1
|
Sanchez L, Epps J, Wall S, McQueen C, Pearson SJ, Scribner K, Wellberg EA, Giles ED, Rijnkels M, Porter WW. SIM2s directed Parkin-mediated mitophagy promotes mammary epithelial cell differentiation. Cell Death Differ 2023:10.1038/s41418-023-01146-9. [PMID: 36966227 DOI: 10.1038/s41418-023-01146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023] Open
Abstract
The functionally differentiated mammary gland adapts to extreme levels of stress from increased demand for energy by activating specific protective mechanisms to support neonatal health. Here, we identify the breast tumor suppressor gene, single-minded 2 s (SIM2s) as a novel regulator of mitophagy, a key component of this stress response. Using tissue-specific mouse models, we found that loss of Sim2 reduced lactation performance, whereas gain (overexpression) of Sim2s enhanced and extended lactation performance and survival of mammary epithelial cells (MECs). Using an in vitro model of MEC differentiation, we observed SIM2s is required for Parkin-mediated mitophagy, which we have previously shown as necessary for functional differentiation. Mechanistically, SIM2s localizes to mitochondria to directly mediate Parkin mitochondrial loading. Together, our data suggest that SIM2s regulates the rapid recycling of mitochondria via mitophagy, enhancing the function and survival of differentiated MECs.
Collapse
Affiliation(s)
- Lilia Sanchez
- Department of Veterinary Physiology and Pharmacology; College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Jessica Epps
- Department of Veterinary Physiology and Pharmacology; College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Steven Wall
- Department of Veterinary Physiology and Pharmacology; College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Cole McQueen
- Department of Veterinary Physiology and Pharmacology; College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Scott J Pearson
- Department of Veterinary Physiology and Pharmacology; College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Kelly Scribner
- Department of Toxicology, CTEH, 5120 Northshore Drive, Little Rock, AR, 72118, USA
| | - Elizabeth A Wellberg
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Erin D Giles
- School of Kinesiology, University of Michigan, 830 N University Ave, Ann Arbor, MI, 48109, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences; College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| | - Weston W Porter
- Department of Veterinary Physiology and Pharmacology; College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Webster SE, Spitsbergen JB, Linn DM, Webster MK, Otteson D, Cooley-Themm C, Linn CL. Transcriptome Changes in Retinal Pigment Epithelium Post-PNU-282987 Treatment Associated with Adult Retinal Neurogenesis in Mice. J Mol Neurosci 2022; 72:1990-2010. [PMID: 35867327 DOI: 10.1007/s12031-022-02049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
PNU-282987, a selective alpha7 nicotinic acetylcholine receptor agonist, has previously been shown to have both neurogenic and broad regenerative effects in the adult murine retina. The objective of this study was to assay the molecular mechanism by which PNU-282987 promotes the production of Muller-derived progenitor cells through signaling via the resident retinal pigment epithelium. These Muller-derived progenitor cells generate a myriad of differentiated neurons throughout the retina that have previously been characterized by morphology. Herein, we demonstrate that topical application of PNU-282987 stimulates production of functional neurons as measured by electroretinograms. Further, we examine the mechanism of how this phenomenon occurs through activation of this atypical receptor using a transcriptomic approach isolated retinal pigment epithelium activated by PNU-282987 and in whole retina. We provide evidence that PNU-282987 causes a bi-modal signaling event in which early activation primes the retina with an inflammatory response and developmental signaling cues, followed by an inhibition of gliotic mechanisms and a decrease in the immune response, ending with upregulation of genes associated with specific retinal neuron generation. Taken together, these data provide evidence that PNU-282987 activates the retinal pigment epithelium to signal to Muller glia to produce Muller-derived progenitor cells, which can differentiate into new, functional neurons in adult mice. These data not only increase our understanding of how adult mammalian retinal regeneration can occur, but also provide therapeutic promise for treating functional vision loss.
