1
|
Nelson LW, Bugenhagen SM, Lubner MG, Bhalla S, Pickhardt PJ. Spectrum of Heterotopic and Ectopic Splenic Conditions. Radiographics 2024; 44:e240004. [PMID: 39388371 DOI: 10.1148/rg.240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A spectrum of heterotopic and ectopic splenic conditions may be encountered in clinical practice as incidental asymptomatic detection or symptomatic diagnosis. The radiologist needs to be aware of these conditions and their imaging characteristics to provide a prompt correct diagnosis and avoid misdiagnosis as neoplasm or lymphadenopathy. Having a strong knowledge base of the embryologic development of the spleen improves understanding of the pathophysiologic basis of these conditions. Spleen-specific imaging techniques-such as technetium 99m (99mTc)-labeled denatured erythrocyte scintigraphy, 99mTc-sulfur colloid liver-spleen scintigraphy, and MRI with ferumoxytol intravenous contrast material-can also be used to confirm the presence or absence of splenic tissue. Heterotopic splenic conditions include splenules and splenogonadal fusion (discontinuous or continuous forms). These heterotopic conditions are caused by incomplete fusion of the splenic primordia (splenule) and abnormal fusion of the gonadal and splenic tissue (splenogonadal fusion). Ectopic splenic conditions arise in patients with a prior splenic injury (splenosis), laxity or maldevelopment of the splenic ligaments (wandering spleen), or heterotaxy syndromes (polysplenia and asplenia). Importantly, these heterotopic and ectopic splenic conditions can also manifest with complications, including vascular torsion and rupture. ©RSNA, 2024.
Collapse
Affiliation(s)
- Leslie W Nelson
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252 (L.W.N., M.G.L., P.J.P.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.M.B., S.B.); and American College of Radiology (ACR) Institute for Radiologic Pathology (AIRP), Silver Spring, Md (M.G.L., P.J.P.)
| | - Scott M Bugenhagen
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252 (L.W.N., M.G.L., P.J.P.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.M.B., S.B.); and American College of Radiology (ACR) Institute for Radiologic Pathology (AIRP), Silver Spring, Md (M.G.L., P.J.P.)
| | - Meghan G Lubner
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252 (L.W.N., M.G.L., P.J.P.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.M.B., S.B.); and American College of Radiology (ACR) Institute for Radiologic Pathology (AIRP), Silver Spring, Md (M.G.L., P.J.P.)
| | - Sanjeev Bhalla
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252 (L.W.N., M.G.L., P.J.P.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.M.B., S.B.); and American College of Radiology (ACR) Institute for Radiologic Pathology (AIRP), Silver Spring, Md (M.G.L., P.J.P.)
| | - Perry J Pickhardt
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252 (L.W.N., M.G.L., P.J.P.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.M.B., S.B.); and American College of Radiology (ACR) Institute for Radiologic Pathology (AIRP), Silver Spring, Md (M.G.L., P.J.P.)
| |
Collapse
|
2
|
Buijtendijk MF, Peters JJ, Visser SC, van Tongeren FH, Dawood Y, Lobé NH, van den Hoff MJ, Oostra RJ, de Bakker BS. Morphological variations of the human spleen: no evidence for a multifocal or lobulated developmental origin. Br J Radiol 2023; 96:20220744. [PMID: 36802835 PMCID: PMC10161904 DOI: 10.1259/bjr.20220744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVES Adult spleens show extensive morphological variation, with a reported prevalence of 40-98% clefts (also called notches or fissures) on the splenic surface and 10-30% accessory spleens at autopsy. It is hypothesised that both anatomical variants result from a complete or partial failure of multiple splenic primordia to fuse to the main body. According to this hypothesis, fusion of the spleen primordia is completed after birth and spleen morphological variations are often explained as stagnation of spleen development at the foetal stage. We tested this hypothesis by studying early spleen development in embryos, and compared foetal and adult spleen morphology. METHODS AND MATERIALS We assessed 22 embryonic, 17 foetal and 90 adult spleens on the presence of clefts using histology, micro-CT and conventional post-mortem CT-scans, respectively. RESULTS The spleen primordium was observed as a single mesenchymal condensation in all embryonic specimens. The number of clefts varied from 0 to 6 in foetuses, compared to 0-5 in adults. We found no correlation between foetal age and number of clefts (R2 = 0.004). The independent samples Kolmogorov-Smirnov test showed no significant difference in the total number of clefts between adult and foetal spleens (p = 0.068). CONCLUSION We found no morphological evidence for a multifocal origin or a lobulated developmental stage of the human spleen. ADVANCES IN KNOWLEDGE Our findings show that splenic morphology is highly variable, independent of developmental stage and age. We suggest to abandon the term "persistent foetal lobulation" and to regard splenic clefts, regardless of their number or location, as normal variants.
