1
|
Lee HJ, Han JH, Chapman B, Jung KM, Rudd I, Han JY, Kim TH. A comprehensive transcriptional profiling of developing gonads reveals the role of TGFβ signaling in female gonadal asymmetry in chickens. Poult Sci 2025; 104:104932. [PMID: 40014972 PMCID: PMC11910708 DOI: 10.1016/j.psj.2025.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Asymmetrical gonadal development is an intriguing phenomenon observed in the majority of female birds. In chickens, the left gonad of female embryos develops into a functional ovary, while the right gonad undergoes degeneration during embryogenesis. This sexually dimorphic trait is primarily induced by the spatial differential expression of the paired like homeodomain 2 (PITX2) gene. However, a comprehensive understanding of the transcriptional profile of the developing gonads during asymmetric development is still lacking. To elucidate the molecular mechanism of asymmetric gonadal development in chickens, we compared the transcriptomes between left and right gonads of female chickens using bulk- and single cell-RNA sequencing (scRNA-seq) approaches. Our bulk RNA-seq analysis of the female chicken gonads at E5 (HH26), E6.5 (HH30), E8 (HH34), and E9.5 (HH36) revealed significant differential gene expression between the left and right female chicken gonads, particularly in signaling pathways, cell cycle, and metabolic processes. Moreover, scRNA-seq analysis revealed that coelomic epithelial, interstitial, and pre-granulosa cells of the left gonads at E5 show a highly proliferative status compared to the right gonad, contributing to the asymmetric gonadal cell proliferation, which may be regulated by the transforming growth factor beta (TGFβ) signaling pathway. Our findings demonstrate that dynamic cell-type-specific transcriptional profiles during embryogenesis play a vital role in the asymmetric gonadal development of female chickens.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Animal Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Jeong Hoon Han
- Department of Animal Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Brittany Chapman
- Department of Animal Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Isabella Rudd
- Department of Animal Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Tae Hyun Kim
- Department of Animal Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Formstone C, Aldeiri B, Davenport M, Francis‐West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2025; 254:102-141. [PMID: 39319771 PMCID: PMC11809137 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological SciencesUniversity of HertfordshireHatfieldUK
| | - Bashar Aldeiri
- Department of Paediatric SurgeryChelsea and Westminster HospitalLondonUK
| | - Mark Davenport
- Department of Paediatric SurgeryKing's College HospitalLondonUK
| | | |
Collapse
|
3
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Caño-Carrillo S, Garcia-Padilla C, Aranega AE, Lozano-Velasco E, Franco D. Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration. Int J Mol Sci 2024; 25:12904. [PMID: 39684625 DOI: 10.3390/ijms252312904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions.
Collapse
Affiliation(s)
- Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
5
|
Hu H, Zhao Y, Shan C, Fu H, Cai J, Li Z. Derivation of dental epithelial-like cells from murine embryonic stem cells for tooth regeneration. Stem Cells 2024; 42:945-956. [PMID: 39177656 DOI: 10.1093/stmcls/sxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Teeth are comprised of epithelial and mesenchymal cells, and regenerative teeth rely on the regeneration of both cell types. Transcription factors play a pivotal role in cell fate determination. In this study, we establish fluorescence models based on transcription factors to monitor and analyze dental epithelial cells. Using Pitx2-P2A-copGFP mice, we observe that Pitx2+ epithelial cells, when combined with E14.5 dental mesenchymal cells, are sufficient for the reconstitution of teeth. Induced-Pitx2+ cells, directly isolated from the embryoid body that employs the Pitx2-GFP embryonic stem cell line, exhibit the capacity to differentiate into ameloblasts and develop into teeth when combined with dental mesenchymal cells. The regenerated teeth exhibit a complete structure, including dental pulp, dentin, enamel, and periodontal ligaments. Subsequent exploration via RNA-seq reveals that induced-Pitx2+ cells exhibit enrichment in genes associated with FGF receptors and WNT ligands compared with induced-Pitx2- cells. Our results indicate that both primary Pitx2+ and induced Pitx2+ cells possess the capability to differentiate into enamel-secreting ameloblasts and grow into teeth when combined with dental mesenchymal cells.
Collapse
Affiliation(s)
- Hong Hu
- College of Basic Medical Sciences and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yifan Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Ce Shan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Huancheng Fu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jinglei Cai
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, People's Republic of China
| | - Zhonghan Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
6
|
Zubrzycki M, Schramm R, Costard-Jäckle A, Grohmann J, Gummert JF, Zubrzycka M. Cardiac Development and Factors Influencing the Development of Congenital Heart Defects (CHDs): Part I. Int J Mol Sci 2024; 25:7117. [PMID: 39000221 PMCID: PMC11241401 DOI: 10.3390/ijms25137117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves numerous types of cells originating outside the initial cardiac crescent, including neural crest cells, cells of the second heart field origin, and epicardial progenitor cells. The development of the fetal heart and circulatory system is subject to regulatation by both genetic and environmental processes. The etiology for cases with congenital heart defects (CHDs) is largely unknown, but several genetic anomalies, some maternal illnesses, and prenatal exposures to specific therapeutic and non-therapeutic drugs are generally accepted as risk factors. New techniques for studying heart development have revealed many aspects of cardiac morphogenesis that are important in the development of CHDs, in particular transposition of the great arteries.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Surgery for Congenital Heart Defects, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Rene Schramm
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Angelika Costard-Jäckle
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Jochen Grohmann
- Department of Congenital Heart Disease/Pediatric Cardiology, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Jan F. Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
7
|
Tanaka J, Miura A, Shimamura Y, Hwang Y, Shimizu D, Kondo Y, Sawada A, Sarmah H, Ninish Z, Mishima K, Mori M. Generation of salivary glands derived from pluripotent stem cells via conditional blastocyst complementation. Cell Rep 2024; 43:114340. [PMID: 38865239 PMCID: PMC11580835 DOI: 10.1016/j.celrep.2024.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Whole salivary gland generation and transplantation offer potential therapies for salivary gland dysfunction. However, the specific lineage required to engineer complete salivary glands has remained elusive. In this study, we identify the Foxa2 lineage as a critical lineage for salivary gland development through conditional blastocyst complementation (CBC). Foxa2 lineage marking begins at the boundary between the endodermal and ectodermal regions of the oral epithelium before the formation of the primordial salivary gland, thereby labeling the entire gland. Ablation of Fgfr2 within the Foxa2 lineage in mice leads to salivary gland agenesis. We reversed this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts, resulting in mice that survived to adulthood with salivary glands of normal size, comparable to those of their littermate controls. These findings demonstrate that CBC-based salivary gland regeneration serves as a foundational experimental approach for future advanced cell-based therapies.
Collapse
Affiliation(s)
- Junichi Tanaka
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo 142-8555, Japan.
| | - Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yuko Shimamura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Youngmin Hwang
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yuri Kondo
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Anri Sawada
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hemanta Sarmah
- Columbia Stem Cell Initiative, Stem Cell Core, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zurab Ninish
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Kuriki M, Korb A, Comai G, Tajbakhsh S. Interplay between Pitx2 and Pax7 temporally governs specification of extraocular muscle stem cells. PLoS Genet 2024; 20:e1010935. [PMID: 38875306 PMCID: PMC11178213 DOI: 10.1371/journal.pgen.1010935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/05/2024] [Indexed: 06/16/2024] Open
Abstract
Gene regulatory networks that act upstream of skeletal muscle fate determinants are distinct in different anatomical locations. Despite recent efforts, a clear understanding of the cascade of events underlying the emergence and maintenance of the stem cell pool in specific muscle groups remains unresolved and debated. Here, we invalidated Pitx2 with multiple Cre-driver mice prenatally, postnatally, and during lineage progression. We showed that this gene becomes progressively dispensable for specification and maintenance of the muscle stem (MuSC) cell pool in extraocular muscles (EOMs) despite being, together with Myf5, a major upstream regulator during early development. Moreover, constitutive inactivation of Pax7 postnatally led to a greater loss of MuSCs in the EOMs compared to the limb. Thus, we propose a relay between Pitx2, Myf5 and Pax7 for EOM stem cell maintenance. We demonstrate also that MuSCs in the EOMs adopt a quiescent state earlier that those in limb muscles and do not spontaneously proliferate in the adult, yet EOMs have a significantly higher content of Pax7+ MuSCs per area pre- and post-natally. Finally, while limb MuSCs proliferate in the mdx mouse model for Duchenne muscular dystrophy, significantly less MuSCs were present in the EOMs of the mdx mouse model compared to controls, and they were not proliferative. Overall, our study provides a comprehensive in vivo characterisation of MuSC heterogeneity along the body axis and brings further insights into the unusual sparing of EOMs during muscular dystrophy.
