1
|
Inoue M. Are Human Adrenal Medullary Chromaffin Cells Adrenaline or Noradrenaline Cells? A Lesson Regarding the Importance of Understanding a Process to Reach a Conclusion. J UOEH 2025; 47:1-4. [PMID: 40024761 DOI: 10.7888/juoeh.47.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
A scientist may realize, during a long academic career, that a widely accepted notion is not actually factual. An example for me is the fraction of adrenaline-secreting cells in human adrenal medullary chromaffin (AMC) cells. Even the authoritative textbooks for medical physiology differ regarding the fraction of adrenaline cells in human AMC cells, stating that it is 80% or 100%. This confusion may be ascribed to the substitution of the fraction of adrenaline in the catecholamines extracted from the human adrenal medulla for the fraction of adrenaline cells in human AMC cells. In this commentary, I look into the possible cause of this substitution and highlight the importance of understanding a process to reach a conclusion.
Collapse
Affiliation(s)
- Masumi Inoue
- University of Occupational and Environmental Health, Japan
| |
Collapse
|
2
|
Kemoklidze KG, Tyumina NA. 3D organization of the rat adrenal medulla. VITAMINS AND HORMONES 2023; 124:367-392. [PMID: 38408803 DOI: 10.1016/bs.vh.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Without knowledge of the spatial [three-dimensional, (3D)] organization of an organ at the tissue and cellular levels, it is impossible to form a complete picture of its structure and function. At the same time, tissue components hidden in the thickness of the organ are the most difficult to study. The rapid development of computer technologies has contributed both to the development and implementation of new methods for studying 3D microstructures of organs, and the improvement of classical ones but the most complete picture can still be obtained only by recreating 3D models from serial histological sections. This fully applies to the important, but hidden in the thickness of the organ, and difficult to study 3D organization of the adrenal medulla. Only 3D reconstruction from serial sections makes it possible to identify all the main tissue components of the adrenal medulla simultaneously and with good resolution. Of particular importance to this method is the ability to reliably differentiate and study separately the 3D organization of the two main subpopulations of medulla endocrinocytes: adrenaline-storing (A-) cells and noradrenaline-storing (NA-) cells. In this chapter, we discuss the 3D organization of the adrenal medulla based on these original serial section 3D reconstructions and correlating them with data obtained by other methods.
Collapse
Affiliation(s)
- K G Kemoklidze
- Department of Histology, Cytology and Embryology, Yaroslavl State Medical University, Yaroslavl, Russia.
| | - N A Tyumina
- Department of Histology, Cytology and Embryology, Yaroslavl State Medical University, Yaroslavl, Russia
| |
Collapse
|
3
|
Åkerman AK, Sævik ÅB, Thorsby PM, Methlie P, Quinkler M, Jørgensen AP, Höybye C, Debowska AJ, Nedrebø BG, Dahle AL, Carlsen S, Tomkowicz A, Sollid ST, Nermoen I, Grønning K, Dahlqvist P, Grimnes G, Skov J, Finnes T, Wahlberg J, Holte SE, Simunkova K, Kämpe O, Husebye ES, Øksnes M, Bensing S. Plasma-Metanephrines in Patients with Autoimmune Addison's Disease with and without Residual Adrenocortical Function. J Clin Med 2023; 12:jcm12103602. [PMID: 37240708 DOI: 10.3390/jcm12103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE Residual adrenocortical function, RAF, has recently been demonstrated in one-third of patients with autoimmune Addison's disease (AAD). Here, we set out to explore any influence of RAF on the levels of plasma metanephrines and any changes following stimulation with cosyntropin. METHODS We included 50 patients with verified RAF and 20 patients without RAF who served as controls upon cosyntropin stimulation testing. The patients had abstained from glucocorticoid and fludrocortisone replacement > 18 and 24 h, respectively, prior to morning blood sampling. The samples were obtained before and 30 and 60 min after cosyntropin stimulation and analyzed for serum cortisol, plasma metanephrine (MN), and normetanephrine (NMN) by liquid-chromatography tandem-mass pectrometry (LC-MS/MS). RESULTS Among the 70 patients with AAD, MN was detectable in 33%, 25%, and 26% at baseline, 30 min, and 60 min after cosyntropin stimulation, respectively. Patients with RAF were more likely to have detectable MN at baseline (p = 0.035) and at the time of 60 min (p = 0.048) compared to patients without RAF. There was a positive correlation between detectable MN and the level of cortisol at all time points (p = 0.02, p = 0.04, p < 0.001). No difference was noted for NMN levels, which remained within the normal reference ranges. CONCLUSION Even very small amounts of endogenous cortisol production affect MN levels in patients with AAD.
Collapse
Affiliation(s)
- Anna-Karin Åkerman
- Department of Medicine, Örebro University Hospital, 701 85 Örebro, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Åse Bjorvatn Sævik
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, 7804 Bergen, Norway
| | - Per Medbøe Thorsby
- Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Paal Methlie
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, 7804 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | | | | | - Charlotte Höybye
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | | | - Bjørn Gunnar Nedrebø
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Internal Medicine, Haugesund Hospital, 5528 Haugesund, Norway
| | - Anne Lise Dahle
- Department of Internal Medicine, Haugesund Hospital, 5528 Haugesund, Norway
| | - Siri Carlsen
- Department of Endocrinology, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Aneta Tomkowicz
- Department of Medicine, Sørlandet Hospital, 4604 Kristiansand, Norway
| | - Stina Therese Sollid
- Department of Medicine, Drammen Hospital, Vestre Viken Health Trust, 3004 Drammen, Norway
| | - Ingrid Nermoen
- Department of Endocrinology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kaja Grønning
- Department of Endocrinology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Guri Grimnes
- Division of Internal Medicine, University Hospital of North Norway, 9038 Tromsø, Norway
- Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Jakob Skov
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Trine Finnes
- Section of Endocrinology, Innlandet Hospital Trust, 2381 Hamar, Norway
| | - Jeanette Wahlberg
- Department of Medicine, Örebro University Hospital, 701 85 Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden
| | | | - Katerina Simunkova
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Olle Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Eystein Sverre Husebye
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, 7804 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Marianne Øksnes
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, 7804 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
4
|
Meijer OC, Buurstede JC, Viho EMG, Amaya JM, Koning ASCAM, van der Meulen M, van Weert LTCM, Paul SN, Kroon J, Koorneef LL. Transcriptional glucocorticoid effects in the brain: Finding the relevant target genes. J Neuroendocrinol 2023; 35:e13213. [PMID: 36426812 DOI: 10.1111/jne.13213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Glucocorticoids are powerful modulators of brain function. They act via mineralocorticoid and glucocorticoid receptors (MR and GR). These are best understood as transcription factors. Although many glucocorticoid effects depend on the modulation of gene transcription, it is a major challenge to link gene expression to function given the large-scale, apparently pleiotropic genomic responses. The extensive sets of MR and GR target genes are highly specific per cell type, and the brain contains many different (neuronal and non-neuronal) cell types. Next to the set "trait" of cellular context, the "state" of other active signaling pathways will affect MR and GR transcriptional activity. Here, we discuss receptor specificity and contextual factors that determine the transcriptional outcome of MR/GR signaling, experimental possibilities offered by single-cell transcriptomics approaches, and reflect on how to make sense of lists of target genes in relation to understanding the functional effects of steroid receptor activation.
Collapse
Affiliation(s)
- Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus C Buurstede
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eva M G Viho
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jorge Miguel Amaya
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Sophie C A M Koning
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Merel van der Meulen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa T C M van Weert
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana N Paul
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Kemoklidze KG, Tyumina NA, Leonenko PS. 3D reconstruction of the rat adrenal medulla. Anat Histol Embryol 2021; 50:781-787. [PMID: 34145614 DOI: 10.1111/ahe.12720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
We performed 3D reconstruction of the microscopic structure of the adrenal medulla of the adult rats using serial histological sections with histochemical differentiation of adrenaline-storing (A) and noradrenaline-storing (NA) cells. Medulla volume is 1.18 ± 0.17 mm3 . Chromaffin tissue consists of 82.9 ± 2.6% of A and 17.1 ± 2.6% of NA cells. Cords of the chromaffinocytes run along the nerves in the adrenal cortex and form cones when merging with medulla bulk. There is no unambiguously greater prevalence of A cells over NA in the areas of the medulla bordering on the cortex as compared to deep layers of medulla. NA cells form a network of beams. Their concentration increases with distance from the entry site of the nerves and is maximal on the opposite side. This testifies to the fallacy of the point of view about the disordered distribution of NA cells in the medulla. Based on the polar asymmetric arrangement of the adrenal chromaffin tissue, if it is necessary to completely remove the medulla with the keeping or reimplantation of the cortex, the subcapsular cortex zone located on the pole opposite to the entrance of nerves should be chosen. In addition, comparable results in the stereological examination of the medulla can be obtained only if taking its areas similar in location. The pronounced relationship in the arrangement of A and NA cells with nerves clearly indicates that in vivo nerve factors play a key role in differentiation and stabilization of the A and NA cells phenotypes.
