synthesis, a process that involves covalent attachment of cholesterol to its carboxyl terminus, proteins with putative sterol sensing domains in both sending and receiving cells, and glycosaminoglycans. Understanding how the movement of Hh is controlled and propelled will be key to understanding how it carries out its essential roles.
Collapse
Affiliation(s)
- P T Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
29
|
Abstract
Considerable progress has been made in understanding how combinatorially expressed transcription factors control the development of neuronal subtypes in the fly and vertebrate central nervous systems. The mode of action of many of these factors has been conserved from invertebrates to vertebrates throughout evolution, such as the formation and regulation of specific transcriptional complexes, the utilization of repressors for maintaining specificity, and the use of phosphorylation as an important means for transiently altering transcriptional activity.
Collapse
Affiliation(s)
- L W Jurata
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, 92037, USA.
| | | | | |
Collapse
|
30
|
Abstract
It is widely held that the insect and vertebrate CNS evolved independently. This view is now challenged by the concept of dorsoventral axis inversion, which holds that ventral in insects corresponds to dorsal in vertebrates. Here, insect and vertebrate CNS development is compared involving embryological and molecular data. In insects and vertebrates, neurons differentiate towards the body cavity. At early stages of neurogenesis, neural progenitor cells are arranged in three longitudinal columns on either side of the midline, and NK-2/NK-2.2, ind/Gsh and msh/Msx homologs specify the medial, intermediate and lateral columns, respectively. Other pairs of regional specification genes are, however, expressed in transverse stripes in insects, and in longitudinal stripes in the vertebrates. There are differences in the regional distribution of cell types in the developing neuroectoderm. However, within a given neurogenic column in insects and vertebrates some of the emerging cell types are remarkably similar and may thus be phylogenetically old: NK-2/NK-2.2-expressing medial column neuroblasts give rise to interneurons that pioneer the medial longitudinal fascicles, and to motoneurons that exit via lateral nerve roots to then project peripherally. Lateral column neuroblasts produce, among other cell types, nerve root glia and peripheral glia. Midline precursors give rise to glial cells that enwrap outgrowing commissural axons. The midline glia also express netrin homologs to attract commissural axons from a distance.
Collapse
Affiliation(s)
- D Arendt
- Institut für Biologie I (Zoologie), Hauptstrasse 1, Germany
| | | |
Collapse
|
31
|
Ghiglione C, Perrimon N, Perkins LA. Quantitative variations in the level of MAPK activity control patterning of the embryonic termini in Drosophila. Dev Biol 1999; 205:181-93. [PMID: 9882506 DOI: 10.1006/dbio.1998.9102] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the role in patterning of quantitative variations of MAPK activity in signaling from the Drosophila Torso (Tor) receptor tyrosine kinase (RTK). Activation of Tor at the embryonic termini leads to differential expression of the genes tailless and huckebein. We demonstrate, using a series of mutations in the signal transducers Corkscrew/SHP-2 and D-Raf, that quantitative variations in the magnitude of MAPK activity trigger both qualitatively and quantitatively distinct transcriptional responses. We also demonstrate that two chimeric receptors, Torextracellular-Egfrcytoplasmic and Torextracellular-Sevcytoplasmic, cannot fully functionally replace the wild-type Tor receptor, revealing that the precise activation of MAPK involves not only the number of activated RTK molecules but also the magnitude of the signal generated by the RTK cytoplasmic domain. Altogether, our results illustrate how a gradient of MAPK activity controls differential gene expression and, thus, the establishment of various cell fates. We discuss the roles of quantitative mechanisms in defining RTK specificity.
Collapse
Affiliation(s)
- C Ghiglione
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
32
|
Weiss JB, Von Ohlen T, Mellerick DM, Dressler G, Doe CQ, Scott MP. Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev 1998; 12:3591-602. [PMID: 9832510 PMCID: PMC317240 DOI: 10.1101/gad.12.22.3591] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1998] [Accepted: 09/29/1998] [Indexed: 11/24/2022]
Abstract
One of the first steps in neurogenesis is the diversification of cells along the dorsoventral axis. In Drosophila the central nervous system develops from three longitudinal columns of cells: ventral cells that express the vnd/nk2 homeobox gene, intermediate cells, and dorsal cells that express the msh homeobox gene. Here we describe a new Drosophila homeobox gene, intermediate neuroblasts defective (ind), which is expressed specifically in the intermediate column cells. ind is essential for intermediate column development: Null mutants have a transformation of intermediate to dorsal column neuroectoderm fate, and only 10% of the intermediate column neuroblasts develop. The establishment of dorsoventral column identity involves negative regulation: Vnd represses ind in the ventral column, whereas ind represses msh in the intermediate column. Vertebrate genes closely related to vnd (Nkx2.1 and Nkx2.2), ind (Gsh1 and Gsh2), and msh (Msx1 and Msx3) are expressed in corresponding ventral, intermediate, and dorsal domains during vertebrate neurogenesis, raising the possibility that dorsoventral patterning within the central nervous system is evolutionarily conserved.