Collapse
Affiliation(s)
- Mao Kuriki
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, Institut Pasteur, Paris, France
| | - Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, Institut Pasteur, Paris, France
| | - Glenda Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, Institut Pasteur, Paris, France
| |
Collapse
|
10
|
Schiaffino S, Hughes SM, Murgia M, Reggiani C. MYH13, a superfast myosin expressed in extraocular, laryngeal and syringeal muscles. J Physiol 2024; 602:427-443. [PMID: 38160435 DOI: 10.1113/jp285714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
MYH13 is a unique type of sarcomeric myosin heavy chain (MYH) first detected in mammalian extraocular (EO) muscles and later also in vocal muscles, including laryngeal muscles of some mammals and syringeal muscles of songbirds. All these muscles are specialized in generating very fast contractions while producing relatively low force, a design appropriate for muscles acting against a much lower load than most skeletal muscles inserting into the skeleton. The definition of the physiological properties of muscle fibres containing MYH13 has been complicated by the mixed fibre type composition of EO muscles and the coexistence of different MYH types within the same fibre. A major advance in this area came from studies on isolated recombinant myosin motors and the demonstration that the affinity of actin-bound human MYH13 for ADP is much weaker than those of fast-type MYH1 (type 2X) and MYH2 (type 2A). This property is consistent with a very fast detachment of myosin from actin, a major determinant of shortening velocity. The MYH13 gene arose early during vertebrate evolution but was characterized only in mammals and birds and appears to have been lost in some teleost fish. The MYH13 gene is located at the 3' end of the mammalian fast/developmental gene cluster and in a similar position to the orthologous cluster in syntenic regions of the songbird genome. MYH13 gene regulation is controlled by a super-enhancer in the mammalian locus and deletion of the neighbouring fast MYH1 and MYH4 genes leads to abnormal MYH13 expression in mouse leg muscles.
Collapse
Affiliation(s)
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College, London, UK
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
11
|
Replogle MR, Thompson S, Reis LM, Semina EV. A De Novo Noncoding RARB Variant Associated with Complex Microphthalmia Alters a Putative Regulatory Element. Hum Mutat 2024; 2024:6619280. [PMID: 39450403 PMCID: PMC11501074 DOI: 10.1155/2024/6619280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Retinoic acid receptor beta (RARB) is a transcriptional regulator crucial for coordinating retinoic acid- (RA-) mediated morphogenic movements, cell growth, and differentiation during eye development. Loss- or gain-of-function RARB coding variants have been associated with microphthalmia, coloboma, and anterior segment defects. We identified a de novo variant c.157+1895G>A located within a conserved region (CR1) in the first intron of RARB in an individual with complex microphthalmia and significant global developmental delay. Based on the phenotypic overlap, we further investigated the possible effects of the variant on mRNA splicing and/or transcriptional regulation through in silico and functional studies. In silico analysis identified the possibility of alternative splicing, suggested by one out of three (HSF, SpliceAI, and MaxEntScan) splicing prediction programs, and a strong indication of regulatory function based on publicly available DNase hypersensitivity, histone modification, chromatin folding, and ChIP-seq data sets. Consistent with the predictions of SpliceAI and MaxEntScan, in vitro minigene assays showed no effect on RARB mRNA splicing. Evaluation of CR1 for a regulatory role using luciferase reporter assays in human lens epithelial cells demonstrated a significant increase in the activity of the RARB promoter in the presence of wild-type CR1. This activity was further significantly increased in the presence of CR1 carrying the c.157+1895G>A variant, suggesting that the variant may promote RARB overexpression in human cells. Induction of RARB overexpression in human lens epithelial cells resulted in increased cell proliferation and elevated expression of FOXC1, a known downstream target of RA signaling and a transcription factor whose down- and upregulation is associated with ocular phenotypes overlapping the RARB spectrum. These results support a regulatory role for the CR1 element and suggest that the de novo c.157+1895G>A variant affecting this region may alter the proper regulation of RARB and, as a result, its downstream genes, possibly leading to abnormal development.
Collapse
Affiliation(s)
- Maria R. Replogle
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samuel Thompson
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Linda M. Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena V. Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Johnson LL, Abrahante JE, McLoon LK. Nystagmus in the B6(CG)Tyr(c-2J)/J Albino Mouse: A Functional and RNA-Seq Analysis. Invest Ophthalmol Vis Sci 2024; 65:26. [PMID: 38206276 PMCID: PMC10787582 DOI: 10.1167/iovs.65.1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose Infantile nystagmus syndrome (INS) is a gaze-holding disorder characterized by conjugate, uncontrolled eye oscillations that can result in significant visual acuity loss. INS is often associated with albinism, but the mechanism is unclear. Albino mice have nystagmus; however, a pigmented mouse with a tyr mutation making it phenotypically albino, the B6(CG)-Tyr(c-2J)/J (B6 albino), had not been tested. We tested optokinetic response (OKR) in B6 albino and control mice. RNA-Seq was performed on extraocular muscles (EOM), tibialis anterior (TA) muscle, abducens (CN6), and oculomotor (CN3) neurons to uncover molecular differences that may contribute to nystagmus. Methods OKR was measured using an ISCAN system. RNA was isolated from four tissues to identify differentially expressed genes and validated with qPCR and immunohistochemistry. Ingenuity pathway analyses identified top biological pathways. Results All B6 albino mice tested had nystagmus. Differential RNA expression analysis showed 383 genes differentially expressed in EOM, 70 in CN3, 20 in CN6, and 639 in the TA. Two genes were differentially expressed in all four tissues: wdfy1 and nnt. Differences were validated by qPCR and immunostaining. Conclusions The tyr mutation in B6 albino mice, genotypically pigmented and phenotypically albino, is sufficient to result in spontaneous nystagmus. The two genes with decreased expression in the B6 albino tissues examined, wdfy1 and nnt, have been implicated in mitochondrial dysfunction and stem cell maintenance in other systems. Their function in extraocular muscle is unknown. These studies suggest that this mouse model of nystagmus may allow molecular identification of candidate nystagmus-related genes.
Collapse
Affiliation(s)
- Laura L. Johnson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
- Graduate Program in Cellular, Molecular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, United States
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
- Graduate Program in Cellular, Molecular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
13
|
Gabriel GC, Lo CW. Molecular Pathways and Animal Models of Defects in Situs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:719-738. [PMID: 38884745 DOI: 10.1007/978-3-031-44087-8_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Left-right patterning is among the least well understood of the three axes defining the body plan, and yet it is no less important, with left-right patterning defects causing structural birth defects with high morbidity and mortality, such as complex congenital heart disease, biliary atresia, or intestinal malrotation. The cell signaling pathways governing left-right asymmetry are highly conserved and involve multiple components of the TGF-β superfamily of cell signaling molecules. Central to left-right patterning is the differential activation of Nodal on the left, and BMP signaling on the right. In addition, a plethora of other cell signaling pathways including Shh, FGF, and Notch also contribute to the regulation of left-right patterning. In vertebrate embryos such as the mouse, frog, or zebrafish, the specification of left-right identity requires the left-right organizer (LRO) containing cells with motile and primary cilia that mediate the left-sided propagation of Nodal signaling, followed by left-sided activation of Lefty and then Pitx2, a transcription factor that specifies visceral organ asymmetry. While this overall scheme is well conserved, there are striking species differences, including the finding that motile cilia do not play a role in left-right patterning in some vertebrates. Surprisingly, the direction of heart looping, one of the first signs of organ left-right asymmetry, was recently shown to be specified by intrinsic cell chirality, not Nodal signaling, possibly a reflection of the early origin of Nodal signaling in radially symmetric organisms. How this intrinsic chirality interacts with downstream molecular pathways regulating visceral organ asymmetry will need to be further investigated to elucidate how disturbance in left-right patterning may contribute to complex CHD.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Dawson T, Iwanaga J, Zou B, Anbalagan M, Dumont AS, Loukas M, Rowan BG, Tubbs RS. Transcription factor support for the dual embryological origin of the sternocleidomastoid and trapezius muscles. Clin Anat 2024; 37:147-152. [PMID: 38057962 DOI: 10.1002/ca.24124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
The embryological origin of the trapezius and sternocleidomastoid muscles has been debated for over a century. To shed light on this issue, the present anatomical study was performed. Five fresh frozen human cadavers, three males and two females, were used for this study. Samples from each specimen's trapezius and sternocleidomastoid were fixed in 10% formalin and placed in paraffin blocks. As Paired like homeodomain 2 (Pitx2) and T-box factor 1(Tbx1) have been implicated in the region and muscle type regulation, we performed Tbx1 and Pitx2 Immunohistochemistry (IHC) on these muscle tissue samples to identify the origin of the trapezius and sternocleidomastoid muscles. We have used the latest version of QuPath, v0.4.3, software to quantify the Tbx and Pitx2 staining. For the sternocleidomastoid muscle, for evaluated samples, the average amount of positively stained Tbx1 and Pitx2 was 25% (range 16%-30%) and 18% (range 12%-23%), respectively. For the trapezius muscles, for evaluated samples, the average amount of positively stained Tbx1 and Pitx2 parts of the samples was 17% (range 15%-20%) and 15% (14%-17%), respectively. Our anatomical findings suggest dual origins of both the trapezius and sternocleidomastoid muscles. Additionally, as neither Pitx2 nor Tbx1 made up all the staining observed for each muscle, other contributions to these structures are likely. Future studies with larger samples are now necessary to confirm these findings.