Collapse
Affiliation(s)
| | - Natalia Andreevna Tyumina
- Department of Histology, Cytology and Embryology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Pavel Sergeevich Leonenko
- Department of Histology, Cytology and Embryology, Yaroslavl State Medical University, Yaroslavl, Russia
| |
Collapse
|
6
|
Bechmann N, Berger I, Bornstein SR, Steenblock C. Adrenal medulla development and medullary-cortical interactions. Mol Cell Endocrinol 2021; 528:111258. [PMID: 33798635 DOI: 10.1016/j.mce.2021.111258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
The mammalian adrenal gland is composed of two distinct tissue types in a bidirectional connection, the catecholamine-producing medulla derived from the neural crest and the mesoderm-derived cortex producing steroids. The medulla mainly consists of chromaffin cells derived from multipotent nerve-associated descendants of Schwann cell precursors. Already during adrenal organogenesis, close interactions between cortex and medulla are necessary for proper differentiation and morphogenesis of the gland. Moreover, communication between the cortex and the medulla ensures a regular function of the adult adrenal. In tumor development, interfaces between the two parts are also common. Here, we summarize the development of the mammalian adrenal medulla and the current understanding of the cortical-medullary interactions under development and in health and disease.
Collapse
Affiliation(s)
- Nicole Bechmann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Diabetes and Nutritional Sciences Division, King's College London, London, UK
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Kameneva P, Kastriti ME, Adameyko I. Neuronal lineages derived from the nerve-associated Schwann cell precursors. Cell Mol Life Sci 2021; 78:513-529. [PMID: 32748156 PMCID: PMC7873084 DOI: 10.1007/s00018-020-03609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/18/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
For a long time, neurogenic placodes and migratory neural crest cells were considered the immediate sources building neurons of peripheral nervous system. Recently, a number of discoveries revealed the existence of another progenitor type-a nerve-associated multipotent Schwann cell precursors (SCPs) building enteric and parasympathetic neurons as well as neuroendocrine chromaffin cells. SCPs are neural crest-derived and are similar to the crest cells by their markers and differentiation potential. Such similarities, but also considerable differences, raise many questions pertaining to the medical side, fundamental developmental biology and evolution. Here, we discuss the genesis of Schwann cell precursors, their role in building peripheral neural structures and ponder on their role in the origin in congenial diseases associated with peripheral nervous systems.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden.
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria.
| |
Collapse
|
8
|
Kastriti ME, Kameneva P, Adameyko I. Stem cells, evolutionary aspects and pathology of the adrenal medulla: A new developmental paradigm. Mol Cell Endocrinol 2020; 518:110998. [PMID: 32818585 DOI: 10.1016/j.mce.2020.110998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The mammalian adrenal gland is composed of two main components; the catecholaminergic neural crest-derived medulla, found in the center of the gland, and the mesoderm-derived cortex producing steroidogenic hormones. The medulla is composed of neuroendocrine chromaffin cells with oxygen-sensing properties and is dependent on tissue interactions with the overlying cortex, both during development and in adulthood. Other relevant organs include the Zuckerkandl organ containing extra-adrenal chromaffin cells, and carotid oxygen-sensing bodies containing glomus cells. Chromaffin and glomus cells reveal a number of important similarities and are derived from the multipotent nerve-associated descendants of the neural crest, or Schwann cell precursors. Abnormalities in complex developmental processes during differentiation of nerve-associated and other progenitors into chromaffin and oxygen-sensing populations may result in different subtypes of paraganglioma, neuroblastoma and pheochromocytoma. Here, we summarize recent findings explaining the development of chromaffin and oxygen-sensing cells, as well as the potential mechanisms driving neuroendocrine tumor initiation.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Bornstein SR, Berger I, Scriba L, Santambrogio A, Steenblock C. Adrenal cortex–medulla interactions in adaptation to stress and disease. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
van Weert LTCM, Buurstede JC, Sips HCM, Vettorazzi S, Mol IM, Hartmann J, Prekovic S, Zwart W, Schmidt MV, Roozendaal B, Tuckermann JP, Sarabdjitsingh RA, Meijer OC. Identification of mineralocorticoid receptor target genes in the mouse hippocampus. J Neuroendocrinol 2019; 31:e12735. [PMID: 31121060 PMCID: PMC6771480 DOI: 10.1111/jne.12735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways.
Collapse
Affiliation(s)
- Lisa T. C. M. van Weert
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jacobus C. Buurstede
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Hetty C. M. Sips
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sabine Vettorazzi
- Institute of Comparative Molecular EndocrinologyUniversity of UlmUlmGermany
| | - Isabel M. Mol
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jakob Hartmann
- Department of PsychiatryHarvard Medical SchoolMcLean HospitalBelmontMassachusetts
| | - Stefan Prekovic
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Wilbert Zwart
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mathias V. Schmidt
- Department of Stress Neurobiology and NeurogeneticsMax Planck Institute of PsychiatryMunichGermany
| | - Benno Roozendaal
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jan P. Tuckermann
- Institute of Comparative Molecular EndocrinologyUniversity of UlmUlmGermany
| | - R. Angela Sarabdjitsingh
- Department of Translational NeuroscienceUMC Utrecht Brain CenterUniversity Medical CenterUtrechtThe Netherlands
| | - Onno C. Meijer
- Einthoven LaboratoryDivision of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
11
|
Schmidt M, Lax E, Zhou R, Cheishvili D, Ruder AM, Ludiro A, Lapert F, Macedo da Cruz A, Sandrini P, Calzoni T, Vaisheva F, Brandwein C, Luoni A, Massart R, Lanfumey L, Riva MA, Deuschle M, Gass P, Szyf M. Fetal glucocorticoid receptor (Nr3c1) deficiency alters the landscape of DNA methylation of murine placenta in a sex-dependent manner and is associated to anxiety-like behavior in adulthood. Transl Psychiatry 2019; 9:23. [PMID: 30655507 PMCID: PMC6336883 DOI: 10.1038/s41398-018-0348-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
Prenatal stress defines long-term phenotypes through epigenetic programming of the offspring. These effects are potentially mediated by glucocorticoid release and by sex. We hypothesized that the glucocorticoid receptor (Gr, Nr3c1) fashions the DNA methylation profile of offspring. Consistent with this hypothesis, fetal Nr3c1 heterozygosity leads to altered DNA methylation landscape in fetal placenta in a sex-specific manner. There was a significant overlap of differentially methylated genes in fetal placenta and adult frontal cortex in Nr3c1 heterozygotes. Phenotypically, Nr3c1 heterozygotes show significantly more anxiety-like behavior than wildtype. DNA methylation status of fetal placental tissue is significantly correlated with anxiety-like behavior of the same animals in adulthood. Thus, placental DNA methylation might predict behavioral phenotypes in adulthood. Our data supports the hypothesis that Nr3c1 influences DNA methylation at birth and that DNA methylation in placenta correlates with adult frontal cortex DNA methylation and anxiety-like phenotypes.