Collapse
Affiliation(s)
- Sarah E Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Jake B Spitsbergen
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - David M Linn
- Department of Biomedical Sciences, Grand Valley State University, Grand Rapids, MI, USA
| | - Mark K Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Deborah Otteson
- University of Houston College of Optometry, Houston, TX, USA
| | - Cynthia Cooley-Themm
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Cindy L Linn
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.
| |
Collapse
|
3
|
Ghasemi N, Farhang S, Soleimani M, Ostadsharif M. Neurogenic induction of human dental pulp derived stem cells by hanging drop technique, basic fibroblast growth factor, and SHH factors. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.321868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Pearson SJ, Roy Sarkar T, McQueen CM, Elswood J, Schmitt EE, Wall SW, Scribner KC, Wyatt G, Barhoumi R, Behbod F, Rijnkels M, Porter WW. ATM-dependent activation of SIM2s regulates homologous recombination and epithelial-mesenchymal transition. Oncogene 2019; 38:2611-2626. [PMID: 30531838 PMCID: PMC6450754 DOI: 10.1038/s41388-018-0622-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/15/2022]
Abstract
There is increasing evidence that genomic instability is a prerequisite for cancer progression. Here we show that SIM2s, a member of the bHLH/PAS family of transcription factors, regulates DNA damage repair through enhancement of homologous recombination (HR), and prevents epithelial-mesenchymal transitions (EMT) in an Ataxia-telangiectasia mutated (ATM)-dependent manner. Mechanistically, we found that SIM2s interacts with ATM and is stabilized through ATM-dependent phosphorylation in response to IR. Once stabilized, SIM2s interacts with BRCA1 and supports RAD51 recruitment to the site of DNA damage. Loss of SIM2s through the introduction of shSIM2 or the mutation of SIM2s at one of the predicted ATM phosphorylation sites (S115) reduces HR efficiency through disruption of RAD51 recruitment, resulting in genomic instability and induction of EMT. The EMT induced by the mutation of S115 is characterized by a decrease in E-cadherin and an induction of the basal marker, K14, resulting in increased invasion and metastasis. Together, these results identify a novel player in the DNA damage repair pathway and provides a link in ductal carcinoma in situ progression to invasive ductal carcinoma through loss of SIM2s, increased genomic instability, EMT, and metastasis.
Collapse
Affiliation(s)
- Scott J Pearson
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Tapasree Roy Sarkar
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Cole M McQueen
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Jessica Elswood
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Emily E Schmitt
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Steven W Wall
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Kelly C Scribner
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Garhett Wyatt
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Rola Barhoumi
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Monique Rijnkels
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston W Porter
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
- Veterinary Integrative Biosciences, Texas A&M University, College of Veterinary Medicine, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Hu D, Young NM, Li X, Xu Y, Hallgrímsson B, Marcucio RS. A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face. Development 2015; 142:567-74. [PMID: 25605783 DOI: 10.1242/dev.114835] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms of morphogenesis are not well understood, yet shaping structures during development is essential for establishing correct organismal form and function. Here, we examine mechanisms that help to shape the developing face during the crucial period of facial primordia fusion. This period of development is a time when the faces of amniote embryos exhibit the greatest degree of similarity, and it probably results from the necessity for fusion to occur to establish the primary palate. Our results show that hierarchical induction mechanisms, consisting of iterative signaling by Sonic hedgehog (SHH) followed by Bone morphogenetic proteins (BMPs), regulate a dynamic expression pattern of Shh in the ectoderm covering the frontonasal (FNP) and maxillary (MxP) processes. Furthermore, this Shh expression domain contributes to the morphogenetic processes that drive the directional growth of the globular process of the FNP toward the lateral nasal process and MxP, in part by regulating cell proliferation in the facial mesenchyme. The nature of the induction mechanism that we discovered suggests that the process of fusion of the facial primordia is intrinsically buffered against producing maladaptive morphologies, such as clefts of the primary palate, because there appears to be little opportunity for variation to occur during expansion of the Shh expression domain in the ectoderm of the facial primordia. Ultimately, these results might explain why this period of development constitutes a phylotypic stage of facial development among amniotes.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Nathan M Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Xin Li