Collapse
Affiliation(s)
- Timothy Dawson
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada
| | - Joe Iwanaga
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, Louisiana, USA
| | - Binghao Zou
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Muralidharan Anbalagan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Marios Loukas
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada
| | - Brian G Rowan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - R Shane Tubbs
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, Louisiana, USA
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of d-Transposition of the Great Arteries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:683-696. [PMID: 38884742 DOI: 10.1007/978-3-031-44087-8_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
During normal cardiovascular development, the outflow tract becomes septated and rotates so that the separate aorta and pulmonary trunk are correctly aligned with the left and right ventricles, respectively. However, when this process goes wrong, the aorta and pulmonary trunk are incorrectly positioned, resulting in oxygenated blood being directly returned to the lungs, with deoxygenated blood being delivered to the systemic circulation. This is termed transposition of the great arteries (TGA). The precise etiology of TGA is not known, but the use of animal models has elucidated that genes involved in determination of the left- embryonic body axis play key roles. Other factors such as retinoic acid levels are also crucial. This chapter reviews the animal models presenting with TGA that have been generated by genetic manipulation or with exogenous agents.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle, UK
| | | |
Collapse
|
16
|
Tanaka J, Miura A, Shimamura Y, Hwang Y, Shimizu D, Kondo Y, Sawada A, Sarmah H, Ninish Z, Mishima K, Mori M. Generation of salivary glands derived from pluripotent stem cells via conditional blastocyst complementation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566845. [PMID: 38014349 PMCID: PMC10680620 DOI: 10.1101/2023.11.13.566845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Various patients suffer from dry mouth due to salivary gland dysfunction. Whole salivary gland generation and transplantation is a potential therapy to resolve this issue. However, the lineage permissible to design the entire salivary gland generation has been enigmatic. Here, we discovered Foxa2 as a lineage critical for generating a salivary gland via conditional blastocyst complementation (CBC). Foxa2 linage, but not Shh nor Pitx2, initiated to label between the boundary region of the endodermal and the ectodermal oral mucosa before primordial salivary gland formation, resulting in marking the entire salivary gland. The salivary gland was agenesis by depleting Fgfr2 under the Foxa2 lineage in the mice. We rescued this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts. Those mice survived until adulthood with normal salivary glands compatible in size compared with littermate controls. These results indicated that CBC-based salivary gland generation is promising for next-generation cell-based therapy.
Collapse
|
17
|
White S, Taranath A, Hanagandi P, Taranath DA, To MS, Souzeau E, Siggs OM, Craig JE. Neuroimaging Findings in Axenfeld-Rieger Syndrome: A Case Series. AJNR Am J Neuroradiol 2023; 44:1231-1235. [PMID: 37679021 PMCID: PMC10549946 DOI: 10.3174/ajnr.a7995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Axenfeld-Rieger syndrome is an autosomal dominant condition associated with multisystemic features including developmental anomalies of the anterior segment of the eye. Single nucleotide and copy number variants in the paired-like homeodomain transcription factor 2 (PITX2) and forkhead box C1 (FOXC1) genes are associated with Axenfeld-Rieger syndrome as well as other CNS malformations. We determined the association between Axenfeld-Rieger syndrome and specific brain MR imaging neuroradiologic anomalies in cases with or without a genetic diagnosis. This case series included 8 individuals with pathogenic variants in FOXC1; 2, in PITX2; and 2 without a genetic diagnosis. The most common observation was vertebrobasilar artery dolichoectasia, with 46% prevalence. Other prevalent abnormalities included WM hyperintensities, cerebellar hypoplasia, and ventriculomegaly. Vertebrobasilar artery dolichoectasia and absent/hypoplastic olfactory bulbs were reported in >50% of individuals with FOXC1 variants compared with 0% of PITX2 variants. Notwithstanding the small sample size, neuroimaging abnormalities were more prevalent in individuals with FOXC1 variants compared those with PITX2 variants.
Collapse
Affiliation(s)
- Samuel White
- From the Robinson Research Institute (S.W.), Faculty of Medicine and Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ajay Taranath
- Department of Radiology (A.T.), Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Prasad Hanagandi
- Department of Neuroradiology (P.H.), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Deepa A Taranath
- Department of Ophthalmology (D.A.T., M.-S.T., E.S., O.M.S., J.E.C.), Flinders University, Bedford Park, South Australia, Australia
| | - Minh-Son To
- Department of Ophthalmology (D.A.T., M.-S.T., E.S., O.M.S., J.E.C.), Flinders University, Bedford Park, South Australia, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology (D.A.T., M.-S.T., E.S., O.M.S., J.E.C.), Flinders University, Bedford Park, South Australia, Australia
| | - Owen M Siggs
- Department of Ophthalmology (D.A.T., M.-S.T., E.S., O.M.S., J.E.C.), Flinders University, Bedford Park, South Australia, Australia
- Garvan Institute of Medical Research (O.M.S.), Darlinghurst, New South Wales, Australia
| | - Jamie E Craig
- Department of Ophthalmology (D.A.T., M.-S.T., E.S., O.M.S., J.E.C.), Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
18
|
Park W, Chai HH, Lim D, Dang C, Lee J, Kim J, Jeong H, Lee T, Lee KC, Lee K. Case report: Investigation of genetic mutations in a case of schistosomus reflexus in a Holstein dairy cattle fetus in Korea. Front Vet Sci 2023; 10:1238544. [PMID: 37671278 PMCID: PMC10475524 DOI: 10.3389/fvets.2023.1238544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023] Open
Abstract
Schistosomus reflexus (SR) is one of the most common congenital anomalies found in cases of cattle dystocia; this disorder occurs mostly in cattle. Congenital anomalies such as SR are caused by various genetic and environmental factors, but no specific cause has been elucidated for SR. This study reports a case of SR in a Holstein dairy cattle fetus with congenital anomalies in Korea. Grossly, a distinct spine curvature was observed between the thoracic and lumbar vertebrae, accompanied by a consequential malformation from the sacrum to the occipital bone. Furthermore, the thoracic and abdominal organs were exposed. In computed tomography (CT) images, mild and severe kyphoscoliosis was observed in T1~11 and L1~6, respectively. Additionally, vertebral dysplasia was observed in S1~5 and Cd 1~5. To pinpoint the causal genes and mutations, we leveraged a custom 50K Hanwoo SNP-Chip and the Online Mendelian Inheritance in Animals (OMIA) database. As a result, we identified a nonsense mutation in apoptotic protease activating factor 1 (APAF1) within HH1 that was associated with a decrease in conception rate and an increase in abortion in Holstein dairy cattle. The genotype of the SR case was A/A, and most of the 1,142 normal Holstein dairy cattle tested as a control group had the genotype G/G. In addition, the A/A genotype did not exist in the control group. Based on the pathological, genetic, and radiological findings, the congenital abnormalities observed were diagnosed as SR.
