1
|
Chung H, Rahmani W, Sinha S, Imanzadeh A, Pun A, Arora R, Jaffer A, Biernaskie J, Chun J. Nephron progenitor fate is modulated by angiotensin type 1 receptor signaling in human kidney organoids. Stem Cells 2025; 43:sxaf012. [PMID: 40111092 PMCID: PMC12080355 DOI: 10.1093/stmcls/sxaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The renin-angiotensin system (RAS) is essential for normal kidney development. Dysregulation of the RAS during embryogenesis can result in kidney abnormalities. To explore how angiotensin type 1 receptor (AT1R) signaling modulates nephron progenitor (NP) fate specification, we used induced pluripotent stem cell (iPSC) derived human kidney organoids treated with angiotensin II (Ang II) or the AT1R blocker losartan during differentiation. Ang II promoted NP proliferation and differentiation preferentially toward a podocyte fate, depleted the podocyte precursor population, and accelerated glomerular maturation. By contrast, losartan expanded the podocyte precursor population, delayed podocyte differentiation, and regressed the transcriptional signature to a more immature fetal state. Overall, using various in silico approaches with validation by RNAscope, we identified a role for AT1R signaling in regulating NP fate during nephrogenesis in kidney organoids. Our work supports the use of RAS modulators to improve organoid maturation and suggests that RAS may be a determinant of nephron endowment in vivo.
Collapse
Affiliation(s)
- Hyunjae Chung
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Waleed Rahmani
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Aysa Imanzadeh
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Alexander Pun
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Rohit Arora
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Justin Chun
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
2
|
Neahring L, Zallen JA. Three-dimensional rosettes in epithelial formation. Cells Dev 2025:204022. [PMID: 40120722 DOI: 10.1016/j.cdev.2025.204022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Epithelia are ubiquitous tissues with essential structural, signaling, and barrier functions. How cells transition from individual to collective behaviors as they build and remodel epithelia throughout development is a fundamental question in developmental biology. Recent studies show that three-dimensional multicellular rosettes are key intermediates that provide a solution to the challenge of building tissue-scale epithelia by coordinating local interactions in small groups of cells. These radially polarized rosette structures facilitate epithelial formation by providing a protected environment for cells to acquire apical-basal polarity, establish cell adhesion, and coordinate intercellular signaling. Once formed, rosettes can dynamically expand, move, coalesce, and interact with surrounding tissues to generate a wide range of structures with specialized functions, including epithelial sheets, tubes, cavities, and branched networks. In this review, we describe the mechanisms that regulate rosette assembly and dynamics, and discuss how rosettes serve as versatile intermediates in epithelial morphogenesis. In addition, we present open questions about the molecular, cellular, and biophysical mechanisms that drive rosette behaviors, and discuss the implications of this widely used mode of epithelial formation for understanding embryonic development and human disease.
Collapse
Affiliation(s)
- Lila Neahring
- HHMI and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States of America
| | - Jennifer A Zallen
- HHMI and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States of America.
| |
Collapse
|
3
|
Götz L, Wegert J, Paikari A, Appenzeller S, Bausenwein S, Vokuhl C, Treger TD, Drost J, Linderkamp C, Schneider DT, Ernestus K, Warman SW, Fuchs J, Welter N, Graf N, Behjati S, Furtwängler R, Gessler M. Wilms tumor primary cultures capture phenotypic heterogeneity and facilitate preclinical screening. Transl Oncol 2025; 52:102263. [PMID: 39740515 PMCID: PMC11750297 DOI: 10.1016/j.tranon.2024.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
Wilms tumors (WT) are characterized by variable contributions of blastemal, epithelial and stromal elements, reflecting their diverse cellular origins and genetic drivers. In vitro models remain rare, despite a growing need to better characterize tumor biology and evaluate new treatments. Using three approaches, we have now established a large collection of long-term cultures that represent this diversity. Adherent WT cultures are predominated by stromal cells, 3D spheroids model blastema, and patient-derived organoid cultures of both tumor and healthy kidney tissue result in the preferential growth of epithelial cells. Adherent, spheroid and organoid cultures are also clearly distinguishable by their transcriptome. Preclinical drug screening experiments revealed sensitivity to a range of inhibitors, that are highly effective in other childhood solid tumors. Sensitivity was related to MYCN status, a marker associated with adverse outcome across human cancers including WT. The combination of the three culture techniques represents a promising tool to both explore tumor heterogeneity in vitro and to facilitate characterization of candidate driver genes, in order to improve treatment regimens in the future.
Collapse
Affiliation(s)
- Lisa Götz
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Alireza Paikari
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Sabrina Bausenwein
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Taryn D Treger
- Wellcome Sanger Institute, Hinxton, UK; Department of Pediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Christin Linderkamp
- Department of Pediatric Hematology and Oncology, Hannover Medical School (MHH), Hannover, Germany
| | - Dominik T Schneider
- Clinic of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Germany
| | - Karen Ernestus
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Steven W Warman
- Clinic of Pediatric Surgery, Charité - University Hospital Berlin, Berlin, Germany; Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tuebingen, Germany
| | - Nils Welter
- Department of Pediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK; Department of Pediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Rhoikos Furtwängler
- Department of Pediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany; Pediatric Hematology and Oncology, Dep. of Pediatrics, Bern University Hospital, University of Bern, Inselspital, Switzerland
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Zhao H, Gong H, Zhu P, Sun C, Sun W, Zhou Y, Wu X, Qiu A, Wen X, Zhang J, Luo D, Liu Q, Li Y. Deciphering the cellular and molecular landscapes of Wnt/β-catenin signaling in mouse embryonic kidney development. Comput Struct Biotechnol J 2024; 23:3368-3378. [PMID: 39310276 PMCID: PMC11416353 DOI: 10.1016/j.csbj.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background The Wnt/β-catenin signaling pathway is critical in kidney development, yet its specific effects on gene expression in different embryonic kidney cell types are not fully understood. Methods Wnt/β-catenin signaling was activated in mouse E12.5 kidneys in vitro using CHIR99021, with RNA sequencing performed afterward, and the results were compared to DMSO controls (dataset GSE131240). Differential gene expression in ureteric buds and cap mesenchyme following pathway activation (datasets GSE20325 and GSE39583) was analyzed. Single-cell RNA-seq data from the Mouse Cell Atlas was used to link differentially expressed genes (DEGs) with kidney cell types. β-catenin ChIP-seq data (GSE39837) identified direct transcriptional targets. Results Activation of Wnt/β-catenin signaling led to 917 significant DEGs, including the upregulation of Notum and Apcdd1 and the downregulation of Crym and Six2. These DEGs were involved in kidney development and immune response. Single-cell analysis identified 787 DEGs across nineteen cell subtypes, with Macrophage_Apoe high cells showing the most pronounced enrichment of Wnt/β-catenin-activated genes. Gene expression profiles in ureteric buds and cap mesenchyme differed significantly upon β-catenin manipulation, with cap mesenchyme showing a unique set of DEGs. Analysis of β-catenin ChIP-seq data revealed 221 potential direct targets, including Dpp6 and Fgf12. Conclusion This study maps the complex gene expression driven by Wnt/β-catenin signaling in embryonic kidney cell types. The identified DEGs and β-catenin targets elucidate the molecular details of kidney development and the pathway's role in immune processes, providing a foundation for further research into Wnt/β-catenin signaling in kidney development and disease.
Collapse
Affiliation(s)
- Hui Zhao
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangzhou 510005, Guangdong Province, China
| | - Hui Gong
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Peide Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Chang Sun
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wuping Sun
- Department of Pain Medicine, Shenzhen Municipal Key Laboratory for Pain Medicine, The affiliated Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518060, China
| | - Yujin Zhou
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Xiaoxiao Wu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Ailin Qiu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaosha Wen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Jinde Zhang
- Guangdong Medical University, Zhanjiang 524023, Guangdong China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Yifan Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| |
Collapse
|
5
|
Yu C, Zheng B, Zhang L, Zhang A, Jia Z, Ding G. Wnt/β-Catenin Signaling and Congenital Abnormalities of Kidney and Urinary Tract. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:588-599. [PMID: 39664338 PMCID: PMC11631108 DOI: 10.1159/000541684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/23/2024] [Indexed: 12/13/2024]
Abstract
Background Precise regulation of cell-cell communication is vital for cell survival and normal function during embryogenesis. The Wnt protein family, a highly conserved and extensively studied group, plays a crucial role in key cell-cell signaling events essential for development and regeneration. Congenital anomalies of the kidney and urinary tract (CAKUT) represent a leading cause of chronic kidney disease in children and young adults, and include a variety of birth abnormalities resulting from disrupted genitourinary tract development during embryonic development. The incidence and progression of CAKUT may be related to the Wnt signal transduction mechanism. Summary This review provides a comprehensive overview of the classical Wnt signaling pathway's role in CAKUT, explores related molecular mechanisms and provides new targets and intervention methods for the future treatment of the disease. Key Messages The Wnt signal is intricately engaged in a variety of differentiation processes throughout kidney development.