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA National Key Laboratory of Bio-Macromolecule, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Xu
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA Epitomizes, Inc., 1418 Moganshan Road, Hangzhou, Zhejiang 310011, China
| | - Benedikt Hallgrímsson
- Department of Anatomy and Cell Biology, University of Calgary, McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada T2N 4N1
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| |
Collapse
|
6
|
Brown AS, Rakowiecki SM, Li JYH, Epstein DJ. The cochlear sensory epithelium derives from Wnt responsive cells in the dorsomedial otic cup. Dev Biol 2015; 399:177-187. [PMID: 25592224 DOI: 10.1016/j.ydbio.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
Wnt1 and Wnt3a secreted from the dorsal neural tube were previously shown to regulate a gene expression program in the dorsal otic vesicle that is necessary for vestibular morphogenesis (Riccomagno et al., 2005. Genes Dev. 19, 1612-1623). Unexpectedly, Wnt1(-/-); Wnt3a(-/-) embryos also displayed a pronounced defect in the outgrowth of the ventrally derived cochlear duct. To determine how Wnt signaling in the dorsal otocyst contributes to cochlear development we performed a series of genetic fate mapping experiments using two independent Wnt responsive driver strains (TopCreER and Gbx2(CreER)) that when crossed to inducible responder lines (Rosa(lacZ) or Rosa(zsGreen)) permanently labeled dorsomedial otic progenitors and their derivatives. Tamoxifen time course experiments revealed that most vestibular structures showed some degree of labeling when recombination was induced between E7.75 and E12.5, consistent with continuous Wnt signaling activity in this tissue. Remarkably, a population of Wnt responsive cells in the dorsal otocyst was also found to contribute to the sensory epithelium of the cochlear duct, including auditory hair and support cells. Similar results were observed with both TopCreER and Gbx2(CreER) strains. The ventral displacement of Wnt responsive cells followed a spatiotemporal sequence that initiated in the anterior otic cup at, or immediately prior to, the 17-somite stage (E9) and then spread progressively to the posterior pole of the otic vesicle by the 25-somite stage (E9.5). These lineage-tracing experiments identify the earliest known origin of auditory sensory progenitors within a population of Wnt responsive cells in the dorsomedial otic cup.
Collapse
Affiliation(s)
- Alexander S Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - James Y H Li
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Nissim-Eliraz E, Zisman S, Schatz O, Ben-Arie N. Nato3 Integrates with the Shh-Foxa2 Transcriptional Network Regulating the Differentiation of Midbrain Dopaminergic Neurons. J Mol Neurosci 2012; 51:13-27. [DOI: 10.1007/s12031-012-9939-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/06/2012] [Indexed: 11/28/2022]
|
8
|
Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-variation of the brain and face. Genesis 2011; 49:177-89. [PMID: 21381182 PMCID: PMC3086711 DOI: 10.1002/dvg.20710] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 12/11/2022]
Abstract
The effect of the brain on the morphology of the face has long been recognized in both evolutionary biology and clinical medicine. In this work, we describe factors that are active between the development of the brain and face and how these might impact craniofacial variation. First, there is the physical influence of the brain, which contributes to overall growth and morphology of the face through direct structural interactions. Second, there is the molecular influence of the brain, which signals to facial tissues to establish signaling centers that regulate patterned growth. Importantly, subtle alterations to these physical or molecular interactions may contribute to both normal and abnormal variation. These interactions are therefore critical to our understanding of how a diversity of facial morphologies can be generated both within species and across evolutionary time.
Collapse
Affiliation(s)
- Ralph S Marcucio
- University of California, San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, UCSF, San Francisco General Hospital, San Francisco, California 94110, USA.