Collapse
Affiliation(s)
- Marieke Fj Buijtendijk
- Amsterdam UMC location AMC, Department of Medical Biology, Amsterdam, Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, Netherlands
| | - Jess J Peters
- Amsterdam UMC location AMC, Department of Medical Biology, Amsterdam, Netherlands
| | - Sophie C Visser
- Amsterdam UMC location AMC, Department of Medical Biology, Amsterdam, Netherlands
| | | | - Yousif Dawood
- Amsterdam UMC location AMC, Department of Medical Biology, Amsterdam, Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, Netherlands.,Amsterdam UMC location AMC, Department of Obstetrics and Gynaecology, Amsterdam, Netherlands
| | - Nick Hj Lobé
- Amsterdam UMC location AMC, Department of Radiology, Amsterdam, Netherlands
| | - Maurice Jb van den Hoff
- Amsterdam UMC location AMC, Department of Medical Biology, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences research institute, Amsterdam, Netherlands
| | - Roelof-Jan Oostra
- Amsterdam UMC location AMC, Department of Medical Biology, Amsterdam, Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences research institute, Amsterdam, Netherlands
| | - Bernadette S de Bakker
- Amsterdam Reproduction and Development research institute, Amsterdam, Netherlands.,Amsterdam UMC location AMC, Department of Obstetrics and Gynaecology, Amsterdam, Netherlands.,Erasmus MC - Sophia Children's Hospital, Department of Paediatric Surgery, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
3
|
Stephenson RR, Amyes E, McKay G, Lalloo ST. Preoperative angioembolisation of a mediastinal accessory ectopic spleen: A case report and review of the literature. Radiol Case Rep 2022; 17:2519-2524. [PMID: 35601383 PMCID: PMC9118497 DOI: 10.1016/j.radcr.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
A 50-year-old male presented to our institution for embolization of an incidentally detected mediastinal mass prior to surgical resection. The patient had undergone extensive pre-procedural imaging as well as bronchoscopy and mediastinoscopy. Ultimately, resection was required for a definitive diagnosis of congenital ectopic mediastinal accessory spleen. This case represents the first reported incidence of ectopic splenic tissue in this location and illustrates the difficulties in establishing a pre-operative diagnosis with often confounding imaging findings.
Collapse
Affiliation(s)
- Rowan R Stephenson
- Department of Medical Imaging, The Canberra Hospital, Yamba Drive, Garran, ACT, Australia, 2606
- Corresponding author.