Collapse
Affiliation(s)
- Michaela Schmidt
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | - Elad Lax
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada ,0000 0004 1936 8649grid.14709.3bSackler Program for Epigenetics and Psychobiology, McGill University, Montreal, QC H3G 1Y6 Canada
| | - Rudy Zhou
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada
| | - David Cheishvili
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada ,0000 0004 1936 8649grid.14709.3bSackler Program for Epigenetics and Psychobiology, McGill University, Montreal, QC H3G 1Y6 Canada
| | - Arne Mathias Ruder
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Alessia Ludiro
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Florian Lapert
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Anna Macedo da Cruz
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Paolo Sandrini
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Teresa Calzoni
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Farida Vaisheva
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada
| | - Christiane Brandwein
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Alessia Luoni
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Renaud Massart
- 0000 0004 1936 8649grid.14709.3bSackler Program for Epigenetics and Psychobiology, McGill University, Montreal, QC H3G 1Y6 Canada ,0000 0004 0638 6979grid.417896.5Inserm, U894, Centre de Psychiatrie et Neurosciences, 75014 Paris, France
| | - Laurence Lanfumey
- 0000 0004 0638 6979grid.417896.5Inserm, U894, Centre de Psychiatrie et Neurosciences, 75014 Paris, France ,0000 0001 2188 0914grid.10992.33Université Paris Descartes, UMRS894, 75014 Paris, France
| | - Marco Andrea Riva
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Michael Deuschle
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Peter Gass
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Moshe Szyf
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada ,0000 0004 1936 8649grid.14709.3bSackler Program for Epigenetics and Psychobiology, McGill University, Montreal, QC H3G 1Y6 Canada
| |
Collapse
|
12
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
13
|
|
14
|
Neural differentiation potential of sympathoadrenal progenitors derived from fresh and cryopreserved neonatal porcine adrenal glands. Cryobiology 2016; 73:152-61. [PMID: 27539465 DOI: 10.1016/j.cryobiol.2016.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 11/22/2022]
Abstract
Stem/progenitor cells are thought to have the potential in the treatment of severe neurodegenerative diseases. Recently, sympathoadrenal progenitors expressing specific markers of neural crest derivatives and capable to differentiate into neurons were discovered in adult bovine and human adrenal glands, but there was no reported data on cryopreservation of sympathoadrenal progenitors. The aim of the present study was to examine the neural differentiation potential of sympathoadrenal progenitors derived from fresh and cryopreserved neonatal porcine adrenal glands. Considering impact of various initial state of frozen biomaterial on cell recovery, we carried out a comparative estimation of cryopreservation outcome both for adrenal tissue fragments and isolated primary cells. The estimation consisted of determining cell yield, viability, ability to adhere, proliferate and differentiate in vitro. Cells isolated from the fresh adrenal glands were cultured until confluence. A formation of sympathoadrenal progenitors-embedded spherical cell colonies, whose cells are differentiated then into βIII-tubulin-positive cells with neuron-like morphology, was observed on the monolayer. The colonies were well preserved after cryopreservation of cell culture with a cooling rate of 1 °C/min in the cryoprotectant media containing 5-15% of dimethylsulfoxide. Adrenal tissue fragments were cryopreserved in the presence of 10% dimethylsulfoxide at the cooling rates of 0.3; 1: 5; 40 and > 100 °C/min. Sympathoadrenal progenitors were recovered after cryopreservation with 0.3 °C/min cooling rate but not higher.
Collapse
|
15
|
Ribeiro D, Klarqvist MDR, Westermark UK, Oliynyk G, Dzieran J, Kock A, Savatier Banares C, Hertwig F, Johnsen JI, Fischer M, Kogner P, Lovén J, Arsenian Henriksson M. Regulation of Nuclear Hormone Receptors by MYCN-Driven miRNAs Impacts Neural Differentiation and Survival in Neuroblastoma Patients. Cell Rep 2016; 16:979-993. [PMID: 27396325 DOI: 10.1016/j.celrep.2016.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/01/2016] [Accepted: 06/12/2016] [Indexed: 01/04/2023] Open
Abstract
MYCN amplification and MYC signaling are associated with high-risk neuroblastoma with poor prognosis. Treating these tumors remains challenging, although therapeutic approaches stimulating differentiation have generated considerable interest. We have previously shown that the MYCN-regulated miR-17∼92 cluster inhibits neuroblastoma differentiation by repressing estrogen receptor alpha. Here, we demonstrate that this microRNA (miRNA) cluster selectively targets several members of the nuclear hormone receptor (NHR) superfamily, and we present a unique NHR signature associated with the survival of neuroblastoma patients. We found that suppressing glucocorticoid receptor (GR) expression in MYCN-driven patient and mouse tumors was associated with an undifferentiated phenotype and decreased survival. Importantly, MYCN inhibition and subsequent reactivation of GR signaling promotes neural differentiation and reduces tumor burden. Our findings reveal a key role for the miR-17∼92-regulated NHRs in neuroblastoma biology, thereby providing a potential differentiation approach for treating neuroblastoma patients.
Collapse
Affiliation(s)
- Diogo Ribeiro
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Marcus D R Klarqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ulrica K Westermark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ganna Oliynyk
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johanna Dzieran
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anna Kock
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Carolina Savatier Banares
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, University Children's Hospital and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, University Children's Hospital and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Jakob Lovén
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
16
|
Kanczkowski W, Sue M, Bornstein SR. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis. Front Endocrinol (Lausanne) 2016; 7:156. [PMID: 28018291 PMCID: PMC5155014 DOI: 10.3389/fendo.2016.00156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Waldemar Kanczkowski,
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Department of Endocrinology and Diabetes, King’s College London, London, UK
| |
Collapse
|
17
|
Vukicevic V, Rubin de Celis MF, Pellegata NS, Bornstein SR, Androutsellis-Theotokis A, Ehrhart-Bornstein M. Adrenomedullary progenitor cells: Isolation and characterization of a multi-potent progenitor cell population. Mol Cell Endocrinol 2015; 408:178-84. [PMID: 25575455 DOI: 10.1016/j.mce.2014.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Abstract
The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the last years has proven the existence of stem and progenitor cells also in the adult adrenal medulla throughout life. These cells maintain some neural crest properties and have the potential to differentiate to the endocrine and neural lineages. In this article, we discuss the evidence for the existence of adrenomedullary multi potent progenitor cells, their isolation and characterization, their differentiation potential as well as their clinical potential in transplantation therapies but also in pathophysiology.
Collapse
Affiliation(s)
- Vladimir Vukicevic
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Fernandez Rubin de Celis
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Natalia S Pellegata
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefan R Bornstein
- Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Androutsellis-Theotokis
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Division of Stem Cell Biology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Monika Ehrhart-Bornstein
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
18
|
Abstract
The human adult adrenal cortex is composed of the zona glomerulosa (zG), zona fasciculata (zF), and zona reticularis (zR), which are responsible for production of mineralocorticoids, glucocorticoids, and adrenal androgens, respectively. The final completion of cortical zonation in humans does not occur until puberty with the establishment of the zR and its production of adrenal androgens; a process called adrenarche. The maintenance of the adrenal cortex involves the centripetal displacement and differentiation of peripheral Sonic hedgehog-positive progenitors cells into zG cells that later transition to zF cells and subsequently zR cells.
Collapse
Affiliation(s)
- Yewei Xing
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA
| | - Antonio M Lerario
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA
| | - William Rainey
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, 2560D MSRB II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5622, USA
| | - Gary D Hammer
- Endocrine Oncology Program, Center for Organogenesis, University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
19
|
Laryea G, Muglia L, Arnett M, Muglia LJ. Dissection of glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis by gene targeting in mice. Front Neuroendocrinol 2015; 36:150-64. [PMID: 25256348 PMCID: PMC4342273 DOI: 10.1016/j.yfrne.2014.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 09/11/2014] [Indexed: 12/17/2022]
Abstract
Negative feedback regulation of glucocorticoid (GC) synthesis and secretion occurs through the function of glucocorticoid receptor (GR) at sites in the hypothalamic-pituitary-adrenal (HPA) axis, as well as in brain regions such as the hippocampus, prefrontal cortex, and sympathetic nervous system. This function of GRs in negative feedback coordinates basal glucocorticoid secretion and stress-induced increases in secretion that integrate GC production with the magnitude and duration of the stressor. This review describes the effects of GR loss along major sites of negative feedback including the entire brain, the paraventricular nucleus of the hypothalamus (PVN), and the pituitary. In genetic mouse models, we evaluate circadian regulation of the HPA axis, stress-stimulated neuroendocrine response and behavioral activity, as well as the integrated response of organism metabolism. Our analysis provides information on contributions of region-specific GR-mediated negative feedback to provide insight in understanding HPA axis dysregulation and the pathogenesis of psychiatric and metabolic disorders.