| | | | | | | |
Collapse
|
9
|
Kubo H, Shimizu M, Taya Y, Kawamoto T, Michida M, Kaneko E, Igarashi A, Nishimura M, Segoshi K, Shimazu Y, Tsuji K, Aoba T, Kato Y. Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes Cells 2009; 14:407-24. [PMID: 19228201 DOI: 10.1111/j.1365-2443.2009.01281.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although ex vivo expanded mesenchymal stem cells (MSC) have been used in numerous studies, the molecular signature and in vivo distribution status of MSC remain unknown. To address this matter, we identified numerous human MSC-characteristic genes--including nine transcription factor genes--using DNA microarray and real-time RT-PCR analyses: Most of the MSC-characteristic genes were down-regulated 24 h after incubation with osteogenesis-, chondrogenesis- or adipogenesis-induction medium, or 48-72 h after knockdown of the nine transcription factors. Furthermore, knockdowns of ETV1, ETV5, FOXP1, GATA6, HMGA2, SIM2 or SOX11 suppressed the self-renewal capacity of MSC, whereas those of FOXP1, SOX11, ETV1, SIM2 or PRDM16 reduced the osteogenic- and/or adipogenic potential. In addition, immunohistochemistry using antibodies for the MSC characteristic molecules--including GATA6, TRPC4, FLG and TGM2--revealed that MSC-like cells were present near the endosteum and in the interior of bone marrow of adult mice. These findings indicate that MSC synthesize a set of MSC markers in vitro and in vivo, and that MSC-characteristic transcription factors are involved in MSC stemness regulation.
Collapse
Affiliation(s)
- Hiroshi Kubo
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rachidi M, Lopes C. Mental retardation in Down syndrome: From gene dosage imbalance to molecular and cellular mechanisms. Neurosci Res 2007; 59:349-69. [PMID: 17897742 DOI: 10.1016/j.neures.2007.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/02/2007] [Accepted: 08/10/2007] [Indexed: 11/25/2022]
Abstract
Down syndrome (DS), the most frequent genetic disorder leading to mental retardation (MR), is caused by three copies of human chromosome 21 (HC21). Trisomic and transgenic mouse models for DS allow genetic dissection of DS neurological and cognitive disorders in view to identify genes responsible for these phenotypes. The effects of the gene dosage imbalance on DS phenotypes are explained by two hypotheses: the "gene dosage effect" hypothesis claims that a DS critical region, containing a subset of dosage-sensitive genes, determines DS phenotypes, and the "amplified developmental instability" hypothesis holds that HC21 trisomy determines general alteration in developmental homeostasis. Transcriptome and expression studies showed different up- or down-expression levels of genes located on HC21 and the other disomic chromosomes. HC21 genes, characterized by their overexpression in brain regions affected in DS patients and by their contribution to neurological and cognitive defects when overexpressed in mouse models, are proposed herein as good candidates for MR. In this article, we propose a new molecular and cellular mechanism explaining MR pathogenesis in DS. In this model, gene dosage imbalance effects on transcriptional variations are described considering the nature of gene products and their functional relationships. These transcriptional variations may affect different aspects of neuronal differentiation and metabolism and finally, determine the brain neuropathologies and mental retardation in DS.
Collapse
|
11
|
Bok J, Brunet LJ, Howard O, Burton Q, Wu DK. Role of hindbrain in inner ear morphogenesis: analysis of Noggin knockout mice. Dev Biol 2007; 311:69-78. [PMID: 17900554 PMCID: PMC2215324 DOI: 10.1016/j.ydbio.2007.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 11/17/2022]
Abstract
Signaling from rhombomeres 5 and 6 of the hindbrain is thought to be important for inner ear patterning. In Noggin -/- embryos, the gross anatomy of the inner ear is distorted and malformed, with cochlear duct outgrowth and coiling most affected. We attributed these defects to a caudal shift of the rhombomeres caused by the shortened body axis and the kink in the neural tube. To test the hypothesis that a caudal shift of the rhombomeres affects inner ear development, we surgically generated chicken embryos in which rhombomeres 5 and 6 were similarly shifted relative to the position of the inner ears, as in Noggin mutants. All chicken embryos with shifted rhombomeres showed defects in cochlear duct formation indicating that signaling from rhombomeres 5 and 6 is important for cochlear duct patterning in both chicken and mice. In addition, the size of the otic capsule is increased in Noggin -/- mutants, which most likely is due to unopposed BMP signaling for chondrogenesis in the peri-otic mesenchyme.