Collapse
Affiliation(s)
- Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Changgwon Dang
- Animal Genetics and Breeding Division, National Institute of Animal Science, Rural Development Administration (RDA), Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Jaegu Lee
- Animal Genetics and Breeding Division, National Institute of Animal Science, Rural Development Administration (RDA), Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Jongho Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hogyun Jeong
- Veterinary Medicine College, Jeongbuk National University, Iksan-si, Republic of Korea
| | - Taekwon Lee
- Veterinary Medicine College, Jeongbuk National University, Iksan-si, Republic of Korea
| | - Ki-Chang Lee
- Veterinary Medicine College, Jeongbuk National University, Iksan-si, Republic of Korea
| | - Kyunghyun Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
19
|
Luo X, Yang Z, Zeng J, Chen J, Chen N, Jiang X, Wei Q, Yi P, Xu J. Mutation of FLNA attenuating the migration of abdominal muscles contributed to Melnick-Needles syndrome (MNS) in a family with recurrent miscarriage. Mol Genet Genomic Med 2023; 11:e2145. [PMID: 36734119 PMCID: PMC10178794 DOI: 10.1002/mgg3.2145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Filamin A, encoded by the X-linked gene FLNA, links the cell membrane with the cytoskeleton and acts as a regulator of the actin cytoskeleton. Mutations in FLNA cause a large spectrum of congenital malformations during embryonic development, including Melnick-Needles syndrome (MNS). However, reports of MNS, especially in males, are rare, and the pathogenesis molecular mechanisms are not well understood. METHODS We found a family with two consecutive miscarriages of similar fetuses with multiple malformations. DNA was extracted from peripheral blood and tissues, and whole exome sequencing was performed for genetic analysis. Then, we created a C57BL/6 mouse with a point mutation by CRISPR/Cas-mediated genome engineering. The migration of primary abdominal muscle cell was detected by wound healing assay. RESULTS The first fetus showed congenital hygroma colli and omphalocele identified by ultrasound at 12 wks; the second fetus showed hygroma colli and thoraco abdominoschisis at 12 wks, with a new hemizygous mutation c.4420G>A in exon 26 of the FLNA gene, which is predicted to cause an amino acid substitution (p.Asp1474Asn). The mother and grandmother were both present in the c.4420G>A heterozygous state, and the mother's healthy brother had wild-type FLNA. These FLNA-mutated mice exhibited a broader central gap between the rectus abdominis than the wild type (WT), similar to the midline structure dysplasia of the abdominal wall in the two fetuses. Wound healing assays showed the attenuated migration capacity of abdominal muscle cells in mice with mutated FLNA. Finally, we summarized the cases of MNS with FLNA mutation from the accessible published literature thus far. CONCLUSION Our research revealed a mutation site of the FLNA for MNS and explored the mechanism of midline structure dysplasia in the abdominal wall of male patients, which could provide more evidence for the clinical diagnosis and genetic counseling of families with these disorders.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zailin Yang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Jing Zeng
- Department of Obstetrics and Gynecology, Yubei District Chinese Medicine Hospital, Chongqing, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ningxuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinlv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Michels K, Bohnsack BL. Ophthalmological Manifestations of Axenfeld-Rieger Syndrome: Current Perspectives. Clin Ophthalmol 2023; 17:819-828. [PMID: 36926528 PMCID: PMC10013571 DOI: 10.2147/opth.s379853] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Axenfeld-Rieger syndrome (ARS) is a rare congenital disease that is primarily characterized by ocular anterior segment anomalies but is also associated with craniofacial, dental, cardiac, and neurologic abnormalities. Over half of cases are linked with autosomal dominant mutations in either FOXC1 or PITX2, which reflects the molecular role of these genes in regulating neural crest cell contributions to the eye, face, and heart. Within the eye, ARS is classically defined as the combination of posterior embryotoxon with iris bridging strands (Axenfeld anomaly) and iris hypoplasia causing corectopia and pseudopolycoria (Rieger anomaly). Glaucoma due to iridogoniodysgenesis is the main source of morbidity and is typically diagnosed during infancy or childhood in over half of affected individuals. Angle bypass surgery, such as glaucoma drainage devices and trabeculectomies, is often needed to obtain intraocular pressure control. A multi-disciplinary approach including glaucoma specialists and pediatric ophthalmologists produces optimal outcomes as vision is dependent on many factors including glaucoma, refractive error, amblyopia and strabismus. Further, since ophthalmologists often make the diagnosis, it is important to refer patients with ARS to other specialists including dentistry, cardiology, and neurology.
Collapse
Affiliation(s)
- Kristi Michels
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brenda L Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Genotype-phenotype association of PITX2 and FOXC1 in Axenfeld-Rieger syndrome. Exp Eye Res 2023; 226:109307. [PMID: 36442680 DOI: 10.1016/j.exer.2022.109307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
PITX2 and FOXC1 are the most common pathogenic genes associated with Axenfeld-Rieger syndrome (ARS). In this study, we aimed to explore the variation spectrum of PITX2 and FOXC1 and their associated phenotype based on data from our study and previously reported literatures. Whole exome sequencing was performed on eight probands in our study. Multistep bioinformatic and co-segregation analyses were performed to detect pathogenic variants. Genotype-phenotype correlations of PITX2 and FOXC1 and the differences between them were determined. We detected three variants of FOXC1 and two variants of PITX2 in five unrelated families with ARS. Macular retinoschisis had been observed in AR1 with variant in PITX2 and it is not reported before. Additionally, a review of published literature and our study led to the identification of 593 families with variants of PITX2 or FOXC1, including 316 families with heterozygous variants in FOXC1, 251 families with heterozygous variants in PITX2, 13 families with variants in double genes, seven families with homozygous or compound heterozygous variants in FOXC1, and six families with variants in ADAMTS17, PRDM5, COL4A1 or CYP1B1. Significant differences were observed between the prevalence of missense and in-frame, truncation, and large deletion variants in PITX2 (32.00%, 42.67%, and 25.33%, respectively) and FOXC1 (34.49%, 35.13%, 30.38%, respectively) (p = 1.16E-43). Enrichment and frequency analyses revealed that missense variants were concentrated in the forkhead domain of FOXC1 (76.14%) and homeodomain of PITX2 (87.50%). The percentage of Caucasians with variants in FOXC1 was significantly higher than that of PITX2 (p = 2.00E-2). Significant differences between PITX2 and FOXC1 were observed in glaucoma (p = 3.00E-2), corectopia (p = 3.050E-6), and polycoria (p = 5.21E-08). Additionally, we observed a significant difference in best-corrected visual acuity (BCVA) between FOXC1 and PITX2 (p = 3.80E-2). Among all the family members with PITX2 or FOXC1 variants, the prevalence of systemic abnormalities was significantly higher in PITX2 than in FOXC1 (89.16% vs. 58.77%, p = 5.44E-17). In conclusion, macular retinoschisis as a novel phenotype had been observed in patient with variant in PITX2. Significant differences were detected in phenotypes and genotypes between PITX2 and FOXC1.
Collapse
|
22
|
Whitman MC, Gilette NM, Bell JL, Kim SA, Tischfield M, Engle EC. TWIST1, a gene associated with Saethre-Chotzen syndrome, regulates extraocular muscle organization in mouse. Dev Biol 2022; 490:126-133. [PMID: 35944701 PMCID: PMC9765759 DOI: 10.1016/j.ydbio.2022.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022]
Abstract
Heterozygous loss of function mutations in TWIST1 cause Saethre-Chotzen syndrome, which is characterized by craniosynostosis, facial asymmetry, ptosis, strabismus, and distinctive ear appearance. Individuals with syndromic craniosynostosis have high rates of strabismus and ptosis, but the underlying pathology is unknown. Some individuals with syndromic craniosynostosis have been noted to have absence of individual extraocular muscles or abnormal insertions of the extraocular muscles on the globe. Using conditional knock-out alleles for Twist1 in cranial mesenchyme, we test the hypothesis that Twist1 is required for extraocular muscle organization and position, attachment to the globe, and/or innervation by the cranial nerves. We examined the extraocular muscles in conditional Twist1 knock-out animals using Twist2-cre and Pdgfrb-cre drivers. Both are expressed in cranial mesoderm and neural crest. Conditional inactivation of Twist1 using these drivers leads to disorganized extraocular muscles that cannot be reliably identified as specific muscles. Tendons do not form normally at the insertion and origin of these dysplastic muscles. Knock-out of Twist1 expression in tendon precursors, using scleraxis-cre, however, does not alter EOM organization. Furthermore, developing motor neurons, which do not express Twist1, display abnormal axonal trajectories in the orbit in the presence of dysplastic extraocular muscles. Strabismus in individuals with TWIST1 mutations may therefore be caused by abnormalities in extraocular muscle development and secondary abnormalities in innervation and tendon formation.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA; F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole M Gilette
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Seoyoung A Kim
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Max Tischfield
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA; F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
23
|
Rowton M, Perez-Cervantes C, Hur S, Jacobs-Li J, Lu E, Deng N, Guzzetta A, Hoffmann AD, Stocker M, Steimle JD, Lazarevic S, Oubaha S, Yang XH, Kim C, Yu S, Eckart H, Koska M, Hanson E, Chan SSK, Garry DJ, Kyba M, Basu A, Ikegami K, Pott S, Moskowitz IP. Hedgehog signaling activates a mammalian heterochronic gene regulatory network controlling differentiation timing across lineages. Dev Cell 2022; 57:2181-2203.e9. [PMID: 36108627 PMCID: PMC10506397 DOI: 10.1016/j.devcel.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
Many developmental signaling pathways have been implicated in lineage-specific differentiation; however, mechanisms that explicitly control differentiation timing remain poorly defined in mammals. We report that murine Hedgehog signaling is a heterochronic pathway that determines the timing of progenitor differentiation. Hedgehog activity was necessary to prevent premature differentiation of second heart field (SHF) cardiac progenitors in mouse embryos, and the Hedgehog transcription factor GLI1 was sufficient to delay differentiation of cardiac progenitors in vitro. GLI1 directly activated a de novo progenitor-specific network in vitro, akin to that of SHF progenitors in vivo, which prevented the onset of the cardiac differentiation program. A Hedgehog signaling-dependent active-to-repressive GLI transition functioned as a differentiation timer, restricting the progenitor network to the SHF. GLI1 expression was associated with progenitor status across germ layers, and it delayed the differentiation of neural progenitors in vitro, suggesting a broad role for Hedgehog signaling as a heterochronic pathway.