Collapse
Affiliation(s)
- Gloria Laryea
- Neuroscience Graduate Program, School of Medicine, Vanderbilt University, Nashville, TN, United States; Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Lisa Muglia
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Melinda Arnett
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Louis J Muglia
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| |
Collapse
|
20
|
Segregation of neuronal and neuroendocrine differentiation in the sympathoadrenal lineage. Cell Tissue Res 2014; 359:333-41. [PMID: 25038743 DOI: 10.1007/s00441-014-1947-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Neuronal and neuroendocrine cells possess the capacity for Ca(2+)-regulated discharge of messenger molecules, which they release into synapses or the blood stream, respectively. The neural-crest-derived sympathoadrenal lineage gives rise to the sympathetic neurons of the autonomic nervous system and the neuroendocrine chromaffin cells of the adrenal medulla. These cells provide an excellent model system for studying common and distinct developmental mechanisms underlying the acquisition of neuroendocrine and neuronal properties. As catecholaminergic cells, they possess common markers related to noradrenaline synthesis, storage and release, but they also display diverging gene expression patterns and are morphologically and functionally different. The precise mechanisms that underlie the diversification of sympathoadrenal cells into neurons and neuroendocrine cells are not fully understood. However, in the past we could show that the establishment of a chromaffin phenotype does not depend on signals from the adrenal cortex and that chromaffin cells and sympathetic neurons apparently differ from the onset of their catecholaminergic differentiation. Nevertheless, the cues that specifically induce neuroendocrine features remain elusive. The early development of the progenitors of chromaffin cells and sympathetic neurons depends on a common set of transcription factors with overlapping but distinct influences on their development. In addition to the well-defined role of transcription factors as developmental regulators, our understanding of post-transcriptional gene regulation by microRNAs has substantially increased within the last few decades. This review highlights the major similarities and differences between chromaffin cells and sympathetic neurons, summarizes our current knowledge of the roles of selected transcription factors, microRNAs and environmental signals for the neuroendocrine differentiation of sympathoadrenal cells, and draws comparisons with the development of other endocrine and neuronal cells.
Collapse
|
21
|
Orqueda AJ, Dansey MV, Español A, Veleiro AS, Bal de Kier Joffé E, Sales ME, Burton G, Pecci A. The rigid steroid 21-hydroxy-6,19-epoxyprogesterone (21OH-6,19OP) is a dissociated glucocorticoid receptor modulator potentially useful as a novel coadjuvant in breast cancer chemotherapy. Biochem Pharmacol 2014; 89:526-35. [DOI: 10.1016/j.bcp.2014.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/17/2022]
|
22
|
Liddicoat DR, Purton JF, Cole TJ, Godfrey DI. Glucocorticoid‐mediated repression of T‐cell receptor signalling is impaired in glucocorticoid receptor exon 2‐disrupted mice. Immunol Cell Biol 2013; 92:148-55. [DOI: 10.1038/icb.2013.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Douglas R Liddicoat
- Department of Microbiology and Immunology, University of MelbourneVictoriaAustralia
- Department of Immunology, Monash UniversityVictoriaAustralia
- Department of Biochemistry and Molecular Biology, Monash UniversityVictoriaAustralia
| | - Jared F Purton
- Department of Microbiology and Immunology, University of MelbourneVictoriaAustralia
- Department of Immunology, Scripps Research InstituteLa JollaCAUSA
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash UniversityVictoriaAustralia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of MelbourneVictoriaAustralia
| |
Collapse
|
23
|
Laryea G, Schütz G, Muglia LJ. Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Mol Endocrinol 2013; 27:1655-65. [PMID: 23979842 DOI: 10.1210/me.2013-1187] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The glucocorticoid receptor (GR) regulates hypothalamic-pituitary-adrenal (HPA) axis activity during the stress response. The paraventricular nucleus (PVN) is a major site of negative feedback to coordinate the degree of the HPA axis activity with the magnitude of the exposed stressor. To define the function of endogenous PVN GR, we used Cre-loxP technology to disrupt different GR exons in Sim1-expressing neurons of the hypothalamus. GR exon 2-deleted mice (Sim1Cre-GRe2Δ) demonstrated 43% loss of PVN GR compared with an 87% GR loss in exon 3-deleted mice (Sim1Cre-GRe3Δ). Sim1Cre-GRe3Δ mice display stunted growth at birth but develop obesity in adulthood and display impaired stress-induced glucose release. We observed elevated basal and stress-induced corticosterone levels in Sim1Cre-GRe3Δ mice, compared with control and Sim1Cre-GRe2Δ mice, and impaired dexamethasone suppression, indicating an inability to negatively regulate corticosterone secretion. Sim1Cre-GRe3Δ mice also showed increased CRH mRNA in the PVN, increased basal plasma ACTH levels, and reduced locomotor behavior. We observed no differences in Sim1Cre-GRe2Δ mice compared with control mice in any measure. Our behavioral data suggest that GR deletion in Sim1-expressing neurons has no effect on anxiety or despair-like behavior under basal conditions. We conclude that loss of PVN GR results in severe HPA axis hyperactivity and Cushing's syndrome-like phenotype but does not affect anxiety and despair-like behaviors.
Collapse
Affiliation(s)
- Gloria Laryea
- MD/PhD, 3333 Burnet Avenue, ML 7009, Cincinnati, Ohio 45229.
| | | | | |
Collapse
|
24
|
Stubbusch J, Narasimhan P, Huber K, Unsicker K, Rohrer H, Ernsberger U. Synaptic protein and pan-neuronal gene expression and their regulation by Dicer-dependent mechanisms differ between neurons and neuroendocrine cells. Neural Dev 2013; 8:16. [PMID: 23961995 PMCID: PMC3766641 DOI: 10.1186/1749-8104-8-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/19/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neurons in sympathetic ganglia and neuroendocrine cells in the adrenal medulla share not only their embryonic origin from sympathoadrenal precursors in the neural crest but also a range of functional features. These include the capacity for noradrenaline biosynthesis, vesicular storage and regulated release. Yet the regulation of neuronal properties in early neuroendocrine differentiation is a matter of debate and the developmental expression of the vesicle fusion machinery, which includes components found in both neurons and neuroendocrine cells, is not resolved. RESULTS Analysis of synaptic protein and pan-neuronal marker mRNA expression during mouse development uncovers profound differences between sympathetic neurons and adrenal chromaffin cells, which result in qualitatively similar but quantitatively divergent transcript profiles. In sympathetic neurons embryonic upregulation of synaptic protein mRNA follows early and persistent induction of pan-neuronal marker transcripts. In adrenal chromaffin cells pan-neuronal marker expression occurs only transiently and synaptic protein messages remain at distinctly low levels throughout embryogenesis. Embryonic induction of synaptotagmin I (Syt1) in sympathetic ganglia and postnatal upregulation of synaptotagmin VII (Syt7) in adrenal medulla results in a cell type-specific difference in isoform prevalence. Dicer 1 inactivation in catecholaminergic cells reduces high neuronal synaptic protein mRNA levels but not their neuroendocrine low level expression. Pan-neuronal marker mRNAs are induced in chromaffin cells to yield a more neuron-like transcript pattern, while ultrastructure is not altered. CONCLUSIONS Our study demonstrates that remarkably different gene regulatory programs govern the expression of synaptic proteins in the neuronal and neuroendocrine branch of the sympathoadrenal system. They result in overlapping but quantitatively divergent transcript profiles. Dicer 1-dependent regulation is required to establish high neuronal mRNA levels for synaptic proteins and to maintain repression of neurofilament messages in neuroendocrine cells.
Collapse
Affiliation(s)
- Jutta Stubbusch
- Max Planck Institute for Brain Research, Deutschordenstrasse 46 D-60528, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Shtukmaster S, Schier MC, Huber K, Krispin S, Kalcheim C, Unsicker K. Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 2013; 8:12. [PMID: 23777568 PMCID: PMC3693940 DOI: 10.1186/1749-8104-8-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/17/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The neural crest (NC) is a transient embryonic structure unique to vertebrates, which generates peripheral sensory and autonomic neurons, glia, neuroendocrine chromaffin and thyroid C-cells, melanocytes, and mesenchymal derivatives such as parts of the skull, heart, and meninges. The sympathoadrenal (SA) cell lineage is one major sub-lineage of the NC that gives rise to sympathetic neurons, chromaffin cells, and the intermediate small intensely fluorescent (SIF) cells. A key question is when during NC ontogeny do multipotent progenitors segregate into the different NC-derived lineages. Recent evidence suggested that sympathetic, sensory, and melanocyte progenitors delaminate from the thoracic neural tube (NT) in successive, largely non-overlapping waves and that at least certain NC progenitors are already fate-restricted within the NT. Whether sympathetic neurons and chromaffin cells, suggested by cell culture studies to share a common progenitor, are also fate segregated in ovo prior to emigration, is not known. RESULTS We have conducted single cell electroporations of a GFP-encoding plasmid into the dorsal midline of E2 chick NTs at the adrenomedullary level of the NC. Analysis of their derivatives, performed at E6, revealed that in most cases, labelled progeny was detected in both sympathetic ganglia and adrenal glands, where cells co-expressed characteristic marker combinations. CONCLUSIONS Our results show that sympathetic neurons and adrenal chromaffin cells share a common progenitor in the NT. Together with previous findings we suggest that phenotypic diversification of these sublineages is likely to occur after delamination from the NT and prior to target encounter.