Collapse
Affiliation(s)
- Jinwoong Bok
- National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850
| | - Lisa J. Brunet
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Omar Howard
- National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850
| | - Quianna Burton
- National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850
| | - Doris K. Wu
- National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850
| |
Collapse
|
12
|
Harris MJ, Juriloff DM. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. ACTA ACUST UNITED AC 2007; 79:187-210. [PMID: 17177317 DOI: 10.1002/bdra.20333] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
13
|
Pachikara A, Dolson DK, Martinu L, Riccomagno MM, Jeong Y, Epstein DJ. Activation of Class I transcription factors by low level Sonic hedgehog signaling is mediated by Gli2-dependent and independent mechanisms. Dev Biol 2007; 305:52-62. [PMID: 17321515 PMCID: PMC1914214 DOI: 10.1016/j.ydbio.2007.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 01/23/2007] [Accepted: 01/29/2007] [Indexed: 11/19/2022]
Abstract
The partitioning of the ventral neural tube into five distinct neuronal progenitor domains is dependent on the morphogenic action of the secreted protein Sonic hedgehog (Shh). The prevailing model stipulates that Class I genes are repressed and Class II genes are activated by high levels of Shh signaling and that sharp progenitor domain boundaries are established by the mutual repression of complementary pairs of Class I and Class II transcription factors. While core elements of this model are supported by experimental evidence, a number of issues remain unresolved. Foremost of these is a more thorough understanding of the mechanism by which Class I genes are regulated. In this study, we describe the consequences of Shh misexpression on Class I and Class II gene expression in the hindbrain of ShhP1 embryos. We observed that an ectopic source of Shh in the otic vesicle of ShhP1 embryos ventralized the adjacent hindbrain by inducing, rather than repressing, the expression of several Class I genes (Pax6, Dbx1, Dbx2). The Shh dependent activation of Class I genes was mediated, in part, by Gli2. These results bear significance on the model of ventral neural tube patterning as they suggest a dual role for Shh in the regulation of Class I genes, whereby low levels of Shh signaling initiate Class I gene transcription, while higher levels restrict the domains of Class I gene expression to intermediate positions of the neural tube through the activation of Class II transcriptional regulators.
Collapse
Affiliation(s)
- Abraham Pachikara
- Department of Genetics, University of Pennsylvania, School of Medicine, Clinical Research Bldg., Room 470, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
14
|
Rachidi M, Lopes C, Charron G, Delezoide AL, Paly E, Bloch B, Delabar JM. Spatial and temporal localization during embryonic and fetal human development of the transcription factor SIM2 in brain regions altered in Down syndrome. Int J Dev Neurosci 2005; 23:475-84. [PMID: 15946822 DOI: 10.1016/j.ijdevneu.2005.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/14/2005] [Accepted: 05/03/2005] [Indexed: 11/17/2022] Open
Abstract
Human SIM2 is the ortholog of Drosophila single-minded (sim), a master regulator of neurogenesis and transcriptional factor controlling midline cell fate determination. We previously localized SIM2 in a chromosome 21 critical region for Down syndrome (DS). Here, we studied SIM2 gene using a new approach to provide insights in understanding of its potential role in human development. For the first time, we showed SIM2 spatial and temporal expression pattern during human central nervous system (CNS) development, from embryonic to fetal stages. Additional investigations were performed using a new optic microscopy technology to compare signal intensity and cell density [M. Rachidi, C. Lopes, S. Gassanova, P.M. Sinet, M. Vekemans, T. Attie, A.L. Delezoide, J.M. Delabar, Regional and cellular specificity of the expression of TPRD, the tetratricopeptide Down syndrome gene, during human embryonic development, Mech. Dev. 93 (2000) 189--193]. In embryonic stages, SIM2 was identified predominantly in restricted regions of CNS, in ventral part of D1/D2 diencephalic neuroepithelium, along the neural tube and in a few cell subsets of dorsal root ganglia. In fetal stages, SIM2 showed differential expression in pyramidal and granular cell layers of hippocampal formation, in cortical cells and in cerebellar external granular and Purkinje cell layers. SIM2 expression in embryonic and fetal brain could suggest a potential role in human CNS development, in agreement with Drosophila and mouse Sim mutant phenotypes and with the conservation of the Sim function in CNS development from Drosophila to Human. SIM2 expression in human fetal brain regions, which correspond to key structures for cognitive processes, correlates well with the behavioral phenotypes of Drosophila Sim mutants and transgenic mice overexpressing Sim2. In addition, SIM2-expressing brain regions correspond to the altered structures in DS patients. All together, these findings suggest a potential role of SIM2 in CNS development and indicate that SIM2 overexpression could participate to the pathogenesis of mental retardation in Down syndrome patients.