Collapse
Affiliation(s)
- Megan Rowton
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Suzy Hur
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jessica Jacobs-Li
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Emery Lu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Nikita Deng
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexander Guzzetta
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sophie Oubaha
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Xinan H Yang
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Shuhan Yu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Heather Eckart
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Mervenaz Koska
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sunny S K Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anindita Basu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Kohta Ikegami
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Yahya I, Hockman D, Brand-Saberi B, Morosan-Puopolo G. New Insights into the Diversity of Branchiomeric Muscle Development: Genetic Programs and Differentiation. BIOLOGY 2022; 11:biology11081245. [PMID: 36009872 PMCID: PMC9404950 DOI: 10.3390/biology11081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary We review the transcription factors and signaling molecules driving differentiation of a subset of head muscles known as the branchiomeric muscles due to their origin in the pharyngeal arches. We provide novel data on the distinct myogenic programs within these muscles and explore how the cranial neural crest cell regulates branchiomeric muscle patterning and differentiation. Abstract Branchiomeric skeletal muscles are a subset of head muscles originating from skeletal muscle progenitor cells in the mesodermal core of pharyngeal arches. These muscles are involved in facial expression, mastication, and function of the larynx and pharynx. Branchiomeric muscles have been the focus of many studies over the years due to their distinct developmental programs and common origin with the heart muscle. A prerequisite for investigating these muscles’ properties and therapeutic potential is understanding their genetic program and differentiation. In contrast to our understanding of how branchiomeric muscles are formed, less is known about their differentiation. This review focuses on the differentiation of branchiomeric muscles in mouse embryos. Furthermore, the relationship between branchiomeric muscle progenitor and neural crest cells in the pharyngeal arches of chicken embryos is also discussed. Additionally, we summarize recent studies into the genetic networks that distinguish between first arch-derived muscles and other pharyngeal arch muscles.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum 11115, Sudan
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
- Correspondence: (I.Y.); (G.M.-P.)
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany
- Correspondence: (I.Y.); (G.M.-P.)
| |
Collapse
|
25
|
Ramírez de Acuña F, Hernandez-Torres F, Rodriguez-Outeiriño L, Dominguez JN, Matias-Valiente L, Sanchez-Fernandez C, Franco D, Aranega AE. Pitx2 Differentially Regulates the Distinct Phases of Myogenic Program and Delineates Satellite Cell Lineages During Muscle Development. Front Cell Dev Biol 2022; 10:940622. [PMID: 35874842 PMCID: PMC9298408 DOI: 10.3389/fcell.2022.940622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The knowledge of the molecular mechanisms that regulate embryonic myogenesis from early myogenic progenitors to myoblasts, as well as the emergence of adult satellite stem cells (SCs) during development, are key concepts to understanding the genesis and regenerative abilities of the skeletal muscle. Several previous pieces of evidence have revealed that the transcription factor Pitx2 might be a player within the molecular pathways controlling somite-derived muscle progenitors’ fate and SC behavior. However, the role exerted by Pitx2 in the progression from myogenic progenitors to myoblasts including SC precursors remains unsolved. Here, we show that Pitx2 inactivation in uncommitted early myogenic precursors diminished cell proliferation and migration leading to muscle hypotrophy and a low number of SCs with decreased myogenic differentiation potential. However, the loss of Pitx2 in committed myogenic precursors gave rise to normal muscles with standard amounts of SCs exhibiting high levels of Pax7 expression. This SC population includes few MYF5+ SC-primed but increased amount of less proliferative miR-106b+cells, and display myogenic differentiation defects failing to undergo proper muscle regeneration. Overall our results demonstrate that Pitx2 is required in uncommitted myogenic progenitors but it is dispensable in committed precursors for proper myogenesis and reveal a role for this transcription factor in the generation of diverse SC subpopulations.
Collapse
Affiliation(s)
- Felícitas Ramírez de Acuña
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Francisco Hernandez-Torres
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Jorge N. Dominguez
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Lidia Matias-Valiente
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Cristina Sanchez-Fernandez
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Amelia E. Aranega
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
- *Correspondence: Amelia E. Aranega,
| |
Collapse
|
26
|
Su KN, Ma Y, Cacheux M, Ilkan Z, Raad N, Muller GK, Wu X, Guerrera N, Thorn SL, Sinusas AJ, Foretz M, Viollet B, Akar JG, Akar FG, Young LH. Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation. JCI Insight 2022; 7:141213. [PMID: 35451373 PMCID: PMC9089788 DOI: 10.1172/jci.insight.141213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolic stress is an important cause of pathological atrial remodeling and atrial fibrillation. AMPK is a ubiquitous master metabolic regulator, yet its biological function in the atria is poorly understood in both health and disease. We investigated the impact of atrium-selective cardiac AMPK deletion on electrophysiological and structural remodeling in mice. Loss of atrial AMPK expression caused atrial changes in electrophysiological properties and atrial ectopic activity prior to the onset of spontaneous atrial fibrillation. Concomitant transcriptional downregulation of connexins and atrial ion channel subunits manifested with delayed left atrial activation and repolarization. The early molecular and electrophysiological abnormalities preceded left atrial structural remodeling and interstitial fibrosis. AMPK inactivation induced downregulation of transcription factors (Mef2c and Pitx2c) linked to connexin and ion channel transcriptional reprogramming. Thus, AMPK plays an essential homeostatic role in atria, protecting against adverse remodeling potentially by regulating key transcription factors that control the expression of atrial ion channels and gap junction proteins.
Collapse
Affiliation(s)
- Kevin N Su
- Department of Cellular & Molecular Physiology and
| | - Yina Ma
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marine Cacheux
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zeki Ilkan
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nour Raad
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Xiaohong Wu
- Department of Cellular & Molecular Physiology and
| | - Nicole Guerrera
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephanie L Thorn
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Foretz
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Joseph G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fadi G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lawrence H Young
- Department of Cellular & Molecular Physiology and.,Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
27
|
Aboobakar IF, Wiggs JL. The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities-A review. Clin Exp Ophthalmol 2022; 50:143-162. [PMID: 35037362 DOI: 10.1111/ceo.14035] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Glaucoma refers to a heterogenous group of disorders characterised by progressive loss of retinal ganglion cells and associated visual field loss. Both early-onset and adult-onset forms of the disease have a strong genetic component. Here, we summarise the known genetic associations for various forms of glaucoma and the possible functional roles for these genes in disease pathogenesis. We also discuss efforts to translate genetic knowledge into clinical practice, including gene-based tests for disease diagnosis and risk-stratification as well as gene-based therapies.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Zhang Y, Chen X, Wang L, Sun X, Chen Y. Heterogeneity of Axenfeld-Rieger Syndrome: Molecular and Clinical Findings in Chinese Patients. Front Genet 2021; 12:732170. [PMID: 34745210 PMCID: PMC8564140 DOI: 10.3389/fgene.2021.732170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
Axenfeld–Rieger Syndrome (ARS) is a rare disease with a wide spectrum of ocular and systemic manifestations. The genetic spectrum of Chinese patients with ARS and genotype-phenotype correlations have yet to be described. To explore the molecular and clinical features in Chinese patients, fifty-five patients clinically diagnosed with ARS from independent families were recruited. Complete ophthalmic examinations and next generation sequencing of anterior segment dysgenesis associated genes were performed in all patients, and segregation in available relatives was verified using Sanger sequencing. 18 FOXC1 variants, 13 PITX2 variants, and two gross deletions spanning FOXC1 were detected in 35 out of 55 (63.6%) patients. 12 FOXC1 variants, 9 PITX2 variants, and two gross deletions were novel. There was a wide range of variability and severity in ocular and systemic manifestations displayed in our patients. Patients with FOXC1 variants were diagnosed at a younger age and had a lower prevalence of systemic manifestations than patients harboring PITX2 variants and those without variants. To our best knowledge, this is the largest study of Chinese patients with ARS to date. Our findings expand the genetic spectrum of ARS and reveal genotype-phenotype correlations in Chinese patients with ARS. Genetic and clinical heterogeneity were present in our patients. Awareness of the extensive characterization may aid in the clinical management and genetic counseling of patients with this rare disease.