Collapse
Affiliation(s)
- Cuicui Yu
- Beijing Jishuitan Hospital, Captial Medical University, Beijing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Luyan Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Richards T, Wilson P, Goggolidou P. Next generation sequencing identifies WNT signalling as a significant pathway in Autosomal Recessive Polycystic Kidney Disease (ARPKD) manifestation and may be linked to disease severity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167309. [PMID: 38885798 DOI: 10.1016/j.bbadis.2024.167309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Autosomal Recessive Polycystic Kidney Disease (ARPKD) is a rare paediatric disease primarily caused by sequence variants in PKHD1. ARPKD presents with considerable clinical variability relating to the type of PKHD1 sequence variant, but not its position. Animal models of Polycystic Kidney Disease (PKD) suggest a complex genetic landscape, with genetic modifiers as a potential cause of disease variability. METHODS To investigate in an unbiased manner the molecular mechanisms of ARPKD and identify potential indicators of disease severity, Whole Exome Sequencing (WES) and RNA-Sequencing (RNA-Seq) were employed on human ARPKD kidneys and age-matched healthy controls. RESULTS WES confirmed the clinical diagnosis of ARPKD in our patient cohort consisting of ten ARPKD kidneys. Sequence variant type, nor position of PKHD1 sequence variants, was linked to disease severity. Sequence variants in genes associated with other ciliopathies were detected in the ARPKD cohort, but only PKD1 could be linked to disease severity. Transcriptomic analysis on a subset of four ARPKD kidneys representing severe and moderate ARPKD, identified a significant number of genes relating to WNT signalling, cellular metabolism and development. Increased expression of WNT signalling-related genes was validated by RT-qPCR in severe and moderate ARPKD kidneys. Two individuals in our cohort with the same PKHD1 sequence variants but different rates of kidney disease progression, with displayed transcriptomic differences in the expression of WNT signalling genes. CONCLUSION ARPKD kidney transcriptomics highlights changes in WNT signalling as potentially significant in ARPKD manifestation and severity, providing indicators for slowing down the progression of ARPKD.
Collapse
Affiliation(s)
- Taylor Richards
- School of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Patricia Wilson
- Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill, London NW3 2PF, UK
| | - Paraskevi Goggolidou
- School of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| |
Collapse
|
7
|
Zhang Q, Lu B. The mRNA and microRNA Landscape of the Blastema Niche in Regenerating Newt Limbs. Int J Mol Sci 2024; 25:9225. [PMID: 39273174 PMCID: PMC11395517 DOI: 10.3390/ijms25179225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Newts are excellent vertebrate models for investigating tissue regeneration due to their remarkable regenerative capabilities. To investigate the mRNA and microRNAs (miRNAs) profiles within the blastema niche of regenerating newt limbs, we amputated the limbs of Chinese fire belly newts (Cynops orientalis) and conducted comprehensive analyses of the transcriptome and microRNA profiles at five distinct time points post-amputation (0 hours, 1 day, 5 days 10 days and 20 days). We identified 24 significantly differentially expressed (DE) genes and 20 significantly DE miRNAs. Utilizing weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) enrichment analysis, we identified four genes likely to playing crucial roles in the early stages of limb regeneration: Cemip, Rhou, Gpd2 and Pcna. Moreover, mRNA-miRNA integration analysis uncovered seven human miRNAs (miR-19b-1, miR-19b-2, miR-21-5p, miR-127-5p, miR-150-5p, miR-194-5p, and miR-210-5p) may regulate the expression of these four key genes. The temporal expression patterns of these key genes and miRNAs further validated the robustness of the identified mRNA-miRNA landscape. Our study successfully identified candidate key genes and elucidated a portion of the genetic regulatory mechanisms involved in newt limb regeneration. These findings offer valuable insights for further exploration of the intricate processes of tissue regeneration.
Collapse
Affiliation(s)
- Qi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
8
|
Short KM, Tortelote GG, Jones LK, Diniz F, Edgington-Giordano F, Cullen-McEwen LA, Schröder J, Spencer A, Keniry A, Polo JM, Bertram JF, Blewitt ME, Smyth IM, El-Dahr SS. The Impact of Low Protein Diet on the Molecular and Cellular Development of the Fetal Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569988. [PMID: 38106143 PMCID: PMC10723346 DOI: 10.1101/2023.12.04.569988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Low nephron number has a direct impact on the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood. Methods We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development. These analyses were paired with single-cell RNA sequencing to dissect the transcriptional changes that LPD imposes during renal development to affect nephron number. Results Single cell analysis at E14.5 and P0 revealed differences in the expression of genes and pathways involved in metabolism, cell cycle, epigenetic regulators and reciprocal inductive signals in most cell types analyzed, yielding imbalances and shifts in cellular energy production and cellular trajectories. In the nephron progenitor cells, LPD impeded cellular commitment and differentiation towards pre-tubular and renal vesicle structures. Confocal microscopy revealed a reduction in the number of pre-tubular aggregates and proliferation in nephron progenitor cells. We also found changes in branching morphogenesis, with a reduction in cell proliferation in the ureteric tips as well as reduced tip and tip parent lengths by optical projection tomography which causes patterning defects. Conclusions This unique profiling demonstrates how a fetal programming defect leads to low nephron endowment which is intricately linked to changes in both branching morphogenesis and the commitment of nephron progenitor cells. The commitment of progenitor cells is pivotal for nephron formation and is significantly influenced by nutritional factors, with a low protein diet driving alterations in this program which directly results in a reduced nephron endowment. Significance Statement While a mother's diet can negatively impact the number of nephrons in the kidneys of her offspring, the root cellular and molecular drivers of these deficits have not been rigorously explored. In this study we use advanced imaging and gene expression analysis in mouse models to define how a maternal low protein diet, analogous to that of impoverished communities, results in reduced nephron endowment. We find that low protein diet has pleiotropic effects on metabolism and the normal developmental programs of gene expression. These profoundly impact the process of branching morphogenesis necessary to establish niches for nephron generation and change cell behaviors which regulate how and when nephron progenitor cells commit to differentiation.
Collapse
|
9
|
Ibi Y, Nishinakamura R. Generating kidney organoids based on developmental nephrology. Eur J Cell Biol 2024; 103:151450. [PMID: 39137450 DOI: 10.1016/j.ejcb.2024.151450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
Over the past decade, the induction protocols for the two types of kidney organoids (nephron organoids and ureteric bud organoids) from pluripotent stem cells (PSCs) have been established based on the knowledge gained in developmental nephrology. Kidney organoids are now used for disease modeling and drug screening, but they also have potential as tools for clinical transplantation therapy. One of the options to achieve this goal would be to assemble multiple renal progenitor cells (nephron progenitor, ureteric bud, stromal progenitor) to reproduce the organotypic kidney structure from PSCs. At least from mouse PSCs, all the three progenitors have been induced and assembled into such "higher order" kidney organoids. We will provide an overview of the developmental nephrology required for the induction of renal progenitors and discuss recent advances and remaining challenges of kidney organoids for clinical transplantation therapy.
Collapse
Affiliation(s)
- Yutaro Ibi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Naillat F, Deshar G, Hankkila A, Rak-Raszewska A, Sharma A, Prunskaite-Hyyrylainen R, Railo A, Shan J, Vainio SJ. Calcium signaling induces partial EMT and renal fibrosis in a Wnt4 mCherry knock-in mouse model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167180. [PMID: 38653356 DOI: 10.1016/j.bbadis.2024.167180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The renal tubular epithelial cells (TEC) have a strong capacity for repair after acute injury, but when this mechanism becomes uncontrollable, it leads to chronic kidney diseases (CKD). Indeed, in progress toward CKDs, the TECs may dedifferentiate, undergo epithelial-to-mesenchyme transition (EMT), and promote inflammation and fibrosis. Given the critical role of Wnt4 signaling in kidney ontogenesis, we addressed whether changes in this signaling are connected to renal inflammation and fibrosis by taking advantage of a knock-in Wnt4mCh/mCh mouse. While the Wnt4mCh/mCh embryos appeared normal, the corresponding mice, within one month, developed CKD-related phenotypes, such as pro-inflammatory responses including T-cell/macrophage influx, expression of fibrotic markers, and epithelial cell damage with a partial EMT. The Wnt signal transduction component β-catenin remained unchanged, while calcium signaling is induced in the injured TECs involving Nfat and Tfeb transcription factors. We propose that the Wnt4 signaling pathway is involved in repairing the renal injury, and when the signal is overdriven, CKD is established.
Collapse
Affiliation(s)
- Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| | - Ganga Deshar
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Anni Hankkila
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | | | - Abhishek Sharma
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | | | - Antti Railo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Jingdong Shan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Infotech Oulu, Kvantum Institute, University of Oulu, Finland
| |
Collapse
|
11
|
Riedhammer KM, Nguyen TMT, Koşukcu C, Calzada-Wack J, Li Y, Assia Batzir N, Saygılı S, Wimmers V, Kim GJ, Chrysanthou M, Bakey Z, Sofrin-Drucker E, Kraiger M, Sanz-Moreno A, Amarie OV, Rathkolb B, Klein-Rodewald T, Garrett L, Hölter SM, Seisenberger C, Haug S, Schlosser P, Marschall S, Wurst W, Fuchs H, Gailus-Durner V, Wuttke M, Hrabe de Angelis M, Ćomić J, Akgün Doğan Ö, Özlük Y, Taşdemir M, Ağbaş A, Canpolat N, Orenstein N, Çalışkan S, Weber RG, Bergmann C, Jeanpierre C, Saunier S, Lim TY, Hildebrandt F, Alhaddad B, Basel-Salmon L, Borovitz Y, Wu K, Antony D, Matschkal J, Schaaf CW, Renders L, Schmaderer C, Rogg M, Schell C, Meitinger T, Heemann U, Köttgen A, Arnold SJ, Ozaltin F, Schmidts M, Hoefele J. Implication of transcription factor FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int 2024; 105:844-864. [PMID: 38154558 PMCID: PMC10957342 DOI: 10.1016/j.kint.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.