Collapse
Affiliation(s)
- Mohammed Rachidi
- EA 3508, Tour 54, E2-54-53, Case 7104, Université Denis Diderot, 2 Place Jussieu, 75251 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Riccomagno MM, Takada S, Epstein DJ. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 2005; 19:1612-23. [PMID: 15961523 PMCID: PMC1172066 DOI: 10.1101/gad.1303905] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The inner ear is partitioned along its dorsal/ventral axis into vestibular and auditory organs, respectively. Gene expression studies suggest that this subdivision occurs within the otic vesicle, the tissue from which all inner ear structures are derived. While the specification of ventral otic fates is dependent on Shh secreted from the notochord, the nature of the signal responsible for dorsal otic development has not been described. In this study, we demonstrate that Wnt signaling is active in dorsal regions of the otic vesicle, where it functions to regulate the expression of genes (Dlx5/6 and Gbx2) necessary for vestibular morphogenesis. We further show that the source of Wnt impacting on dorsal otic development emanates from the dorsal hindbrain, and identify Wnt1 and Wnt3a as the specific ligands required for this function. The restriction of Wnt target genes to the dorsal otocyst is also influenced by Shh. Thus, a balance between Wnt and Shh signaling activities is key in distinguishing between vestibular and auditory cell types.
Collapse
Affiliation(s)
- Martin M Riccomagno
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
16
|
Lemos B, Yunes JA, Vargas FR, Moreira MAM, Cardoso AA, Seuánez HN. Phylogenetic footprinting reveals extensive conservation of Sonic Hedgehog (SHH) regulatory elements. Genomics 2005; 84:511-23. [PMID: 15498458 DOI: 10.1016/j.ygeno.2004.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 05/28/2004] [Indexed: 11/27/2022]
Abstract
Sonic Hedgehog (SHH) plays a fundamental role in numerous developmental processes including morphogenesis of limbs, nervous system, and teeth. Using a Bayesian alignment algorithm for phylogenetic footprinting we analyzed approximately 28 kb of noncoding DNA in the SHH locus of human and mouse. This showed that the length of conserved noncoding sequences (4196 nt) shared by these species was approximately 3 times larger than the SHH coding sequence (1386 nt). Most segments were located in introns (53%) or within 2-kb regions upstream (16%) or downstream (20%) of the first and last SHH codon. Even though regions more than 2 kb upstream or downstream of the first and last SHH codon represented 57% (16 kb) of the sequence compared, they accounted for only 11% (494 nt) of the total length of conserved noncoding segments. One region of 650 nt downstream of SHH was identified as a putative scaffold/matrix attachment region (SMAR). Human-mouse analysis was complemented by sequencing in apes, monkeys, rodents, and bats, thus further confirming the evolutionary conservation of some segments. Gel-shift assays indicated that conserved segments are targeted by nuclear proteins and showed differences between two cell types that expressed different levels of SHH, namely human endothelial cells and breast cancer cells. The relevance of these findings with respect to regulation of SHH expression during normal and pathologic development is discussed.
