1
|
Rasool D, Jahani-Asl A. Master regulators of neurogenesis: the dynamic roles of Ephrin receptors across diverse cellular niches. Transl Psychiatry 2024; 14:462. [PMID: 39505843 PMCID: PMC11541728 DOI: 10.1038/s41398-024-03168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The ephrin receptors (EphRs) are the largest family of receptor tyrosine kinases (RTKs) that are abundantly expressed in the developing brain and play important roles at different stages of neurogenesis ranging from neural stem cell (NSC) fate specification to neural migration, morphogenesis, and circuit assembly. Defects in EphR signalling have been associated with several pathologies including neurodevelopmental disorders (NDDs), intellectual disability (ID), and neurodegenerative diseases (NDs). Here, we review our current understanding of the complex and dynamic role of EphRs in the brain and discuss how deregulation of these receptors contributes to disease, highlighting their potential as valuable druggable targets.
Collapse
Affiliation(s)
- Dilan Rasool
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada.
- Regenerative Medicine Program, and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Ottawa Institutes of System Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Saunders LM, Srivatsan SR, Duran M, Dorrity MW, Ewing B, Linbo TH, Shendure J, Raible DW, Moens CB, Kimelman D, Trapnell C. Embryo-scale reverse genetics at single-cell resolution. Nature 2023; 623:782-791. [PMID: 37968389 PMCID: PMC10665197 DOI: 10.1038/s41586-023-06720-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
The maturation of single-cell transcriptomic technologies has facilitated the generation of comprehensive cellular atlases from whole embryos1-4. A majority of these data, however, has been collected from wild-type embryos without an appreciation for the latent variation that is present in development. Here we present the 'zebrafish single-cell atlas of perturbed embryos': single-cell transcriptomic data from 1,812 individually resolved developing zebrafish embryos, encompassing 19 timepoints, 23 genetic perturbations and a total of 3.2 million cells. The high degree of replication in our study (eight or more embryos per condition) enables us to estimate the variance in cell type abundance organism-wide and to detect perturbation-dependent deviance in cell type composition relative to wild-type embryos. Our approach is sensitive to rare cell types, resolving developmental trajectories and genetic dependencies in the cranial ganglia neurons, a cell population that comprises less than 1% of the embryo. Additionally, time-series profiling of individual mutants identified a group of brachyury-independent cells with strikingly similar transcriptomes to notochord sheath cells, leading to new hypotheses about early origins of the skull. We anticipate that standardized collection of high-resolution, organism-scale single-cell data from large numbers of individual embryos will enable mapping of the genetic dependencies of zebrafish cell types, while also addressing longstanding challenges in developmental genetics, including the cellular and transcriptional plasticity underlying phenotypic diversity across individuals.
Collapse
Affiliation(s)
- Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tor H Linbo
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - David W Raible
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - David Kimelman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
3
|
Ballester Roig MN, Roy PG, Hannou L, Delignat-Lavaud B, Sully Guerrier TA, Bélanger-Nelson E, Dufort-Gervais J, Mongrain V. Transcriptional regulation of the mouse EphA4, Ephrin-B2 and Ephrin-A3 genes by the circadian clock machinery. Chronobiol Int 2023; 40:983-1003. [PMID: 37551686 DOI: 10.1080/07420528.2023.2237580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Circadian rhythms originate from molecular feedback loops. In mammals, the transcription factors CLOCK and BMAL1 act on regulatory elements (i.e. E-boxes) to shape biological functions in a rhythmic manner. The EPHA4 receptor and its ligands Ephrins (EFN) are cell adhesion molecules regulating neurotransmission and neuronal morphology. Previous studies showed the presence of E-boxes in the genes of EphA4 and specific Ephrins, and that EphA4 knockout mice have an altered circadian rhythm of locomotor activity. We thus hypothesized that the core clock machinery regulates the gene expression of EphA4, EfnB2 and EfnA3. CLOCK and BMAL1 (or NPAS2 and BMAL2) were found to have transcriptional activity on distal and proximal regions of EphA4, EfnB2 and EfnA3 putative promoters. A constitutively active form of glycogen synthase kinase 3β (GSK3β; a negative regulator of CLOCK and BMAL1) blocked the transcriptional induction. Mutating the E-boxes of EphA4 distal promoter sequence reduced transcriptional induction. EPHA4 and EFNB2 protein levels did not show circadian variations in the mouse suprachiasmatic nucleus or prefrontal cortex. The findings uncover that core circadian transcription factors can regulate the gene expression of elements of the Eph/Ephrin system, which might contribute to circadian rhythmicity in biological processes in the brain or peripheral tissues.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| | - Pierre-Gabriel Roy
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Abstract
Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Rikki M Garner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
5
|
Abstract
During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.
Collapse
Affiliation(s)
- Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Dept of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, KS 66160, USA
| | | |
Collapse
|
6
|
Qiu Y, Fung L, Schilling TF, Nie Q. Multiple morphogens and rapid elongation promote segmental patterning during development. PLoS Comput Biol 2021; 17:e1009077. [PMID: 34161317 PMCID: PMC8259987 DOI: 10.1371/journal.pcbi.1009077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/06/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development. In segmental pattern formation, chemical gradients control gene expression in a concentration-dependent manner to specify distinct gene expression domains. Despite the stochasticity inherent to such biological processes, precise and accurate borders form between segmental gene expression domains. Previous work has revealed synergy between gene regulation and cell sorting in sharpening borders that are initially rough. However, it is still poorly understood how size and boundary sharpness of multiple segments are regulated in a tissue that changes dramatically in its morphology as the embryo develops. Here we develop a stochastic multiscale cell-base model to investigate these questions. Two novel strategies synergize to promote accurate segment formation, a combination of long- and short-range morphogens plus rapid tissue convergence, with one responsible for pattern initiation and the other enabling pattern refinement.
Collapse
Affiliation(s)
- Yuchi Qiu
- Department of Mathematics, University of California, Irvine, California, United States of America
| | - Lianna Fung
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
- * E-mail: (TFS); (QN)
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
- * E-mail: (TFS); (QN)
| |
Collapse
|
7
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Cayuso J, Xu Q, Addison M, Wilkinson DG. Actomyosin regulation by Eph receptor signaling couples boundary cell formation to border sharpness. eLife 2019; 8:49696. [PMID: 31502954 PMCID: PMC6739871 DOI: 10.7554/elife.49696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
The segregation of cells with distinct regional identity underlies formation of a sharp border, which in some tissues serves to organise a boundary signaling centre. It is unclear whether or how border sharpness is coordinated with induction of boundary-specific gene expression. We show that forward signaling of EphA4 is required for border sharpening and induction of boundary cells in the zebrafish hindbrain, which we find both require kinase-dependent signaling, with a lesser input of PDZ domain-dependent signaling. We find that boundary-specific gene expression is regulated by myosin II phosphorylation, which increases actomyosin contraction downstream of EphA4 signaling. Myosin phosphorylation leads to nuclear translocation of Taz, which together with Tead1a is required for boundary marker expression. Since actomyosin contraction maintains sharp borders, there is direct coupling of border sharpness to boundary cell induction that ensures correct organisation of signaling centres.
