1
|
Liu S, Xiang K, Yuan F, Xiang M. Generation of self-organized autonomic ganglion organoids from fibroblasts. iScience 2023; 26:106241. [PMID: 36922996 PMCID: PMC10009094 DOI: 10.1016/j.isci.2023.106241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Neural organoids have been shown to serve as powerful tools for studying the mechanism of neural development and diseases as well as for screening drugs and developing cell-based therapeutics. Somatic cells have previously been reprogrammed into scattered autonomic ganglion (AG) neurons but not AG organoids. Here we have identified a combination of triple transcription factors (TFs) Ascl1, Phox2a/b, and Hand2 (APH) capable of efficiently reprogramming mouse fibroblasts into self-organized and networked induced AG (iAG) organoids, and characterized them by immunostaining, qRT-PCR, patch-clamping, and scRNA-seq approaches. The iAG neurons exhibit molecular properties, subtype diversity, and electrophysiological characteristics of autonomic neurons. Moreover, they can integrate into the superior cervical ganglia following transplantation and innervate and control the beating rate of co-cultured ventricular myocytes. Thus, iAG organoids may provide a valuable tool to study the pathogenesis of autonomic nervous system diseases and screen for drugs, as well as a source for cell-based therapies.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Fa Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Ng YH, Chanda S, Janas JA, Yang N, Kokubu Y, Südhof TC, Wernig M. Efficient generation of dopaminergic induced neuronal cells with midbrain characteristics. Stem Cell Reports 2021; 16:1763-1776. [PMID: 34171286 PMCID: PMC8282497 DOI: 10.1016/j.stemcr.2021.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
The differentiation of pluripotent stem cells can be accomplished by sequential activation of signaling pathways or through transcription factor programming. Multistep differentiation imitates embryonic development to obtain authentic cell types, but it suffers from asynchronous differentiation with variable efficiency. Transcription factor programming induces synchronous and efficient differentiation with higher reproducibility but may not always yield authentic cell types. We systematically explored the generation of dopaminergic induced neuronal cells from mouse and human pluripotent stem cells. We found that the proneural factor Ascl1 in combination with mesencephalic factors Lmx1a and Nurr1 induce peripheral dopaminergic neurons. Co-delivery of additional midbrain transcription factors En1, FoxA2, and Pitx3 resulted in facile and robust generation of functional dopaminergic neurons of midbrain character. Our results suggest that more complex combinations of transcription factors may be needed for proper regional specification of induced neuronal cells generated by direct lineage induction. Ascl1 alone can induce tyrosine hydroxylase (TH)-positive ES-iN cells Ascl1 alone, or with Nurr1 and Lmx1a, induce peripheral TH-positive cells WNT1 and neurotrophic factors increase TH-positive iN cells in culture A 6-factor combination induces TH-positive dopamine iN cells of central identity
Collapse
Affiliation(s)
- Yi Han Ng
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Soham Chanda
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Justyna A Janas
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuko Kokubu
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Kastriti ME, Kameneva P, Kamenev D, Dyachuk V, Furlan A, Hampl M, Memic F, Marklund U, Lallemend F, Hadjab S, Calvo-Enrique L, Ernfors P, Fried K, Adameyko I. Schwann Cell Precursors Generate the Majority of Chromaffin Cells in Zuckerkandl Organ and Some Sympathetic Neurons in Paraganglia. Front Mol Neurosci 2019; 12:6. [PMID: 30740044 PMCID: PMC6355685 DOI: 10.3389/fnmol.2019.00006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
In humans, neurosecretory chromaffin cells control a number of important bodily functions, including those related to stress response. Chromaffin cells appear as a distinct cell type at the beginning of midgestation and are the main cellular source of adrenalin and noradrenalin released into the blood stream. In mammals, two different chromaffin organs emerge at a close distance to each other, the adrenal gland and Zuckerkandl organ (ZO). These two structures are found in close proximity to the kidneys and dorsal aorta, in a region where paraganglioma, pheochromocytoma and neuroblastoma originate in the majority of clinical cases. Recent studies showed that the chromaffin cells comprising the adrenal medulla are largely derived from nerve-associated multipotent Schwann cell precursors (SCPs) arriving at the adrenal anlage with the preganglionic nerve fibers, whereas the migratory neural crest cells provide only minor contribution. However, the embryonic origin of the ZO, which differs from the adrenal medulla in a number of aspects, has not been studied in detail. The ZO is composed of chromaffin cells in direct contact with the dorsal aorta and the intraperitoneal cavity and disappears through an autophagy-mediated mechanism after birth. In contrast, the adrenal medulla remains throughout the entire life and furthermore, is covered by the adrenal cortex. Using a combination of lineage tracing strategies with nerve- and cell type-specific ablations, we reveal that the ZO is largely SCP-derived and forms in synchrony with progressively increasing innervation. Moreover, the ZO develops hand-in-hand with the adjacent sympathetic ganglia that coalesce around the dorsal aorta. Finally, we were able to provide evidence for a SCP-contribution to a small but significant proportion of sympathetic neurons of the posterior paraganglia. Thus, this cellular source complements the neural crest, which acts as a main source of sympathetic neurons. Our discovery of a nerve-dependent origin of chromaffin cells and some sympathoblasts may help to understand the origin of pheochromocytoma, paraganglioma and neuroblastoma, all of which are currently thought to be derived from the neural crest or committed sympathoadrenal precursors.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Dmitry Kamenev
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Viacheslav Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Furlan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Marek Hampl
- Institute of Animal Physiology and Genetics, CAS, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Fatima Memic
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Marklund
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Laura Calvo-Enrique
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Fried
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
|
5
|
Tomolonis JA, Agarwal S, Shohet JM. Neuroblastoma pathogenesis: deregulation of embryonic neural crest development. Cell Tissue Res 2017; 372:245-262. [PMID: 29222693 DOI: 10.1007/s00441-017-2747-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Neuroblastoma (NB) is an aggressive pediatric cancer that originates from neural crest tissues of the sympathetic nervous system. NB is highly heterogeneous both from a clinical and a molecular perspective. Clinically, this cancer represents a wide range of phenotypes ranging from spontaneous regression of 4S disease to unremitting treatment-refractory progression and death of high-risk metastatic disease. At a cellular level, the heterogeneous behavior of NB likely arises from an arrest and deregulation of normal neural crest development. In the present review, we summarize our current knowledge of neural crest development as it relates to pathways promoting 'stemness' and how deregulation may contribute to the development of tumor-initiating CSCs. There is an emerging consensus that such tumor subpopulations contribute to the evolution of drug resistance, metastasis and relapse in other equally aggressive malignancies. As relapsed, refractory disease remains the primary cause of death for neuroblastoma, the identification and targeting of CSCs or other primary drivers of tumor progression remains a critical, clinically significant goal for neuroblastoma. We will critically review recent and past evidence in the literature supporting the concept of CSCs as drivers of neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Julie A Tomolonis
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA.,Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA.,Translational Biology & Molecular Medicine (TBMM) Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Saurabh Agarwal
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA. .,Neuroblastoma Research Program, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Liang W, Huang X, Chen W. The Effects of Baicalin and Baicalein on Cerebral Ischemia: A Review. Aging Dis 2017; 8:850-867. [PMID: 29344420 PMCID: PMC5758355 DOI: 10.14336/ad.2017.0829] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, producing a high mortality and morbidity rate, is a common clinical disease. Enhancing the prevention and control of ischemic stroke is particularly important. Baicalin and its aglycon baicalein are flavonoids extracted from Scutellaria baicalensis, an important traditional Chinese herb. In recent years, a growing body of evidences has shown that baicalin and baicalein could be effective in the treatment of cerebral ischemia. Pharmacokinetic studies have shown that baicalin could penetrate the blood-brain barrier and distribute in cerebral nuclei. Through a variety of in vitro and in vivo models of ischemic neuronal injury, numerous studies have demonstrated that baicalin and baicalein have salutary effect for neuroprotection. Especially, the studies on the pharmacological mechanism showed that baicalin and baicalein have several pharmacological activities, which include antioxidant, anti-apoptotic, anti-inflammatory and anti-excitotoxicity effects, protection of the mitochondria, promoting neuronal protective factors expression and adult neurogenesis effects and many more. This review focuses on the neuroprotective effects of baicalin and baicalein in ischemia or stroke-induced neuronal cell death. We aimed at collecting all important information regarding the neuroprotective effect and its pharmacological mechanism of baicalin and baicalein in various in vivo and in vitro experimental models of ischemic neuronal injury.