| | | | - Glenn McKay
- Department of Cardiothoracic Surgery, The Canberra Hospital, Garran, ACT, Australia
| | - Shivendra T Lalloo
- Department of Medical Imaging, The Canberra Hospital, Yamba Drive, Garran, ACT, Australia, 2606
| |
Collapse
|
4
|
Griffin JN, Sondalle SB, Robson A, Mis EK, Griffin G, Kulkarni SS, Deniz E, Baserga SJ, Khokha MK. RPSA, a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in Xenopus. Development 2018; 145:145/20/dev166181. [PMID: 30337486 DOI: 10.1242/dev.166181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022]
Abstract
A growing number of tissue-specific inherited disorders are associated with impaired ribosome production, despite the universal requirement for ribosome function. Recently, mutations in RPSA, a protein component of the small ribosomal subunit, were discovered to underlie approximately half of all isolated congenital asplenia cases. However, the mechanisms by which mutations in this ribosome biogenesis factor lead specifically to spleen agenesis remain unknown, in part due to the lack of a suitable animal model for study. Here we reveal that RPSA is required for normal spleen development in the frog, Xenopus tropicalis Depletion of Rpsa in early embryonic development disrupts pre-rRNA processing and ribosome biogenesis, and impairs expression of the key spleen patterning genes nkx2-5, bapx1 and pod1 in the spleen anlage. Importantly, we also show that whereas injection of human RPSA mRNA can rescue both pre-rRNA processing and spleen patterning, injection of human mRNA bearing a common disease-associated mutation cannot. Together, we present the first animal model of RPSA-mediated asplenia and reveal a crucial requirement for RPSA in pre-rRNA processing and molecular patterning during early Xenopus development.
Collapse
Affiliation(s)
- John N Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Samuel B Sondalle
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Andrew Robson
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Gerald Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Saurabh S Kulkarni
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA .,Departments of Molecular Biophysics and Biochemistry, and Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA .,Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| |
Collapse
|
5
|
Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 2018; 92:77-88. [PMID: 30142440 DOI: 10.1016/j.semcdb.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing β-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-β superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to β-cells in vitro.
Collapse
|
6
|
Vojkovics D, Kellermayer Z, Kajtár B, Roncador G, Vincze Á, Balogh P. Nkx2-3-A Slippery Slope From Development Through Inflammation Toward Hematopoietic Malignancies. Biomark Insights 2018; 13:1177271918757480. [PMID: 29449776 PMCID: PMC5808962 DOI: 10.1177/1177271918757480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022] Open
Abstract
The development of peripheral lymphoid tissues from the mesoderm is the result of a complex convergence combining lymphohematopoietic differentiation with the local specification of nonhematopoietic mesenchymal components. Although the various transcriptional regulators with fate-determining effects in diversifying the mobile leukocyte subsets have been thoroughly studied and identified, the tissue-specific determinants promoting the regional differentiation of resident mesenchyme are less understood. Of these factors, various members of the NK-class Nkx paralogues have emerged as key regulators for the organogenesis of spleen and mucosal lymphoid tissues, and recent data have also indicated their involvement in various pathological events, including gut inflammation and hematopoietic malignancies. Here, we summarize available data on the roles of Nkx2-3 in lymphoid tissue development and discuss its possible value as a developmental marker and disease-associated pathogenic trait.
Collapse
Affiliation(s)
- Dóra Vojkovics
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | | | - Áron Vincze
- 1st Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
7
|
The Role of Cerl2 in the Establishment of Left-Right Asymmetries during Axis Formation and Heart Development. J Cardiovasc Dev Dis 2017; 4:jcdd4040023. [PMID: 29367552 PMCID: PMC5753124 DOI: 10.3390/jcdd4040023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
The formation of the asymmetric left-right (LR) body axis is one of the fundamental aspects of vertebrate embryonic development, and one still raising passionate discussions among scientists. Although the conserved role of nodal is unquestionable in this process, several of the details around this signaling cascade are still unanswered. To further understand this mechanism, we have been studying Cerberus-like 2 (Cerl2), an inhibitor of Nodal, and its role in the generation of asymmetries in the early vertebrate embryo. The absence of Cerl2 results in a wide spectrum of malformations commonly known as heterotaxia, which comprises defects in either global organ position (e.g., situs inversus totalis), reversed orientation of at least one organ (e.g., situs ambiguus), and mirror images of usually asymmetric paired organs (e.g., left or right isomerisms of the lungs). Moreover, these laterality defects are frequently associated with congenital heart diseases (e.g., transposition of the great arteries, or atrioventricular septal defects). Here, reviewing the knowledge on the establishment of LR asymmetry in mouse embryos, the emerging conclusion is that as necessary as is the activation of the Nodal signaling cascade, the tight control that Cerl2-mediates on Nodal signaling is equally important, and that generates a further regionalized LR genetic program in the proper time and space.