Collapse
Affiliation(s)
- Jordi Cayuso
- The Francis Crick Institute, London, United Kingdom
| | - Qiling Xu
- The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
9
|
Cambronero F, Ariza‐McNaughton L, Wiedemann LM, Krumlauf R. Inter‐rhombomeric interactions reveal roles for fibroblast growth factors signaling in segmental regulation of
EphA4
expression. Dev Dyn 2019; 249:354-368. [DOI: 10.1002/dvdy.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Leanne M. Wiedemann
- Stowers Institute for Medical Research Kansas City Missouri
- Department of Pathology and Laboratory MedicineKansas University Medical Center Kansas City Kansas
| | - Robb Krumlauf
- Stowers Institute for Medical Research Kansas City Missouri
- Division of Developmental NeurobiologyNational Institute for Medical Research London UK
- Department of Anatomy and Cell BiologyKansas University Medical School Kansas City Kansas
| |
Collapse
|
10
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
11
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Abstract
Studies of the vertebrate hindbrain have revealed parallel mechanisms that establish sharp segments with a distinct and homogeneous regional identity. Recent work has revealed roles of cell identity regulation and its relationships with cell segregation. At early stages, there is overlapping expression at segment borders of the Egr2 and Hoxb1 transcription factors that specify distinct identities, which is resolved by reciprocal repression. Computer simulations show that this dynamic regulation of cell identity synergises with cell segregation to generate sharp borders. Some intermingling between segments occurs at early stages, and ectopic egr2-expressing cells switch identity to match their new neighbours. This switching is mediated by coupling between egr2 expression and the level of retinoic acid signalling, which acts in a community effect to maintain homogeneous segmental identity. These findings reveal an interplay between cell segregation and the dynamic regulation of cell identity in the formation of sharp patterns in the hindbrain and raise the question of whether similar mechanisms occur in other tissues.
Collapse
|
13
|
Ghosh P, Maurer JM, Sagerström CG. Analysis of novel caudal hindbrain genes reveals different regulatory logic for gene expression in rhombomere 4 versus 5/6 in embryonic zebrafish. Neural Dev 2018; 13:13. [PMID: 29945667 PMCID: PMC6020313 DOI: 10.1186/s13064-018-0112-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous work aimed at understanding the gene regulatory networks (GRNs) governing caudal hindbrain formation identified morphogens such as Retinoic Acid (RA) and Fibroblast growth factors (FGFs), as well as transcription factors like hoxb1b, hoxb1a, hnf1ba, and valentino as being required for rhombomere (r) r4-r6 formation in zebrafish. Considering that the caudal hindbrain is relatively complex - for instance, unique sets of neurons are formed in each rhombomere segment - it is likely that additional essential genes remain to be identified and integrated into the caudal hindbrain GRN. METHODS By taking advantage of gene expression data available in the Zebrafish Information Network (ZFIN), we identified 84 uncharacterized genes that are expressed in r4-r6. We selected a representative set of 22 genes and assayed their expression patterns in hoxb1b, hoxb1a, hnf1b, and valentino mutants with the goal of positioning them in the caudal hindbrain GRN. We also investigated the effects of RA and FGF on the expression of this gene set. To examine whether these genes are necessary for r4-r6 development, we analyzed germline mutants for six of the genes (gas6, gbx1, sall4, eglf6, celf2, and greb1l) for defects in hindbrain development. RESULTS Our results reveal that r4 gene expression is unaffected by the individual loss of hoxb1b, hoxb1a or RA, but is under the combinatorial regulation of RA together with hoxb1b. In contrast, r5/r6 gene expression is dependent on RA, FGF, hnf1ba and valentino - as individual loss of these factors abolishes r5/r6 gene expression. Our analysis of six mutant lines did not reveal rhombomere or neuronal defects, but transcriptome analysis of one line (gas6 mutant) identified expression changes for genes involved in several developmental processes - suggesting that these genes may have subtle roles in hindbrain development. CONCLUSION We conclude that r4-r6 formation is relatively robust, such that very few genes are absolutely required for this process. However, there are mechanistic differences in r4 versus r5/r6, such that no single factor is required for r4 development while several genes are individually required for r5/r6 formation.
Collapse
Affiliation(s)
- Priyanjali Ghosh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St/LRB815, Worcester, MA, USA
| | - Jennifer M Maurer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St/LRB815, Worcester, MA, USA
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St/LRB815, Worcester, MA, USA.
| |
Collapse
|
14
|
Pang CCC, Kiecker C, O'Brien JT, Noble W, Chang RCC. Ammon's Horn 2 (CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration. Neuroscientist 2018; 25:167-180. [PMID: 29865938 DOI: 10.1177/1073858418778747] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hippocampus has a critical role in cognition and human memory and is one of the most studied structures in the brain. Despite more than 400 years of research, little is known about the Ammon's horn region cornu ammonis 2 (CA2) subfield in comparison to other subfield regions (CA1, CA3, and CA4). Recent findings have shown that CA2 plays a bigger role than previously thought. Here, we review understanding of hippocampus and CA2 ontogenesis, together with basic and clinical findings about the potential role of this region in neurodegenerative disease. The CA2 has widespread anatomical connectivity, unique signaling molecules, and intrinsic electrophysiological properties. Experimental studies using in vivo models found that the CA2 region has a role in cognition, especially in social memory and object recognition. In models of epilepsy and hypoxia, the CA2 exhibits higher resilience to cell death and hypoxia in comparison with neighboring regions, and while hippocampal atrophy remains poorly understood in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), findings from postmortem PD brain demonstrates clear accumulation of α-synuclein pathology in CA2, and the CA2-CA3 region shows relatively more atrophy compared with other hippocampal subfields. Taken together, there is a growing body of evidence suggesting that the CA2 can be an ideal hallmark with which to differentiate different neurodegenerative stages of PD. Here, we summarize these recent data and provide new perspectives/ideas for future investigations to unravel the contribution of the CA2 to neurodegenerative diseases.
Collapse
Affiliation(s)
- Cindy Chi-Ching Pang
- 1 Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,2 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Clemens Kiecker
- 3 Department of Developmental Neurobiology, King's College London, London, UK
| | - John T O'Brien
- 4 Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Wendy Noble
- 2 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Raymond Chuen-Chung Chang
- 1 Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,5 State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
15
|
Addison M, Xu Q, Cayuso J, Wilkinson DG. Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain. Dev Cell 2018; 45:606-620.e3. [PMID: 29731343 PMCID: PMC5988564 DOI: 10.1016/j.devcel.2018.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 10/25/2022]
Abstract
The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity.
Collapse
Affiliation(s)
- Megan Addison
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Qiling Xu
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jordi Cayuso
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
16
|
Hasenpusch-Theil K, Watson JA, Theil T. Direct Interactions Between Gli3, Wnt8b, and Fgfs Underlie Patterning of the Dorsal Telencephalon. Cereb Cortex 2018; 27:1137-1148. [PMID: 26656997 DOI: 10.1093/cercor/bhv291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A key step in the development of the cerebral cortex is a patterning process, which subdivides the telencephalon into several molecularly distinct domains and is critical for cortical arealization. This process is dependent on a complex network of interactions between signaling molecules of the Fgf and Wnt gene families and the Gli3 transcription factor gene, but a better knowledge of the molecular basis of the interplay between these factors is required to gain a deeper understanding of the genetic circuitry underlying telencephalic patterning. Using DNA-binding and reporter gene assays, we here investigate the possibility that Gli3 and these signaling molecules interact by directly regulating each other's expression. We show that Fgf signaling is required for Wnt8b enhancer activity in the cortical hem, whereas Wnt/β-catenin signaling represses Fgf17 forebrain enhancer activity. In contrast, Fgf and Wnt/β-catenin signaling cooperate to regulate Gli3 expression. Taken together, these findings indicate that mutual interactions between Gli3, Wnt8b, and Fgf17 are crucial elements of the balance between these factors thereby conferring robustness to the patterning process. Hence, our study provides a framework for understanding the genetic circuitry underlying telencephalic patterning and how defects in this process can affect the formation of cortical areas.