Collapse
Affiliation(s)
- Wei Liang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaobo Huang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wenqiang Chen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, ChinaThese authors equally contributed to this work
| |
Collapse
|
7
|
Direct conversion from skin fibroblasts to functional dopaminergic neurons for biomedical application. BIOMEDICAL DERMATOLOGY 2017. [DOI: 10.1186/s41702-017-0004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
9
|
Yang L, Ke XX, Xuan F, Tan J, Hou J, Wang M, Cui H, Zhang Y. PHOX2B Is Associated with Neuroblastoma Cell Differentiation. Cancer Biother Radiopharm 2016; 31:44-51. [PMID: 26910576 DOI: 10.1089/cbr.2015.1952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma is a common pediatric malignancy that accounts for ∼15% of tumor-related deaths in children. The tumor is generally believed to originate from neural crest cells during early sympathetic neurogenesis. As the degree of neuroblastoma differentiation has been correlated with clinical outcome, clarifying the molecular mechanisms that drive neuroblastoma progression and differentiation is important for increasing the survival of these patients. In a previous study, the authors identified paired-like homeobox 2b (PHOX2B) as a key mediator of neuroblastoma pathogenesis in a TH-MYCN mouse model. In the present study, they aimed to define whether PHOX2B is also associated with proliferation and differentiation of human neuroblastoma cells. PHOX2B expression in neuroblastoma cells was evaluated by immunoblot analyses, and the effects of PHOX2B on the proliferation of neuroblastoma cells in vitro were determined using clonogenic and sphere formation assays. Xenograft experiments in NOD/SCID mice were used to examine the in vivo response to PHOX2B knockdown. Their data demonstrated that PHOX2B acts as a prognostic marker in neuroblastoma and that retinoic acid-induced neuronal differentiation downregulates PHOX2B expression, thereby suppressing the self-renewal capacity of neuroblastoma cells and inhibiting tumorigenicity. These findings confirmed that PHOX2B is a key regulator of neuroblastoma differentiation and stemness maintenance and indicated that PHOX2B might serve as a potential therapeutic target in neuroblastoma patients.
Collapse
Affiliation(s)
- Liqun Yang
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Xiao-Xue Ke
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Fan Xuan
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Juan Tan
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Jianbing Hou
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Mei Wang
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Hongjuan Cui
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Yundong Zhang
- 2 Department of Neurosurgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University , Chongqing, P.R. China
| |
Collapse
|
10
|
Generating trunk neural crest from human pluripotent stem cells. Sci Rep 2016; 6:19727. [PMID: 26812940 PMCID: PMC4728437 DOI: 10.1038/srep19727] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022] Open
Abstract
Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages.
Collapse
|
11
|
Ke XX, Zhang D, Zhao H, Hu R, Dong Z, Yang R, Zhu S, Xia Q, Ding HF, Cui H. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol Lett 2015; 9:2507-2514. [PMID: 26137098 DOI: 10.3892/ol.2015.3088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/19/2015] [Indexed: 01/19/2023] Open
Abstract
Neuroblastoma is the one of the most common extracranial childhood malignancies, accounting for ∼15% of tumor-associated deaths in children. It is generally considered that neuroblastoma originates from neural crest cells in the paravertebral sympathetic ganglia and the adrenal medulla. However, the mechanism by which neuroblastoma arises during sympathetic neurogenesis and the cellular mechanism that drives neuroblastoma development remains unclear. The present study investigated the cell components during neuroblastoma development in the tyrosine hydroxylase-v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (TH-MYCN) mouse model, a transgenic mouse model of human neuroblastoma. The present study demonstrates that paired-like homeobox 2b (Phox2B)+ neuronal progenitors are the major cellular population in hyperplastic lesions and primary tumors. In addition, Phox2B+ neuronal progenitors in hyperplastic lesions or primary tumors were observed to be in an actively proliferative and undifferentiated state. The current study also demonstrated that high expression levels of Phox2B promotes neuroblastoma cell proliferation and xenograft tumor growth. These findings indicate that the proliferation of undifferentiated Phox2B+ neuronal progenitors is a cellular mechanism that promotes neuroblastoma development and indicates that Phox2B is a critical regulator in neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Xiao-Xue Ke
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Dunke Zhang
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hailong Zhao
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Renjian Hu
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P.R. China
| | - Zhen Dong
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Rui Yang
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Shunqin Zhu
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Qingyou Xia
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Han-Fei Ding
- Department of Biochemistry and Molecular Biology, Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Hongjuan Cui
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
12
|
Williams RR, Venkatesh I, Pearse DD, Udvadia AJ, Bunge MB. MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS. PLoS One 2015; 10:e0118918. [PMID: 25751153 PMCID: PMC4353704 DOI: 10.1371/journal.pone.0118918] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 01/16/2015] [Indexed: 12/20/2022] Open
Abstract
Unlike CNS neurons in adult mammals, neurons in fish and embryonic mammals can regenerate their axons after injury. These divergent regenerative responses are in part mediated by the growth-associated expression of select transcription factors. The basic helix-loop-helix (bHLH) transcription factor, MASH1/Ascl1a, is transiently expressed during the development of many neuronal subtypes and regulates the expression of genes that mediate cell fate determination and differentiation. In the adult zebrafish (Danio rerio), Ascl1a is also transiently expressed in retinal ganglion cells (RGCs) that regenerate axons after optic nerve crush. Utilizing transgenic zebrafish with a 3.6 kb GAP43 promoter that drives expression of an enhanced green fluorescent protein (EGFP), we observed that knock-down of Ascl1a expression reduces both regenerative gap43 gene expression and axonal growth after injury compared to controls. In mammals, the development of noradrenergic brainstem neurons requires MASH1 expression. In contrast to zebrafish RGCs, however, MASH1 is not expressed in the mammalian brainstem after spinal cord injury (SCI). Therefore, we utilized adeno-associated viral (AAV) vectors to overexpress MASH1 in four month old rat (Rattus norvegicus) brainstem neurons in an attempt to promote axon regeneration after SCI. We discovered that after complete transection of the thoracic spinal cord and implantation of a Schwann cell bridge, animals that express MASH1 exhibit increased noradrenergic axon regeneration and improvement in hindlimb joint movements compared to controls. Together these data demonstrate that MASH1/Ascl1a is a fundamental regulator of axonal growth across vertebrates and can induce modifications to the intrinsic state of neurons to promote functional regeneration in response to CNS injury.