Collapse
Affiliation(s)
- Stella Shtukmaster
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology University of Freiburg, Albertstr, 17, Freiburg D-79104, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Huber K, Narasimhan P, Shtukmaster S, Pfeifer D, Evans SM, Sun Y. The LIM-Homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Dev Biol 2013; 380:286-98. [PMID: 23648511 PMCID: PMC5544970 DOI: 10.1016/j.ydbio.2013.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/04/2013] [Accepted: 04/17/2013] [Indexed: 12/25/2022]
Abstract
Islet-1 is a LIM-Homeodomain transcription factor with important functions for the development of distinct neuronal and non-neuronal cell populations. We show here that Islet-1 acts genetically downstream of Phox2B in cells of the sympathoadrenal cell lineage and that the development of sympathetic neurons and chromaffin cells is impaired in mouse embryos with a conditional deletion of Islet-1 controlled by the wnt1 promotor. Islet-1 is not essential for the initial differentiation of sympathoadrenal cells, as indicated by the correct expression of pan-neuronal and catecholaminergic subtype specific genes in primary sympathetic ganglia of Islet-1 deficient mouse embryos. However, our data indicate that the subsequent survival of sympathetic neuron precursors and their differentiation towards TrkA expressing neurons depends on Islet-1 function. In contrast to spinal sensory neurons, sympathetic neurons of Islet-1 deficient mice did not display ectopic expression of genes normally present in the CNS. In Islet-1 deficient mouse embryos the numbers of chromaffin cells were only mildly reduced, in contrast to that of sympathetic neurons, but the initiation of the adrenaline synthesizing enzyme PNMT was abrogated and the expression level of chromogranin A was diminished. Microarray analysis revealed that developing chromaffin cells of Islet-1 deficient mice displayed normal expression levels of TH, DBH and the transcription factors Phox2B, Mash-1, Hand2, Gata3 and Insm1, but the expression levels of the transcription factors Gata2 and Hand1, and AP-2β were significantly reduced. Together our data indicate that Islet-1 is not essentially required for the initial differentiation of sympathoadrenal cells, but has an important function for the correct subsequent development of sympathetic neurons and chromaffin cells.
Collapse
Affiliation(s)
- Katrin Huber
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Yates R, Katugampola H, Cavlan D, Cogger K, Meimaridou E, Hughes C, Metherell L, Guasti L, King P. Adrenocortical Development, Maintenance, and Disease. Curr Top Dev Biol 2013; 106:239-312. [DOI: 10.1016/b978-0-12-416021-7.00007-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Schober A, Parlato R, Huber K, Kinscherf R, Hartleben B, Huber TB, Schütz G, Unsicker K. Cell loss and autophagy in the extra-adrenal chromaffin organ of Zuckerkandl are regulated by glucocorticoid signalling. J Neuroendocrinol 2013; 25:34-47. [PMID: 23078542 PMCID: PMC3564403 DOI: 10.1111/j.1365-2826.2012.02367.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/27/2012] [Indexed: 12/20/2022]
Abstract
Neuroendocrine chromaffin cells exist in both intra- and extra-adrenal locations; the organ of Zuckerkandl (OZ) constitutes the largest accumulation of extra-adrenal chromaffin tissue in mammals. The OZ disappears postnatally by modes that are still enigmatic but can be maintained by treatment with glucocorticoids (GC). Whether the response to GC reflects a pharmacological or a physiological role of GC has not been clarified. Using mice with a conditional deletion of the GC-receptor (GR) gene restricted to cells expressing the dopamine β-hydroxylase (DBH) gene [GR(fl/fl) ; DBHCre abbreviated (GR(DBHCre) )], we now present the first evidence for a physiological role of GC signalling in the postnatal maintenance of the OZ: postnatal losses of OZ chromaffin cells in GR(DBHCre) mice are doubled compared to wild-type littermates. We find that postnatal cell loss in the OZ starts at birth and is accompanied by autophagy. Electron microscopy reveals autophagic vacuoles and autophagolysosomes in chromaffin cells. Autophagy in OZ extra-adrenal chromaffin cells is confirmed by showing accumulation of p62 protein, which occurs, when autophagy is blocked by deleting the Atg5 gene (Atg5(DBHCre) mice). Cathepsin-D, a lysosomal marker, is expressed in cells that surround chromaffin cells and are positive for the macrophage marker BM8. Macrophages are relatively more abundant in mice lacking the GR, indicating more robust elimination of degenerating chromaffin cells in GR(DBHCre) mice than in wild-type littermates. In summary, our results indicate that extra-adrenal chromaffin cells in the OZ show signs of autophagy, which accompany their postnatal numerical decline, a process that is controlled by GR signalling.
Collapse
Affiliation(s)
- Andreas Schober
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology II, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Unsicker K, Huber K, Schober A, Kalcheim C. Resolved and open issues in chromaffin cell development. Mech Dev 2012; 130:324-9. [PMID: 23220335 DOI: 10.1016/j.mod.2012.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 11/19/2022]
Abstract
Ten years of research within the DFG-funded Collaborative Research Grant SFB 488 at the University of Heidelberg have added many new facets to our understanding of chromaffin cell development. Glucocorticoid signaling is no longer the key for understanding the determination of the chromaffin phenotype, yet a novel role has been attributed to glucocorticoids: they are essential for the postnatal maintenance of adrenal and extra-adrenal chromaffin cells. Transcription factors, as, e.g. MASH1 and Phox2B, have similar, but also distinct functions in chromaffin and sympathetic neuronal development, and BMP-4 not only induces sympathoadrenal (SA) cells at the dorsal aorta and within the adrenal gland, but also promotes chromaffin cell maturation. Chromaffin cells and sympathetic neurons share a common progenitor in the dorsal neural tube (NT) in vivo, as revealed by single cell electroporations into the dorsal NT. Thus, specification of chromaffin cells is likely to occur after cell emigration either during migration or close to colonization of the target regions. Mechanisms underlying the specification of chromaffin cells vs. sympathetic neurons are currently being explored.
Collapse
Affiliation(s)
- Klaus Unsicker
- Dept. of Molecular Embryology, University of Freiburg, Albertstr. 17, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
30
|
Ishimoto H, Jaffe RB. Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr Rev 2011; 32:317-55. [PMID: 21051591 PMCID: PMC3365797 DOI: 10.1210/er.2010-0001] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex.
Collapse
Affiliation(s)
- Hitoshi Ishimoto
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | | |
Collapse
|
31
|
Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 2011; 335:2-13. [PMID: 20398732 PMCID: PMC3047790 DOI: 10.1016/j.mce.2010.04.005] [Citation(s) in RCA: 1192] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 02/08/2023]
Abstract
Since the discovery of glucocorticoids in the 1940s and the recognition of their anti-inflammatory effects, they have been amongst the most widely used and effective treatments to control inflammatory and autoimmune diseases. However, their clinical efficacy is compromised by the metabolic effects of long-term treatment, which include osteoporosis, hypertension, dyslipidaemia and insulin resistance/type 2 diabetes mellitus. In recent years, a great deal of effort has been invested in identifying compounds that separate the beneficial anti-inflammatory effects from the adverse metabolic effects of glucocorticoids, with limited effect. It is clear that for these efforts to be effective, a greater understanding is required of the mechanisms by which glucocorticoids exert their anti-inflammatory and immunosuppressive actions. Recent research is shedding new light on some of these mechanisms and has produced some surprising new findings. Some of these recent developments are reviewed here.
Collapse
Affiliation(s)
| | - Karen E. Chapman
- Endocrinology Unit, Centre for Cardiovascular Sciences, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
32
|
Pérez-Alvarez A, Hernández-Vivanco A, Albillos A. Past, present and future of human chromaffin cells: role in physiology and therapeutics. Cell Mol Neurobiol 2010; 30:1407-15. [PMID: 21107679 PMCID: PMC11498861 DOI: 10.1007/s10571-010-9582-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 12/26/2022]
Abstract
Chromaffin cells are neuroendocrine cells mainly found in the medulla of the adrenal gland. Most existing knowledge of these cells has been the outcome of extensive research performed in animals, mainly in the cow, cat, mouse and rat. However, some insight into the physiology of this neuroendocrine cell in humans has been gained. This review summarizes the main findings reported in human chromaffin cells under physiological or disease conditions and discusses the clinical implications of these results.