Collapse
Affiliation(s)
- Kerstin Hasenpusch-Theil
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, EdinburghEH8 9XD, UK
| | - Julia A Watson
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, EdinburghEH8 9XD, UK
| | - Thomas Theil
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, EdinburghEH8 9XD, UK
| |
Collapse
|
17
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
18
|
Krox20 hindbrain regulation incorporates multiple modes of cooperation between cis-acting elements. PLoS Genet 2017; 13:e1006903. [PMID: 28749941 PMCID: PMC5549768 DOI: 10.1371/journal.pgen.1006903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/08/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
Developmental genes can harbour multiple transcriptional enhancers that act simultaneously or in succession to achieve robust and precise spatiotemporal expression. However, the mechanisms underlying cooperation between cis-acting elements are poorly documented, notably in vertebrates. The mouse gene Krox20 encodes a transcription factor required for the specification of two segments (rhombomeres) of the developing hindbrain. In rhombomere 3, Krox20 is subject to direct positive feedback governed by an autoregulatory enhancer, element A. In contrast, a second enhancer, element C, distant by 70 kb, is active from the initiation of transcription independent of the presence of the KROX20 protein. Here, using both enhancer knock-outs and investigations of chromatin organisation, we show that element C possesses a dual activity: besides its classical enhancer function, it is also permanently required in cis to potentiate the autoregulatory activity of element A, by increasing its chromatin accessibility. This work uncovers a novel, asymmetrical, long-range mode of cooperation between cis-acting elements that might be essential to avoid promiscuous activation of positive autoregulatory elements. The formation of multicellular organisms from the egg to the adult stage is largely under genetic control. The activation of specific genes is governed by regulatory DNA sequences present nearby on the chromosome. Most of these sequences promote activation and are called enhancers. In this paper, we study two enhancers governing the expression of a gene involved in the formation of the posterior brain in vertebrates. One of these enhancers is involved in a positive feedback loop: it is itself activated by the protein product of the gene that it regulates. The other enhancer was thought to be only involved in the initial accumulation of the protein, necessary for the subsequent activation of the feedback loop. Here we show that the second enhancer directly cooperates with the autoregulatory enhancer to increase its accessibility and its activity. Our work uncovers a novel, long-range mode of cooperation between enhancers that restricts the domain of action of autoregulatory enhancers within embryos and might be essential to avoid their inappropriate activation.
Collapse
|
19
|
Parker HJ, Bronner ME, Krumlauf R. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. Bioessays 2016; 38:526-38. [PMID: 27027928 DOI: 10.1002/bies.201600010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Abstract
The subdivision of tissues into sharply demarcated regions with distinct and homogenous identity is an essential aspect of embryonic development. Along the anteroposterior axis of the vertebrate nervous system, this involves signaling which induces spatially restricted expression of transcription factors that specify regional identity. The spatial expression of such transcription factors is initially imprecise, with overlapping expression of genes that specify distinct identities, and a ragged border at the interface of adjacent regions. This pattern becomes sharpened by establishment of mutually exclusive expression of transcription factors, and by cell segregation that underlies formation of a straight border. In this review, we discuss studies of the vertebrate hindbrain which have revealed how discrete regional identity is established, the roles of Eph-ephrin signaling in cell segregation and border sharpening, and how cell identity and cell segregation are coupled.
Collapse
|
21
|
Abstract
There is increasing evidence that in addition to having major roles in morphogenesis, in some tissues Eph receptor and ephrin signaling regulates the differentiation of cells. In one mode of deployment, cell contact dependent Eph-ephrin activation induces a distinct fate of cells at the interface of their expression domains, for example in early ascidian embryos and in the vertebrate hindbrain. In another mode, overlapping Eph receptor and ephrin expression underlies activation within a cell population, which promotes or inhibits cell differentiation in bone remodelling, neural progenitors and keratinocytes. Eph-ephrin activation also contributes to formation of the appropriate number of progenitor cells by increasing or decreasing cell proliferation. These multiple roles of Eph receptor and ephrin signaling may enable a coupling between morphogenesis and the differentiation and proliferation of cells.
Collapse
Key Words
- Eph receptor
- Eph receptor, Erythropoietin-producing hepatocellular carcinoma cell receptor
- FGF, Fibroblast growth factor
- IGF-1, Insulin-like growth factor-1
- JNK, c-Jun N-terminal kinase
- MAPK, Mitogen activated protein kinase
- NFAT, Nuclear factor of activated T-cells
- RGS3, Regulator of G-protein signaling 3
- STAT3, Signal transducer and activator of transcription 3
- TAZ, Tafazzin
- TCR, T cell receptor
- TEC, Thymic epithelial cell
- TGF, Transforming growth factor
- ZHX2, Zinc fingers and homeoboxes 2
- ascidian development
- bone
- cell proliferation
- differentiation
- ephrin
- ephrin, Eph receptor interacting protein
- hindbrain
- keratinocytes
- neural progenitors
- p120GAP, GTPase activating protein
- thymocytes
Collapse
Affiliation(s)
- David G Wilkinson
- a Division of Developmental Neurobiology; MRC National Institute for Medical Research ; London , UK
| |
Collapse
|
22
|
Willaredt MA, Schlüter T, Nothwang HG. The gene regulatory networks underlying formation of the auditory hindbrain. Cell Mol Life Sci 2015; 72:519-535. [PMID: 25332098 PMCID: PMC11113740 DOI: 10.1007/s00018-014-1759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 01/28/2023]
Abstract
Development and evolution of auditory hindbrain nuclei are two major unsolved issues in hearing research. Recent characterization of transgenic mice identified the rhombomeric origins of mammalian auditory nuclei and unraveled genes involved in their formation. Here, we provide an overview on these data by assembling them into rhombomere-specific gene regulatory networks (GRNs), as they underlie developmental and evolutionary processes. To explore evolutionary mechanisms, we compare the GRNs operating in the mammalian auditory hindbrain with data available from the inner ear and other vertebrate groups. Finally, we propose that the availability of genomic sequences from all major vertebrate taxa and novel genetic techniques for non-model organisms provide an unprecedented opportunity to investigate development and evolution of the auditory hindbrain by comparative molecular approaches. The dissection of the molecular mechanisms leading to auditory structures will also provide an important framework for auditory processing disorders, a clinical problem difficult to tackle so far. These data will, therefore, foster basic and clinical hearing research alike.
Collapse
Affiliation(s)
- Marc A Willaredt
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| | - Tina Schlüter
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
23
|
A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature 2014; 514:490-3. [PMID: 25219855 PMCID: PMC4209185 DOI: 10.1038/nature13723] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022]
Abstract
A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.
Collapse
|
24
|
Prin F, Serpente P, Itasaki N, Gould AP. Hox proteins drive cell segregation and non-autonomous apical remodelling during hindbrain segmentation. Development 2014; 141:1492-502. [PMID: 24574009 PMCID: PMC3957373 DOI: 10.1242/dev.098954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/22/2014] [Indexed: 01/26/2023]
Abstract
Hox genes encode a conserved family of homeodomain transcription factors regulating development along the major body axis. During embryogenesis, Hox proteins are expressed in segment-specific patterns and control numerous different segment-specific cell fates. It has been unclear, however, whether Hox proteins drive the epithelial cell segregation mechanism that is thought to initiate the segmentation process. Here, we investigate the role of vertebrate Hox proteins during the partitioning of the developing hindbrain into lineage-restricted units called rhombomeres. Loss-of-function mutants and ectopic expression assays reveal that Hoxb4 and its paralogue Hoxd4 are necessary and sufficient for cell segregation, and for the most caudal rhombomere boundary (r6/r7). Hox4 proteins regulate Eph/ephrins and other cell-surface proteins, and can function in a non-cell-autonomous manner to induce apical cell enlargement on both sides of their expression border. Similarly, other Hox proteins expressed at more rostral rhombomere interfaces can also regulate Eph/ephrins, induce apical remodelling and drive cell segregation in ectopic expression assays. However, Krox20, a key segmentation factor expressed in odd rhombomeres (r3 and r5), can largely override Hox proteins at the level of regulation of a cell surface target, Epha4. This study suggests that most, if not all, Hox proteins share a common potential to induce cell segregation but in some contexts this is masked or modulated by other transcription factors.