Collapse
Affiliation(s)
- Ryan R. Williams
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Ishwariya Venkatesh
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Ava J. Udvadia
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kasim M, Benko E, Winkelmann A, Mrowka R, Staudacher JJ, Persson PB, Scholz H, Meier JC, Fähling M. Shutdown of achaete-scute homolog-1 expression by heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 in hypoxia. J Biol Chem 2014; 289:26973-26988. [PMID: 25124043 DOI: 10.1074/jbc.m114.579391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The basic helix-loop-helix transcription factor hASH1, encoded by the ASCL1 gene, plays an important role in neurogenesis and tumor development. Recent findings indicate that local oxygen tension is a critical determinant for the progression of neuroblastomas. Here we investigated the molecular mechanisms underlying the oxygen-dependent expression of hASH1 in neuroblastoma cells. Exposure of human neuroblastoma-derived Kelly cells to 1% O2 significantly decreased ASCL1 mRNA and hASH1 protein levels. Using reporter gene assays, we show that the response of hASH1 to hypoxia is mediated mainly by post-transcriptional inhibition via the ASCL1 mRNA 5'- and 3'-UTRs, whereas additional inhibition of the ASCL1 promoter was observed under prolonged hypoxia. By RNA pulldown experiments followed by MALDI/TOF-MS analysis, we identified heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 and hnRNP-R as interactors binding directly to the ASCL1 mRNA 5'- and 3'-UTRs and influencing its expression. We further demonstrate that hnRNP-A2/B1 is a key positive regulator of ASCL1, findings that were also confirmed by analysis of a large compilation of gene expression data. Our data suggest that a prominent down-regulation of hnRNP-A2/B1 during hypoxia is associated with the post-transcriptional suppression of hASH1 synthesis. This novel post-transcriptional mechanism for regulating hASH1 levels will have important implications in neural cell fate development and disease.
Collapse
Affiliation(s)
- Mumtaz Kasim
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Edgar Benko
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Aline Winkelmann
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, D-13125 Berlin, and
| | - Ralf Mrowka
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie, Universitätsklinikum Jena, D-07743 Jena, Germany
| | - Jonas J Staudacher
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Pontus B Persson
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Holger Scholz
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin
| | - Jochen C Meier
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, D-13125 Berlin, and
| | - Michael Fähling
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, D-10117 Berlin,.
| |
Collapse
|
14
|
Liu M, Guo J, Wang J, Zhang L, Pang T, Liao H. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway. Cell Mol Neurobiol 2014; 34:913-23. [PMID: 24838256 PMCID: PMC11488897 DOI: 10.1007/s10571-014-0072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/29/2014] [Indexed: 12/15/2022]
Abstract
Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.
Collapse
Affiliation(s)
- Mei Liu
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
| | - Jingjing Guo
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
| | - Juan Wang
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
| | - Luyong Zhang
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009 People’s Republic of China
| | - Tao Pang
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009 People’s Republic of China
| | - Hong Liao
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
15
|
Kameda Y. Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 2014; 357:527-48. [PMID: 24770894 DOI: 10.1007/s00441-014-1847-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
The cells that constitute the sympathetic nervous system originate from the neural crest. This review addresses the current understanding of sympathetic ganglion development viewed from molecular and morphological perspectives. Development of the sympathetic nervous system is categorized into three main steps, as follows: (1) differentiation and migration of cells in the neural crest lineage for formation of the primary sympathetic chain, (2) differentiation of sympathetic progenitors, and (3) growth and survival of sympathetic ganglia. The signaling molecules and transcription factors involved in each of these developmental stages are elaborated mostly on the basis of the results of targeted mutation of respective genes. Analyses in mutant mice revealed differences between the superior cervical ganglion (SCG) and the other posterior sympathetic ganglia. This review provides a summary of the similarities and differences in the development of the SCG and other posterior sympathetic ganglia. Relevant to the development of sympathetic ganglia is the demonstration that neuroendocrine cells, such as adrenal chromaffin cells and carotid body glomus cells, share a common origin with the sympathetic ganglia. Neural crest cells at the trunk level give rise to common sympathoadrenal progenitors of sympathetic neurons and chromaffin cells, while progenitors segregated from the SCG give rise to glomus cells. After separation from the sympathetic primordium, the progenitors of both chromaffin cells and glomus cells colonize the anlage of the adrenal gland and carotid body, respectively. This review highlights the biological properties of chromaffin cells and glomus cells, because, although both cell types are derivatives of sympathetic primordium, they are distinct in many respects.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan,
| |
Collapse
|
16
|
Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina. PLoS One 2014; 9:e92113. [PMID: 24643195 PMCID: PMC3958475 DOI: 10.1371/journal.pone.0092113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 11/19/2022] Open
Abstract
In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.
Collapse
|
17
|
Leone L, Fusco S, Mastrodonato A, Piacentini R, Barbati SA, Zaffina S, Pani G, Podda MV, Grassi C. Epigenetic Modulation of Adult Hippocampal Neurogenesis by Extremely Low-Frequency Electromagnetic Fields. Mol Neurobiol 2014; 49:1472-86. [DOI: 10.1007/s12035-014-8650-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
|
18
|
Kosari F, Ida CM, Aubry MC, Yang L, Kovtun IV, Klein JLS, Li Y, Erdogan S, Tomaszek SC, Murphy SJ, Bolette LC, Kolbert CP, Yang P, Wigle DA, Vasmatzis G. ASCL1 and RET expression defines a clinically relevant subgroup of lung adenocarcinoma characterized by neuroendocrine differentiation. Oncogene 2013; 33:3776-83. [PMID: 24037524 DOI: 10.1038/onc.2013.359] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/09/2022]
Abstract
ASCL1 is an important regulatory transcription factor in pulmonary neuroendocrine (NE) cell development, but its value as a biomarker of NE differentiation in lung adenocarcinoma (AD) and as a potential prognostic biomarker remains unclear. We examined ASCL1 expression in lung cancer samples of varied histologic subtype, clinical outcome and smoking status and compared with expression of traditional NE markers. ASCL1 mRNA expression was found almost exclusively in smokers with AD, in contrast to non-smokers and other lung cancer subtypes. ASCL1 protein expression by immunohistochemical (IHC) analysis correlated best with synaptophysin compared with chromogranin and CD56/NCAM. Analysis of a compendium of 367 microarray-based gene expression profiles in stage I lung adenocarcinomas identified significantly higher expression levels of the RET oncogene in ASCL1-positive tumors (ASCL1(+)) compared with ASCL1(-) tumors (q-value <10(-9)). High levels of RET expression in ASCL1(+) but not in ASCL1(-) tumors was associated with significantly shorter overall survival (OS) in stage 1 (P=0.007) and in all AD (P=0.037). RET protein expression by IHC had an association with OS in the context of ASCL1 expression. In silico gene set analysis and in vitro experiments by ASCL1 shRNA in AD cells with high endogenous expression of ASCL1 and RET implicated ASCL1 as a potential upstream regulator of the RET oncogene. Also, silencing ASCL1 in AD cells markedly reduced cell growth and motility. These results suggest that ASCL1 and RET expression defines a clinically relevant subgroup of ∼10% of AD characterized by NE differentiation.
Collapse
Affiliation(s)
- F Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - C M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - M-C Aubry
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - L Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - I V Kovtun
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - J L S Klein
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Y Li
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - S Erdogan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - S C Tomaszek
- Department of Surgery and Advanced Genomic Technology Center, Mayo Clinic, Rochester, MN, USA
| | - S J Murphy
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - L C Bolette
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - C P Kolbert
- Advanced Genomic Technology Center, Mayo Clinic, Rochester, MN, USA
| | - P Yang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - D A Wigle
- Department of Surgery and Advanced Genomic Technology Center, Mayo Clinic, Rochester, MN, USA
| | - G Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Harrison C, Shepherd IT. Choices choices: regulation of precursor differentiation during enteric nervous system development. Neurogastroenterol Motil 2013; 25:554-62. [PMID: 23634805 PMCID: PMC4062358 DOI: 10.1111/nmo.12142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/30/2013] [Indexed: 02/08/2023]
Abstract
Background The enteric nervous system (ENS) is the largest subdivision of the peripheral nervous system and forms a complex circuit of neurons and glia that controls the function of the gastrointestinal (GI) tract. Within this circuit, there are multiple subtypes of neurons and glia. Appropriate differentiation of these various cell subtypes is vital for normal ENS and GI function. Studies of the pediatric disorder Hirschprung's Disease (HSCR) have provided a number of important insights into the mechanisms and molecules involved in ENS development; however, there are numerous other GI disorders that potentially may result from defects in development/differentiation of only a subset of ENS neurons or glia. Purpose Our understanding of the mechanisms and molecules involved in enteric nervous system differentiation is far from complete. Critically, it remains unclear at what point the fates of enteric neural crest cells (ENCCs) become committed to a specific subtype cell fate and how these cell fate choices are made. We will review our current understanding of ENS differentiation and highlight key questions that need to be addressed to gain a more complete understanding of this biological process.