Collapse
Affiliation(s)
- Alberto Pérez-Alvarez
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Alicia Hernández-Vivanco
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
33
|
|
34
|
Parlato R, Otto C, Tuckermann J, Stotz S, Kaden S, Gröne HJ, Unsicker K, Schütz G. Conditional inactivation of glucocorticoid receptor gene in dopamine-beta-hydroxylase cells impairs chromaffin cell survival. Endocrinology 2009; 150:1775-81. [PMID: 19036879 DOI: 10.1210/en.2008-1107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid hormones (GCs) have been thought to determine the fate of chromaffin cells from sympathoadrenal progenitor cells. The analysis of mice carrying a germ line deletion of the glucocorticoid receptor (GR) gene has challenged these previous results because the embryonic development of adrenal chromaffin cells is largely unaltered. In the present study, we have analyzed the role of GC-dependent signaling in the postnatal development of adrenal chromaffin cells by conditional inactivation of the GR gene in cells expressing dopamine-beta-hydroxylase, an enzyme required for the synthesis of noradrenaline and adrenaline. These mutant mice are viable, allowing to study whether in the absence of GC signaling further development of the adrenal medulla is affected. Our analysis shows that the loss of GR leads not only to the loss of phenylethanolamine-N-methyl-transferase expression and, therefore, to inhibition of adrenaline synthesis, but also to a dramatic reduction in the number of adrenal chromaffin cells. We provide evidence that increased apoptotic cell death is the main consequence of GR loss. These findings define the essential role of GCs for survival of chromaffin cells and underscore the specific requirement of GCs for adrenergic chromaffin cell differentiation and maintenance.
Collapse
Affiliation(s)
- Rosanna Parlato
- Department of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Krug AW, Langbein H, Ziegler CG, Bornstein SR, Eisenhofer G, Ehrhart-Bornstein M. Dehydroepiandrosterone-sulphate (DHEA-S) promotes neuroendocrine differentiation of chromaffin pheochromocytoma PC12 cells. Mol Cell Endocrinol 2009; 300:126-31. [PMID: 19022340 DOI: 10.1016/j.mce.2008.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 02/05/2023]
Abstract
The major source for dehydroepiandrosterone (DHEA) and its sulphate compound DHEA-S is the inner zone of the adrenal cortex, which is in direct contact to adrenomedullary chromaffin cells. Due to their close proximity, direct interactions of DHEA and DHEA-S with chromaffin cells during adrenal gland development and throughout the whole life span are hypothesized. A possible direct effect of DHEA-S and the cellular and molecular mechanisms of DHEA-S action on chromaffin cells remain unresolved. Therefore, in this study, we aimed at clarifying DHEA-S effects and mechanisms of action on rat chromaffin PC12 cells. DHEA-S (10(-6)mol/l) inhibited nerve growth factor (NGF, 20ng/ml)-induced cell proliferation by 66% (n=4, p<0.001). In NGF-stimulated cells, neuronal differentiation was inhibited by DHEA-S, as demonstrated by a 22% reduction (n=3; p<0.05) of neuronal differentiation marker expression, synaptosome-associated protein of 25kDa (SNAP-25), and a 59% (n=6; p<0.001) decrease in neurite outgrowth. Moreover, DHEA-S stimulated expression of endocrine marker chromogranin A (CgA) by 31% (n=4; p<0.05 vs. control) and catecholamine release from NGF-treated PC12 cells by 229% (n=3-5; p<0.001), indicating a DHEA-S-induced shift towards neuroendocrine differentiation. On a molecular level, DHEA-S diminished NGF-induced ERK1/2 phosphorylation. Taken together, DHEA-S inhibited NGF-induced proliferation and neuronal differentiation and shifted cells towards a more endocrine phenotype. Interference of DHEA-S with NGF-stimulated ERK1/2 activation might be involved in this effect. Our study provides support for the notion that adrenocortical-derived DHEA-S impacts adrenomedullary chromaffin cells during development and differentiation.
Collapse
Affiliation(s)
- Alexander W Krug
- Carl Gustav Carus University Hospital, Medical Clinic III, University of Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Ehrhart-Bornstein M, Bornstein SR. Cross-talk between Adrenal Medulla and Adrenal Cortex in Stress. Ann N Y Acad Sci 2008; 1148:112-7. [DOI: 10.1196/annals.1410.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Michailidou Z, Carter RN, Marshall E, Sutherland HG, Brownstein DG, Owen E, Cockett K, Kelly V, Ramage L, Al-Dujaili EAS, Ross M, Maraki I, Newton K, Holmes MC, Seckl JR, Morton NM, Kenyon CJ, Chapman KE. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet. FASEB J 2008; 22:3896-907. [PMID: 18697839 PMCID: PMC2749453 DOI: 10.1096/fj.08-111914] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/10/2008] [Indexed: 12/14/2022]
Abstract
Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GR(betageo/+) mice were generated from embryonic stem (ES) cells with a gene trap integration of a beta-galactosidase-neomycin phosphotransferase (betageo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GR(betageo/+) mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin-aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GR(betageo/+) mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GR(betageo/+) mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.
Collapse
Affiliation(s)
- Z Michailidou
- Endocrinology Unit, Centre for Cardiovascular Sciences, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Murata T, Tsuboi M, Koide N, Hikita K, Kohno S, Kaneda N. Neuronal differentiation elicited by glial cell line-derived neurotrophic factor and ciliary neurotrophic factor in adrenal chromaffin cell line tsAM5D immortalized with temperature-sensitive SV40 T-antigen. J Neurosci Res 2008; 86:1694-710. [PMID: 18293415 DOI: 10.1002/jnr.21632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To understand the characteristics of tsAM5D cells immortalized with the temperature-sensitive simian virus 40 large T-antigen, we first examined the responsiveness of the cells to ligands of the glial cell line-derived neurotrophic factor (GDNF) family. tsAM5D cells proliferated at the permissive temperature of 33 degrees C in response to either GDNF or neurturin, but not persephin or artemin. At the nonpermissive temperature of 39 degrees C, GDNF or neurturin caused tsAM5D cells to differentiate into neuron-like cells; however, the differentiated cells died in a time-dependent manner. Interestingly, ciliary neurotrophic factor (CNTF) did not affect the GDNF-mediated cell proliferation at 33 degrees C but promoted the survival and differentiation of GDNF-treated cells at 39 degrees C. In the presence of GDNF plus CNTF, the morphological change induced by the temperature shift was associated with up-regulated expression of various neuronal marker genes, indicating that the cells had undergone neuronal differentiation. In addition, tsAM5D cells caused to differentiate by GDNF plus CNTF at 39 degrees C became dependent solely on nerve growth factor (NGF) for their survival and neurite outgrowth. Moreover, upon treatment with GDNF plus CNTF, the dopaminergic phenotype was suppressed by the temperature shift. Thus, we demonstrated that tsAM5D cells had the capacity to differentiate terminally into neuron-like cells in response to GDNF plus CNTF when the oncogene was inactivated by the temperature shift. This cell line provides a useful model system for studying the role of a variety of signaling molecules for GDNF/CNTF-induced neuronal differentiation.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Huber K, Franke A, Brühl B, Krispin S, Ernsberger U, Schober A, von Bohlen und Halbach O, Rohrer H, Kalcheim C, Unsicker K. Persistent expression of BMP-4 in embryonic chick adrenal cortical cells and its role in chromaffin cell development. Neural Dev 2008; 3:28. [PMID: 18945349 PMCID: PMC2582231 DOI: 10.1186/1749-8104-3-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 10/22/2008] [Indexed: 11/29/2022] Open
Abstract
Background Adrenal chromaffin cells and sympathetic neurons both originate from the neural crest, yet signals that trigger chromaffin development remain elusive. Bone morphogenetic proteins (BMPs) emanating from the dorsal aorta are important signals for the induction of a sympathoadrenal catecholaminergic cell fate. Results We report here that BMP-4 is also expressed by adrenal cortical cells throughout chick embryonic development, suggesting a putative role in chromaffin cell development. Moreover, bone morphogenetic protein receptor IA is expressed by both cortical and chromaffin cells. Inhibiting BMP-4 with noggin prevents the increase in the number of tyrosine hydroxylase positive cells in adrenal explants without affecting cell proliferation. Hence, adrenal BMP-4 is likely to induce tyrosine hydroxylase in sympathoadrenal progenitors. To investigate whether persistent BMP-4 exposure is able to induce chromaffin traits in sympathetic ganglia, we locally grafted BMP-4 overexpressing cells next to sympathetic ganglia. Embryonic day 8 chick sympathetic ganglia, in addition to principal neurons, contain about 25% chromaffin-like cells. Ectopic BMP-4 did not increase this proportion, yet numbers and sizes of 'chromaffin' granules were significantly increased. Conclusion BMP-4 may serve to promote specific chromaffin traits, but is not sufficient to convert sympathetic neurons into a chromaffin phenotype.