Collapse
Affiliation(s)
- Fabrice Prin
- Division of Physiology and Metabolism, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Patricia Serpente
- Division of Physiology and Metabolism, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Nobue Itasaki
- Division of Developmental Neurobiology, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Alex P. Gould
- Division of Physiology and Metabolism, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
25
|
Bouchoucha YX, Reingruber J, Labalette C, Wassef MA, Thierion E, Desmarquet-Trin Dinh C, Holcman D, Gilardi-Hebenstreit P, Charnay P. Dissection of a Krox20 positive feedback loop driving cell fate choices in hindbrain patterning. Mol Syst Biol 2014; 9:690. [PMID: 24061538 PMCID: PMC3792346 DOI: 10.1038/msb.2013.46] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/21/2013] [Indexed: 12/24/2022] Open
Abstract
A positive autoregulatory loop required for the expression of the transcription factor Krox20 was dissected using in vivo quantitative data and biophysical modelling to demonstrate how Krox20 controls cell fate decision and rhombomere size in the hindbrain. ![]()
Positive autoregulation of Krox20 underpins a bistable switch that turns a transient input signal into cell fate commitment, as demonstrated in single cell analyses. The duration and strength of the input signal control the size of the hindbrain segments by modulating the distribution between two cell fates. The progressive extinction of Krox20 expression involves a destabilization of the loop by repressor molecules.
Although feedback loops are essential in development, their molecular implementation and precise functions remain elusive. Using enhancer knockout in mice, we demonstrate that a direct, positive autoregulatory loop amplifies and maintains the expression of Krox20, a transcription factor governing vertebrate hindbrain segmentation. By combining quantitative data collected in the zebrafish with biophysical modelling that accounts for the intrinsic stochastic molecular dynamics, we dissect the loop at the molecular level. We find that it underpins a bistable switch that turns a transient input signal into cell fate commitment, as we observe in single cell analyses. The stochasticity of the activation process leads to a graded input–output response until saturation is reached. Consequently, the duration and strength of the input signal controls the size of the hindbrain segments by modulating the distribution between the two cell fates. Moreover, segment formation is buffered from severe variations in input level. Finally, the progressive extinction of Krox20 expression involves a destabilization of the loop by repressor molecules. These mechanisms are of general significance for cell type specification and tissue patterning.
Collapse
Affiliation(s)
- Yassine X Bouchoucha
- 1] Ecole Normale Supérieure, IBENS, Paris, France [2] INSERM, U1024, Paris, France [3] CNRS, UMR 8197, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fagotto F, Winklbauer R, Rohani N. Ephrin-Eph signaling in embryonic tissue separation. Cell Adh Migr 2014; 8:308-26. [PMID: 25482630 PMCID: PMC4594459 DOI: 10.4161/19336918.2014.970028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/19/2023] Open
Abstract
The physical separation of the embryonic regions that give rise to the tissues and organs of multicellular organisms is a fundamental aspect of morphogenesis. Pioneer experiments by Holtfreter had shown that embryonic cells can sort based on "tissue affinities," which have long been considered to rely on differences in cell-cell adhesion. However, vertebrate embryonic tissues also express a variety of cell surface cues, in particular ephrins and Eph receptors, and there is now firm evidence that these molecules are systematically used to induce local repulsion at contacts between different cell types, efficiently preventing mixing of adjacent cell populations.
Collapse
Affiliation(s)
| | - Rudolf Winklbauer
- Dpt. of Cell and Systems Biology; University of Toronto; Toronto, Canada
| | - Nazanin Rohani
- Dpt. of Biology; McGill University; Montreal, Quebec, Canada
| |
Collapse
|
27
|
Cavodeassi F, Ivanovitch K, Wilson SW. Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development 2013; 140:4193-202. [PMID: 24026122 PMCID: PMC3787759 DOI: 10.1242/dev.097048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 02/02/2023]
Abstract
During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis.
Collapse
Affiliation(s)
| | - Kenzo Ivanovitch
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
28
|
Kayam G, Kohl A, Magen Z, Peretz Y, Weisinger K, Bar A, Novikov O, Brodski C, Sela-Donenfeld D. A novel role for Pax6 in the segmental organization of the hindbrain. Development 2013; 140:2190-202. [PMID: 23578930 DOI: 10.1242/dev.089136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complex patterns and networks of genes coordinate rhombomeric identities, hindbrain segmentation and neuronal differentiation and are responsible for later brainstem functions. Pax6 is a highly conserved transcription factor crucial for neuronal development, yet little is known regarding its early roles during hindbrain segmentation. We show that Pax6 expression is highly dynamic in rhombomeres, suggesting an early function in the hindbrain. Utilization of multiple gain- and loss-of-function approaches in chick and mice revealed that loss of Pax6 disrupts the sharp expression borders of Krox20, Kreisler, Hoxa2, Hoxb1 and EphA and leads to their expansion into adjacent territories, whereas excess Pax6 reduces these expression domains. A mutual negative cross-talk between Pax6 and Krox20 allows these genes to be co-expressed in the hindbrain through regulation of the Krox20-repressor gene Nab1 by Pax6. Rhombomere boundaries are also distorted upon Pax6 manipulations, suggesting a mechanism by which Pax6 acts to set hindbrain segmentation. Finally, FGF signaling acts upstream of the Pax6-Krox20 network to regulate Pax6 segmental expression. This study unravels a novel role for Pax6 in the segmental organization of the early hindbrain and provides new evidence for its significance in regional organization along the central nervous system.
Collapse
Affiliation(s)
- Galya Kayam
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu Q, Wilkinson DG. Boundary formation in the development of the vertebrate hindbrain. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:735-45. [PMID: 24014457 DOI: 10.1002/wdev.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of a sharp interface of adjacent subdivisions is important for establishing the precision of tissue organization, and at specific borders it serves to organize key signaling centers. We discuss studies of vertebrate hindbrain development that have given important insights into mechanisms that underlie the formation and maintenance of sharp borders. The hindbrain is subdivided into a series of segments with distinct anteroposterior identity that underlies the specification of distinct neuronal cell types. During early stages of segmentation, cell identity switching contributes to the refinement of borders and enables homogenous territories to be maintained despite intermingling of cells between segments. At later stages, there is a specific restriction to cell intermingling between segments that is mediated by Eph receptor and ephrin signaling. Eph-ephrin signaling can restrict cell intermingling and sharpen borders through multiple mechanisms, including the regulation of cell adhesion and contact inhibition of cell migration.
Collapse
Affiliation(s)
- Qiling Xu
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
30
|
The brake within: Mechanisms of intrinsic regulation of axon growth featuring the Cdh1-APC pathway. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNeurons of the central nervous system (CNS) form a magnificent network destined to control bodily functions and human behavior for a lifetime. During development of the CNS, neurons extend axons that establish connections to other neurons. Axon growth is guided by extrinsic cues and guidance molecules. In addition to environmental signals, intrinsic programs including transcription and the ubiquitin proteasome system (UPS) have been implicated in axon growth regulation. Over the past few years it has become evident that the E3 ubiquitin ligase Cdh1-APC together with its associated pathway plays a central role in axon growth suppression. By elucidating the intricate interplay of extrinsic and intrinsic mechanisms, we can enhance our understanding of why axonal regeneration in the CNS fails and obtain further insight into how to stimulate successful regeneration after injury.
Collapse
|
31
|
Arvanitis DN, Davy A. Regulation and misregulation of Eph/ephrin expression. Cell Adh Migr 2012; 6:131-7. [PMID: 22568953 DOI: 10.4161/cam.19690] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors form the largest family of receptor tyrosine kinases. Upon interaction of the Eph receptors with their ligands the ephrins, signaling cascades are initiated downstream of both receptor and ligand, a feature known as bidirectional signaling. The Eph receptors and ephrin ligands mediate important roles in embryonic development, particularly in establishing tissue organization by mediating cell adhesion or cell repulsion. In several adult tissues, at least one Eph/ephrin pair is found to play critical roles in tissue physiology and homeostasis. In recent years numerous members of this family have gained considerable attention since changes in their expression levels are a typical feature in cancer cells. Despite the fact that Eph/ephrin developmental expression profiles are well documented, little is known on transcriptional and post-transcriptional mechanisms that permits their highly specific, graded, complementary or overlapping expression patterns. Therefore understanding the transcriptional and post-transcriptional mechanisms regulating Eph/ephrin expression has far-reaching significance in biology. This review provides an overview of the mechanisms regulating Eph/ephrin expression. We highlight important emerging mechanisms of Eph/ephrin regulation or misregulation such as epigenetics and miRNAs.