Collapse
Affiliation(s)
- Colin Harrison
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta GA 30322, USA
| | - Iain T. Shepherd
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta GA 30322, USA
| |
Collapse
|
20
|
Distinct neuroblastoma-associated alterations of PHOX2B impair sympathetic neuronal differentiation in zebrafish models. PLoS Genet 2013; 9:e1003533. [PMID: 23754957 PMCID: PMC3675015 DOI: 10.1371/journal.pgen.1003533] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/14/2013] [Indexed: 11/19/2022] Open
Abstract
Heterozygous germline mutations and deletions in PHOX2B, a key regulator of autonomic neuron development, predispose to neuroblastoma, a tumor of the peripheral sympathetic nervous system. To gain insight into the oncogenic mechanisms engaged by these changes, we used zebrafish models to study the functional consequences of aberrant PHOX2B expression in the cells of the developing sympathetic nervous system. Allelic deficiency, modeled by phox2b morpholino knockdown, led to a decrease in the terminal differentiation markers th and dbh in sympathetic ganglion cells. The same effect was seen on overexpression of two distinct neuroblastoma-associated frameshift mutations, 676delG and K155X - but not the R100L missense mutation - in the presence of endogenous Phox2b, pointing to their dominant-negative effects. We demonstrate that Phox2b is capable of regulating itself as well as ascl1, and that phox2b deficiency uncouples this autoregulatory mechanism, leading to inhibition of sympathetic neuron differentiation. This effect on terminal differentiation is associated with an increased number of phox2b+, ascl1+, elavl3− cells that respond poorly to retinoic acid. These findings suggest that a reduced dosage of PHOX2B during development, through either a heterozygous deletion or dominant-negative mutation, imposes a block in the differentiation of sympathetic neuronal precursors, resulting in a cell population that is likely to be susceptible to secondary transforming events. Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common cancer diagnosed in infancy. Although most cases arise sporadically, familial predisposition also occurs in association with mutations in a single copy of the PHOX2B gene, a “master regulator” of sympathetic neuronal development. The exact mechanisms by which these mutations increase susceptibility to neuroblastoma are unclear, primarily because of the paucity of optimal models in which to study very early development of the sympathetic nervous system. We took advantage of the ex vivo development and transparent nature of zebrafish embryos to study the roles of both normal and mutated PHOX2B in development of the sympathetic nervous system. We present data indicating that aberrant PHOX2B expression causes an arrest in the normal maturation of sympathetic neurons, leading to immature cells that are resistant to drug-induced differentiation. Indeed, we demonstrate that phox2b gene “dosage” is important for normal differentiation of sympathetic neurons in the zebrafish and suggest that the population of immature cells resulting from a decreased dosage of this pivotal factor may be susceptible to secondary mutations that could ultimately lead to neuroblastoma.
Collapse
|
21
|
The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO J 2013; 32:1613-25. [PMID: 23591430 DOI: 10.1038/emboj.2013.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/15/2013] [Indexed: 01/17/2023] Open
Abstract
The sympathetic nervous system relies on distinct populations of neurons that use noradrenaline or acetylcholine as neurotransmitter. We show that fating of the sympathetic lineage at early stages results in hybrid precursors from which, genetic cell-lineage tracing reveals, all types progressively emerge by principal mechanisms of maintenance, repression and induction of phenotypes. The homeobox transcription factor HMX1 represses Tlx3 and Ret, induces TrkA and maintains tyrosine hydroxylase (Th) expression in precursors, thus driving segregation of the noradrenergic sympathetic fate. Cholinergic sympathetic neurons develop through cross-regulatory interactions between TRKC and RET in precursors, which lead to Hmx1 repression and sustained Tlx3 expression, thereby resulting in failure of TrkA induction and loss of maintenance of Th expression. Our results provide direct evidence for a model in which diversification of noradrenergic and cholinergic sympathetic neurons is based on a principle of cross-repressive functions in which the specific cell fates are directed by an active suppression of the expression of transcription factors and receptors that direct the alternative fate.
Collapse
|
22
|
Velkey JM, O'Shea KS. Expression of Neurogenin 1 in mouse embryonic stem cells directs the differentiation of neuronal precursors and identifies unique patterns of down-stream gene expression. Dev Dyn 2013; 242:230-53. [PMID: 23288605 DOI: 10.1002/dvdy.23920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Delineating the cascades of growth and transcription factor expression that shape the developing nervous system will improve our understanding of its molecular histogenesis and suggest strategies for cell replacement therapies. In the current investigation, we examined the ability of the proneural gene, Neurogenin1 (Neurog1; also Ngn1, Neurod3), to drive differentiation of pluripotent embryonic stem cells (ESC). RESULTS Transient expression of Neurog1 in ESC was sufficient to initiate neuronal differentiation, and produced neuronal subtypes reflecting its expression pattern in vivo. To begin to address the molecular mechanisms involved, we used microarray analysis to identify potential down-stream targets of Neurog1 expressed at sequential stages of neuronal differentiation. CONCLUSIONS ESC expressing Neurogenin1 begin to withdraw from cycle and form precursors that differentiate exclusively into neurons. This work identifies unique patterns of gene expression following expression of Neurog1, including genes and signaling pathways involved in process outgrowth and cell migration, regional differentiation of the nervous system, and cell cycle.
Collapse
Affiliation(s)
- J Matthew Velkey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
23
|
Neurogenin2 expression together with NeuroM regulates GDNF family neurotrophic factor receptor α1 (GFRα1) expression in the embryonic spinal cord. Dev Biol 2012; 370:250-63. [DOI: 10.1016/j.ydbio.2012.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
|
24
|
Hirschsprung's disease and variants in genes that regulate enteric neural crest cell proliferation, migration and differentiation. J Hum Genet 2012; 57:485-93. [PMID: 22648184 DOI: 10.1038/jhg.2012.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hirschsprung's disease (HSCR) results from failed colonization of the embryonic gut by enteric neural crest cells (ENCCs); colonization requires RET proto-oncogene (RET) signaling. We sequenced RET to identify coding and splice-site variants in a population-based case group and we tested for associations between HSCR and common variants in RET and candidate genes (ASCL1, homeobox B5 (HOXB5), L1 cell adhesion molecule (L1CAM), paired-like homeobox 2b (PHOX2B), PROK1 and PROKR1) chosen because they are involved in ENCC proliferation, migration and differentiation in animal models. We conducted a nested case-control study of 304 HSCR cases and 1215 controls. Among 38 (12.5%) cases with 34 RET coding and splice-site variants, 18 variants were previously unreported. We confirmed associations with common variants in HOXB5 and PHOX2B but the associations with variants in ASCL1, L1CAM and PROK1 were not significant after multiple comparisons adjustment. RET variants were strongly associated with HSCR (P-values between 10(-3) and 10(-31)) but this differed by race/ethnicity: associations were absent in African-Americans. Our population-based study not only identified novel RET variants in HSCR cases, it showed that common RET variants may not contribute to HSCR in all race/ethnic groups. The findings for HOXB5 and PHOX2B provide supportive evidence that genes regulating ENCC proliferation, migration and differentiation could be risk factors for HSCR.