Collapse
Affiliation(s)
- Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Thanh-Minh T Nguyen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Seha Saygılı
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Vera Wimmers
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Marialena Chrysanthou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeineb Bakey
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Efrat Sofrin-Drucker
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Özlem Akgün Doğan
- Department of Pediatrics, Division of Pediatric Genetics, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Türkiye
| | - Yasemin Özlük
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Mehmet Taşdemir
- Department of Pediatric Nephrology, Istinye University Faculty of Medicine, Istanbul, Türkiye
| | - Ayşe Ağbaş
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Salim Çalışkan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Cecile Jeanpierre
- Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris Cité, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris Cité, INSERM UMR 1163, Paris, France
| | - Tze Y Lim
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Lina Basel-Salmon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Raphael Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel; Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Yael Borovitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Kaman Wu
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dinu Antony
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia Matschkal
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Christian W Schaaf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Manuel Rogg
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Fatih Ozaltin
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye; Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Türkiye; Nephrogenetics Laboratory, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Türkiye; Center for Genomics and Rare Diseases, Hacettepe University, Sihhiye, Ankara, Türkiye.
| | - Miriam Schmidts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany.
| |
Collapse
|
12
|
Dissanayake LV, Kravtsova O, Lowe M, McCrorey MK, Van Beusecum JP, Palygin O, Staruschenko A. The presence of xanthine dehydrogenase is crucial for the maturation of the rat kidneys. Clin Sci (Lond) 2024; 138:269-288. [PMID: 38358003 DOI: 10.1042/cs20231144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
The development of the kidney involves essential cellular processes, such as cell proliferation and differentiation, which are led by interactions between multiple signaling pathways. Xanthine dehydrogenase (XDH) catalyzes the reaction producing uric acid in the purine catabolism, which plays a multifaceted role in cellular metabolism. Our previous study revealed that the genetic ablation of the Xdh gene in rats leads to smaller kidneys, kidney damage, decline of renal functions, and failure to thrive. Rats, unlike humans, continue their kidney development postnatally. Therefore, we explored whether XDH plays a critical role in kidney development using SS-/- rats during postnatal development phase. XDH expression was significantly increased from postnatal day 5 to 15 in wild-type but not homozygote rat kidneys. The transcriptomic profile of renal tissue revealed several dysregulated pathways due to the lack of Xdh expression with the remodeling in inflammasome, purinergic signaling, and redox homeostasis. Further analysis suggested that lack of Xdh affects kidney development, likely via dysregulation of epidermal growth factor and its downstream STAT3 signaling. The present study showed that Xdh is essential for kidney maturation. Our data, alongside the previous research, suggests that loss of Xdh function leads to developmental issues, rendering them vulnerable to kidney diseases in adulthood.
Collapse
Affiliation(s)
- Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Melissa Lowe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Marice K McCrorey
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Justin P Van Beusecum
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Ralph H. Johnson Veterans Affairs Healthcare System, Charleston, SC 29403, U.S.A
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL 33602, U.S.A
- James A. Haley Veterans' Hospital, Tampa, FL 33612, U.S.A
| |
Collapse
|
13
|
Kimura E, Mongan M, Xiao B, Christianto A, Wang J, Carreira VS, Bolon B, Zhang X, Burns KA, Biesiada J, Medvedovic M, Puga A, Xia Y. MAP3K1 regulates female reproductive tract development. Dis Model Mech 2024; 17:dmm050669. [PMID: 38501211 PMCID: PMC10985838 DOI: 10.1242/dmm.050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.
Collapse
Affiliation(s)
- Eiki Kimura
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Maureen Mongan
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Bo Xiao
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Antonius Christianto
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Jingjing Wang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Vinicius S. Carreira
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Brad Bolon
- GEMpath Inc., Longmont, CO 80501-1846, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Katherine A. Burns
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Ying Xia
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
14
|
Torban E, Goodyer P. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer. Am J Physiol Renal Physiol 2024; 326:F3-F19. [PMID: 37916284 DOI: 10.1152/ajprenal.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University and Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Mederacke M, Conrad L, Doumpas N, Vetter R, Iber D. Geometric effects position renal vesicles during kidney development. Cell Rep 2023; 42:113526. [PMID: 38060445 DOI: 10.1016/j.celrep.2023.113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
During kidney development, reciprocal signaling between the epithelium and the mesenchyme coordinates nephrogenesis with branching morphogenesis of the collecting ducts. The mechanism that positions the renal vesicles, and thus the nephrons, relative to the branching ureteric buds has remained elusive. By combining computational modeling and experiments, we show that geometric effects concentrate the key regulator, WNT9b, at the junctions between parent and daughter branches where renal vesicles emerge, even when uniformly expressed in the ureteric epithelium. This curvature effect might be a general paradigm to create non-uniform signaling in development.
Collapse
Affiliation(s)
- Malte Mederacke
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Nikolaos Doumpas
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
16
|
Stevenson MJ, Phanor SK, Patel U, Gisselbrecht SS, Bulyk ML, O'Brien LL. Altered binding affinity of SIX1-Q177R correlates with enhanced WNT5A and WNT pathway effector expression in Wilms tumor. Dis Model Mech 2023; 16:dmm050208. [PMID: 37815464 PMCID: PMC10668032 DOI: 10.1242/dmm.050208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.
Collapse
Affiliation(s)
- Matthew J. Stevenson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sabrina K. Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Urvi Patel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen S. Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lori L. O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Matsui K, Yamanaka S, Chen S, Matsumoto N, Morimoto K, Kinoshita Y, Inage Y, Saito Y, Takamura T, Fujimoto T, Tajiri S, Matsumoto K, Kobayashi E, Yokoo T. Long-term viable chimeric nephrons generated from progenitor cells are a reliable model in cisplatin-induced toxicity. Commun Biol 2023; 6:1097. [PMID: 37898693 PMCID: PMC10613230 DOI: 10.1038/s42003-023-05484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Kidney organoids have shown promise as evaluation tools, but their in vitro maturity remains limited. Transplantation into adult mice has aided in maturation; however, their lack of urinary tract connection limits long-term viability. Thus, long-term viable generated nephrons have not been demonstrated. In this study, we present an approachable method in which mouse and rat renal progenitor cells are injected into the developing kidneys of neonatal mice, resulting in the generation of chimeric nephrons integrated with the host urinary tracts. These chimeric nephrons exhibit similar maturation to the host nephrons, long-term viability with excretion and reabsorption functions, and cisplatin-induced renal injury in both acute and chronic phases, as confirmed by single-cell RNA-sequencing. Additionally, induced human nephron progenitor cells differentiate into nephrons within the neonatal kidneys. Collectively, neonatal injection represents a promising approach for in vivo nephron generation, with potential applications in kidney regeneration, drug screening, and pathological analysis.
Collapse
Affiliation(s)
- Kenji Matsui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Sandy Chen
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Naoto Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Keita Morimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yoshitaka Kinoshita
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Yuka Inage
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Tsuyoshi Takamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Susumu Tajiri
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| |
Collapse
|
18
|
Komatsu V, Cooper B, Yim P, Chan K, Gong W, Wheatley L, Rohs R, Fraser SE, Trinh LA. Hand2 represses non-cardiac cell fates through chromatin remodeling at cis- regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559156. [PMID: 37790542 PMCID: PMC10542161 DOI: 10.1101/2023.09.23.559156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Developmental studies have revealed the importance of the transcription factor Hand2 in cardiac development. Hand2 promotes cardiac progenitor differentiation and epithelial maturation, while repressing other tissue types. The mechanisms underlying the promotion of cardiac fates are far better understood than those underlying the repression of alternative fates. Here, we assess Hand2-dependent changes in gene expression and chromatin remodeling in cardiac progenitors of zebrafish embryos. Cell-type specific transcriptome analysis shows a dual function for Hand2 in activation of cardiac differentiation genes and repression of pronephric pathways. We identify functional cis- regulatory elements whose chromatin accessibility are increased in hand2 mutant cells. These regulatory elements associate with non-cardiac gene expression, and drive reporter gene expression in tissues associated with Hand2-repressed genes. We find that functional Hand2 is sufficient to reduce non-cardiac reporter expression in cardiac lineages. Taken together, our data support a model of Hand2-dependent coordination of transcriptional programs, not only through transcriptional activation of cardiac and epithelial maturation genes, but also through repressive chromatin remodeling at the DNA regulatory elements of non-cardiac genes.
Collapse
|
19
|
Bronstein R, Pace J, Gowthaman Y, Salant DJ, Mallipattu SK. Podocyte-Parietal Epithelial Cell Interdependence in Glomerular Development and Disease. J Am Soc Nephrol 2023; 34:737-750. [PMID: 36800545 PMCID: PMC10125654 DOI: 10.1681/asn.0000000000000104] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Podocytes and parietal epithelial cells (PECs) are among the few principal cell types within the kidney glomerulus, the former serving as a crucial constituent of the kidney filtration barrier and the latter representing a supporting epithelial layer that adorns the inner wall of Bowman's capsule. Podocytes and PECs share a circumscript developmental lineage that only begins to diverge during the S-shaped body stage of nephron formation-occurring immediately before the emergence of the fully mature nephron. These two cell types, therefore, share a highly conserved gene expression program, evidenced by recently discovered intermediate cell types occupying a distinct spatiotemporal gene expression zone between podocytes and PECs. In addition to their homeostatic functions, podocytes and PECs also have roles in kidney pathogenesis. Rapid podocyte loss in diseases, such as rapidly progressive GN and collapsing and cellular subtypes of FSGS, is closely allied with PEC proliferation and migration toward the capillary tuft, resulting in the formation of crescents and pseudocrescents. PECs are thought to contribute to disease progression and severity, and the interdependence between these two cell types during development and in various manifestations of kidney pathology is the primary focus of this review.