Collapse
Affiliation(s)
- Youjia Zhang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Xueli Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Wang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Semin Cell Dev Biol 2021; 118:107-118. [PMID: 33994301 PMCID: PMC8434962 DOI: 10.1016/j.semcdb.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
The heart is the earliest organ to develop during embryogenesis and is remarkable in its ability to function efficiently as it is being sculpted. Cardiac heart defects account for a high burden of childhood developmental disorders with many remaining poorly understood mechanistically. Decades of work across a multitude of model organisms has informed our understanding of early cardiac differentiation and morphogenesis and has simultaneously opened new and unanswered questions. Here we have synthesized current knowledge in the field and reviewed recent developments in the realm of imaging, bioengineering and genetic technology and ex vivo cardiac modeling that may be deployed to generate more holistic models of early cardiac morphogenesis, and by extension, new platforms to study congenital heart defects.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
30
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
31
|
Ravisankar S, Ting AY, Murphy MJ, Redmayne N, Wang D, McArthur CA, Takahashi DL, Kievit P, Chavez SL, Hennebold JD. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight 2021; 6:138312. [PMID: 33616080 PMCID: PMC7934943 DOI: 10.1172/jci.insight.138312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
A maternal Western-style diet (WSD) is associated with poor reproductive outcomes, but whether this is from the diet itself or underlying metabolic dysfunction is unknown. Here, we performed a longitudinal study using regularly cycling female rhesus macaques (n = 10) that underwent 2 consecutive in vitro fertilization (IVF) cycles, one while consuming a low-fat diet and another 6–8 months after consuming a high-fat WSD. Metabolic data were collected from the females prior to each IVF cycle. Follicular fluid (FF) and oocytes were assessed for cytokine/steroid levels and IVF potential, respectively. Although transition to a WSD led to weight gain and increased body fat, no difference in insulin levels was observed. A significant decrease in IL-1RA concentration and the ratio of cortisol/cortisone was detected in FF after WSD intake. Despite an increased probability of isolating mature oocytes, a 44% reduction in blastocyst number was observed with WSD consumption, and time-lapse imaging revealed delayed mitotic timing and multipolar divisions. RNA sequencing of blastocysts demonstrated dysregulation of genes involved in RNA binding, protein channel activity, mitochondrial function and pluripotency versus cell differentiation after WSD consumption. Thus, short-term WSD consumption promotes a proinflammatory intrafollicular microenvironment that is associated with impaired preimplantation development in the absence of large-scale metabolic changes.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental & Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Alison Y Ting
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,21st Century Medicine Inc., Fontana, California, USA
| | - Melinda J Murphy
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Nash Redmayne
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Dorothy Wang
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Carrie A McArthur
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| |
Collapse
|
32
|
Transient Nodal Signaling in Left Precursors Coordinates Opposed Asymmetries Shaping the Heart Loop. Dev Cell 2020; 55:413-431.e6. [PMID: 33171097 DOI: 10.1016/j.devcel.2020.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
The secreted factor Nodal, known as a major left determinant, is associated with severe heart defects. Yet, it has been unclear how it regulates asymmetric morphogenesis such as heart looping, which align cardiac chambers to establish the double blood circulation. Here, we report that Nodal is transiently active in precursors of the mouse heart tube poles, before looping. In conditional mutants, we show that Nodal is not required to initiate asymmetric morphogenesis. We provide evidence of a heart-specific random generator of asymmetry that is independent of Nodal. Using 3D quantifications and simulations, we demonstrate that Nodal functions as a bias of this mechanism: it is required to amplify and coordinate opposed left-right asymmetries at the heart tube poles, thus generating a robust helical shape. We identify downstream effectors of Nodal signaling, regulating asymmetries in cell proliferation, differentiation, and extracellular matrix composition. Our study uncovers how Nodal regulates asymmetric organogenesis.
Collapse
|
33
|
De Ita M, Cisneros B, Rosas-Vargas H. Genetics of Transposition of Great Arteries: Between Laterality Abnormality and Outflow Tract Defect. J Cardiovasc Transl Res 2020; 14:390-399. [PMID: 32734553 DOI: 10.1007/s12265-020-10064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Transposition of great arteries (TGA) is a complex congenital heart disease whose etiology is still unknown. This defect has been associated, at least in part, with genetic abnormalities involved in laterality establishment and heart outflow tract development, which suggest a genetic heterogeneity. In animal models, the evidence of association with certain genes is strong but, surprisingly, genetic anomalies of its human orthologues are found only in a low proportion of patients and in nonaffected subjects, so that the underlying causes remain as an unexplored field. Evidence related to TGA suggests different pathogenic mechanisms involved between patients with normal organ disposition and isomerism. This article reviews the most important genetic abnormalities related to TGA and contextualizes them into the mechanism of embryonic development, comparing them between humans and mice, to comprehend the evidence that could be relevant for genetic counseling. Graphical abstract.
Collapse
Affiliation(s)
- Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- 2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico.
| |
Collapse
|
34
|
Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet 2019; 28:3637-3663. [PMID: 31518395 DOI: 10.1093/hmg/ddz222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Mirrahimi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
García-Padilla C, Domínguez JN, Aránega AE, Franco D. Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:194435. [PMID: 31678627 DOI: 10.1016/j.bbagrm.2019.194435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular development is governed by a complex interplay between inducting signals such as Bmps and Fgfs leading to activation of cardiac specific transcription factors such as Nkx2.5, Mef2c and Srf that orchestrate the initial steps of cardiogenesis. Over the last decade we have witnessed the discovery of novel layers of gene regulation, i.e. post-transcriptional regulation exerted by non-coding RNAs. The function role of small non coding RNAs has been widely demonstrated, e.g. miR-1 knockout display several cardiovascular abnormalities during embryogenesis. More recently long non-coding RNAs have been also reported to modulate gene expression and function in the developing heart, as exemplified by the embryonic lethal phenotypes of Fendrr and Braveheart knock out mice, respectively. In this study, we investigated the differential expression profile during cardiogenesis of previously reported lncRNAs in heart development. Our data revealed that Braveheart, Fendrr, Carmen display a preferential adult expression while Miat, Alien, H19 preferentially display chamber-specific expression at embryonic stages. We also demonstrated that these lncRNAs are differentially regulated by Nkx2.5, Srf and Mef2c, Pitx2 > Wnt > miRNA signaling pathway and angiotensin II and thyroid hormone administration. Importantly isoform-specific expression and distinct nuclear vs cytoplasmic localization of Braveheart, Carmen and Fendrr during chamber morphogenesis is observed, suggesting distinct functional roles of these lncRNAs in atrial and ventricular chambers. Furthermore, we demonstrate by in situ hybridization a dynamic epicardial, myocardial and endocardial expression of H19 during cardiac development. Overall our data support novel roles of these lncRNAs in different temporal and tissue-restricted fashion during cardiogenesis.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain.