Collapse
Affiliation(s)
- Dina N Arvanitis
- Centre de Biologie du Développement, CNRS, Université de Toulouse, Toulouse, France
| | | |
Collapse
|
32
|
Hasenpusch-Theil K, Magnani D, Amaniti EM, Han L, Armstrong D, Theil T. Transcriptional analysis of Gli3 mutants identifies Wnt target genes in the developing hippocampus. ACTA ACUST UNITED AC 2012; 22:2878-93. [PMID: 22235033 DOI: 10.1093/cercor/bhr365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Early development of the hippocampus, which is essential for spatial memory and learning, is controlled by secreted signaling molecules of the Wnt gene family and by Wnt/β-catenin signaling. Despite its importance, little is known, however, about Wnt-regulated genes during hippocampal development. Here, we used the Gli3 mutant mouse extra-toes (Xt(J)), in which Wnt gene expression in the forebrain is severely affected, as a tool in a microarray analyses to identify potential Wnt target genes. This approach revealed 53 candidate genes with restricted or graded expression patterns in the dorsomedial telencephalon. We identified conserved Tcf/Lef-binding sites in telencephalon-specific enhancers of several of these genes, including Dmrt3, Gli3, Nfia, and Wnt8b. Binding of Lef1 to these sites was confirmed using electrophoretic mobility shift assays. Mutations in these Tcf/Lef-binding sites disrupted or reduced enhancer activity in vivo. Moreover, ectopic activation of Wnt/β-catenin signaling in an ex vivo explant system led to increased telencephalic expression of these genes. Finally, conditional inactivation of Gli3 results in defective hippocampal growth. Collectively, these data strongly suggest that we have identified a set of direct Wnt target genes in the developing hippocampus and provide inside into the genetic hierarchy underlying Wnt-regulated hippocampal development.
Collapse
|
33
|
The transcription factor Krox20 is an E3 ligase that sumoylates its Nab coregulators. EMBO Rep 2011; 12:1018-23. [PMID: 21836637 DOI: 10.1038/embor.2011.152] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 11/08/2022] Open
Abstract
Covalent attachment of small ubiquitin-like modifier (SUMO) to proteins regulates many processes in the eukaryotic cell. This reaction is similar to ubiquitination and usually requires an E3 ligase for substrate modification. However, only a few SUMO ligases have been described so far, which frequently facilitate sumoylation by bringing together the SUMO-conjugating enzyme Ubc9 and the target protein. Ubc9 is an interaction partner of the transcription factor Krox20, a key regulator of hindbrain development. Here, we show that Krox20 functions as a SUMO ligase for its coregulators--the Nab proteins--and that Nab sumoylation negatively modulates Krox20 transcriptional activity in vivo.
Collapse
|
34
|
Erickson T, French CR, Waskiewicz AJ. Meis1 specifies positional information in the retina and tectum to organize the zebrafish visual system. Neural Dev 2010; 5:22. [PMID: 20809932 PMCID: PMC2939508 DOI: 10.1186/1749-8104-5-22] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 09/01/2010] [Indexed: 01/17/2023] Open
Abstract
Background During visual system development, multiple signalling pathways cooperate to specify axial polarity within the retina and optic tectum. This information is required for the topographic mapping of retinal ganglion cell axons on the tectum. Meis1 is a TALE-class homeodomain transcription factor known to specify anterior-posterior identity in the hindbrain, but its role in visual system patterning has not been investigated. Results meis1 is expressed in both the presumptive retina and tectum. An analysis of retinal patterning reveals that Meis1 is required to correctly specify both dorsal-ventral and nasal-temporal identity in the zebrafish retina. Meis1-knockdown results in a loss of smad1 expression and an upregulation in follistatin expression, thereby causing lower levels of Bmp signalling and a partial ventralization of the retina. Additionally, Meis1-deficient embryos exhibit ectopic Fgf signalling in the developing retina and a corresponding loss of temporal identity. Meis1 also positively regulates ephrin gene expression in the tectum. Consistent with these patterning phenotypes, a knockdown of Meis1 ultimately results in retinotectal mapping defects. Conclusions In this work we describe a novel role for Meis1 in regulating Bmp signalling and in specifying temporal identity in the retina. By patterning both the retina and tectum, Meis1 plays an important role in establishing the retinotectal map and organizing the visual system.
Collapse
Affiliation(s)
- Timothy Erickson
- Department of Biological Sciences, University of Alberta, CW405, Biological Sciences Bldg, Edmonton T6G 2E9, Canada
| | | | | |
Collapse
|
35
|
Saigou Y, Kamimura Y, Inoue M, Kondoh H, Uchikawa M. Regulation of Sox2 in the pre-placodal cephalic ectoderm and central nervous system by enhancer N-4. Dev Growth Differ 2010; 52:397-408. [DOI: 10.1111/j.1440-169x.2010.01180.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Sela-Donenfeld D, Kayam G, Wilkinson DG. Boundary cells regulate a switch in the expression of FGF3 in hindbrain rhombomeres. BMC DEVELOPMENTAL BIOLOGY 2009; 9:16. [PMID: 19232109 PMCID: PMC2656489 DOI: 10.1186/1471-213x-9-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 02/20/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND During formation of the vertebrate central nervous system, the hindbrain is organized into segmental units, called rhombomeres (r). These cell-lineage restricted segments are separated by a subpopulation of cells known as boundary cells. Boundary cells display distinct molecular and cellular properties such as an elongated shape, enriched extracellular matrix components and a reduced proliferation rate compared to intra-rhombomeric cells. However, little is known regarding their functions and the mechanisms that regulate their formation. RESULTS Hindbrain boundary cells express several signaling molecules, such as FGF3, which at earlier developmental stages is transiently expressed in specific rhombomeres. We show that chick embryos that lack boundary cells due to overexpression of truncated EphA4 receptor in the hindbrain have continued segmental expression of FGF3 at stages when it is normally restricted to hindbrain boundaries. Furthermore, surgical ablation of the boundary between r3 and r4, or blocking of the contact of r4 with boundary cells, results in sustained FGF3 expression in this segment. CONCLUSION These findings suggest that boundary cells are required for the downregulation of segmental FGF3, presumably mediated by a soluble factor(s) that emanates from boundaries. We propose that this new function of boundary cells enables a switch in gene expression that may be required for stage-specific functions of FGF3 in the developing hindbrain.
Collapse
Affiliation(s)
- Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Hebrew University, The Robert H Smith Faculty of Agriculture, Food and Environment, PO Box 12, Rehovot 76100, Israel
| | - Galya Kayam
- Koret School of Veterinary Medicine, The Hebrew University, The Robert H Smith Faculty of Agriculture, Food and Environment, PO Box 12, Rehovot 76100, Israel
| | - David G Wilkinson
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
37
|
Chambers D, Wilson LJ, Alfonsi F, Hunter E, Saxena U, Blanc E, Lumsden A. Rhombomere-specific analysis reveals the repertoire of genetic cues expressed across the developing hindbrain. Neural Dev 2009; 4:6. [PMID: 19208226 PMCID: PMC2649922 DOI: 10.1186/1749-8104-4-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 02/10/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Hox family of homeodomain transcription factors comprises pivotal regulators of cell specification and identity during animal development. However, despite their well-defined roles in the establishment of anteroposterior pattern and considerable research into their mechanism of action, relatively few target genes have been identified in the downstream regulatory network. We have sought to investigate this issue, focussing on the developing hindbrain and the cranial motor neurons that arise from this region. The reiterated anteroposterior compartments of the developing hindbrain (rhombomeres (r)) are normally patterned by the combinatorial action of distinct Hox genes. Alteration in the normal pattern of Hox cues in this region results in a transformation of cellular identity to match the remaining Hox profile, similar to that observed in Drosophila homeotic transformations. RESULTS To define the repertoire of genes regulated in each rhombomere, we have analysed the transcriptome of each rhombomere from wild-type mouse embryos and not those where pattern is perturbed by gain or loss of Hox gene function. Using microarray and bioinformatic methodologies in conjunction with other confirmatory techniques, we report here a detailed and comprehensive set of potential Hox target genes in r2, r3, r4 and r5. We have demonstrated that the data produced are both fully reflective and predictive of rhombomere identity and, thus, may represent some the of Hox targets. These data have been interrogated to generate a list of candidate genes whose function may contribute to the generation of neuronal subtypes characteristic of each rhombomere. Interestingly, the data can also be classified into genetic motifs that are predicted by the specific combinations of Hox genes and other regulators of hindbrain anteroposterior identity. The sets of genes described in each or combinations of rhombomeres span a wide functional range and suggest that the Hox genes, as well as other regulatory inputs, exert their influence across the full spectrum of molecular machinery. CONCLUSION We have performed a systematic survey of the transcriptional status of individual segments of the developing mouse hindbrain and identified hundreds of previously undescribed genes expressed in this region. The functional range of the potential candidate effectors or upstream modulators of Hox activity suggest multiple unexplored mechanisms. In particular, we present evidence of a potential new retinoic acid signalling system in ventral r4 and propose a model for the refinement of identity in this region. Furthermore, the rhombomeres demonstrate a molecular relationship to each other that is consistent with known observations about neurogenesis in the hindbrain. These findings give the first genome-wide insight into the complexity of gene expression during patterning of the developing hindbrain.