Collapse
Affiliation(s)
- Robert Bronstein
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Jesse Pace
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Yogesh Gowthaman
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - David J. Salant
- Division of Nephrology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Sandeep K. Mallipattu
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Renal Section, Northport VA Medical Center, Northport, New York
| |
Collapse
|
20
|
Kimura E, Mongan M, Xiao B, Wang J, Carreira VS, Bolon B, Zhang X, Burns KA, Biesiada J, Medvedovic M, Puga A, Xia Y. The Role of MAP3K1 in the Development of the Female Reproductive Tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 37131749 PMCID: PMC10153227 DOI: 10.1101/2023.04.20.537715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitogen-Activated Protein 3 Kinase 1 (MAP3K1) is a dynamic signaling molecule with a plethora of cell-type specific functions, most of which are yet to be understood. Here we describe a role for MAP3K1 in the development of female reproductive tract (FRT). MAP3K1 kinase domain-deficient ( Map3k1 ΔKD ) females exhibit imperforate vagina, labor failure, and infertility. These defects correspond to a shunted Müllerian duct (MD), the principle precursor of the FRT, in embryos, while they manifest as a contorted caudal vagina with abrogated vaginal-urogenital sinus fusion in neonates. In epithelial cells, MAP3K1 acts through JNK and ERK to activate WNT, yet in vivo MAP3K1 is crucial for WNT activity in mesenchyme associated with the caudal MD. Expression of Wnt7b is high in wild type, but low in Map3k1 knockout MD epithelium and MAP3K1-deficient keratinocytes. Correspondingly, conditioned media derived from MAP3K1-competent epithelial cells activate TCF/Lef-luciferase reporter in fibroblasts, suggesting that MAP3K1-induced factors released from epithelial cells trans-activate WNT signaling in fibroblasts. Our results reveal a temporal-spatial and paracrine MAP3K1-WNT crosstalk contributing to MD caudal elongation and FRT development. Highlights MAP3K1 deficient female mice exhibit imperforate vagina and infertilityLoss of MAP3K1 kinase activity impedes Müllerian duct (MD) caudal elongation and fusion with urogenital sinus (UGS) in embryogenesisThe MAP3K1-MAPK pathway up-regulates WNT signaling in epithelial cellsMAP3K1 deficiency down-regulates Wnt7b expression in the MD epithelium and prevents WNT activity in mesenchyme of the caudal MD.
Collapse
|
21
|
Abboud Asleh M, Zaher M, Asleh J, Jadon J, Shaulov L, Yelin R, Schultheiss TM. A morphogenetic wave in the chick embryo lateral mesoderm generates mesenchymal-epithelial transition through a 3D-rosette intermediate. Dev Cell 2023:S1534-5807(23)00133-8. [PMID: 37080204 DOI: 10.1016/j.devcel.2023.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Formation of epithelia through mesenchymal-epithelial transition (MET) is essential for embryonic development and for many physiological and pathological processes. This study investigates MET in vivo in the chick embryo lateral mesoderm, where a multilayered mesenchyme transforms into two parallel epithelial sheets that constitute the coelomic lining of the embryonic body cavity. Prior to MET initiation, mesenchymal cells exhibit non-polarized distribution of multiple polarity markers, albeit not aPKC. We identified an epithelializing wave that sweeps across the lateral mesoderm, the wavefront of which is characterized by the accumulation of basal fibronectin and a network of 3D rosettes composed of polarized, wedge-shaped cells surrounding a central focus of apical markers, now including aPKC. Initiation of the MET process is dependent on extracellular matrix-integrin signaling acting through focal adhesion kinase and talin, whereas progression through the rosette phase requires aPKC function. We present a stepwise model for MET, comprising polarization, 3D-rosette, and epithelialization stages.
Collapse
Affiliation(s)
- Manar Abboud Asleh
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mira Zaher
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Jad Asleh
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Julian Jadon
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lihi Shaulov
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
22
|
Riedhammer KM, Nguyen TMT, Koşukcu C, Calzada-Wack J, Li Y, Saygılı S, Wimmers V, Kim GJ, Chrysanthou M, Bakey Z, Kraiger M, Sanz-Moreno A, Amarie OV, Rathkolb B, Klein-Rodewald T, Garrett L, Hölter SM, Seisenberger C, Haug S, Marschall S, Wurst W, Fuchs H, Gailus-Durner V, Wuttke M, de Angelis MH, Ćomić J, Doğan ÖA, Özlük Y, Taşdemir M, Ağbaş A, Canpolat N, Ćalışkan S, Weber R, Bergmann C, Jeanpierre C, Saunier S, Lim TY, Hildebrandt F, Alhaddad B, Wu K, Antony D, Matschkal J, Schaaf C, Renders L, Schmaderer C, Meitinger T, Heemann U, Köttgen A, Arnold S, Ozaltin F, Schmidts M, Hoefele J. Implication of FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.21.23287206. [PMID: 36993625 PMCID: PMC10055578 DOI: 10.1101/2023.03.21.23287206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Background Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. Methods and Results ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Conclusions In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.
Collapse
Affiliation(s)
- Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Thanh-Minh T. Nguyen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, 06100, Türkiye
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Seha Saygılı
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Vera Wimmers
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Marialena Chrysanthou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Zeineb Bakey
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Sabine M. Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
| | - Claudia Seisenberger
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
- Deutsches Institut fur Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Özlem Akgün Doğan
- Department of Pediatric Genetics, Acibadem Mehmet Ali Aydinlar University, Faculty of Medicine, Istanbul, Türkiye
| | - Yasemin Özlük
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Mehmet Taşdemir
- Department of Pediatric Nephrology, Istinye University School of Medicine, Liv Hospital, Istanbul, Türkiye
| | - Ayşe Ağbaş
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Salim Ćalışkan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Ruthild Weber
- Department of Human Genetics, Hannover Medical School, Hannover, 30625, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Cecile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Renales Hereditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Renales Hereditaires Institut Imagine, Université de Paris, Paris, France
| | - Tze Y. Lim
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Kaman Wu
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Dinu Antony
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Julia Matschkal
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Christian Schaaf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Fatih Ozaltin
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, 06100, Türkiye
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, 06100, Sihhiye, Ankara, Türkiye
| | - Miriam Schmidts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| |
Collapse
|
23
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
24
|
Urinary Extracellular Vesicles in Chronic Kidney Disease: From Bench to Bedside? Diagnostics (Basel) 2023; 13:diagnostics13030443. [PMID: 36766548 PMCID: PMC9913975 DOI: 10.3390/diagnostics13030443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Extracellular vesicles are a diverse group of particles that include exosomes, microvesicles, and apoptotic bodies and are defined by size, composition, site of origin, and density. They incorporate various bioactive molecules from their cell of origin during formation, such as soluble proteins, membrane receptors, nucleic acids (mRNAs and miRNAs), and lipids, which can then be transferred to target cells. Extracellular vesicles/exosomes have been extensively studied as a critical factor in pathophysiological processes of human diseases. Urinary extracellular vesicles could be a promising liquid biopsy for determining the pattern and/or severity of kidney histologic injury. The signature of urinary extracellular vesicles may pave the way for noninvasive methods to supplement existing testing methods for diagnosing kidney diseases. We discuss the potential role of urinary extracellular vesicles in various chronic kidney diseases in this review, highlighting open questions and discussing the potential for future research.