Collapse
|
25
|
Abstract
Autonomic neuron development is controlled by a network of transcription factors, which is induced by bone morphogenetic protein signalling in neural crest progenitor cells. This network intersects with a transcriptional program in migratory neural crest cells that pre-specifies autonomic neuron precursor cells. Recent findings demonstrate that the transcription factors acting in the initial specification and differentiation of sympathetic neurons are also important for the proliferation of progenitors and immature neurons during neurogenesis. Elimination of Phox2b, Hand2 and Gata3 in differentiated neurons affects the expression of subtype-specific and/or generic neuronal properties or neuron survival. Taken together, transcription factors previously shown to act in initial neuron specification and differentiation display a much broader spectrum of functions, including control of neurogenesis and the maintenance of subtype characteristics and survival of mature neurons.
Collapse
Affiliation(s)
- Hermann Rohrer
- Research Group Developmental Neurobiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
26
|
Li Y, Zhuang P, Shen B, Zhang Y, Shen J. Baicalin promotes neuronal differentiation of neural stem/progenitor cells through modulating p-stat3 and bHLH family protein expression. Brain Res 2011; 1429:36-42. [PMID: 22088824 DOI: 10.1016/j.brainres.2011.10.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 10/06/2011] [Accepted: 10/16/2011] [Indexed: 11/16/2022]
Abstract
Signal transducer and activator of transcription 3 (stat3) and basic helix-loop-helix (bHLH) gene family are important cellular signal molecules for the regulation of cell fate decision and neuronal differentiation of neural stem/progenitor cells (NPCs). In the present study, we investigated the effects of baicalin, a flavonoid compound isolated from Scutellaria baicalensis G, on regulating phosphorylation of stat3 and expression of bHLH family proteins and promoting neuronal differentiation of NPCs. Embryonic NPCs from the cortex of E15-16 rats were treated with baicalin (2, 20 μM) for 2h and 7 days. Neuronal and glial differentiations were identified with mature neuronal marker microtubule associated protein (MAP-2) and glial marker Glial fibrillary acidic protein (GFAP) immunostaining fluorescent microscopy respectively. Phosphorylation of stat3 (p-stat3) and expressions of bHLH family genes including Mash1, Hes1 and NeuroD1 were detected with immunofluorescent microscopy and Western blot analysis. The results revealed that baicalin treatment increased the percentages of MAP-2 positive staining cells and decreased GFAP staining cells. Meanwhile, baicalin treatment down-regulated the expression of p-stat3 and Hes1, but up-regulated the expressions of NeuroD1 and Mash1. Those results indicate that baicalin can promote the neural differentiation but inhibit glial formation and its neurogenesis-promoting effects are associated with the modulations of stat3 and bHLH genes in neural stem/progenitor cells.
Collapse
Affiliation(s)
- Yue Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | |
Collapse
|
27
|
Mohlin SA, Wigerup C, Påhlman S. Neuroblastoma aggressiveness in relation to sympathetic neuronal differentiation stage. Semin Cancer Biol 2011; 21:276-82. [PMID: 21945591 DOI: 10.1016/j.semcancer.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/08/2011] [Indexed: 01/01/2023]
Abstract
Neuroblastoma is a childhood malignancy of the sympathetic neuronal lineage. It is a rare disease, but since it is frequently diagnosed during infancy, neuroblastoma causes life-long medical follow up of those children that survive the disease. It was early recognized that a high tumor cell differentiation stage correlates to favorable clinical stage and positive clinical outcome. Today, highly differentiated tumors are surgically removed and not further treated. Cells of many established human neuroblastoma cell lines have the capacity to differentiate when stimulated properly, and these cell lines have been used as models for studying and understanding central concepts of tumor cell differentiation. One recent aspect of this issue is the observation that tumor cells can dedifferentiate and gain a stem cell-like phenotype during hypoxic conditions, which was first shown in neuroblastoma. Aberrant or blocked differentiation is a central aspect of neuroblastoma genesis. In this review we summarize known genetic and non-genetic events in neuroblastoma that might be coupled to an aberrant sympathetic neuronal differentiation and thereby indirectly influencing tumorigenesis and/or aggressive neuroblastoma behavior.
Collapse
Affiliation(s)
- Sofie A Mohlin
- Center for Molecular Pathology, Department of Laboratory Medicine, CREATE Health, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
28
|
BMP-4 down-regulates the expression of Ret in murine melanocyte precursors. J Dermatol Sci 2011; 63:66-9. [PMID: 21530183 DOI: 10.1016/j.jdermsci.2011.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/02/2011] [Accepted: 03/27/2011] [Indexed: 11/22/2022]
|
29
|
Pellegrino MJ, Parrish DC, Zigmond RE, Habecker BA. Cytokines inhibit norepinephrine transporter expression by decreasing Hand2. Mol Cell Neurosci 2011; 46:671-80. [PMID: 21241805 PMCID: PMC3046314 DOI: 10.1016/j.mcn.2011.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/16/2010] [Accepted: 01/08/2011] [Indexed: 11/22/2022] Open
Abstract
Functional noradrenergic transmission requires the coordinate expression of enzymes involved in norepinephrine (NE) synthesis, as well as the norepinephrine transporter (NET) which removes NE from the synapse. Inflammatory cytokines acting through gp130 can suppress the noradrenergic phenotype in sympathetic neurons. This occurs in a subset of sympathetic neurons during development and also occurs in adult neurons after injury. For example, cytokines suppress noradrenergic function in sympathetic neurons after axotomy and during heart failure. The molecular basis for suppression of noradrenergic genes is not well understood, but previous studies implicated a reduction of Phox2a in cytokine suppression of dopamine beta hydroxylase. We used sympathetic neurons and neuroblastoma cells to investigate the role of Phox2a in cytokine suppression of NET transcription. Chromatin immunoprecipitation experiments revealed that Phox2a did not bind the NET promoter, and overexpression of Phox2a did not prevent cytokine suppression of NET transcription. Hand2 and Gata3 are transcription factors that induce noradrenergic genes during development and are present in mature sympathetic neurons. Both Hand2 and Gata3 were decreased by cytokines in sympathetic neurons and neuroblastoma cells. Overexpression of either Hand2 or Gata3 was sufficient to rescue NET transcription following suppression by cytokines. We examined expression of these genes following axotomy to determine if their expression was altered following nerve injury. NET and Hand2 mRNAs decreased significantly in sympathetic neurons 48 h after axotomy, but Gata3 mRNA was unchanged. These data suggest that cytokines can inhibit NET expression through downregulation of Hand2 or Gata3 in cultured sympathetic neurons, but axotomy in adult animals selectively suppresses Hand2 expression.
Collapse
Affiliation(s)
- Michael J. Pellegrino
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Diana C. Parrish
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Richard E. Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Beth A. Habecker
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
30
|
CtBP2 downregulation during neural crest specification induces expression of Mitf and REST, resulting in melanocyte differentiation and sympathoadrenal lineage suppression. Mol Cell Biol 2011; 31:955-70. [PMID: 21199918 DOI: 10.1128/mcb.01062-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trunk neural crest (NC) cells differentiate to neurons, melanocytes, and glia. In NC cultures, cyclic AMP (cAMP) induces melanocyte differentiation while suppressing the neuronal sympathoadrenal lineage, depending on the signal intensity. Melanocyte differentiation requires activation of CREB and cAMP-dependent protein kinase A (PKA), but the role of PKA is not understood. We have demonstrated, in NC cultures, cAMP-induced transcription of the microphthalmia-associated transcription factor gene (Mitf) and the RE-1 silencing transcription factor gene (REST), both Wnt-regulated genes. In NC cultures and zebrafish, knockdown of the corepressor of Wnt-mediated transcription C-terminal binding protein 2 (CtBP2) but not CtBP1 derepressed Mitf and REST expression and enhanced melanocyte differentiation. cAMP in NC and B16 melanoma cells decreased CtBP2 protein levels, while inhibition of PKA or proteasome rescued CtBP2 degradation. Interestingly, knockdown of homeodomain-interacting protein kinase 2 (HIPK2), a CtBP stability modulator, increased CtBP2 levels, suppressed expression of Mitf, REST, and melanocyte differentiation, and increased neuronal gene expression and sympathoadrenal lineage differentiation. We conclude that cAMP/PKA via HIPK2 promotes CtBP2 degradation, leading to Mitf and REST expression. Mitf induces melanocyte specification, and REST suppresses neuron-specific gene expression and the sympathoadrenal lineage. Our studies identify a novel role for REST in NC cell differentiation and suggest cross talk between cAMP and Wnt signaling in NC lineage specification.