Collapse
Affiliation(s)
- David Chambers
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Leigh Jane Wilson
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Fabienne Alfonsi
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Ewan Hunter
- Infogen Bioinformatics Ltd, 83 South Middleton, Uphall, West Lothian, EH52 5GA, UK
| | - Uma Saxena
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Eric Blanc
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Andrew Lumsden
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
38
|
Tümpel S, Wiedemann LM, Krumlauf R. Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009; 88:103-37. [PMID: 19651303 DOI: 10.1016/s0070-2153(09)88004-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the vertebrate central nervous system, the hindbrain is an important center for coordinating motor activity, posture, equilibrium, sleep patterns, and essential unconscious functions, such as breathing rhythms and blood circulation. During development, the vertebrate hindbrain depends upon the process of segmentation or compartmentalization to create and organize regional properties essential for orchestrating its highly conserved functional roles. The process of segmentation in the hindbrain differs from that which functions in the paraxial mesoderm to generate somites and the axial skeleton. In the prospective hindbrain, cells in the neural epithelia transiently alter their ability to interact with their neighbors, resulting in the formation of seven lineage-restricted cellular compartments. These different segments or rhombomeres each go on to adopt unique characters in response to environmental signals. The Hox family of transcription factors is coupled to this process. Overlapping or nested patterns of Hox gene expression correlate with segmental domains and provide a combinatorial code and molecular framework for specifying the unique identities of hindbrain segments. The segmental organization and patterns of Hox expression and function are highly conserved among vertebrates and, as a consequence, comparative studies between different species have greatly enhanced our ability to build a picture of the regulatory cascades that control early hindbrain development. The purpose of this chapter is to review what is known about the regulatory mechanisms which establish and maintain Hox gene expression and function in hindbrain development.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
39
|
Weisinger K, Wilkinson DG, Sela-Donenfeld D. Inhibition of BMPs by follistatin is required for FGF3 expression and segmental patterning of the hindbrain. Dev Biol 2008; 324:213-25. [PMID: 18823972 DOI: 10.1016/j.ydbio.2008.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
A network of molecular interactions is required in the developing vertebrate hindbrain for the formation and anterior-posterior patterning of the rhombomeres. FGF signaling is required in this network to upregulate the expression of the Krox20 and Kreisler segmentation genes, but little is known of how FGF gene expression is regulated in the hindbrain. We show that the dynamic expression of FGF3 in chick hindbrain segments and boundaries is similar to that of the BMP antagonist, follistatin. Consistent with a regulatory relationship between BMP signaling and FGF3 expression, we find that an increase in BMP activity due to blocking of follistatin translation by morpholino antisense oligonucleotides or overexpression of BMP results in strong inhibition of FGF3 expression. Conversely, addition of follistatin leads to an increase in the level of FGF3 expression. Furthermore, the segmental inhibition of BMP activity by follistatin is required for the expression of Krox20, Hoxb1 and EphA4 in the hindbrain. In addition, we show that the maintenance of FGF3 gene expression requires FGF activity, suggestive of an autoregulatory loop. These results reveal an antagonistic relationship between BMP activity and FGF3 expression that is required for correct segmental gene expression in the chick hindbrain, in which follistatin enables FGF3 expression by inhibiting BMP activity.
Collapse
Affiliation(s)
- Karen Weisinger
- Koret School of Veterinary Medicine, Hebrew University, Faculty of Agriculture, Food and Environmental Quality Sciences, P.O. Box 12, Rehovot 76100, Israel
| | | | | |
Collapse
|
40
|
Ogurtsov AY, Mariño-Ramírez L, Johnson GR, Landsman D, Shabalina SA, Spiridonov NA. Expression patterns of protein kinases correlate with gene architecture and evolutionary rates. PLoS One 2008; 3:e3599. [PMID: 18974838 PMCID: PMC2572838 DOI: 10.1371/journal.pone.0003599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/09/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Protein kinase (PK) genes comprise the third largest superfamily that occupy approximately 2% of the human genome. They encode regulatory enzymes that control a vast variety of cellular processes through phosphorylation of their protein substrates. Expression of PK genes is subject to complex transcriptional regulation which is not fully understood. PRINCIPAL FINDINGS Our comparative analysis demonstrates that genomic organization of regulatory PK genes differs from organization of other protein coding genes. PK genes occupy larger genomic loci, have longer introns, spacer regions, and encode larger proteins. The primary transcript length of PK genes, similar to other protein coding genes, inversely correlates with gene expression level and expression breadth, which is likely due to the necessity to reduce metabolic costs of transcription for abundant messages. On average, PK genes evolve slower than other protein coding genes. Breadth of PK expression negatively correlates with rate of non-synonymous substitutions in protein coding regions. This rate is lower for high expression and ubiquitous PKs, relative to low expression PKs, and correlates with divergence in untranslated regions. Conversely, rate of silent mutations is uniform in different PK groups, indicating that differing rates of non-synonymous substitutions reflect variations in selective pressure. Brain and testis employ a considerable number of tissue-specific PKs, indicating high complexity of phosphorylation-dependent regulatory network in these organs. There are considerable differences in genomic organization between PKs up-regulated in the testis and brain. PK genes up-regulated in the highly proliferative testicular tissue are fast evolving and small, with short introns and transcribed regions. In contrast, genes up-regulated in the minimally proliferative nervous tissue carry long introns, extended transcribed regions, and evolve slowly. CONCLUSIONS/SIGNIFICANCE PK genomic architecture, the size of gene functional domains and evolutionary rates correlate with the pattern of gene expression. Structure and evolutionary divergence of tissue-specific PK genes is related to the proliferative activity of the tissue where these genes are predominantly expressed. Our data provide evidence that physiological requirements for transcription intensity, ubiquitous expression, and tissue-specific regulation shape gene structure and affect rates of evolution.