| |
Collapse
|
36
|
Feldkamp ML, Krikov S, Gardner J, Madsen MJ, Darlington T, Sargent R, Camp NJ. Shared genomic segments in high‐risk multigenerational pedigrees with gastroschisis. Birth Defects Res 2019; 111:1655-1664. [DOI: 10.1002/bdr2.1567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Marcia L. Feldkamp
- Division of Medical Genetics, Department of PediatricsUniversity of Utah School of Medicine Salt Lake City Utah
| | - Sergey Krikov
- Division of Medical Genetics, Department of PediatricsUniversity of Utah School of Medicine Salt Lake City Utah
| | - John Gardner
- Department of Internal Medicine and Huntsman Cancer InstituteUniversity of Utah School of Medicine Salt Lake City Utah
| | - Myke J. Madsen
- Department of Internal Medicine and Huntsman Cancer InstituteUniversity of Utah School of Medicine Salt Lake City Utah
| | | | - Rob Sargent
- Department of Internal Medicine and Huntsman Cancer InstituteUniversity of Utah School of Medicine Salt Lake City Utah
| | - Nicola J. Camp
- Department of Internal Medicine and Huntsman Cancer InstituteUniversity of Utah School of Medicine Salt Lake City Utah
| |
Collapse
|
37
|
Ali Z, Charan P, Said JM, Stark Z. Axenfeld-Rieger syndrome as rare cause of umbilical abnormality. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 54:276-277. [PMID: 30255586 DOI: 10.1002/uog.20129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Z Ali
- The Royal Women's Hospital, Melbourne, Australia
| | - P Charan
- Maternal Fetal Medicine, Sunshine Hospital, Western Health, Melbourne, Australia
| | - J M Said
- Maternal Fetal Medicine, Sunshine Hospital, Western Health, Melbourne, Australia
| | - Z Stark
- Maternal Fetal Medicine, Sunshine Hospital, Western Health, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
38
|
The Functions of Long Non-Coding RNA during Embryonic Cardiovascular Development and Its Potential for Diagnosis and Treatment of Congenital Heart Disease. J Cardiovasc Dev Dis 2019; 6:jcdd6020021. [PMID: 31159401 PMCID: PMC6616656 DOI: 10.3390/jcdd6020021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) arises due to errors during the embryonic development of the heart, a highly regulated process involving an interplay between cell-intrinsic transcription factor expression and intercellular signalling mediated by morphogens. Emerging evidence indicates that expression of these protein-coding genes is controlled by a plethora of previously unappreciated non-coding RNAs operating in complex feedback-control circuits. In this review, we consider the contribution of long non-coding RNA (lncRNA) to embryonic cardiovascular development before discussing applications to CHD diagnostics and therapeutics. We discuss the process of lineage restriction during cardiovascular progenitor cell differentiation, as well as the subsequent patterning of the cardiogenic progenitor fields, taking as an example the regulation of NODAL signalling in left-right patterning of the heart. lncRNA are a highly versatile group. Nuclear lncRNA can target specific genomic sequences and recruit chromatin remodelling complexes. Some nuclear lncRNA are transcribed from enhancers and regulate chromatin looping. Cytoplasmic lncRNA act as endogenous competitors for micro RNA, as well as binding and sequestering signalling proteins. We discuss features of lncRNA that limit their study by conventional methodology and suggest solutions to these problems.
Collapse
|
39
|
Bi L, Lwigale P. Transcriptomic analysis of differential gene expression during chick periocular neural crest differentiation into corneal cells. Dev Dyn 2019; 248:583-602. [PMID: 31004457 DOI: 10.1002/dvdy.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Multipotent neural crest cells (NCC) contribute to the corneal endothelium and keratocytes during ocular development, but the molecular mechanisms that underlie this process remain poorly understood. We performed RNA-Seq analysis on periocular neural crest (pNC), corneal endothelium, and keratocytes and validated expression of candidate genes by in situ hybridization. RESULTS RNA-Seq profiling revealed enrichment of genes between pNC and neural crest-derived corneal cells, which correspond to pathways involved in focal adhesion, ECM-receptor interaction, cell adhesion, melanogenesis, and MAPK signaling. Comparisons of candidate NCC genes to ocular gene expression revealed that majority of the NCC genes are expressed in the pNC, but they are either differentially expressed or maintained during corneal development. Several genes involved in retinoic acid, transforming growth factor-β, and Wnt signaling pathways and their modulators are also differentially expressed. We identified differentially expressed transcription factors as potential downstream candidates that may instruct expression of genes involved in establishing corneal endothelium and keratocyte identities. CONCLUSION Combined, our data reveal novel changes in gene expression profiles as pNC differentiate into highly specialized corneal endothelial cells and keratocytes. These data serve as platform for further analyses of the molecular networks involved in NCC differentiation into corneal cells and provide insights into genes involved in corneal dysgenesis and adult diseases.
Collapse
Affiliation(s)
- Lian Bi
- BioSciences, Rice University, Houston, Texas
| | | |
Collapse
|
40
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
41
|
Dueñas A, Expósito A, Aranega A, Franco D. The Role of Non-Coding RNA in Congenital Heart Diseases. J Cardiovasc Dev Dis 2019; 6:E15. [PMID: 30939839 PMCID: PMC6616598 DOI: 10.3390/jcdd6020015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular development is a complex developmental process starting with the formation of an early straight heart tube, followed by a rightward looping and the configuration of atrial and ventricular chambers. The subsequent step allows the separation of these cardiac chambers leading to the formation of a four-chambered organ. Impairment in any of these developmental processes invariably leads to cardiac defects. Importantly, our understanding of the developmental defects causing cardiac congenital heart diseases has largely increased over the last decades. The advent of the molecular era allowed to bridge morphogenetic with genetic defects and therefore our current understanding of the transcriptional regulation of cardiac morphogenesis has enormously increased. Moreover, the impact of environmental agents to genetic cascades has been demonstrated as well as of novel genomic mechanisms modulating gene regulation such as post-transcriptional regulatory mechanisms. Among post-transcriptional regulatory mechanisms, non-coding RNAs, including therein microRNAs and lncRNAs, are emerging to play pivotal roles. In this review, we summarize current knowledge on the functional role of non-coding RNAs in distinct congenital heart diseases, with particular emphasis on microRNAs and long non-coding RNAs.
Collapse
Affiliation(s)
- Angel Dueñas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.
| | - Almudena Expósito
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.
| | - Amelia Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.
| |
Collapse
|
42
|
Lee LA, Karabina A, Broadwell LJ, Leinwand LA. The ancient sarcomeric myosins found in specialized muscles. Skelet Muscle 2019; 9:7. [PMID: 30836986 PMCID: PMC6402096 DOI: 10.1186/s13395-019-0192-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/22/2019] [Indexed: 12/17/2022] Open
Abstract
Striated muscles express an array of sarcomeric myosin motors that are tuned to accomplish specific tasks. Each myosin isoform found in muscle fibers confers unique contractile properties to the fiber in order to meet the demands of the muscle. The sarcomeric myosin heavy chain (MYH) genes expressed in the major cardiac and skeletal muscles have been studied for decades. However, three ancient myosins, MYH7b, MYH15, and MYH16, remained uncharacterized due to their unique expression patterns in common mammalian model organisms and due to their relatively recent discovery in these genomes. This article reviews the literature surrounding these three ancient sarcomeric myosins and the specialized muscles in which they are expressed. Further study of these ancient myosins and how they contribute to the functions of the specialized muscles may provide novel insight into the history of striated muscle evolution.