Collapse
Affiliation(s)
- Katrin Huber
- Neuroanatomy, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brachmann I, Jakubick VC, Shakèd M, Unsicker K, Tucker KL. A simple slice culture system for the imaging of nerve development in embryonic mouse. Dev Dyn 2008; 236:3514-23. [PMID: 18000984 DOI: 10.1002/dvdy.21386] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Newborn neurons elaborate an axon that undertakes a complicated journey to find its ultimate target in the brain or periphery. Although major progress in the study of this process has been made by analysis of dissociated neurons in vitro, one would like to observe and manipulate axonal outgrowth and pathfinding as it occurs in situ, as fasciculated nerves growing within the tissue itself. Here, we present a simple technique to do this, through cultivation of embryonic mouse slices expressing enhanced green fluorescent protein (EGFP) specifically in newborn neurons. This system allows for imaging of outgrowth of peripheral nerves into structures such as the developing limb. We demonstrate a reproduction of normal innervation patterns by spinal nerves derived from spinal cord motor neurons and sensory neurons of the dorsal root ganglia. The slices can be manipulated pharmacologically as well as genetically, by crossing the EGFP-expressing line with lines containing targeted mutations in genes of interest.
Collapse
Affiliation(s)
- Isabel Brachmann
- Interdisciplinary Center for Neurosciences, Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
41
|
Reiprich S, Stolt CC, Schreiner S, Parlato R, Wegner M. SoxE proteins are differentially required in mouse adrenal gland development. Mol Biol Cell 2008; 19:1575-86. [PMID: 18272785 DOI: 10.1091/mbc.e07-08-0782] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sry-box (Sox)8, Sox9, and Sox10 are all strongly expressed in the neural crest. Here, we studied the influence of these closely related transcription factors on the developing adrenal medulla as one prominent neural crest derivative. Whereas Sox9 was not expressed, both Sox8 and Sox10 occurred widely in neural crest cells migrating to the adrenal gland and in the gland itself, and they were down-regulated in cells expressing catecholaminergic traits. Sox10-deficient mice lacked an adrenal medulla. The adrenal anlage was never colonized by neural crest cells, which failed to specify properly at the dorsal aorta and died apoptotically during migration. Furthermore, mutant neural crest cells did not express Sox8. Strong adrenal phenotypes were also observed when the Sox10 dimerization domain was inactivated or when a transactivation domain in the central portion was deleted. Sox8 in contrast had only minimal influence on adrenal gland development. Phenotypic consequences became only visible in Sox8-deficient mice upon additional deletion of one Sox10 allele. Replacement of Sox10 by Sox8, however, led to significant rescue of the adrenal medulla, indicating that functional differences between the two related Sox proteins contribute less to the different adrenal phenotypes of the null mutants than dependence of Sox8 expression on Sox10.
Collapse
Affiliation(s)
- Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
42
|
Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, Anouar Y. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol 2008; 29:128-41. [PMID: 18048093 DOI: 10.1016/j.yfrne.2007.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/24/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.
Collapse
Affiliation(s)
- Hafida Ghzili
- INSERM, U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Ziegler CG, Sicard F, Lattke P, Bornstein SR, Ehrhart-Bornstein M, Krug AW. Dehydroepiandrosterone induces a neuroendocrine phenotype in nerve growth factor-stimulated chromaffin pheochromocytoma PC12 cells. Endocrinology 2008; 149:320-8. [PMID: 17884937 DOI: 10.1210/en.2007-0645] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adrenal androgen dehydroepiandrosterone (DHEA) is produced in the inner zone of the adrenal cortex, which is in direct contact to adrenal medullary cells. Due to their close anatomical proximity and tightly intermingled cell borders, a direct interaction of adrenal cortex and medulla has been postulated. In humans congenital adrenal hyperplasia due to 21-hydroxylase deficiency results in androgen excess accompanied by severe adrenomedullary dysplasia and chromaffin cell dysfunction. Therefore, to define the mechanisms of DHEA action on chromaffin cell function, we investigated its effect on cell survival and differentiation processes on a molecular level in the chromaffin cell line PC12. DHEA lessened the positive effect of NGF on cell survival and neuronal differentiation. Nerve growth factor (NGF)-mediated induction of a neuronal phenotype was inhibited by DHEA as indicated by reduced neurite outgrowth and decreased expression of neuronal marker proteins such as synaptosome-associated protein of 25 kDa and vesicle-associated membrane protein-2. We examined whether DHEA may stimulate the cells toward a neuroendocrine phenotype. DHEA significantly elevated catecholamine release from unstimulated PC12 cells in the presence but not absence of NGF. Accordingly, DHEA enhanced the expression of the neuroendocrine marker protein chromogranin A. Next, we explored the possible molecular mechanisms of DHEA and NGF interaction. We demonstrate that NGF-induced ERK1/2 phosphorylation was reduced by DHEA. In summary, our data show that DHEA influences cell survival and differentiation processes in PC12 cells, possibly by interacting with the ERK1/2 MAPK pathway. DHEA drives NGF-stimulated cells toward a neuroendocrine phenotype, suggesting that the interaction of intraadrenal steroids and growth factors is required for the maintenance of an intact adrenal medulla.
Collapse
Affiliation(s)
- Christian G Ziegler
- University Hospital Carl Gustav Carus, Medical Clinic III, University of Dresden, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Chida D, Nakagawa S, Nagai S, Sagara H, Katsumata H, Imaki T, Suzuki H, Mitani F, Ogishima T, Shimizu C, Kotaki H, Kakuta S, Sudo K, Koike T, Kubo M, Iwakura Y. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc Natl Acad Sci U S A 2007; 104:18205-10. [PMID: 17989225 PMCID: PMC2084321 DOI: 10.1073/pnas.0706953104] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Indexed: 12/12/2022] Open
Abstract
ACTH (i.e., corticotropin) is the principal regulator of the hypothalamus-pituitary-adrenal axis and stimulates steroidogenesis in the adrenal gland via the specific cell-surface melanocortin 2 receptor (MC2R). Here, we generated mice with an inactivation mutation of the MC2R gene to elucidate the roles of MC2R in adrenal development, steroidogenesis, and carbohydrate metabolism. These mice, the last of the knockout (KO) mice to be generated for melanocortin family receptors, provide the opportunity to compare the phenotype of proopiomelanocortin KO mice with that of MC1R-MC5R KO mice. We found that the MC2R KO mutation led to neonatal lethality in three-quarters of the mice, possibly as a result of hypoglycemia. Those surviving to adulthood exhibited macroscopically detectable adrenal glands with markedly atrophied zona fasciculata, whereas the zona glomerulosa and the medulla remained fairly intact. Mutations of MC2R have been reported to be responsible for 25% of familial glucocorticoid deficiency (FGD) cases. Adult MC2R KO mice resembled FGD patients in several aspects, such as undetectable levels of corticosterone despite high levels of ACTH, unresponsiveness to ACTH, and hypoglycemia after prolonged (36 h) fasting. However, MC2R KO mice differ from patients with MC2R-null mutations in several aspects, such as low aldosterone levels and unaltered body length. These results indicate that MC2R is required for postnatal adrenal development and adrenal steroidogenesis and that MC2R KO mice provide a useful animal model by which to study FGD.