Collapse
|
25
|
Liu X, Yu T, Tan X, Jin D, Yang W, Zhang J, Dai L, He Z, Li D, Zhang Y, Liao S, Zhao J, Zhong TP, Liu C. Renal interstitial cells promote nephron regeneration by secreting prostaglandin E2. eLife 2023; 12:81438. [PMID: 36645741 PMCID: PMC9943066 DOI: 10.7554/elife.81438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
In organ regeneration, progenitor and stem cells reside in their native microenvironment, which provides dynamic physical and chemical cues essential to their survival, proliferation, and differentiation. However, the types of cells that form the native microenvironment for renal progenitor cells (RPCs) have not been clarified. Here, single-cell sequencing of zebrafish kidney reveals fabp10a as a principal marker of renal interstitial cells (RICs), which can be specifically labeled by GFP under the control of fabp10a promoter in the fabp10a:GFP transgenic zebrafish. During nephron regeneration, the formation of nephrons is supported by RICs that form a network to wrap the RPC aggregates. RICs that are in close contact with RPC aggregates express cyclooxygenase 2 (Cox2) and secrete prostaglandin E2 (PGE2). Inhibiting PGE2 production prevents nephrogenesis by reducing the proliferation of RPCs. PGE2 cooperates with Wnt4a to promote nephron maturation by regulating β-catenin stability of RPC aggregates. Overall, these findings indicate that RICs provide a necessary microenvironment for rapid nephrogenesis during nephron regeneration.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Ting Yu
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Xiaoqin Tan
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, School of Life SciencesShanghaiChina
| | - Wenmin Yang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Jiangping Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Lu Dai
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Zhongwei He
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, School of Life SciencesShanghaiChina
| | - Yunfeng Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Shuyi Liao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, School of Life SciencesShanghaiChina
| | - Chi Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
26
|
Liu H, Ngo NYN, Herzberger KF, Gummaraju M, Hilliard S, Chen CH. Histone deacetylases 1 and 2 target gene regulatory networks of nephron progenitors to control nephrogenesis. Biochem Pharmacol 2022; 206:115341. [PMID: 36356658 DOI: 10.1016/j.bcp.2022.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Our studies demonstrated the critical role of Histone deacetylases (HDACs) in the regulation of nephrogenesis. To better understand the key pathways regulated by HDAC1/2 in early nephrogenesis, we performed chromatin immunoprecipitation sequencing (ChIP-Seq) of HDAC1/2 on isolated nephron progenitor cells (NPCs) from mouse E16.5 kidneys. Our analysis revealed that 11,802 (40.4%) of HDAC1 peaks overlap with HDAC2 peaks, further demonstrates the redundant role of HDAC1 and HDAC2 during nephrogenesis. Common HDAC1/2 peaks are densely concentrated close to the transcriptional start site (TSS). GREAT Gene Ontology analysis of overlapping HDAC1/2 peaks reveals that HDAC1/2 are associated with metanephric nephron morphogenesis, chromatin assembly or disassembly, as well as other DNA checkpoints. Pathway analysis shows that negative regulation of Wnt signaling pathway is one of HDAC1/2's most significant function in NPCs. Known motif analysis indicated that Hdac1 is enriched in motifs for Six2, Hox family, and Tcf family members, which are essential for self-renewal and differentiation of nephron progenitors. Interestingly, we found the enrichment of HDAC1/2 at the enhancer and promoter regions of actively transcribed genes, especially those concerned with NPC self-renewal. HDAC1/2 simultaneously activate or repress the expression of different genes to maintain the cellular state of nephron progenitors. We used the Integrative Genomics Viewer to visualize these target genes associated with each function and found that HDAC1/2 co-bound to the enhancers or/and promoters of genes associated with nephron morphogenesis, differentiation, and cell cycle control. Taken together, our ChIP-Seq analysis demonstrates that HDAC1/2 directly regulate the molecular cascades essential for nephrogenesis.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pediatrics, School of Medicine, Tulane University, United States.
| | - Nguyen Yen Nhi Ngo
- Department of Pediatrics, School of Medicine, Tulane University, United States
| | - Kyra F Herzberger
- Department of Pediatrics, School of Medicine, Tulane University, United States
| | - Manasi Gummaraju
- Department of Pediatrics, School of Medicine, Tulane University, United States; School of Arts and Science, Washington University in St. Louis, United States
| | - Sylvia Hilliard
- Department of Pediatrics, School of Medicine, Tulane University, United States
| | - Chao-Hui Chen
- Department of Pediatrics, School of Medicine, Tulane University, United States
| |
Collapse
|
27
|
Su C, Huang R, Yu Z, Zheng J, Liu F, Liang H, Mo Z. Myelin and lymphocyte protein serves as a prognostic biomarker and is closely associated with the tumor microenvironment in the nephroblastoma. Cancer Med 2022; 11:1427-1438. [PMID: 35023304 PMCID: PMC8894696 DOI: 10.1002/cam4.4542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Nephroblastoma, also known as Wilms' tumor (WT), is the most common renal tumor that occurs in children. Although the efficacy of treatment has been significantly improved by a series of comprehensive treatments, some patients still have poor prognosis. Myelin and lymphocyte (MAL) protein, a highly hydrophobic integrated membrane‐bound protein, has been implicated in many tumors and is also closely linked to kidney development. However, the relationship between MAL and WT has not yet been elucidated. Therefore, we attempted to evaluate the feasibility of MAL as a promising prognosis factor for WT. The differential expression of MAL was investigated using TARGET database and was verified using the Gene Expression Omnibus database and real‐time quantitative PCR. The prognostic ability of MAL was determined using Kaplan–Meier and Cox regression analyses. Pearson correlation analysis was applied to explore the relationship between MAL expression and methylation sites. The ESTIMATE and CIBERSORT algorithms showed that MAL expression was associated with the WT tumor microenvironment. Gene Set Enrichment Analysis (GSEA) indicated that multiple signaling pathways closely associated with tumorigenesis were differentially enriched between the high‐ and low‐MAL groups. In conclusion, our study comprehensively explored the potential of MAL as a prognosis factor for WT. Meanwhile, we also demonstrated that MAL, as a prognostic factor for WT, may be closely related to the tumor microenvironment.
Collapse
Affiliation(s)
- Cheng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China
| | | | - Zhenyuan Yu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Jie Zheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | | | | | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Machado DA, Ontiveros AE, Behringer RR. Mammalian uterine morphogenesis and variations. Curr Top Dev Biol 2022; 148:51-77. [DOI: 10.1016/bs.ctdb.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Matsumoto N, Matsui K, Saitou Y, Takamura T, Yamanaka S, Yokoo T, Kobayashi E. Techniques of fragile renal organoids transplantation in mice. Acta Cir Bras 2021; 36:e361102. [PMID: 34932670 PMCID: PMC8691148 DOI: 10.1590/acb361102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose: This study aimed to develop a microsurgical technique to transplant extremely
fragile renal organoids in vivo, created by
in-vitro reaggregation of metanephros from fetal mice.
These organoids in reaggregation and development were examined
histologically after transplantation under the renal capsule. Methods: Initially, metanephros from fetal mice were enzymatically treated to form
single cells, and spheroids were generated in vitro. Under
a microscope, the renal capsule was detached to avoid bleeding, and the
outer cylinder of the indwelling needle was inserted to detach the renal
parenchyma from the renal capsule using water pressure. The reaggregated
spheroid was aspirated from the culture plate using a syringe with an
indwelling needle outer cylinder and carefully extruded under the capsule.
Pathological analysis was performed to evaluate changes in reaggregated
spheroids over time and the effects of co-culture of spinal cord and
subcapsular implantation on maturation. Results: In vitro, the formation of luminal structures became
clearer on day 5. These fragile organoids were successfully implanted
without tissue crapes under the renal capsule and formed glomerular. The
effect of spinal cord co-transplant was not obvious histrionically. Conclusions: A simple and easy method to transplant fragile spheroids and renal under the
renal capsule without damage was developed.
Collapse
|
30
|
Yin C, Ye Z, Wu J, Huang C, Pan L, Ding H, Zhong L, Guo L, Zou Y, Wang X, Wang Y, Gao P, Jin X, Yan X, Zou Y, Huang R, Gong H. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. EBioMedicine 2021; 74:103745. [PMID: 34911029 PMCID: PMC8669316 DOI: 10.1016/j.ebiom.2021.103745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Acute myocardial infarction (AMI)-induced excessive myocardial fibrosis exaggerates cardiac dysfunction. However, serum Wnt2 or Wnt4 level in AMI patients, and the roles in cardiac fibrosis are largely unkown. Methods AMI and non-AMI patients were enrolled to examine serum Wnt2 and Wnt4 levels by ELISA analysis. The AMI patients were followed-up for one year. MI mouse model was built by ligation of left anterior descending branch (LAD). Findings Serum Wnt2 or Wnt4 level was increased in patients with AMI, and the elevated Wnt2 and Wnt4 were correlated to adverse outcome of these patients. Knockdown of Wnt2 and Wnt4 significantly attenuated myocardial remodeling and cardiac dysfunction following experimental MI. In vitro, hypoxia enhanced the secretion and expression of Wnt2 and Wnt4 in neonatal rat cardiac myocytes (NRCMs) or fibroblasts (NRCFs). Mechanistically, the elevated Wnt2 or Wnt4 activated β-catenin /NF-κB signaling to promote pro-fibrotic effects in cultured NRCFs. In addition, Wnt2 or Wnt4 upregulated the expression of these Wnt co-receptors, frizzled (Fzd) 2, Fzd4 and (ow-density lipoprotein receptor-related protein 6 (LRP6). Further analysis revealed that Wnt2 or Wnt4 activated β-catenin /NF-κB by the co-operation of Fzd4 or Fzd2 and LRP6 signaling, respectively. Interpretation Elevated Wnt2 and Wnt4 activate β-catenin/NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 in fibroblasts, which contributes to adverse outcome of patients with AMI, suggesting that systemic inhibition of Wnt2 and Wnt4 may improve cardiac dysfunction after MI.
Collapse
Affiliation(s)
- Chao Yin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Jian Wu
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxing Huang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Le Pan
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huaiyu Ding
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Zhong
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Guo
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiang Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pan Gao
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuejuan Jin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoxiang Yan
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzeng Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China.
| | - Hui Gong
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
31
|
Billings SE, Myers NM, Quiruz L, Cheng AG. Opposing effects of Wnt/β-catenin signaling on epithelial and mesenchymal cell fate in the developing cochlea. Development 2021; 148:268974. [PMID: 34061174 PMCID: PMC8217710 DOI: 10.1242/dev.199091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
During embryonic development, the otic epithelium and surrounding periotic mesenchymal cells originate from distinct lineages and coordinate to form the mammalian cochlea. Epithelial sensory precursors within the cochlear duct first undergo terminal mitosis before differentiating into sensory and non-sensory cells. In parallel, periotic mesenchymal cells differentiate to shape the lateral wall, modiolus and pericochlear spaces. Previously, Wnt activation was shown to promote proliferation and differentiation of both otic epithelial and mesenchymal cells. Here, we fate-mapped Wnt-responsive epithelial and mesenchymal cells in mice and found that Wnt activation resulted in opposing cell fates. In the post-mitotic cochlear epithelium, Wnt activation via β-catenin stabilization induced clusters of proliferative cells that dedifferentiated and lost epithelial characteristics. In contrast, Wnt-activated periotic mesenchyme formed ectopic pericochlear spaces and cell clusters showing a loss of mesenchymal and gain of epithelial features. Finally, clonal analyses via multi-colored fate-mapping showed that Wnt-activated epithelial cells proliferated and formed clonal colonies, whereas Wnt-activated mesenchymal cells assembled as aggregates of mitotically quiescent cells. Together, we show that Wnt activation drives transition between epithelial and mesenchymal states in a cell type-dependent manner. Summary: The developing cochlea comprises spatially and lineally distinct populations of epithelial and mesenchymal cells. This study shows the opposing effects of aberrant Wnt/β-catenin signaling on cell fates of cochlear epithelial and mesenchymal cells.