Collapse
|
8
|
Tan KS, Inoue T, Kulkeaw K, Tanaka Y, Lai MI, Sugiyama D. Localized SCF and IGF-1 secretion enhances erythropoiesis in the spleen of murine embryos. Biol Open 2015; 4:596-607. [PMID: 25887124 PMCID: PMC4434811 DOI: 10.1242/bio.201410686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fetal spleen is a major hematopoietic site prior to initiation of bone marrow hematopoiesis. Morphologic analysis suggested erythropoietic activity in fetal spleen, but it remained unclear how erythropoiesis was regulated. To address this question, we performed flow cytometric analysis and observed that the number of spleen erythroid cells increased 18.6-fold from 16.5 to 19.5 days post-coitum (dpc). Among erythropoietic cytokines, SCF and IGF-1 were primarily expressed in hematopoietic, endothelial and mesenchymal-like fetal spleen cells. Cultures treated with SCF and/or IGF-1R inhibitors showed significantly decreased CD45−c-Kit−CD71+/−Ter119+ erythroid cells and downregulated Gata1, Klf1 and β-major globin expression. Administration of these inhibitors to pregnant mice significantly decreased the number of CD45−c-Kit−CD71+/−Ter119+ cells and downregulated β-major globin gene expression in embryos derived from these mice. We conclude that fetal spleen is a major erythropoietic site where endothelial and mesenchymal-like cells primarily accelerate erythropoietic activity through SCF and IGF-1 secretion.
Collapse
Affiliation(s)
- Keai Sinn Tan
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Tomoko Inoue
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan
| | - Kasem Kulkeaw
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan
| | - Yuka Tanaka
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka 812-8582 Japan Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582 Japan
| | - Mei I Lai
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Daisuke Sugiyama
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka 812-8582 Japan Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582 Japan
| |
Collapse
|
9
|
The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. PLoS Genet 2015; 11:e1005018. [PMID: 25756904 PMCID: PMC4354908 DOI: 10.1371/journal.pgen.1005018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/22/2015] [Indexed: 01/30/2023] Open
Abstract
The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC) of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival.
Collapse
|
10
|
Ley EJ, Singer MB, Clond MA, Johnson T, Bukur M, Chung R, Margulies DR, Salim A. Long-term effect of trauma splenectomy on blood glucose. J Surg Res 2012; 177:152-6. [DOI: 10.1016/j.jss.2012.03.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 02/21/2012] [Accepted: 03/28/2012] [Indexed: 01/28/2023]
|
11
|
Koss M, Bolze A, Brendolan A, Saggese M, Capellini TD, Bojilova E, Boisson B, Prall OW, Elliott D, Solloway M, Lenti E, Hidaka C, Chang CP, Mahlaoui N, Harvey RP, Casanova JL, Selleri L. Congenital asplenia in mice and humans with mutations in a Pbx/Nkx2-5/p15 module. Dev Cell 2012; 22:913-26. [PMID: 22560297 PMCID: PMC3356505 DOI: 10.1016/j.devcel.2012.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 10/21/2011] [Accepted: 02/16/2012] [Indexed: 01/05/2023]
Abstract
The molecular determinants of spleen organogenesis and the etiology of isolated congenital asplenia (ICA), a life-threatening human condition, are unknown. We previously reported that Pbx1 deficiency causes organ growth defects including asplenia. Here, we show that mice with splenic mesenchyme-specific Pbx1 inactivation exhibit hyposplenia. Moreover, the loss of Pbx causes downregulation of Nkx2-5 and derepression of p15Ink4b in spleen mesenchymal progenitors, perturbing the cell cycle. Removal of p15Ink4b in Pbx1 spleen-specific mutants partially rescues spleen growth. By whole-exome sequencing of a multiplex kindred with ICA, we identify a heterozygous missense mutation (P236H) in NKX2-5 showing reduced transactivation in vitro. This study establishes that a Pbx/Nkx2-5/p15 regulatory module is essential for spleen development.