Collapse
|
31
|
Tee JB, Choi Y, Shah MM, Dnyanmote A, Sweeney DE, Gallegos TF, Johkura K, Ito C, Bush KT, Nigam SK. Protein kinase A regulates GDNF/RET-dependent but not GDNF/Ret-independent ureteric bud outgrowth from the Wolffian duct. Dev Biol 2010; 347:337-47. [PMID: 20816800 PMCID: PMC2981800 DOI: 10.1016/j.ydbio.2010.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 02/01/2023]
Abstract
Embryonic kidney development begins with the outgrowth of the ureteric bud (UB) from the Wolffian duct (WD) into the adjacent metanephric mesenchyme (MM). Both a GDNF-dependent and GDNF-independent (Maeshima et al., 2007) pathway have been identified. In vivo and in vitro, the GDNF-dependent pathway is inhibited by BMPs, one of the factors invoked to explain the limitation of UB formation in the unbudded regions of the WD surrounding the UB. However, the exact mechanism remains unknown. Here a previously described in vitro system that models UB budding from the WD was utilized to study this process. Because Protein kinase A (PKA) activation has been shown to prevent migration, morphogenesis and tubulogenesis of epithelial cells (Santos et al., 1993), its activity in budded and non-budded portions of the GDNF-induced WD was analyzed. The level of PKA activity was 15-fold higher in the unbudded portions of the WD compared to budded portions, suggesting that PKA activity plays a key role in controlling the site of UB emergence. Using well-characterized PKA agonists and antagonists, we demonstrated that at various levels of the PKA-signaling hierarchy, PKA regulates UB outgrowth from the WD by suppressing budding events. This process appeared to be PKA-2 isoform specific, and mediated by changes in the duct rather than the surrounding mesenchyme. In addition, it was not due to changes in either the sorting of junctional proteins, cell death, or cell proliferation. Furthermore, the suppressive effect of cAMP on budding did not appear to be mediated by spread to adjacent cells via gap junctions. Conversely, antagonism of PKA activity stimulated UB outgrowth from the WD and resulted in both an increase in the number of buds per unit length of WD as well as a larger surface area per bud. Using microarrays, analysis of gene expression in GDNF-treated WDs in which the PKA pathway had been activated revealed a nearly 14-fold decrease in Ret, a receptor for GDNF. A smaller decrease in GFRα1. a co-receptor for GDNF, was also observed. Using Ret-null WDs, we were able to demonstrate that PKA regulated GDNF-dependent budding but not GDNF-independent pathway for WD budding. We also found that BMP2 was higher in unbudded regions of the GDNF-stimulated WD. Treatment of isolated WDs with BMP2 suppressed budding and resulted in a 3-fold increase in PKA activity. The data suggests that the suppression of budding by BMPs and possibly other factors in non-budded zones of the WD may be regulated in part by increased PKA activity, probably partially through downregulation of Ret/GFRα1 coreceptor expression.
Collapse
Affiliation(s)
- James B. Tee
- Department of Pediatrics, University of Calgary and Alberta Children’s Hospital, Alberta, Canada
| | - Yohan Choi
- Departments of Pediatrics, Medicine, and Cellular & Molecular Medicine, University of California, San Diego , California, USA
| | - Mita M. Shah
- Departments of Pediatrics, Medicine, and Cellular & Molecular Medicine, University of California, San Diego , California, USA
| | - Ankur Dnyanmote
- Departments of Pediatrics, Medicine, and Cellular & Molecular Medicine, University of California, San Diego , California, USA
| | - Derina E. Sweeney
- Departments of Pediatrics, Medicine, and Cellular & Molecular Medicine, University of California, San Diego , California, USA
| | - Tom F. Gallegos
- Departments of Pediatrics, Medicine, and Cellular & Molecular Medicine, University of California, San Diego , California, USA
| | - Kohei Johkura
- Departments of Pediatrics, Medicine, and Cellular & Molecular Medicine, University of California, San Diego , California, USA
| | - Chiharu Ito
- Departments of Pediatrics, Medicine, and Cellular & Molecular Medicine, University of California, San Diego , California, USA
| | - Kevin T. Bush
- Departments of Pediatrics, Medicine, and Cellular & Molecular Medicine, University of California, San Diego , California, USA
| | - Sanjay K. Nigam
- Departments of Pediatrics, Medicine, and Cellular & Molecular Medicine, University of California, San Diego , California, USA
| |
Collapse
|
32
|
Pheochromocytoma in rats with multiple endocrine neoplasia (MENX) shares gene expression patterns with human pheochromocytoma. Proc Natl Acad Sci U S A 2010; 107:18493-8. [PMID: 20937862 DOI: 10.1073/pnas.1003956107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pheochromocytomas are rare neoplasias of neural crest origin arising from chromaffin cells of the adrenal medulla and sympathetic ganglia (extra-adrenal pheochromocytoma). Pheochromocytoma that develop in rats homozygous for a loss-of-function mutation in p27Kip1 (MENX syndrome) show a clear progression from hyperplasia to tumor, offering the possibility to gain insight into tumor pathobiology. We compared the gene-expression signatures of both adrenomedullary hyperplasia and pheochromocytoma with normal rat adrenal medulla. Hyperplasia and tumor show very similar transcriptome profiles, indicating early determination of the tumorigenic signature. Overrepresentation of developmentally regulated neural genes was a feature of the rat lesions. Quantitative RT-PCR validated the up-regulation of 11 genes, including some involved in neural development: Cdkn2a, Cdkn2c, Neurod1, Gal, Bmp7, and Phox2a. Overexpression of these genes precedes histological changes in affected adrenal glands. Their presence at early stages of tumorigenesis indicates they are not acquired during progression and may be a result of the lack of functional p27Kip1. Adrenal and extra-adrenal pheochromocytoma development clearly follows diverged molecular pathways in MENX rats. To correlate these findings to human pheochromocytoma, we studied nine genes overexpressed in the rat lesions in 46 sporadic and familial human pheochromocytomas. The expression of GAL, DGKH, BMP7, PHOX2A, L1CAM, TCTE1, EBF3, SOX4, and HASH1 was up-regulated, although with different frequencies. Immunohistochemical staining detected high L1CAM expression selectively in 27 human pheochromocytomas but not in 140 nonchromaffin neuroendocrine tumors. These studies reveal clues to the molecular pathways involved in rat and human pheochromocytoma and identify previously unexplored biomarkers for clinical use.