Collapse
Affiliation(s)
- Aleksey Y. Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leonardo Mariño-Ramírez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gibbes R. Johnson
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nikolay A. Spiridonov
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Bethesda, Maryland, United States of America
| |
Collapse
|
41
|
Winter J, Roepcke S, Krause S, Müller EC, Otto A, Vingron M, Schweiger S. Comparative 3'UTR analysis allows identification of regulatory clusters that drive Eph/ephrin expression in cancer cell lines. PLoS One 2008; 3:e2780. [PMID: 18648668 PMCID: PMC2474680 DOI: 10.1371/journal.pone.0002780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/25/2008] [Indexed: 11/18/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases. Together with their ligands, the ephrins, they fulfill multiple biological functions. Aberrant expression of Ephs/ephrins leading to increased Eph receptor to ephrin ligand ratios is a critical factor in tumorigenesis, indicating that tight regulation of Eph and ephrin expression is essential for normal cell behavior. The 3'-untranslated regions (3'UTRs) of transcripts play an important yet widely underappreciated role in the control of protein expression. Based on the assumption that paralogues of large gene families might exhibit a conserved organization of regulatory elements in their 3'UTRs we applied a novel bioinformatics/molecular biology approach to the 3'UTR sequences of Eph/ephrin transcripts. We identified clusters of motifs consisting of cytoplasmic polyadenylation elements (CPEs), AU-rich elements (AREs) and HuR binding sites. These clusters bind multiple RNA-stabilizing and destabilizing factors, including HuR. Surprisingly, despite its widely accepted role as an mRNA-stabilizing protein, we further show that binding of HuR to these clusters actually destabilizes Eph/ephrin transcripts in tumor cell lines. Consequently, knockdown of HuR greatly modulates expression of multiple Ephs/ephrins at both the mRNA and protein levels. Together our studies suggest that overexpression of HuR as found in many progressive tumors could be causative for disarranged Eph receptor to ephrin ligand ratios leading to a higher degree of tissue invasiveness.
Collapse
Affiliation(s)
- Jennifer Winter
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Langton S, Gudas LJ. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Dev Biol 2007; 315:331-54. [PMID: 18241852 DOI: 10.1016/j.ydbio.2007.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 01/08/2023]
Abstract
CYP26A1, a cytochrome P450 enzyme, metabolizes all-trans-retinoic acid (RA) into polar metabolites, e.g. 4-oxo-RA and 4-OH-RA. To determine if altering RA metabolism affects embryonic stem (ES) cell differentiation, we disrupted both alleles of Cyp26a1 by homologous recombination. CYP26a1(-/-) ES cells had a 11.0+/-3.2-fold higher intracellular RA concentration than Wt ES cells after RA treatment for 48 h. RA-treated CYP26A1(-/-) ES cells exhibited 2-3 fold higher mRNA levels of Hoxa1, a primary RA target gene, than Wt ES cells. Despite increased intracellular RA levels, CYP26a1(-/-) ES cells were more resistant than Wt ES cells to RA-induced proliferation arrest. Transcripts for parietal endodermal differentiation markers, including laminin, J6(Hsp 47), and J31(SPARC, osteonectin) were expressed at lower levels in RA-treated CYP26a1(-/-) ES cells, indicating that the lack of CYP26A1 activity inhibits RA-associated differentiation. Microarray analyses revealed that RA-treated CYP26A1(-/-) ES cells exhibited lower mRNA levels than Wt ES cells for genes involved in differentiation, particularly in neural (Epha4, Pmp22, Nrp1, Gap43, Ndn) and smooth muscle differentiation (Madh3, Nrp1, Tagln Calponin, Caldesmon1). In contrast, genes involved in the stress response (e.g. Tlr2, Stk2, Fcgr2b, Bnip3, Pdk1) were expressed at higher levels in CYP26A1(-/-) than in Wt ES cells without RA. Collectively, our results show that CYP26A1 activity regulates intracellular RA levels, cell proliferation, transcriptional regulation of primary RA target genes, and ES cell differentiation to parietal endoderm.
Collapse
Affiliation(s)
- Simne Langton
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, Rm. E-409, New York, NY 10021, USA
| | | |
Collapse
|
43
|
An EGR2/CITED1 transcription factor complex and the 14-3-3sigma tumor suppressor are involved in regulating ErbB2 expression in a transgenic-mouse model of human breast cancer. Mol Cell Biol 2007; 27:8648-57. [PMID: 17938205 DOI: 10.1128/mcb.00866-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amplification and elevated expression of the ErbB2 receptor tyrosine kinase occurs in 20% of human breast cancers and is associated with a poor prognosis. We have previously demonstrated that mammary tissue-specific expression of activated ErbB2 under the control of its endogenous promoter results in mammary tumor formation. Tumor development was associated with amplification and overexpression of ErbB2 at both the transcript and protein levels. Here we demonstrate that the EGR2/Krox20 transcription factor and its coactivator CITED1 are coordinately upregulated during ErbB2 tumor induction. We have identified an EGR2 binding site in the erbB2 promoter and demonstrated by chromatin immunoprecipitation assays that EGR2 and CITED1 associate specifically with this region of the promoter. EGR2 and CITED1 were shown to associate, and expression from an erbB2 promoter-reporter construct was stimulated by EGR2 and was further enhanced by CITED1 coexpression. Furthermore, expression of the 14-3-3sigma tumor suppressor led to downregulation of ErbB2 protein levels and relocalization of EGR2 from the nucleus to the cytoplasm. Taken together, these observations suggest that, in addition to an increased gene copy number and upregulation of EGR2 and CITED1, an elevated erbB2 transcript level involves the loss of 14-3-3sigma, which sequesters a key transcriptional regulator of the erbB2 promoter.
Collapse
|
44
|
Sakurai KT, Kojima T, Aigaki T, Hayashi S. Differential control of cell affinity required for progression and refinement of cell boundary during Drosophila leg segmentation. Dev Biol 2007; 309:126-36. [PMID: 17655839 DOI: 10.1016/j.ydbio.2007.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 06/20/2007] [Accepted: 07/02/2007] [Indexed: 11/23/2022]
Abstract
Domain boundary formation in development involves sorting of different types of cells into separate spatial domains. The segment boundary between tarsus 5 (Ta5) and the pretarsus (Pre) of the Drosophila leg initially appears at the center of the leg disc and progressively sharpens and expands to its final position, accompanied by down-regulation of the cell recognition molecule Capricious and Tartan and cell displacement from Ta5 to Pre across the boundary. Capricious and Tartan are controlled by transcription factor Bar and Al, and their loss of function leads to reduction of cell affinity to wild type neighbors and cell displacement activities. In addition, although the mutant cells formed Ta5/Pre boundary, its progression and sharpening were compromised. Cells overexpressing Capricious or Tartan became invasive within Ta5 and Pre, sometimes escaping the compartmental restriction of cell movement. Dynamic spatiotemporal regulation of cell affinity mediated by Capricious and Tartan is a key property of refinement of the Ta5/Pre boundary.
Collapse
Affiliation(s)
- Kayoko T Sakurai
- Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
45
|
Shim S, Kim Y, Shin J, Kim J, Park S. Regulation of EphA8 gene expression by TALE homeobox transcription factors during development of the mesencephalon. Mol Cell Biol 2006; 27:1614-30. [PMID: 17178831 PMCID: PMC1820445 DOI: 10.1128/mcb.01429-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mouse ephA8 gene is expressed in a rostral-to-caudal gradient in the developing superior colliculus, and these EphA gradients may contribute to the proper development of the retinocollicular projection. Thus, it is of considerable interest to elucidate how the ephA8 gene expression is controlled by upstream regulators during the development of the mesencephalon. In this study, we employed in vivo expression analysis in transgenic mouse embryos to dissect the cis-acting DNA regulatory region, leading to the identification of a CGGTCA sequence critical for the ephA8 enhancer activity. Using this element as the target in a yeast one-hybrid system, we identified a Meis homeobox transcription factor. Significantly, DNA binding sites for Pbx, another TALE homeobox transcription factor, were also identified in the ephA8 enhancer region. Meis2 and Pbx1/2 are specifically expressed in the entire region of the dorsal mesencephalon, where specific colocalization of EphA8 and Meis is restricted to a subset of cells. Meis2 and Pbx2 synergistically bind the ephA8 regulatory sequence in vitro, and this interaction is critical for the transcriptional activation of a reporter construct bearing the ephA8 regulatory region in the presence of histone deacetylase inhibitor. More importantly, when expressed in the embryonic midbrain, the dominant-negative form of Meis down-regulates endogenous ephA8. Interestingly, we found that both Meis2 and Pbx2 are constitutively bound in the ephA8 regulatory region in the dorsal mesencephalon. These studies strongly suggest that Meis and Pbx homeobox transcription factors tightly associate with the ephA8 regulatory sequence and require an additional unidentified regulator to ensure the specific activation of ephA8.