Collapse
Affiliation(s)
- Matthew Koss
- Department of Cell & Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Alexandre Bolze
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Andrea Brendolan
- Department of Cell & Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
- Laboratory of Lymphoid Organ Development, Fondazione Centro San Raffaele Del Monte Tabor, Milan, Italy, EU
| | - Matilde Saggese
- Department of Cell & Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Terence D. Capellini
- Department of Cell & Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Ekaterina Bojilova
- Department of Cell & Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Owen W.J. Prall
- The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - David Elliott
- The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Mark Solloway
- The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Elisa Lenti
- Laboratory of Lymphoid Organ Development, Fondazione Centro San Raffaele Del Monte Tabor, Milan, Italy, EU
| | - Chisa Hidaka
- Laboratory for Soft Tissue Research, Hospital of Special Surgery, New York, NY 10021, USA
| | - Ching-Pin Chang
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nizar Mahlaoui
- Pediatric Hematology-Immunology Unit, Necker Hospital, AP-HP, Paris 75015, France, EU
| | - Richard P. Harvey
- The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Australia
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital, AP-HP, Paris 75015, France, EU
- University Paris Descartes, Paris 75015, France, EU
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, Institut National de la Santé et de la Recherche Médicale, U980, Paris 75015, France, EU
| | - Licia Selleri
- Department of Cell & Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
12
|
Abstract
OBJECTIVES Intrapancreatic accessory spleen is a benign lesion that mimics hypervascular or cystic pancreatic neoplasm. A comprehensive clinicopathologic analysis has not yet been reported. METHODS We described the clinicopathologic characteristics of 12 cases of pathologically proven intrapancreatic accessory spleen, among which 6 had internal epidermoid cysts. Immunohistochemistry was done to clarify the origin of epidermoid cysts. RESULTS Most cases were incidentally detected in young adults. Two-thirds of cases with intra-lesional cysts showed elevated serum carbohydrate antigen 19-9 levels. Radiologically, heterogeneously enhancing a solid portion similar to the spleen was a helpful, but not convincing, feature. Grossly, a well-circumscribed dark red mass with or without cysts in the pancreatic tail was characteristic. Microscopically, small foci of pancreatic tissue were embedded within the splenic tissue. Epidermoid cysts consisted of modified squamous epithelium, some of which had intracellular mucin. Cytologic smears showed large aggregates of benign spindle cells that were reactive against CD8. Immunohistochemical staining of the cystic epithelium suggested its pancreatic ductal origin. CONCLUSIONS Intrapancreatic accessory spleen with or without epidermoid cyst should be considered as differential diagnoses when well-enhanced solid or cystic tumors are found in the pancreatic tail. Radiologic suspicion and preoperative aspiration or biopsy might minimize the need for unnecessary surgery.
Collapse
|
13
|
Abstract
The gastrointestinal tract is an asymmetrically patterned organ system. The signals which initiate left-right asymmetry in the developing embryo have been extensively studied, but the downstream steps required to confer asymmetric morphogenesis on the gut organ primordia are less well understood. In this paper we outline key findings on the tissue mechanics underlying gut asymmetry, across a range of species, and use these to synthesise a conserved model for asymmetric gut morphogenesis. We also discuss the importance of correct establishment of left-right asymmetry for gut development and the consequences of perturbations in this process.