Collapse
|
33
|
Kuo BR, Erickson CA. Regional differences in neural crest morphogenesis. Cell Adh Migr 2010; 4:567-85. [PMID: 20962585 PMCID: PMC3011260 DOI: 10.4161/cam.4.4.12890] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/02/2010] [Indexed: 12/11/2022] Open
Abstract
Neural crest cells are pluripotent cells that emerge from the neural epithelium, migrate extensively, and differentiate into numerous derivatives, including neurons, glial cells, pigment cells and connective tissue. Major questions concerning their morphogenesis include: 1) what establishes the pathways of migration and 2) what controls the final destination and differentiation of various neural crest subpopulations. These questions will be addressed in this review. Neural crest cells from the trunk level have been explored most extensively. Studies show that melanoblasts are specified shortly after they depart from the neural tube, and this specification directs their migration into the dorsolateral pathway. We also consider other reports that present strong evidence for ventrally migrating neural crest cells being similarly fate restricted. Cranial neural crest cells have been less analyzed in this regard but the preponderance of evidence indicates that either the cranial neural crest cells are not fate-restricted, or are extremely plastic in their developmental capability and that specification does not control pathfinding. Thus, the guidance mechanisms that control cranial neural crest migration and their behavior vary significantly from the trunk. The vagal neural crest arises at the axial level between the cranial and trunk neural crest and represents a transitional cell population between the head and trunk neural crest. We summarize new data to support this claim. In particular, we show that: 1) the vagal-level neural crest cells exhibit modest developmental bias; 2) there are differences in the migratory behavior between the anterior and the posterior vagal neural crest cells reminiscent of the cranial and the trunk neural crest, respectively; 3) the vagal neural crest cells take the dorsolateral pathway to the pharyngeal arches and the heart, but the ventral pathway to the peripheral nervous system and the gut. However, these pathways are not rigidly specified because of prior fate restriction. Understanding the molecular, cellular and behavioral differences between these three populations of neural crest cells will be of enormous assistance when trying to understand the evolution of the neck.
Collapse
Affiliation(s)
- Bryan R Kuo
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
34
|
Shinya M, Komuro H, Saihara R, Urita Y, Kaneko M, Liu Y. Neural differentiation potential of rat amniotic epithelial cells. Fetal Pediatr Pathol 2010; 29:133-43. [PMID: 20450266 DOI: 10.3109/15513811003777292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amniotic epithelial cells (AEC) are thought to represent a stem-like cell population and to be an attractive cell source for regenerative medicine, because abundant cells can be obtained noninvasively at delivery. The authors investigated the neural differentiation potential of rat AEC. Rat AEC expressed vimentin and nestin, but not c-kit, oct-4, or nanog. The expression of the neural lineage markers, including betaIII-tubulin, neuron specific enolase (NSE), neurofilament-M, neuroD, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), tyrosine hydroxylase (TH), acetylcholinesterase (AChE), cholin acetyltransferase (ChAT), and mammalian achaete-scute homolog1 (MASH1), was detected by RT-PCR in the cultured rat AEC. After neural induction, rat AEC dramatically changed their shapes, projecting dendrite-like structures. Immunocytochemically, approximately 20% of the induced cells expressed an immature neuronal marker, betaIII-tubulin. Our findings suggested that rat AEC might be already committed to differentiate to various neural lineages and that they could differentiate to immature neurons in vitro.
Collapse
Affiliation(s)
- Miki Shinya
- Department of Pediatric Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Apostolova G, Dechant G. Development of neurotransmitter phenotypes in sympathetic neurons. Auton Neurosci 2009; 151:30-8. [DOI: 10.1016/j.autneu.2009.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Generating diversity: Mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 2009; 151:17-29. [PMID: 19819195 DOI: 10.1016/j.autneu.2009.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic and parasympathetic postganglionic neurons innervate a wide range of target tissues. The subpopulation of neurons innervating each target tissue can express unique combinations of neurotransmitters, neuropeptides, ion channels and receptors, which together comprise the chemical phenotype of the neurons. The target-specific chemical phenotype shown by autonomic postganglionic neurons arises during development. In this review, we examine the different mechanisms that generate such a diversity of neuronal phenotypes from the pool of apparently homogenous neural crest progenitor cells that form the sympathetic ganglia. There is evidence that the final chemical phenotype of autonomic postganglionic neurons is generated by both signals at the level of the cell body that trigger cell-autonomous programs, as well as signals from the target tissues they innervate.
Collapse
|
38
|
Shin MH, Mavila N, Wang WH, Vega Alvarez S, Hall MC, Andrisani OM. Time-dependent activation of Phox2a by the cyclic AMP pathway modulates onset and duration of p27Kip1 transcription. Mol Cell Biol 2009; 29:4878-90. [PMID: 19564421 PMCID: PMC2738275 DOI: 10.1128/mcb.01928-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/01/2009] [Accepted: 06/18/2009] [Indexed: 01/20/2023] Open
Abstract
In noradrenergic progenitors, Phox2a mediates cell cycle exit and neuronal differentiation by inducing p27(Kip1) transcription in response to activation of the cyclic AMP (cAMP) pathway. The mechanism of cAMP-mediated activation of Phox2a is unknown. We identified a cluster of phosphoserine-proline sites in Phox2a by mass spectrometry. Ser206 appeared to be the most prominent phosphorylation site. A phospho-Ser206 Phox2a antibody detected dephosphorylation of Phox2a that was dependent on activation of the cAMP pathway, which occurred prior to neuronal differentiation of noradrenergic CAD cells. Employing serine-to-alanine and serine-to-aspartic acid Phox2a substitution mutants expressed in inducible CAD cell lines, we demonstrated that the transcriptional activity of Phox2a is regulated by two sequential cAMP-dependent events: first, cAMP signaling promotes dephosphorylation of Phox2a in at least one site, Ser206, thereby allowing Phox2a to bind DNA and initiate p27(Kip1) transcription; second, following dephosphorylation of the phosphoserine cluster (Ser202 and Ser208), Phox2a becomes phosphorylated by protein kinase A (PKA) on Ser153, which prevents association of Phox2a with DNA and terminates p27(Kip1) transcription. This represents a novel mechanism by which the same stimulus, cAMP signaling, first activates Phox2a by dephosphorylation of Ser206 and then, after a built-in delay, inactivates Phox2a via PKA-dependent phosphorylation of Ser153, thereby modulating onset and duration of p27(Kip1) transcription.
Collapse
Affiliation(s)
- Min Hwa Shin
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | | | | | | | | | | |
Collapse
|
39
|
Timing the Phox-trot: duration of Phox2a-dependent transcription is controlled by an intramolecular dephosphorylation/phosphorylation clock. Mol Cell Biol 2009; 29:4875-7. [PMID: 19635807 DOI: 10.1128/mcb.00972-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Weese-Mayer DE, Berry-Kravis EM, Ceccherini I, Rand CMC. Congenital central hypoventilation syndrome (CCHS) and sudden infant death syndrome (SIDS): kindred disorders of autonomic regulation. Respir Physiol Neurobiol 2009; 164:38-48. [PMID: 18579454 DOI: 10.1016/j.resp.2008.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 02/02/2023]
Abstract
Congenital central hypoventilation syndrome (CCHS) and sudden infant death syndrome (SIDS) were long considered rare disorders of respiratory control and more recently have been highlighted as part of a growing spectrum of disorders within the rubric of autonomic nervous system (ANS) dysregulation (ANSD). CCHS typically presents in the newborn period with a phenotype including alveolar hypoventilation, symptoms of ANSD and, in a subset of cases, Hirschsprung disease and later tumors of neural crest origin. Study of genes related to autonomic dysregulation and the embryologic origin of the neural crest led to the discovery of PHOX2B as the disease-defining gene for CCHS. Like CCHS, SIDS is thought to result from central deficits in control of breathing and ANSD, although SIDS risk is most likely defined by complex multifactorial genetic and environmental interactions. Some early genetic and neuropathological evidence is emerging to implicate serotonin systems in SIDS risk. The purpose of this article is to review the current understanding of the genetic basis for CCHS and SIDS, and discuss the impact of this information on clinical practice and future research directions.