Collapse
Affiliation(s)
- Bernardo Lemos
- Department of Genetics, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
17
|
Maas SA, Fallon JF. Isolation of the chicken Lmbr1 coding sequence and characterization of its role during chick limb development. Dev Dyn 2004; 229:520-8. [PMID: 14991708 DOI: 10.1002/dvdy.10502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the developing amniote limb, anteroposterior (A/P) patterning is controlled through secretion of the Sonic Hedgehog (SHH) protein by cells in the zone of polarizing activity (ZPA) located in the posterior mesoderm. In the chicken mutant oligozeugodactyly (ozd), Shh is expressed normally in the entire embryo with the exception that it is undetectable in the developing limbs; this results in the loss of specific bones in wings and legs. The ozd phenotype is similar to that of humans affected with acheiropodia (ACHR), and the ACHR mutation has been mapped to a deletion of exon 4 and portions of introns 3 and 4 in the LMBR1 gene. We have cloned the chick ortholog of LMBR1, Lmbr1, and report that, in chick, Lmbr1 is expressed within the ZPA. Although the ozd phenotype is similar to ACHR, the open reading frame of Lmbr1 is normal in ozd. Sequence analysis of Lmbr1 intron 3 demonstrated that this particular genomic region segregates with the ozd phenotype. In addition, overexpression of Lmbr1 throughout the developing limb mesoderm resulted in morphologically normal limbs. Collectively, these data suggest that the Lmbr1 coding sequence is not required for normal chick limb development. We propose that the ozd mutation is linked to the genomic region containing Shh and Lmbr1.
Collapse
Affiliation(s)
- Sarah A Maas
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
18
|
Goshu E, Jin H, Lovejoy J, Marion JF, Michaud JL, Fan CM. Sim2 contributes to neuroendocrine hormone gene expression in the anterior hypothalamus. Mol Endocrinol 2004; 18:1251-62. [PMID: 14988428 DOI: 10.1210/me.2003-0372] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Paraventricular (PVN) and supraoptic nuclei of the hypothalamus maintain homeostasis by modulating pituitary hormonal output. PVN and supraoptic nuclei contain five major cell types: oxytocin-, vasopressin-, CRH-, somatostatin-, and TRH-secreting neurons. Sim1, Arnt2, and Otp genes are essential for terminal differentiation of these neurons. One of their common downstream genes, Brn2, is necessary for oxytocin, vasopressin, and CRH cell differentiation. Here we show that Sim2, a paralog of Sim1, contributes to the expression of Trh and Ss genes in the dorsal preoptic area, anterior-periventricular nucleus, and PVN. Sim2 expression overlaps with Trh- and Ss-expressing cells, and Sim2 mutants contain reduced numbers of Trh and Ss cells. Genetically, Sim1 acts upstream of Sim2 and partially compensates for the loss of Sim2. Comparative expression studies at the anterior hypothalamus at early stages reveal that there are separate pools of Trh cells with distinctive molecular codes defined by Sim1 and Sim2 expression. Together with previous reports, our results demonstrate that Sim1 and Otp utilize two common downstream genes, Brn2 and Sim2, to mediate distinctive sets of neuroendocrine hormone gene expression.
Collapse
Affiliation(s)
- Eleni Goshu
- Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, Maryland 21210, USA
| | | | | | | | | | | |
Collapse
|
19
|
Liu C, Goshu E, Wells A, Fan CM. Identification of the downstream targets of SIM1 and ARNT2, a pair of transcription factors essential for neuroendocrine cell differentiation. J Biol Chem 2003; 278:44857-67. [PMID: 12947113 DOI: 10.1074/jbc.m304489200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SIM1 and ARNT2 are two basic helix-loop-helix/PAS (Per-Arnt-Sim) transcription factors that control the differentiation of neuroendocrine lineages in the mouse hypothalamus. Heterozygous Sim1 mice also develop early onset obesity, possibly due to hypodevelopment of the hypothalamus. Although SIM1 and ARNT2 form heterodimers to direct the same molecular pathway, knowledge of this pathway is limited. To facilitate the identification of their downstream genes, we combined an inducible gene expression system in a neuronal cell line with microarray analysis to screen for their transcriptional targets. This method identified 268 potential target genes of SIM1/ARNT2 that displayed >1.7-fold induced expression. 15 of these genes were subjected to Northern analysis, and a high percentage of them were confirmed to be up-regulated. In vivo, several of these genes showed neuroendocrine hypothalamic expression correlating with that of Sim1. Furthermore, we found that expression of two of these potential targets, the Jak2 and thyroid hormone receptor beta2 genes, was lost in the neuroendocrine hypothalamus of the Sim1 mutant. The expression and predicted functions of many of these genes provide new insight into both the Sim1/Arnt2 action in neuroendocrine hypothalamus development and the molecular basis for the Sim1 haplo-insufficient obesity phenotype.