Collapse
Affiliation(s)
- Sally F Burn
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | | |
Collapse
|
14
|
Burn SF, Boot MJ, de Angelis C, Doohan R, Arques CG, Torres M, Hill RE. The dynamics of spleen morphogenesis. Dev Biol 2008; 318:303-11. [PMID: 18452913 DOI: 10.1016/j.ydbio.2008.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 11/20/2022]
Abstract
The mammalian spleen has important functions in immunity and haematopoiesis but little is known about the events that occur during its early embryonic development. Here we analyse the origin of the cells that gives rise to the splenic mesenchyme and the process by which the precursors assume their position along the left lateral side of the stomach. We report a highly conserved regulatory element that regulates the Nkx2-5 gene throughout early spleen development. A transgenic mouse line carrying this element driving a reporter gene was used to show that morphogenesis of the spleen initiates bilaterally and posterior to the stomach, before the splenic precursors grow preferentially leftward. In addition the transgenic line was used in an organ culture system to track spleen precursor cells during development. Spleen cells were shown to move from the posterior mesenchyme and track along the left side of the stomach. Removal of tissue from the anterior stomach resulted in splenic cells randomly scattering suggesting a guidance role for the anterior stomach. Using a mouse line carrying a conditional Cre recombinase to mark early precursor cell populations, the spleen was found to derive from posterior mesenchyme distinct from the closely adjacent stomach mesenchyme.
Collapse
Affiliation(s)
- Sally F Burn
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, Edinburgh, EH4 2XU, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Brendolan A, Rosado MM, Carsetti R, Selleri L, Dear TN. Development and function of the mammalian spleen. Bioessays 2007; 29:166-77. [PMID: 17226804 DOI: 10.1002/bies.20528] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vertebrate spleen has important functions in immunity and haematopoiesis, many of which have been well studied. In contrast, we know much less about the mechanisms governing its early embryonic development. However, as a result of work over the past decade-mostly using knockout mice--significant progress has been made in unravelling the genetic processes governing the spleen's early development. Key genetic regulators, such as Tlx1 and Pbx1, have been identified, and we know some of the early transcriptional hierarchies that control the early patterning and proliferation of the splenic primordium. In mouse and humans, asplenia can arise as a result of laterality defects, or the spleen can be absent with no other discernible abnormalities. Surprisingly, given the spleen's diverse functions, asplenic individuals suffer no major haematopoietic or immune defects apart from a susceptibility to infection with encapsulated bacteria. Recent evidence has shed light on a previously unknown role of the spleen in the development and maintenance of specific B cell populations that are involved in the initial response to infection caused by encapsulated bacteria. The lack of these populations in asplenic mice and humans may go some way to explaining this susceptibility.
Collapse
Affiliation(s)
- Andrea Brendolan
- Department of Cell and Developmental Biology, Cornell University, Weill Medical School, New York, NY, USA
| | | | | | | | | |
Collapse
|
16
|
Asayesh A, Sharpe J, Watson RP, Hecksher-Sørensen J, Hastie ND, Hill RE, Ahlgren U. Spleen versus pancreas: strict control of organ interrelationship revealed by analyses of Bapx1-/- mice. Genes Dev 2006; 20:2208-13. [PMID: 16912273 PMCID: PMC1553204 DOI: 10.1101/gad.381906] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/31/2006] [Indexed: 01/12/2023]
Abstract
During early stages of pancreatic development, the mesenchyme that contributes to the spleen overlies the dorsal pancreatic endoderm. Here, we show that interactions between splenic mesenchyme and pancreas proceed via a highly orchestrated morphogenetic program. Disruption of morphogenesis, as occurs in the Bapx1(Nkx3.2)(-/-) embryo, results in transformation of these tissues into well-organized, ectopic gut-like structures. Bapx1 plays a crucial organizing role effecting position and separation of the spleen and pancreas to prevent this metaplastic transformation. Similar transformations occur in organ cultures employing wild-type pancreatic endoderm and spleen mesenchyme, revealing the developmental plasticity of the pancreas and that precise spatial and temporal control of tissue interactions are required for development of both organs.