Collapse
Affiliation(s)
- Dai Chida
- Division of Cell Biology, Center for Experimental Medicine, and Fine Morphology Laboratory, Department of Basic Medical Science, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ducsay CA, Hyatt K, Mlynarczyk M, Root BK, Kaushal KM, Myers DA. Long-term hypoxia modulates expression of key genes regulating adrenomedullary function in the late gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1997-2005. [PMID: 17699566 DOI: 10.1152/ajpregu.00313.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously communicated that long-term hypoxia (LTH) resulted in a selective reduction in plasma epinephrine following acute stress in fetal sheep. The present study tested the hypothesis that LTH selectively reduces adrenomedullary expression of phenylethanolamine-N-methyltransferase (PNMT), the rate-limiting enzyme for epinephrine synthesis. We also examined the effect of LTH on adrenomedullary nicotinic, muscarinic, and glucocorticoid receptor (GR) expression. Ewes were maintained at high altitude (3,820 m) from 30 to 138 days gestation (dGA); adrenomedullary tissue was collected from LTH and age-matched, normoxic control fetuses at 139-141 dGA. Contrary to our hypothesis, in addition to PNMT, adrenomedullary expression (mRNA, protein) of tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) were reduced in the LTH fetus. Immunocytochemistry indicated that TH and DBH expression was lower throughout the medulla, while PNMT appeared to reflect a reduction in PNMT-expressing cells. Nicotinic receptor alpha 1, 2, 3, 5, 6, 7, beta 1, 2, and 4 subunits were expressed in the medulla of LTH and control fetuses. Messenger RNA for alpha 1 and 7 and beta 1 and 2 subunits was lower in LTH fetuses. Muscarinic receptors M1, M2, and M3 as well as the GR were also expressed, and no differences were noted between groups. In summary, LTH in fetal sheep has a profound effect on expression of key enzymes mediating adrenomedullary catecholamine synthesis. Further, LTH impacts nicotinic receptor subunit expression potentially altering cholinergic neurotransmission within the medulla. These findings have important implications regarding fetal cardiovascular and metabolic responses to stress in the LTH fetus.
Collapse
Affiliation(s)
- Charles A Ducsay
- Center for Perinatal Biology, Loma Linda University, California, USA
| | | | | | | | | | | |
Collapse
|
46
|
Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development. BMC Genomics 2007; 8:205. [PMID: 17603917 PMCID: PMC1929075 DOI: 10.1186/1471-2164-8-205] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 07/01/2007] [Indexed: 01/27/2023] Open
Abstract
Background Glucocorticoids (GCs) are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation in children and adolescents, and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR) as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated. Results This study systematically identifies a spectrum of GC target genes in embryonic growth plate chondrocytes treated with a synthetic GR agonist, dexamethasone (DEX), at 6 and 24 hrs. Conventional analysis of this data set and gene set enrichment analysis (GSEA) was performed. Transcripts associated with metabolism were enriched in the DEX condition along with extracellular matrix genes. In contrast, a subset of growth factors and cytokines were negatively correlated with DEX treatment. Comparing DEX-induced gene expression data to developmental changes in gene expression in micromass cultures revealed an additional layer of complexity in which DEX maintains the expression of certain chondrocyte marker genes while inhibiting factors that promote vascularization and ultimately ossification of the cartilaginous template. Conclusion Together, these results provide insight into the mechanisms and major molecular classes functioning downstream of DEX in primary chondrocytes. In addition, comparison of our data with microarray studies of DEX treatment in other cell types demonstrated that the majority of DEX effects are tissue-specific. This study provides novel insights into the effects of pharmacological GC on chondrocyte gene transcription and establishes the foundation for subsequent functional studies.
Collapse
|
47
|
Maxeiner JH, Karwot R, Hausding M, Sauer KA, Scholtes P, Finotto S. A method to enable the investigation of murine bronchial immune cells, their cytokines and mediators. Nat Protoc 2007; 2:105-12. [PMID: 17401344 DOI: 10.1038/nprot.2007.8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Innovative therapies for severe lung diseases (such as allergic and chronic asthma, chronic obstructive pulmonary disease or any type of lung cancer) require a detailed understanding of the cellular and immune processes in the lung. This protocol details a method to obtain the immune cells of the bronchi as well as the cytokines and mediators produced by these cells for further investigation. The broncho-alveolar lavage fluid (BALF) is taken by injecting physiological solution through the tracheal tube into the murine airways and carefully regained by winding up the connected syringe. After centrifugation, the resulting BALF supernatant can be stored for detection of cytokines or other mediators by enzyme-linked immunosorbent assay or other methods; the resuspended cell pellet can also be used for flow cytometric analyses, to check cell viability and the level of apoptosis, as well as other applications. In addition, CD4+ T cells isolated from wild-type and genetically modified mice alone or along with other immunologically important cells such as T regulatory cells, which can be used to reconstitute immunodeficient mice, may be retrieved from the airways with this method. This protocol can be completed within 35 min.
Collapse
Affiliation(s)
- Joachim H Maxeiner
- Laboratory of Cellular and Molecular Immunology of the Lung University of Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Sicard F, Krug AW, Ziegler CG, Sperber S, Ehrhart-Bornstein M, Bornstein SR. Role of DHEA and growth factors in chromaffin cell proliferation. Ann N Y Acad Sci 2006; 1073:312-6. [PMID: 17102101 DOI: 10.1196/annals.1353.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dehydroepiandrostreone (DHEA) is a neuroactive steroid produced by the inner layer of the adrenal cortex close to the adrenomedullary cells. Chromaffin cell growth and proliferation are under the control of insulin-like growth factor II (IGF-II) and basic fibroblast growth factor (bFGF). The aim of the present study was to examine the role of DHEA on chromaffin cell proliferation induced by IGF-II and bFGF. In our model, DHEA significantly decreased IGF-II-induced proliferation by 48.7%, whereas it did not affect the proliferation induced by bFGF. These data suggest that DHEA exerts a paracrine function in the control of chromaffin cell growth.
Collapse
Affiliation(s)
- F Sicard
- Department of Medicine, Carl Gustav Carus University Hospital, Medical Clinic III, University of Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Ziegler CG, Sicard F, Sperber S, Ehrhart-Bornstein M, Bornstein SR, Krug AW. DHEA reduces NGF-mediated cell survival in serum-deprived PC12 cells. Ann N Y Acad Sci 2006; 1073:306-11. [PMID: 17102100 DOI: 10.1196/annals.1353.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adrenocortical androgens, including dehydroepiandrosterone (DHEA), are produced in the inner zone of the adrenal cortex that is in direct contact with the neural crest-derived catecholamine-producing chromaffin cells. DHEA has recently been identified as a crucial regulator of neuronal stem cell proliferation. Thus, DHEA might play a hitherto unknown role in intra-adrenal tissue formation. In the present study, we examined the influence of DHEA on nerve growth factor (NGF)-mediated survival in serum-deprived PC12 cells and analyzed the influence of DHEA on NGF-induced ERK1/2 mitogen-activated protein (MAP) kinase activation by enzyme-linked immunosorbent assay (ELISA). Cell survival promoted by NGF in serum-deprived PC12 cells and neurite outgrowth was reduced by DHEA, pointing toward a role of DHEA in the differentiation process of chromaffin cells. Furthermore, NGF-induced ERK 1/2 activation was significantly inhibited by DHEA. Hence, we speculate that DHEA might influence NGF-mediated chromaffin differentiation processes using the ERK1/2 MAP kinase pathway during adrenal tissue development.
Collapse
Affiliation(s)
- Christian G Ziegler
- Department of Medicine, Carl Gustav Carus University Hospital, Medical Clinic III, University of Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Transcriptional silencing of glucocorticoid-inducible phenylethanolamine N-methyltransferase expression by sequential signaling events. Exp Cell Res 2006; 313:772-81. [PMID: 17196587 DOI: 10.1016/j.yexcr.2006.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 11/10/2006] [Accepted: 11/27/2006] [Indexed: 01/20/2023]
Abstract
Specific arrays and timing of environmental cues including glucocorticoids, neurotrophic factors and intracellular messengers influence phenotype expression in developing chromaffin cells or sympathetic neurons. Although the two lineages are closely related, only adrenergic chromaffin cells express phenylethanolamine N-methyltransferase (PNMT), the enzyme that synthesizes epinephrine, while neurons and noradrenergic chromaffin cells are PNMT-negative. It remains unclear to what extent the ability to express PNMT is determined by environmental cues versus intrinsic heterogeneity already present in ganglionic and adrenal precursors. Mouse pheochromocytoma (MPC) cell lines are a model for studying adrenergic differentiation. In two MPC lines that exhibit up to 1000-fold induction of PNMT mRNA by dexamethasone, pretreatment with glial cell line-derived neurotrophic factor (GDNF) and/or the cyclic AMP analog cpt-cAMP markedly blunts or abrogates PNMT inducibility. PNMT suppression occurs without apparent neuronal differentiation in one of the MPC lines and in normal adult mouse chromaffin cell cultures. Our results establish transcriptional suppression by cAMP as a mechanism for regulating PNMT expression in both normal and neoplastic mouse chromaffin cells. However, contrast between large increases in PNMT mRNA levels and low stimulation of promoter activity suggests that modulation of mRNA degradation also plays an important role. Clarification of mechanisms that regulate these two processes in MPC cells may provide insight into developmental mechanisms governing expression and maintenance of the adrenergic phenotype.
Collapse
|