Collapse
Affiliation(s)
- Lindsey A. Lee
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO USA
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Anastasia Karabina
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO USA
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Lindsey J. Broadwell
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
- Department of Biochemistry, University of Colorado, Boulder, CO USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO USA
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
| |
Collapse
|
43
|
Sefton EM, Kardon G. Connecting muscle development, birth defects, and evolution: An essential role for muscle connective tissue. Curr Top Dev Biol 2019; 132:137-176. [PMID: 30797508 DOI: 10.1016/bs.ctdb.2018.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle powers all movement of the vertebrate body and is distributed in multiple regions that have evolved distinct functions. Axial muscles are ancestral muscles essential for support and locomotion of the whole body. The evolution of the head was accompanied by development of cranial muscles essential for eye movement, feeding, vocalization, and facial expression. With the evolution of paired fins and limbs and their associated muscles, vertebrates gained increased locomotor agility, populated the land, and acquired fine motor skills. Finally, unique muscles with specialized functions have evolved in some groups, and the diaphragm which solely evolved in mammals to increase respiratory capacity is one such example. The function of all these muscles requires their integration with the other components of the musculoskeletal system: muscle connective tissue (MCT), tendons, bones as well as nerves and vasculature. MCT is muscle's closest anatomical and functional partner. Not only is MCT critical in the adult for muscle structure and function, but recently MCT in the embryo has been found to be crucial for muscle development. In this review, we examine the important role of the MCT in axial, head, limb, and diaphragm muscles for regulating normal muscle development, discuss how defects in MCT-muscle interactions during development underlie the etiology of a range of birth defects, and explore how changes in MCT development or communication with muscle may have led to the modification and acquisition of new muscles during vertebrate evolution.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
44
|
Chang CN, Singh AJ, Gross MK, Kioussi C. Requirement of Pitx2 for skeletal muscle homeostasis. Dev Biol 2019; 445:90-102. [PMID: 30414844 PMCID: PMC6289786 DOI: 10.1016/j.ydbio.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
Skeletal muscle is generated by the successive incorporation of primary (embryonic), secondary (fetal), and tertiary (adult) fibers into muscle. Conditional excision of Pitx2 function by an MCKCre driver resulted in animals with histological and ultrastructural defects in P30 muscles and fibers, respectively. Mutant muscle showed severe reduction in mitochondria and FoxO3-mediated mitophagy. Both oxidative and glycolytic energy metabolism were reduced. Conditional excision was limited to fetal muscle fibers after the G1-G0 transition and resulted in altered MHC, Rac1, MEF2a, and alpha-tubulin expression within these fibers. The onset of excision, monitored by a nuclear reporter gene, was observed as early as E16. Muscle at this stage was already severely malformed, but appeared to recover by P30 by the expansion of adjoining larger fibers. Our studies demonstrate that the homeodomain transcription factor Pitx2 has a postmitotic role in maintaining skeletal muscle integrity and energy homeostasis in fetal muscle fibers.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA
| | - Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Michael K Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
45
|
Desgrange A, Le Garrec JF, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development 2018; 145:145/22/dev162776. [PMID: 30467108 DOI: 10.1242/dev.162776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Jean-François Le Garrec
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
46
|
Takahashi M, Tamura M, Sato S, Kawakami K. Mice doubly deficient in Six4 and Six5 show ventral body wall defects reproducing human omphalocele. Dis Model Mech 2018; 11:dmm.034611. [PMID: 30237319 PMCID: PMC6215434 DOI: 10.1242/dmm.034611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023] Open
Abstract
Omphalocele is a human congenital anomaly in ventral body wall closure and may be caused by impaired formation of the primary abdominal wall (PAW) and/or defects in abdominal muscle development. Here, we report that mice doubly deficient in homeobox genes Six4 and Six5 showed the same ventral body wall closure defects as those seen in human omphalocele. SIX4 and SIX5 were localized in surface ectodermal cells and somatic mesoderm-derived mesenchymal and coelomic epithelial cells (CECs) in the PAW. Six4-/-;Six5-/- fetuses exhibited a large omphalocele with protrusion of both the liver and intestine, or a small omphalocele with protrusion of the intestine, with complete penetrance. The umbilical ring of Six4-/-;Six5-/- embryos was shifted anteriorly and its lateral size was larger than that of normal embryos at the E11.5 stage, before the onset of myoblast migration into the PAW. The proliferation rates of surface ectodermal cells in the left and right PAW and somatic mesoderm-derived cells in the right PAW were lower in Six4-/-;Six5-/- embryos than those of wild-type embryos at E10.5. The transition from CECs of the PAW to rounded mesothelial progenitor cells was impaired and the inner coelomic surface of the PAW was relatively smooth in Six4-/-;Six5-/- embryos at E11.25. Furthermore, Six4 overexpression in CECs of the PAW promoted ingression of CECs. Taken together, our results suggest that Six4 and Six5 are required for growth and morphological change of the PAW, and the impairment of these processes is linked to the abnormal positioning and expansion of the umbilical ring, which results in omphalocele.
Collapse
Affiliation(s)
- Masanori Takahashi
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, 3-1-1, Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
47
|
Sivakumar A, Mahadevan A, Lauer ME, Narvaez RJ, Ramesh S, Demler CM, Souchet NR, Hascall VC, Midura RJ, Garantziotis S, Frank DB, Kimata K, Kurpios NA. Midgut Laterality Is Driven by Hyaluronan on the Right. Dev Cell 2018; 46:533-551.e5. [PMID: 30174180 PMCID: PMC6207194 DOI: 10.1016/j.devcel.2018.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 06/01/2018] [Accepted: 08/01/2018] [Indexed: 11/24/2022]
Abstract
For many years, biologists have focused on the role of Pitx2, expressed on the left side of developing embryos, in governing organ laterality. Here, we identify a different pathway during left-right asymmetry initiated by the right side of the embryo. Surprisingly, this conserved mechanism is orchestrated by the extracellular glycosaminoglycan, hyaluronan (HA) and is independent of Pitx2 on the left. Whereas HA is normally synthesized bilaterally as a simple polysaccharide, we show that covalent modification of HA by the enzyme Tsg6 on the right triggers distinct cell behavior necessary to drive the conserved midgut rotation and to pattern gut vasculature. HA disruption in chicken and Tsg6-/- mice results in failure to initiate midgut rotation and perturbs vascular development predisposing to midgut volvulus. Our study leads us to revise the current symmetry-breaking paradigm in vertebrates and demonstrates how enzymatic modification of HA matrices can execute the blueprint of organ laterality.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Aparna Mahadevan
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Mark E Lauer
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ricky J Narvaez
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Siddesh Ramesh
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Cora M Demler
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Nathan R Souchet
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ron J Midura
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - David B Frank
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Koji Kimata
- Institute of Molecular Medical Sciences, Aichi Medical University, Nagakute, Aichi, Japan
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
48
|
Chang CN, Kioussi C. Location, Location, Location: Signals in Muscle Specification. J Dev Biol 2018; 6:E11. [PMID: 29783715 PMCID: PMC6027348 DOI: 10.3390/jdb6020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and locations are specialized. This is the result of specific signaling as the embryo grows and cells migrate to form different structures and organs. As cells progress to their next state, they suppress current sequence specific transcription factors (SSTF) and construct new networks to establish new myogenic features. In this review, we provide an overview of signaling pathways and gene regulatory networks during formation of the craniofacial, cardiac, vascular, trunk, and limb skeletal muscles.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
49
|
Hendee KE, Sorokina EA, Muheisen SS, Reis LM, Tyler RC, Markovic V, Cuturilo G, Link BA, Semina EV. PITX2 deficiency and associated human disease: insights from the zebrafish model. Hum Mol Genet 2018; 27:1675-1695. [PMID: 29506241 PMCID: PMC5932568 DOI: 10.1093/hmg/ddy074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
The PITX2 (paired-like homeodomain 2) gene encodes a bicoid-like homeodomain transcription factor linked with several human disorders. The main associated congenital phenotype is Axenfeld-Rieger syndrome, type 1, an autosomal dominant condition characterized by variable defects in the anterior segment of the eye, an increased risk of glaucoma, craniofacial dysmorphism and dental and umbilical anomalies; in addition to this, one report implicated PITX2 in ring dermoid of the cornea and a few others described cardiac phenotypes. We report three novel PITX2 mutations-c.271C > T, p.(Arg91Trp); c.259T > C, p.(Phe87Leu); and c.356delA, p.(Gln119Argfs*36)-identified in independent families with typical Axenfeld-Rieger syndrome characteristics and some unusual features such as corneal guttata, Wolf-Parkinson-White syndrome, and hyperextensibility. To gain further insight into the diverse roles of PITX2/pitx2 in vertebrate development, we generated various genetic lesions in the pitx2 gene via TALEN-mediated genome editing. Affected homozygous zebrafish demonstrated congenital defects consistent with the range of PITX2-associated human phenotypes: abnormal development of the cornea, iris and iridocorneal angle; corneal dermoids; and craniofacial dysmorphism. In addition, via comparison of pitx2M64* and wild-type embryonic ocular transcriptomes we defined molecular changes associated with pitx2 deficiency, thereby implicating processes potentially underlying disease pathology. This analysis identified numerous affected factors including several members of the Wnt pathway and collagen types I and V gene families. These data further support the link between PITX2 and the WNT pathway and suggest a new role in regulation of collagen gene expression during development.
Collapse
Affiliation(s)
- Kathryn E Hendee
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena A Sorokina
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanaa S Muheisen
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Linda M Reis
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebecca C Tyler
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Vujica Markovic
- Faculty of Medicine, University of Belgrade, Serbia
- Clinical Centre of Serbia, University Eye Hospital, Belgrade, Serbia
| | - Goran Cuturilo
- Faculty of Medicine, University of Belgrade, Serbia
- Department of Medical Genetics, University Children’s Hospital, Belgrade, Serbia
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena V Semina
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
50
|
Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 2018; 56:e23097. [PMID: 29659153 DOI: 10.1002/dvg.23097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|