Collapse
Affiliation(s)
- Amir Asayesh
- Umeå Centre for Molecular Medicine, Umeå University, S-901 87, Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Ramsdell AF. Left–right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left–right axis determination. Dev Biol 2005; 288:1-20. [PMID: 16289136 DOI: 10.1016/j.ydbio.2005.07.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/21/2005] [Accepted: 07/26/2005] [Indexed: 01/20/2023]
Abstract
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine and Program in Women's Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
18
|
Kodama S, Davis M, Faustman DL. Regenerative medicine: a radical reappraisal of the spleen. Trends Mol Med 2005; 11:271-6. [PMID: 15949768 DOI: 10.1016/j.molmed.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 04/11/2005] [Accepted: 04/26/2005] [Indexed: 12/25/2022]
Abstract
The spleen has long been considered a dispensable organ. Recent research, however, has found that the spleen of adult mice holds a reservoir of stem cells that can rapidly and robustly differentiate into functional cells of diverse lineages. Splenic stem cells express Hox11, a key embryonic transcription factor that regulates organogenesis. The presence of multi-lineage stem cells in the spleen might represent lifelong persistence of cells from a primitive embryonic region called the aorta-gonad-mesonephros. By bringing together findings from diverse disciplines, we propose that the adult spleen is an important source of multi-lineage stem cells for future cellular therapies for diabetes and other diseases.
Collapse
Affiliation(s)
- Shohta Kodama
- Harvard Medical School & Massachusetts General Hospital-East Immunology Lab, Building 149, 13(th) Street, Room 3602, Boston, MA 02193, USA
| | | | | |
Collapse
|
19
|
Kodama S, Davis M, Faustman DL. Diabetes and Stem Cell Researchers Turn to the Lowly Spleen. ACTA ACUST UNITED AC 2005; 2005:pe2. [PMID: 15659719 DOI: 10.1126/sageke.2005.3.pe2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The spleen gets no respect. Long seen as superfluous, the adult spleen of the mouse has recently been shown to hold stem cells that, in diabetic mice or genetically altered mice that lack a pancreas, effectively regenerate insulin-producing islet cells of the pancreas. Stem cells of the spleen express Hox11, a highly conserved transcription factor that plays a major role in the development of organs in vertebrate and invertebrate embryos. Hox11 and other members of the Hox family of genes may give stem cells of the spleen the capacity to mature into cell types other than islet cells, including neurons and bone cells. Multilineage splenic stem cells may trace to the embryogenesis and possible persistence into adulthood of a fetal stem cell region called the aorta-gonad-mesonephros (AGM). This Perspective calls for reappraisal of the lowly spleen for treating diabetes and other diseases of aging.
Collapse
Affiliation(s)
- Shohta Kodama
- Harvard Medical School and Massachusetts General Hospital-East, Boston, MA 02192, USA
| | | | | |
Collapse
|
20
|
Muller JK, Prather DR, Nascone-Yoder NM. Left-right asymmetric morphogenesis in the Xenopus digestive system. Dev Dyn 2003; 228:672-82. [PMID: 14648844 DOI: 10.1002/dvdy.10415] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The morphogenetic mechanisms by which developing organs become left-right asymmetric entities are unknown. To investigate this issue, we compared the roles of the left and right sides of the Xenopus embryo during the development of anatomic asymmetries in the digestive system. Although both sides contribute equivalently to each of the individual digestive organs, during the initial looping of the primitive gut tube, the left side assumes concave topologies where the right side becomes convex. Of interest, the concave surfaces of the gut tube correlate with expression of the LR gene, Pitx2, and ectopic Pitx2 mRNA induces ectopic concavities in a localized manner. A morphometric comparison of the prospective concave and convex surfaces of the gut tube reveals striking disparities in their rate of elongation but no significant differences in cell proliferation. These results provide insight into the nature of symmetry-breaking morphogenetic events during left-right asymmetric organ development.