Collapse
Affiliation(s)
- Sara E Billings
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nina M Myers
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lee Quiruz
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
33
|
Yamamura Y, Furuichi K, Murakawa Y, Hirabayashi S, Yoshihara M, Sako K, Kitajima S, Toyama T, Iwata Y, Sakai N, Hosomichi K, Murphy PM, Tajima A, Okita K, Osafune K, Kaneko S, Wada T. Identification of candidate PAX2-regulated genes implicated in human kidney development. Sci Rep 2021; 11:9123. [PMID: 33907292 PMCID: PMC8079710 DOI: 10.1038/s41598-021-88743-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023] Open
Abstract
PAX2 is a transcription factor essential for kidney development and the main causative gene for renal coloboma syndrome (RCS). The mechanisms of PAX2 action during kidney development have been evaluated in mice but not in humans. This is a critical gap in knowledge since important differences have been reported in kidney development in the two species. In the present study, we hypothesized that key human PAX2-dependent kidney development genes are differentially expressed in nephron progenitor cells from induced pluripotent stem cells (iPSCs) in patients with RCS relative to healthy individuals. Cap analysis of gene expression revealed 189 candidate promoters and 71 candidate enhancers that were differentially activated by PAX2 in this system in three patients with RCS with PAX2 mutations. By comparing this list with the list of candidate Pax2-regulated mouse kidney development genes obtained from the Functional Annotation of the Mouse/Mammalian (FANTOM) database, we prioritized 17 genes. Furthermore, we ranked three genes-PBX1, POSTN, and ITGA9-as the top candidates based on closely aligned expression kinetics with PAX2 in the iPSC culture system and susceptibility to suppression by a Pax2 inhibitor in cultured mouse embryonic kidney explants. Identification of these genes may provide important information to clarify the pathogenesis of RCS, human kidney development, and kidney regeneration.
Collapse
Affiliation(s)
- Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kengo Furuichi
- Department of Nephrology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
| | - Yasuhiro Murakawa
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, Japan
| | - Shigeki Hirabayashi
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, Japan
| | - Masahito Yoshihara
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Keisuke Sako
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shuichi Kaneko
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
34
|
Duhme C, Busch M, Heine E, de Torres C, Mora J, Royer-Pokora B. WT1-Mutant Wilms Tumor Progression Is Associated With Diverting Clonal Mutations of CTNNB1. J Pediatr Hematol Oncol 2021; 43:e180-e183. [PMID: 31876779 DOI: 10.1097/mph.0000000000001697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/15/2019] [Indexed: 11/26/2022]
Abstract
WT1-mutant Wilms tumors exhibit a high rate of concomitant CTNNB1 mutations, associated with activated Wnt signaling. Here, we show by laser and manual microdissection of different histologic cell types from 6 WT1-mutant tumor samples that 1 patient's tumor can contain up to 4 distinct mutations in CTNNB1 and/or WTX. Consecutive sections may also harbor different CTNNB1 mutations. The variability of activating CTNNB1 mutations demonstrates the multifocal nature of WT1-mutant Wilms tumors. As multiple independent tumors can occur in patients with constitutional WT1 mutations, they need to be surveyed more closely for tumor development.
Collapse
Affiliation(s)
- Constanze Duhme
- Institute of Human Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Maike Busch
- Institute of Human Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Eva Heine
- Institute of Human Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Carmen de Torres
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Deu, Barcelona, Spain
| | - Jaume Mora
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Deu, Barcelona, Spain
| | | |
Collapse
|
35
|
Meng P, Zhu M, Ling X, Zhou L. Wnt signaling in kidney: the initiator or terminator? J Mol Med (Berl) 2020; 98:1511-1523. [PMID: 32939578 PMCID: PMC7591426 DOI: 10.1007/s00109-020-01978-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
The kidney is a key organ in the human body that excretes toxins and sustains the water-electrolyte balance. During embryonic development and disease progression, the kidney undergoes enormous changes in macrostructure, accompanied by a variety of microstructural histological changes, such as glomerular formation and sclerosis, tubule elongation and atrophy, interstitial establishment, and fibrosis progression. All of these rely on the frequent occurrence of cell death and growth. Notably, to overcome disease, some cells regenerate through self-repair or progenitor cell differentiation. However, the signaling mechanisms underlying kidney development and regeneration have not been elucidated. Recently, Wnt signaling has been noted to play an important role. Although it is a well-known developmental signal, the role of Wnt signaling in kidney development and regeneration is not well recognized. In this review, we review the role of Wnt signaling in kidney embryonic development, tissue repair, cell division, and progenitor cell differentiation after injury. Moreover, we briefly highlight advances in our understanding of the pathogenic mechanisms of Wnt signaling in mediating cellular senescence in kidney parenchymal and stem cells, an irreversible arrest of cell proliferation blocking tissue repair and regeneration. We also highlight the therapeutic targets of Wnt signaling in kidney diseases and provide important clues for clinical strategies.
Collapse
Affiliation(s)
- Ping Meng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Mingsheng Zhu
- Department of Nephrology, The People's Hospital of Gaozhou, Maoming, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
36
|
Kimura A, Toyoda T, Iwasaki M, Hirama R, Osafune K. Combined Omics Approaches Reveal the Roles of Non-canonical WNT7B Signaling and YY1 in the Proliferation of Human Pancreatic Progenitor Cells. Cell Chem Biol 2020; 27:1561-1572.e7. [PMID: 33125912 DOI: 10.1016/j.chembiol.2020.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
The proliferation of human pancreatic progenitor cells (PPCs) is critical for developing cell therapies for diabetes. Here, using transcriptome analysis combined with small interfering RNA (siRNA) screening, we revealed that WNT7B is a downstream growth factor of AT7867, a compound known to promote the proliferation of PPCs generated from human pluripotent stem cells. Feeder cell lines stably expressing mouse Wnt7a or Wnt7b, but not other Wnts, enhanced PPC proliferation in the absence of AT7867. Importantly, Wnt7a/b ligands did not activate the canonical Wnt pathway, and PPC proliferation depended on the non-canonical Wnt/PKC pathway. A comparison of the phosphoproteome in response to AT7867 or a newly synthesized AT7867 derivative uncovered the function of YY1 as a transcriptional regulator of WNT7B. Overall, our data highlight unknown roles of non-canonical WNT7B/PKC signaling and YY1 in human PPC proliferation and will contribute to the stable supply of a cell source for pancreatic disease modeling and therapeutic applications.
Collapse
Affiliation(s)
- Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Mio Iwasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ryusuke Hirama
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
37
|
The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat 2020; 233:151610. [PMID: 33065247 DOI: 10.1016/j.aanat.2020.151610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
The journey of life, from primordial protoplasm to a complex vertebrate form, is a tale of survival against incessant alterations in climate, surface topography, food chain, and chemistry of the external environment. Kidneys present with an ensemble embodiment of the adaptations devised by diverse life-forms to cope with such challenges and maintain a chemical equilibrium of water and solutes, both in and outside the body. This minireview revisits renal evolution utilizing the classic: From Fish to Philosopher; the story of our internal environment, by Prof. Homer W. Smith (1895-1962) as a template. Prof. Smith's views exemplified the invention of glomeruli, or its abolishment, as a mechanism to filter water. Moreover, with the need to preserve water, as in reptiles, the loop of Henle was introduced to concentrate urine. When compared to smaller mammals, the larger ones, albeit having loops of Henle of similar lengths, demonstrated a distinct packing of the nephrons in kidneys. Moreover, the renal portal system degenerated in mammals, while still present in other vertebrates. This account will present with a critique of the current concepts of renal evolution while examining how various other factors, including the ones that we know more about now, such as genetic factors, synchronize to achieve renal development. Finally, it will try to assess the validity of ideas laid by Prof. Smith with the knowledge that we possess now, and understand the complex architecture that evolution has imprinted on the kidneys during its struggle to survive over epochs.
Collapse
|
38
|
Chambers JM, Wingert RA. Advances in understanding vertebrate nephrogenesis. Tissue Barriers 2020; 8:1832844. [PMID: 33092489 PMCID: PMC7714473 DOI: 10.1080/21688370.2020.1832844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The kidney is a complex organ that performs essential functions such as blood filtration and fluid homeostasis, among others. Recent years have heralded significant advancements in our knowledge of the mechanisms that control kidney formation. Here, we provide an overview of vertebrate renal development with a focus on nephrogenesis, the process of generating the epithelialized functional units of the kidney. These steps begin with intermediate mesoderm specification and proceed all the way to the terminally differentiated nephron cell, with many detailed stages in between. The establishment of nephron architecture with proper cellular barriers is vital throughout these processes. Continuously striving to gain further insights into nephrogenesis can ultimately lead to a better understanding and potential treatments for developmental maladies such as Congenital Anomalies of the Kidney and Urinary Tract (CAKUT).