Collapse
Affiliation(s)
- J B Weiss
- Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5329 USA
| | | | | | | | | | | |
Collapse
|
33
|
Chu H, Parras C, White K, Jiménez F. Formation and specification of ventral neuroblasts is controlled by vnd in Drosophila neurogenesis. Genes Dev 1998; 12:3613-24. [PMID: 9832512 PMCID: PMC317241 DOI: 10.1101/gad.12.22.3613] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During Drosophila neural development, neuroblasts delaminate from the neuroectoderm of each hemisegment in a stereotypic orthogonal array of five rows and three columns (ventral, intermediate, and dorsal). Prevailing evidence indicates that the individual neuroblast fate is determined by the domain-specific expression of genes along the dorsoventral and anteroposterior axis. Here, we analyze the role of Vnd, a NK-2 homeodomain protein, expressed initially in the ventral neuroectoderm adjacent to the ventral midline, in the dorsoventral patterning of the neuroectoderm and the neuroblasts. We show that in vnd null mutants most ventral neuroblasts do not form and the few that form do not develop ventral fates, but instead develop intermediate-like fates. Furthermore, we demonstrate that Vnd influences the gene expression patterns in the ventral proneural clusters and neuroectoderm, and that its action in neuroblast formation includes, but is not exclusive to the activation of proneural AS-C genes. Through the use of GAL4/UAS gene-expression system we show that ectopic Vnd expression can promote ventral-like fates in intermediate and dorsal neuroblasts and can suppress certain normal characteristics of the intermediate and dorsal neuroectoderm. Our results are discussed in the context of the current evidence in dorsoventral patterning in the Drosophila neuroectoderm.
Collapse
Affiliation(s)
- H Chu
- Biochemistry Department, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | | | | | | |
Collapse
|
34
|
McDonald JA, Holbrook S, Isshiki T, Weiss J, Doe CQ, Mellerick DM. Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. Genes Dev 1998; 12:3603-12. [PMID: 9832511 PMCID: PMC317246 DOI: 10.1101/gad.12.22.3603] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Drosophila CNS develops from three columns of neuroectodermal cells along the dorsoventral (DV) axis: ventral, intermediate, and dorsal. In this and the accompanying paper, we investigate the role of two homeobox genes, vnd and ind, in establishing ventral and intermediate cell fates within the Drosophila CNS. During early neurogenesis, Vnd protein is restricted to ventral column neuroectoderm and neuroblasts; later it is detected in a complex pattern of neurons. We use molecular markers that distinguish ventral, intermediate, and dorsal column neuroectoderm and neuroblasts, and a cell lineage marker for selected neuroblasts, to show that loss of vnd transforms ventral into intermediate column identity and that specific ventral neuroblasts fail to form. Conversely, ectopic vnd produces an intermediate to ventral column transformation. Thus, vnd is necessary and sufficient to induce ventral fates and repress intermediate fates within the Drosophila CNS. Vertebrate homologs of vnd (Nkx2.1 and 2.2) are similarly expressed in the ventral CNS, raising the possibility that DV patterning within the CNS is evolutionarily conserved.
Collapse
Affiliation(s)
- J A McDonald
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403 USA
| | | | | | | | | | | |
Collapse
|
35
|
Skeath JB. The Drosophila EGF receptor controls the formation and specification of neuroblasts along the dorsal-ventral axis of the Drosophila embryo. Development 1998; 125:3301-12. [PMID: 9693134 DOI: 10.1242/dev.125.17.3301] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The segmented portion of the Drosophila embryonic central nervous system develops from a bilaterally symmetrical, segmentally reiterated array of 30 unique neural stem cells, called neuroblasts. The first 15 neuroblasts form about 30–60 minutes after gastrulation in two sequential waves of neuroblast segregation and are arranged in three dorsoventral columns and four anteroposterior rows per hemisegment. Each neuroblast acquires a unique identity, based on gene expression and the unique and nearly invariant cell lineage it produces. Recent experiments indicate that the segmentation genes specify neuroblast identity along the AP axis. However, little is known as to the control of neuroblast identity along the DV axis. Here, I show that the Drosophila EGF receptor (encoded by the DER gene) promotes the formation, patterning and individual fate specification of early forming neuroblasts along the DV axis. Specifically, I use molecular markers that identify particular neuroectodermal domains, all neuroblasts or individual neuroblasts, to show that in DER mutant embryos (1) intermediate column neuroblasts do not form, (2) medial column neuroblasts often acquire identities inappropriate for their position, while (3) lateral neuroblasts develop normally. Furthermore, I show that active DER signaling occurs in the regions from which the medial and intermediate neuroblasts will later delaminate. In addition, I demonstrate that the concomitant loss of rhomboid and vein yield CNS phenotypes indistinguishable from DER mutant embryos, even though loss of either gene alone yields minor CNS phenotypes. These results demonstrate that DER plays a critical role during neuroblast formation, patterning and specification along the DV axis within the developing Drosophila embryonic CNS.
Collapse
Affiliation(s)
- J B Skeath
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
36
|
|