Collapse
Affiliation(s)
- Jennifer K Muller
- Department of Biology, Collegium of Natural Sciences, Eckerd College, St. Petersburg, Florida 33711, USA
| | | | | |
Collapse
|
21
|
Abstract
It is known from work with amniote embryos that regional specification of the gut requires cell-cell signalling between the mesoderm and the endoderm. In recent years, much of the interest in Xenopus endoderm development has focused on events that occur before gastrulation and this work has led to a different model whereby regional specification of the endoderm is autonomous. In this paper, we examine the specification and differentiation of the endoderm in Xenopus using neurula and tail-bud-stage embryos and we show that the current hypothesis of stable autonomous regional specification is not correct. When the endoderm is isolated alone from neurula and tail bud stages, it remains fully viable but will not express markers of regional specification or differentiation. If mesoderm is present, regional markers are expressed. If recombinations are made between mesoderm and endoderm, then the endodermal markers expressed have the regional character of the mesoderm. Previous results with vegetal explants had shown that endodermal differentiation occurs cell-autonomously, in the absence of mesoderm. We have repeated these experiments and have found that the explants do in fact show some expression of mesoderm markers associated with lateral plate derivatives. We believe that the formation of mesoderm cells by the vegetal explants accounts for the apparent autonomous development of the endoderm. Since the fate map of the Xenopus gut shows that the mesoderm and endoderm of each level do not come together until tail bud stages, we conclude that stable regional specification of the endoderm must occur quite late, and as a result of inductive signals from the mesoderm.
Collapse
Affiliation(s)
- M E Horb
- Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, BA2 7AY, United Kingdom.
| | | |
Collapse
|
22
|
Kanzler B, Dear TN. Hox11 Acts Cell Autonomously in Spleen Development and Its Absence Results in Altered Cell Fate of Mesenchymal Spleen Precursors. Dev Biol 2001; 234:231-43. [PMID: 11356032 DOI: 10.1006/dbio.2001.0239] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The genetic steps governing development of the spleen are largely unknown. Absence of Hox11 in mice results in asplenia, but it is unclear how Hox11 exerts its effect on spleen development. To more precisely define Hox11's role in spleen morphogenesis, we have examined the fate of the developing spleen in Hox11(-/-) mice. Perturbation of spleen development begins between dE13 and dE13.5. Cells of the spleen anlage persist past this developmental stage as an unorganized rudiment between the stomach and the pancreas. They fail to proliferate, and haematopoietic cells do not colonize the rudiment. At later stages of embryonic development, the cells can be observed in the mesenchyme of the pancreas, also an expression site of Hox11. In Hox11-/-<-->+/+ chimaeras, spleens were devoid of Hox11(-/-) cells, indicating that the genetic defect is cell autonomous and not due to failure of the organ anlage to attract and retain haematopoietic cells. In -/-<-->+/+ chimaeric embryos, Hox11(-/-) cells were initially present in the spleen anlage. However, at dE13, a reorganization of the spleen occurred in the chimaeras and Hox11(-/-) cells were subsequently excluded from the spleen, suggesting that a change in the affinity for one of the spleen cells had occurred. These observations demonstrate that spleen development consists of genetically separable steps and that absence of Hox11 arrests spleen development at an early stage. The formation of the spleen primordium before the entry of haematopoietic cells does not require the activity of Hox11. However, subsequent differentiation of spleen precursor cells is dependent on the Hox11 gene.
Collapse
Affiliation(s)
- B Kanzler
- Department of Developmental Immunology, Max-Planck Institute for Immunobiology, Stuebeweg 51, Freiburg, 79108, Germany
| | | |
Collapse
|
23
|
Capdevila J, Vogan KJ, Tabin CJ, Izpisúa Belmonte JC. Mechanisms of left-right determination in vertebrates. Cell 2000; 101:9-21. [PMID: 10778851 DOI: 10.1016/s0092-8674(00)80619-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J Capdevila
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|