Collapse
Affiliation(s)
- Debra E Weese-Mayer
- Northwestern University Feinberg School of Medicine, Center for Autonomic Medicine in Pediatrics, Children's Memorial Hospital, 2300 Children's Plaza, Chicago, IL 60614, USA.
| | | | | | | |
Collapse
|
41
|
Burzynski G, Shepherd IT, Enomoto H. Genetic model system studies of the development of the enteric nervous system, gut motility and Hirschsprung's disease. Neurogastroenterol Motil 2009; 21:113-27. [PMID: 19215589 PMCID: PMC4041618 DOI: 10.1111/j.1365-2982.2008.01256.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enteric nervous system (ENS) is the largest and most complicated subdivision of the peripheral nervous system. Its action is necessary to regulate many of the functions of the gastrointestinal tract including its motility. Whilst the ENS has been studied extensively by developmental biologists, neuroscientists and physiologists for several decades it has only been since the early 1990s that the molecular and genetic basis of ENS development has begun to emerge. Central to this understanding has been the use of genetic model organisms. In this article, we will discuss recent advances that have been achieved using both mouse and zebrafish model genetic systems that have led to new insights into ENS development and the genetic basis of Hirschsprung's disease.
Collapse
Affiliation(s)
- G Burzynski
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
42
|
Hildreth V, Anderson RH, Henderson DJ. Autonomic innervation of the developing heart: origins and function. Clin Anat 2009; 22:36-46. [PMID: 18846544 DOI: 10.1002/ca.20695] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maintenance of homeostatic circulation in mammals and birds is reliant upon autonomic innervation of the heart. Neural branches of mixed cellular origin and function innervate the heart at the arterial and venous poles as it matures, eventually coupling autonomic output to the cardiac components, including the conduction system. The development of neural identity is controlled by specific networks of genes and growth factors, whereas functional properties are governed by the use of different neurotransmitters. In this review, we summarize briefly the anatomic arrangement of the vertebrate autonomic nervous system and describe, in detail, the innervation of the heart. We discuss the timing of cardiac innervation in the chick and mouse, emphasizing the relationship of the cardiac neural networks to the anatomical structures within the heart. We also discuss the variable contribution of the neural crest to vagal cardiac nerves, and summarize the main neurotransmitters secreted by the developing sympathetic and parasympathetic autonomic divisions. We provide an overview of the main growth factor and gene families involved in neural development, discussing how these factors may impact upon the development of cardiac abnormalities in congenital syndromes associated with autonomic dysfunction.
Collapse
Affiliation(s)
- Victoria Hildreth
- Institute of Human Genetics, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
43
|
Parlier D, Ariza A, Christulia F, Genco F, Vanhomwegen J, Kricha S, Souopgui J, Bellefroid EJ. Xenopus zinc finger transcription factor IA1 (Insm1) expression marks anteroventral noradrenergic neuron progenitors in Xenopus embryos. Dev Dyn 2008; 237:2147-57. [PMID: 18627098 DOI: 10.1002/dvdy.21621] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The evolutionarily conserved IA1 (Insm1) gene is strongly expressed in the developing nervous system. Here, we show that IA1 is expressed during Xenopus laevis embryogenesis in neural plate primary neurons as well as in a population of uncharacterized anteroventral cells that form in front of the cement gland and that we identified as noradrenergic neurons. We also show that the formation of those anteroventral cells is dependent on BMPs and inhibited by Notch and that it is regulated by the transcription factors Xash1, Phox2, and Hand2. Finally, we provide functional evidence suggesting that IA1 may also play a role in their formation. Together, our results reveal that IA1 constitutes a novel player downstream of Xash1 in the formation of a previously unidentified population of Xenopus noradrenergic primary neurons.
Collapse
Affiliation(s)
- Damien Parlier
- Laboratoire d'Embryologie Moléculaire, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Luo GR, Chen Y, Li XP, Liu TX, Le WD. Nr4a2 is essential for the differentiation of dopaminergic neurons during zebrafish embryogenesis. Mol Cell Neurosci 2008; 39:202-10. [DOI: 10.1016/j.mcn.2008.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 01/08/2023] Open
|
45
|
Hendershot TJ, Liu H, Clouthier DE, Shepherd IT, Coppola E, Studer M, Firulli AB, Pittman DL, Howard MJ. Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 2008; 319:179-91. [PMID: 18501887 PMCID: PMC2517160 DOI: 10.1016/j.ydbio.2008.03.036] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/19/2008] [Accepted: 03/22/2008] [Indexed: 12/22/2022]
Abstract
Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression.
Collapse
Affiliation(s)
- Tyler J. Hendershot
- University of Toledo Health Sciences Center, Department of Neurosciences and Program in Neurosciences and Degenerative Disease, Toledo, OH 43614
| | - Hongbin Liu
- University of Toledo Health Sciences Center, Department of Neurosciences and Program in Neurosciences and Degenerative Disease, Toledo, OH 43614
| | - David E. Clouthier
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | | | - Eva Coppola
- Telethon Institute of Genetics and Medicine, TIGEM, Napoli, Italy
| | - Michèle Studer
- Telethon Institute of Genetics and Medicine, TIGEM, Napoli, Italy
| | - Anthony B. Firulli
- Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, Indianapolis, IN 46202-5225
| | - Douglas L. Pittman
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Columbia SC 29208
| | - Marthe J. Howard
- University of Toledo Health Sciences Center, Department of Neurosciences and Program in Neurosciences and Degenerative Disease, Toledo, OH 43614
| |
Collapse
|
46
|
Abstract
New fundamental results on stem cell biology have been obtained in the past 15 years. These results allow us to reinterpret the functioning of the cerebral tissue in health and disease. Proliferating stem cells have been found in the adult brain, which can be involved in postinjury repair and can replace dead cells under specific conditions. Numerous genomic mechanisms controlling stem cell proliferation and differentiation have been identified. The involvement of stem cells in the genesis of malignant tumors has been demonstrated. Neural stem cell tropism toward tumors has been shown. These findings suggest new lines of research on brain functioning and development. Stem cells can be used to develop radically new treatments of neurodegenerative and cancer diseases of the brain.
Collapse
|
47
|
Pavlova GV, Okhotin VE, Korochkin LI, Revishchin AV. Genomic regulation of neural stem cells in mammals. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Reiprich S, Stolt CC, Schreiner S, Parlato R, Wegner M. SoxE proteins are differentially required in mouse adrenal gland development. Mol Biol Cell 2008; 19:1575-86. [PMID: 18272785 DOI: 10.1091/mbc.e07-08-0782] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sry-box (Sox)8, Sox9, and Sox10 are all strongly expressed in the neural crest. Here, we studied the influence of these closely related transcription factors on the developing adrenal medulla as one prominent neural crest derivative. Whereas Sox9 was not expressed, both Sox8 and Sox10 occurred widely in neural crest cells migrating to the adrenal gland and in the gland itself, and they were down-regulated in cells expressing catecholaminergic traits. Sox10-deficient mice lacked an adrenal medulla. The adrenal anlage was never colonized by neural crest cells, which failed to specify properly at the dorsal aorta and died apoptotically during migration. Furthermore, mutant neural crest cells did not express Sox8. Strong adrenal phenotypes were also observed when the Sox10 dimerization domain was inactivated or when a transactivation domain in the central portion was deleted. Sox8 in contrast had only minimal influence on adrenal gland development. Phenotypic consequences became only visible in Sox8-deficient mice upon additional deletion of one Sox10 allele. Replacement of Sox10 by Sox8, however, led to significant rescue of the adrenal medulla, indicating that functional differences between the two related Sox proteins contribute less to the different adrenal phenotypes of the null mutants than dependence of Sox8 expression on Sox10.
Collapse
Affiliation(s)
- Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
49
|
Altered neuronal lineages in the facial ganglia of Hoxa2 mutant mice. Dev Biol 2008; 314:171-88. [DOI: 10.1016/j.ydbio.2007.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/24/2007] [Accepted: 11/21/2007] [Indexed: 01/19/2023]
|
50
|
Nakajima T, Ota M, Ito K. Differentiation of autonomic neurons by BMP-independent mechanisms. Cell Tissue Res 2008; 332:25-35. [DOI: 10.1007/s00441-007-0563-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/22/2007] [Indexed: 11/30/2022]
|