Collapse
Affiliation(s)
- Sungbo Shim
- Department of Biological Science, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-Ku, Seoul 140-742, South Korea
| | | | | | | | | |
Collapse
|
46
|
Jang SW, LeBlanc SE, Roopra A, Wrabetz L, Svaren J. In vivo detection of Egr2 binding to target genes during peripheral nerve myelination. J Neurochem 2006; 98:1678-87. [PMID: 16923174 DOI: 10.1111/j.1471-4159.2006.04069.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Egr2/Krox20 is a zinc finger transactivator that regulates a diverse array of genes required for peripheral nerve myelination. Although several studies have elucidated the Egr2-regulated gene network, it is not clear if Egr2 regulates its target genes directly or indirectly through induction of other transactivators. Moreover, very few Egr2 binding sites have been identified in regulatory elements of myelin genes. To address this issue, we have successfully adapted chromatin immunoprecipitation assays to test if Egr2 binds directly to target genes in myelinating rat sciatic nerve. These experiments demonstrate direct binding of Egr2 to previously described binding sites within the Schwann cell enhancer of the myelin basic protein gene. Furthermore, we show Egr2 binding to a conserved site within the myelin-associated glycoprotein gene. Finally, our experiments provide the first evidence that Egr2 directly regulates expression of desert hedgehog, which is critically involved in development, maintenance and regeneration of multiple nerve elements including myelinated fibers. Surprisingly, this analysis has identified an apparent preponderance of Egr2 binding sites within conserved intron sequences of several myelin genes. Application of chromatin immunoprecipitation analysis to myelination in vivo will prove to be a valuable asset in assaying transcription factor binding and chromatin modifications during activation of myelin genes.
Collapse
Affiliation(s)
- Sung-Wook Jang
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
47
|
Garcia-Dominguez M, Gilardi-Hebenstreit P, Charnay P. PIASxbeta acts as an activator of Hoxb1 and is antagonized by Krox20 during hindbrain segmentation. EMBO J 2006; 25:2432-42. [PMID: 16675951 PMCID: PMC1478176 DOI: 10.1038/sj.emboj.7601122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 04/06/2006] [Indexed: 11/09/2022] Open
Abstract
The zinc-finger transcription factor Krox20 constitutes a key regulator of hindbrain development, essential for the formation and specification of rhombomeres (r) 3 and 5. It is in particular responsible for the respective activation and repression of odd- and even-numbered rhombomere-specific genes, which include Hox genes. In this study, we have identified PIASxbeta as a novel direct interactor of Krox20. In addition, we found that PIASxbeta is able to activate the r4-specific gene Hoxb1. Binding of Krox20 prevents this activation, providing a molecular basis for the repression of Hoxb1 by Krox20. The same domain in the Krox20 protein, the zinc-fingers, is involved in DNA binding for transcriptional activation and in interaction with PIASxbeta for transcriptional repression, although the actual precise contacts are different. Our findings add an additional level in the complexity of Hox gene regulation and provide an example of how a single regulator can coordinate the activation and repression of a set of genes by very different mechanisms, acting as a molecular switch to specify cell identity and fate.
Collapse
Affiliation(s)
- Mario Garcia-Dominguez
- INSERM, U 784, Ecole Normale Supérieure, Paris, France
- Instituto de Bioquimica Vegetal y Fotosintesis, Isla de la Cartuja, Sevilla, Spain
| | | | | |
Collapse
|
48
|
Srinivasan R, Mager GM, Ward RM, Mayer J, Svaren J. NAB2 Represses Transcription by Interacting with the CHD4 Subunit of the Nucleosome Remodeling and Deacetylase (NuRD) Complex. J Biol Chem 2006; 281:15129-37. [PMID: 16574654 DOI: 10.1074/jbc.m600775200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Early growth response (EGR) transactivators act as critical regulators of several physiological processes, including peripheral nerve myelination and progression of prostate cancer. The NAB1 and NAB2 (NGFI-A/EGR1-binding protein) transcriptional corepressors directly interact with three EGR family members (Egr1/NGFI-A/zif268, Egr2/Krox20, and Egr3) and repress activation of their target promoters. To understand the molecular mechanisms underlying NAB repression, we found that EGR activity is modulated by at least two repression domains within NAB2, one of which uniquely requires interaction with the CHD4 (chromodomain helicase DNA-binding protein 4) subunit of the NuRD (nucleosome remodeling and deacetylase) chromatin remodeling complex. Both NAB proteins can bind either CHD3 or CHD4, indicating that the interaction is conserved among these two protein families. Furthermore, we show that repression of the endogenous Rad gene by NAB2 involves interaction with CHD4 and demonstrate colocalization of NAB2 and CHD4 on the Rad promoter in myelinating Schwann cells. Finally, we show that interaction with CHD4 is regulated by alternative splicing of the NAB2 mRNA.
Collapse
Affiliation(s)
- Rajini Srinivasan
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
49
|
Borday C, Chatonnet F, Thoby-Brisson M, Champagnat J, Fortin G. Neural tube patterning by Krox20 and emergence of a respiratory control. Respir Physiol Neurobiol 2005; 149:63-72. [PMID: 16203212 DOI: 10.1016/j.resp.2005.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/16/2005] [Accepted: 02/17/2005] [Indexed: 11/15/2022]
Abstract
Recent data begin to bridge the gap between developmental events controlling hindbrain neural tube regional patterning and the emergence of breathing behaviour in the fetus and its vital adaptive function after birth. In vertebrates, Hox paralogs and Hox-regulating genes orchestrate, in a conserved manner, the transient formation of developmental compartments in the hindbrain, the rhombomeres, in which rhythmic neuronal networks of the brainstem develop. Genetic inactivation of some of these genes in mice leads to pathological breathing at birth pointing to the vital importance of rhombomere 3 and 4 derived territories for maintenance of the breathing frequency. In chick embryo at E7, we investigated neuronal activities generated in neural tube islands deriving from combinations of rhombomeres isolated at embryonic day E1.5. Using a gain of function approach, we reveal a role of the transcription factor Krox20, specifying rhombomeres 3 and 5, in inducing a rhythm generator at the parafacial level of the hindbrain. The developmental genes selecting and regionally coordinating the fate of CNS progenitors may hold further clues to conserved aspects of neuronal network formation and function. However, the most immediate concern is to take advantage of early generated rhythmic activities in the hindbrain to pursue their downstream cellular and molecular targets, for it seems likely that it will be here that rhythmogenic properties will eventually take on a vital role at birth.
Collapse
Affiliation(s)
- C Borday
- UPR 2216 Neurobiologie Génétique et Integrative, Institut fédératif de Neurobiologie Alfred Fessard, C.N.R.S., 1, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | |
Collapse
|
50
|
Leblanc SE, Srinivasan R, Ferri C, Mager GM, Gillian-Daniel AL, Wrabetz L, Svaren J. Regulation of cholesterol/lipid biosynthetic genes by Egr2/Krox20 during peripheral nerve myelination. J Neurochem 2005; 93:737-48. [PMID: 15836632 DOI: 10.1111/j.1471-4159.2005.03056.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myelination of peripheral nerves by Schwann cells requires a large amount of lipid and cholesterol biosynthesis. To understand the transcriptional coordination of the myelination process, we have investigated the developmental relationship between early growth response 2 (Egr2)/Krox20--a pivotal regulator of peripheral nerve myelination--and the sterol regulatory element binding protein (SREBP) pathway, which controls expression of cholesterol/lipid biosynthetic genes. During myelination of sciatic nerve, there is a very significant induction of SREBP1 and SREBP2, as well as their target genes, suggesting that the SREBP transactivators are important regulators in the myelination process. Egr2/Krox20 does not appear to directly regulate the levels of SREBP pathway components, but rather, we found that Egr2/Krox20 and SREBP transactivators can synergistically activate promoters of several SREBP target genes, indicating that direct induction of cholesterol/lipid biosynthetic genes by Egr2/Krox20 is a part of the myelination program regulated by this transactivator.
Collapse
Affiliation(s)
- Scott E Leblanc
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|