Collapse
Affiliation(s)
- Joseph M. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
39
|
Noncanonical Wnt planar cell polarity signaling in lung development and disease. Biochem Soc Trans 2020; 48:231-243. [PMID: 32096543 DOI: 10.1042/bst20190597] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
The planar cell polarity (PCP) signaling pathway is a potent developmental regulator of directional cell behaviors such as migration, asymmetric division and morphological polarization that are critical for shaping the body axis and the complex three-dimensional architecture of tissues and organs. PCP is considered a noncanonical Wnt pathway due to the involvement of Wnt ligands and Frizzled family receptors in the absence of the beta-catenin driven gene expression observed in the canonical Wnt cascade. At the heart of the PCP mechanism are protein complexes capable of generating molecular asymmetries within cells along a tissue-wide axis that are translated into polarized actin and microtubule cytoskeletal dynamics. PCP has emerged as an important regulator of developmental, homeostatic and disease processes in the respiratory system. It acts along other signaling pathways to create the elaborately branched structure of the lung by controlling the directional protrusive movements of cells during branching morphogenesis. PCP operates in the airway epithelium to establish and maintain the orientation of respiratory cilia along the airway axis for anatomically directed mucociliary clearance. It also regulates the establishment of the pulmonary vasculature. In adult tissues, PCP dysfunction has been linked to a variety of chronic lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary arterial hypertension, stemming chiefly from the breakdown of proper tissue structure and function and aberrant cell migration during regenerative wound healing. A better understanding of these (impaired) PCP mechanisms is needed to fully harness the therapeutic opportunities of targeting PCP in chronic lung diseases.
Collapse
|
40
|
Rao DM, Shackleford MT, Bordeaux EK, Sottnik JL, Ferguson RL, Yamamoto TM, Wellberg EA, Bitler BG, Sikora MJ. Wnt family member 4 (WNT4) and WNT3A activate cell-autonomous Wnt signaling independent of porcupine O-acyltransferase or Wnt secretion. J Biol Chem 2019; 294:19950-19966. [PMID: 31740580 PMCID: PMC6937561 DOI: 10.1074/jbc.ra119.009615] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Porcupine O-acyltransferase (PORCN) is considered essential for Wnt secretion and signaling. However, we observed that PORCN inhibition does not phenocopy the effects of WNT4 knockdown in WNT4-dependent breast cancer cells. This suggests a unique relationship between PORCN and WNT4 signaling. To examine the role of PORCN in WNT4 signaling, here we overexpressed WNT4 or WNT3A in breast cancer, ovarian cancer, and fibrosarcoma cell lines. Conditioned media from these lines and co-culture systems were used to assess the dependence of Wnt secretion and activity on the critical Wnt secretion proteins PORCN and Wnt ligand secretion (WLS) mediator. We observed that WLS is universally required for Wnt secretion and paracrine signaling. In contrast, the dependence of WNT3A secretion and activity on PORCN varied across the cell lines, and WNT4 secretion was PORCN-independent in all models. Surprisingly, WNT4 did not exhibit paracrine activity in any tested context. Absent the expected paracrine activity of secreted WNT4, we identified cell-autonomous Wnt signaling activation by WNT4 and WNT3A, independent of PORCN or Wnt secretion. The PORCN-independent, cell-autonomous Wnt signaling demonstrated here may be critical in WNT4-driven cellular contexts or in those that are considered to have dysfunctional Wnt signaling.
Collapse
Affiliation(s)
- Deviyani M Rao
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Madeleine T Shackleford
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Evelyn K Bordeaux
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Joseph L Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Rebecca L Ferguson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Tomomi M Yamamoto
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Benjamin G Bitler
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
41
|
Cernilogar FM, Hasenöder S, Wang Z, Scheibner K, Burtscher I, Sterr M, Smialowski P, Groh S, Evenroed IM, Gilfillan GD, Lickert H, Schotta G. Pre-marked chromatin and transcription factor co-binding shape the pioneering activity of Foxa2. Nucleic Acids Res 2019; 47:9069-9086. [PMID: 31350899 PMCID: PMC6753583 DOI: 10.1093/nar/gkz627] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Pioneer transcription factors (PTF) can recognize their binding sites on nucleosomal DNA and trigger chromatin opening for recruitment of other non-pioneer transcription factors. However, critical properties of PTFs are still poorly understood, such as how these transcription factors selectively recognize cell type-specific binding sites and under which conditions they can initiate chromatin remodelling. Here we show that early endoderm binding sites of the paradigm PTF Foxa2 are epigenetically primed by low levels of active chromatin modifications in embryonic stem cells (ESC). Priming of these binding sites is supported by preferential recruitment of Foxa2 to endoderm binding sites compared to lineage-inappropriate binding sites, when ectopically expressed in ESCs. We further show that binding of Foxa2 is required for chromatin opening during endoderm differentiation. However, increased chromatin accessibility was only detected on binding sites which are synergistically bound with other endoderm transcription factors. Thus, our data suggest that binding site selection of PTFs is directed by the chromatin environment and that chromatin opening requires collaboration of PTFs with additional transcription factors.
Collapse
Affiliation(s)
- Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Stefan Hasenöder
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
| | - Zeyang Wang
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Katharina Scheibner
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
| | - Ingo Burtscher
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
| | - Michael Sterr
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
| | - Pawel Smialowski
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Bioinformatic Core Facility, Biomedical Center, LMU Munich, Martinsried, Germany
| | - Sophia Groh
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Ida M Evenroed
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Heiko Lickert
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany.,Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Technische Universität München, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany.,Munich Center for Integrated Protein Science (CiPSM), Munich, Germany
| |
Collapse
|
42
|
Shamseldeen AM, Ali Eshra M, Ahmed Rashed L, Fathy Amer M, Elham Fares A, Samir Kamar S. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings. Arch Physiol Biochem 2019; 125:367-377. [PMID: 29741967 DOI: 10.1080/13813455.2018.1471511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
Context: Maternal diet composition could influence fetal organogenesis. Objective: We investigated effects of high fat diet (HFD) intake alone or combined with omega 3 during pregnancy, lactation and early days of weaning on nephrogenesis of pups and maternal renal function and morphology. Material and methods: Mothers and their pups included in each group were supplied with the same diet composition. Rats were divided into group I, II and III supplied with chow of either 10 kcal%, 45 kcal% or 45 kcal% from fat together with omega-3 respectively. Results: Group II showed increased serum urea and creatinine, renal TNF-α, IL1β. Structural injury was observed in mothers and their pups as Bowman's capsule and tubular dilatation and increased expression of PCNA that were decreased following omega-3 supplementation added to down regulation of Wnt4, Pax2 gene and podocin expression. Discussion and conclusion: Omega-3 supplementation improves lipid nephrotoxicity observed in mothers and their pups.
Collapse
Affiliation(s)
| | - Mohammed Ali Eshra
- a Department of Physiology Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Laila Ahmed Rashed
- b Department of Biochemistry Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Marwa Fathy Amer
- b Department of Biochemistry Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Amal Elham Fares
- c Department of Medical Histology Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Samaa Samir Kamar
- c Department of Medical Histology Faculty of Medicine, Cairo University , Cairo , Egypt
| |
Collapse
|
43
|
Cosin-Roger J, Ortiz-Masià MD, Barrachina MD. Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity. Front Immunol 2019; 10:2297. [PMID: 31608072 PMCID: PMC6769121 DOI: 10.3389/fimmu.2019.02297] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Wnt signaling pathway is a conserved pathway involved in important cellular processes such as the control of embryonic development, cellular polarity, cellular migration, and cell proliferation. In addition to playing a central role during embryogenesis, this pathway is also an essential part of adult homeostasis. Indeed, it controls the proliferation of epithelial cells in different organs such as intestine, lung, and kidney, and guarantees the maintenance of the mucosa in physiological conditions. The origin of this molecular pathway is the binding between Wnt ligands (belonging to a family of 19 different homologous secreted glycoproteins) and their specific membrane receptors, from the Frizzled receptor family. This specific interaction triggers the activation of the signaling cascade, which in turn activates or suppresses the expression of different genes in order to change the behavior of the cell. On the other hand, alterations of this pathway have been described in pathological conditions such as inflammation, fibrosis, and cancer. In recent years, macrophages-among other cell types-have emerged as a potential source of Wnt ligands. Due to their high plasticity, macrophages, which are central to the innate immune response, are capable of adopting different phenotypes depending on their microenvironment. In the past, two different phenotypes were described: a proinflammatory phenotype-M1 macrophages-and an anti-inflammatory phenotype-M2 macrophages-and a selective expression of Wnt ligands has been associated with said phenotypes. However, nowadays it is assumed that macrophages in vivo move through a continual spectrum of functional phenotypes. In both physiological and pathological (inflammation, fibrosis and cancer) conditions, the accumulation and polarization of macrophages conditions the future of the tissue, facilitating various scenarios, such as resolution of inflammation, activation of fibrosis, and cancer development due to the modulation of the Wnt signaling pathway, in autocrine and paracrine manner. In this work, we provide an overview of studies that have explored the role of macrophages and how they act as a source of Wnt ligands and as mediators of mucosal integrity.
Collapse
Affiliation(s)
| | - Mª Dolores Ortiz-Masià
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Mª Dolores Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
44
|
Yamanaka S, Saito Y, Fujimoto T, Takamura T, Tajiri S, Matsumoto K, Yokoo T. Kidney Regeneration in Later-Stage Mouse Embryos via Transplanted Renal Progenitor Cells. J Am Soc Nephrol 2019; 30:2293-2305. [PMID: 31548350 DOI: 10.1681/asn.2019020148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The limited availability of donor kidneys for transplantation has spurred interest in investigating alternative strategies, such as regenerating organs from stem cells transplanted into animal embryos. However, there is no known method for transplanting cells into later-stage embryos, which may be the most suitable host stages for organogenesis, particularly into regions useful for kidney regeneration. METHODS We demonstrated accurate transplantation of renal progenitor cells expressing green fluorescent protein to the fetal kidney development area by incising the opaque uterine muscle layer but not the transparent amniotic membrane. We allowed renal progenitor cell-transplanted fetuses to develop for 6 days postoperatively before removal for analysis. We also transplanted renal progenitor cells into conditional kidney-deficient mouse embryos. We determined growth and differentiation of transplanted cells in all cases. RESULTS Renal progenitor cell transplantation into the retroperitoneal cavity of fetuses at E13-E14 produced transplant-derived, vascularized glomeruli with filtration function and did not affect fetal growth or survival. Cells transplanted to the nephrogenic zone produced a chimera in the cap mesenchyme of donor and host nephron progenitor cells. Renal progenitor cells transplanted to conditional kidney-deficient fetuses induced the formation of a new nephron in the fetus that is connected to the host ureteric bud. CONCLUSIONS We developed a cell transplantation method for midstage to late-stage fetuses. In vivo kidney regeneration from renal progenitor cells using the renal developmental environment of the fetus shows promise. Our findings suggest that fetal transplantation methods may contribute to organ regeneration and developmental research.
Collapse
Affiliation(s)
- Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Takamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Tajiri
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Fibronectin regulates the self-renewal of rabbit limbal epithelial stem cells by stimulating the Wnt11/Fzd7/ROCK non-canonical Wnt pathway. Exp Eye Res 2019; 185:107681. [DOI: 10.1016/j.exer.2019.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/23/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
|
46
|
Abstract
A great interest has developed over the last several years in research on interstitial Cajal-like cells (ICLCs), later renamed to telocytes (TCs). Such studies are restricted by diverse limitations. We aimed to critically review (sub)epicardial ICLCs/TCs and to bring forward supplemental immunohistochemical evidence on (sub)epicardial stromal niche inhabitants. We tested the epicardial expressions of CD117/c-kit, CD34, Cytokeratin 7 (CK7), Ki67, Platelet-Derived Growth Factor Receptor (PDGFR)-α and D2-40 in adult human cardiac samples. The mesothelial epicardial cells expressed D2-40, CK7, CD117/c-kit and PDGFR-α. Subepicardial D2-40-positive lymphatic vessels and isolated D2-40-positive and CK7-positive subepicardial cells were also found. Immediate submesothelial spindle-shaped cells expressed Ki-67. Submesothelial stromal cells and endothelial tubes were PDGFR-α-positive and CD34-positive. The expression of CD34 was pan-stromal, so a particular stromal cell type could not be distinguished. The stromal expression of CD117/c-kit was also noted. It seems that epicardial TCs could not be regarded as belonging to a unique cell type until (pre)lymphatic endothelial cells are inadequately excluded. Markers such as CD117/c-kit or CD34 seem to be improper for identifying TCs as a distinctive cell type. Care should be taken when using the immunohistochemical method and histological interpretations, as they may not produce accurate results.
Collapse
|
47
|
Hiratsuka K, Monkawa T, Akiyama T, Nakatake Y, Oda M, Goparaju SK, Kimura H, Chikazawa-Nohtomi N, Sato S, Ishiguro K, Yamaguchi S, Suzuki S, Morizane R, Ko SBH, Itoh H, Ko MSH. Induction of human pluripotent stem cells into kidney tissues by synthetic mRNAs encoding transcription factors. Sci Rep 2019; 9:913. [PMID: 30696889 PMCID: PMC6351687 DOI: 10.1038/s41598-018-37485-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023] Open
Abstract
The derivation of kidney tissues from human pluripotent stem cells (hPSCs) and its application for replacement therapy in end-stage renal disease have been widely discussed. Here we report that consecutive transfections of two sets of synthetic mRNAs encoding transcription factors can induce rapid and efficient differentiation of hPSCs into kidney tissues, termed induced nephron-like organoids (iNephLOs). The first set - FIGLA, PITX2, ASCL1 and TFAP2C, differentiated hPSCs into SIX2+SALL1+ nephron progenitor cells with 92% efficiency within 2 days. Subsequently, the second set - HNF1A, GATA3, GATA1 and EMX2, differentiated these cells into PAX8+LHX1+ pretubular aggregates in another 2 days. Further culture in both 2-dimensional and 3-dimensional conditions produced iNephLOs containing cells characterized as podocytes, proximal tubules, and distal tubules in an additional 10 days. Global gene expression profiles showed similarities between iNephLOs and the human adult kidney, suggesting possible uses of iNephLOs as in vitro models for kidneys.
Collapse
Affiliation(s)
- Ken Hiratsuka
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Toshiaki Monkawa
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuhki Nakatake
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Sravan Kumar Goparaju
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiromi Kimura
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Nana Chikazawa-Nohtomi
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Saeko Sato
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichiro Ishiguro
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shintaro Yamaguchi
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Sayuri Suzuki
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryuji Morizane
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
48
|
Lawlor KT, Zappia L, Lefevre J, Park JS, Hamilton NA, Oshlack A, Little MH, Combes AN. Nephron progenitor commitment is a stochastic process influenced by cell migration. eLife 2019; 8:41156. [PMID: 30676318 PMCID: PMC6363379 DOI: 10.7554/elife.41156] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Progenitor self-renewal and differentiation is often regulated by spatially restricted cues within a tissue microenvironment. Here, we examine how progenitor cell migration impacts regionally induced commitment within the nephrogenic niche in mice. We identify a subset of cells that express Wnt4, an early marker of nephron commitment, but migrate back into the progenitor population where they accumulate over time. Single cell RNA-seq and computational modelling of returning cells reveals that nephron progenitors can traverse the transcriptional hierarchy between self-renewal and commitment in either direction. This plasticity may enable robust regulation of nephrogenesis as niches remodel and grow during organogenesis.
Collapse
Affiliation(s)
- Kynan T Lawlor
- Murdoch Children's Research Institute, Parkville, Australia
| | - Luke Zappia
- Murdoch Children's Research Institute, Parkville, Australia.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - James Lefevre
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Nicholas A Hamilton
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Parkville, Australia.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Alexander N Combes
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| |
Collapse
|
49
|
Yoshimura Y, Taguchi A, Tanigawa S, Yatsuda J, Kamba T, Takahashi S, Kurihara H, Mukoyama M, Nishinakamura R. Manipulation of Nephron-Patterning Signals Enables Selective Induction of Podocytes from Human Pluripotent Stem Cells. J Am Soc Nephrol 2019; 30:304-321. [PMID: 30635375 DOI: 10.1681/asn.2018070747] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Previous research has elucidated the signals required to induce nephron progenitor cells (NPCs) from pluripotent stem cells (PSCs), enabling the generation of kidney organoids. However, selectively controlling differentiation of NPCs to podocytes has been a challenge. METHODS We investigated the effects of various growth factors in cultured mouse embryonic NPCs during three distinct steps of nephron patterning: from NPC to pretubular aggregate, from the latter to epithelial renal vesicle (RV), and from RV to podocyte. We then applied the findings to human PSC-derived NPCs to establish a method for selective induction of human podocytes. RESULTS Mouse NPC differentiation experiments revealed that phase-specific manipulation of Wnt and Tgf-β signaling is critical for podocyte differentiation. First, optimal timing and intensity of Wnt signaling were essential for mesenchymal-to-epithelial transition and podocyte differentiation. Then, inhibition of Tgf-β signaling supported domination of the RV proximal domain. Inhibition of Tgf-β signaling in the third phase enriched the podocyte fraction by suppressing development of other nephron lineages. The resultant protocol enabled successful induction of human podocytes from PSCs with >90% purity. The induced podocytes exhibited global gene expression signatures comparable to those of adult human podocytes, had podocyte morphologic features (including foot process-like and slit diaphragm-like structures), and showed functional responsiveness to drug-induced injury. CONCLUSIONS Elucidation of signals that induce podocytes during the nephron-patterning process enabled us to establish a highly efficient method for selective induction of human podocytes from PSCs. These PSC-derived podocytes show molecular, morphologic, and functional characteristics of podocytes, and offer a new resource for disease modeling and nephrotoxicity testing.
Collapse
Affiliation(s)
- Yasuhiro Yoshimura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and.,Departments of Nephrology and
| | - Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and .,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Junji Yatsuda
- Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomomi Kamba
- Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; and
| | - Hidetake Kurihara
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| |
Collapse
|
50
|
Abstract
Kidney development and induction of tubulogenesis have been studied for almost seven decades. The experimental setup of metanephric mesenchyme induction ex vivo allows to control the environment, to perform cellular manipulations, and to learn about renal development. Since the establishment of the ex vivo kidney culture technique in 1953, the method was modified to suit well the progress in biological and medical fields and still today present many advantages over the traditional in vivo studies.
Collapse
|