Collapse
Affiliation(s)
- Chunqiao Liu
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Dopaminergic (DA) neurons in the midbrain are critically involved in several neurological-psychiatric illnesses and are specifically lost in Parkinson's disease. The DA neurons are generated through the interactions of multiple extrinsic and intrinsic factors during the embryogenesis. The identities and mechanisms of actions of a subset of these factors have recently been elucidated. The same factors have also been successfully used to induce efficient differentiation of DA neurons in vitro from embryonic stem cells or neural progenitors. These advances have far reaching scientific and medical implications.
Collapse
Affiliation(s)
- John C Lin
- Rinat Neuroscience Corp., Palo Alto, CA 94304, USA.
| | | |
Collapse
|
21
|
Gitton Y, Dahmane N, Baik S, Ruiz i Altaba A, Neidhardt L, Scholze M, Herrmann BG, Kahlem P, Benkahla A, Schrinner S, Yildirimman R, Herwig R, Lehrach H, Yaspo ML. A gene expression map of human chromosome 21 orthologues in the mouse. Nature 2002; 420:586-90. [PMID: 12466855 DOI: 10.1038/nature01270] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Accepted: 09/12/2002] [Indexed: 01/22/2023]
Abstract
The DNA sequence of human chromosome 21 (HSA21) has opened the route for a systematic molecular characterization of all of its genes. Trisomy 21 is associated with Down's syndrome, the most common genetic cause of mental retardation in humans. The phenotype includes various organ dysmorphies, stereotypic craniofacial anomalies and brain malformations. Molecular analysis of congenital aneuploidies poses a particular challenge because the aneuploid region contains many protein-coding genes whose function is unknown. One essential step towards understanding their function is to analyse mRNA expression patterns at key stages of organism development. Seminal works in flies, frogs and mice showed that genes whose expression is restricted spatially and/or temporally are often linked with specific ontogenic processes. Here we describe expression profiles of mouse orthologues to HSA21 genes by a combination of large-scale mRNA in situ hybridization at critical stages of embryonic and brain development and in silico (computed) mining of expressed sequence tags. This chromosome-scale expression annotation associates many of the genes tested with a potential biological role and suggests candidates for the pathogenesis of Down's syndrome.
Collapse
Affiliation(s)
- Yorick Gitton
- Skirball Institute, Developmental Genetics Program and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ. Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev 2002; 16:2365-78. [PMID: 12231626 PMCID: PMC187441 DOI: 10.1101/gad.1013302] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Organization of the inner ear into auditory and vestibular components is dependent on localized patterns of gene expression within the otic vesicle. Surrounding tissues are known to influence compartmentalization of the otic vesicle, yet the participating signals remain unclear. This study identifies Sonic hedgehog (Shh) secreted by the notochord and/or floor plate as a primary regulator of auditory cell fates within the mouse inner ear. Whereas otic induction proceeds normally in Shh(-/-) embryos, morphogenesis of the inner ear is greatly perturbed by midgestation. Ventral otic derivatives including the cochlear duct and cochleovestibular ganglia failed to develop in the absence of Shh. The origin of the inner ear defects in Shh(-/-) embryos could be traced back to alterations in the expression of a number of genes involved in cell fate specification including Pax2, Otx1, Otx2, Tbx1, and Ngn1. We further show that several of these genes are targets of Shh signaling given their ectopic activation in transgenic mice that misexpress Shh in the inner ear. Taken together, our data support a model whereby auditory cell fates in the otic vesicle are established by the direct action of Shh.
Collapse
Affiliation(s)
- Martin M Riccomagno
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
23
|
Woods SL, Whitelaw ML. Differential activities of murine single minded 1 (SIM1) and SIM2 on a hypoxic response element. Cross-talk between basic helix-loop-helix/per-Arnt-Sim homology transcription factors. J Biol Chem 2002; 277:10236-43. [PMID: 11782478 DOI: 10.1074/jbc.m110752200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix/Per-Arnt-Sim homology (bHLH/PAS) protein family comprises a group of transcriptional regulators that often respond to a variety of developmental and environmental stimuli. Two murine members of this family, Single Minded 1 (SIM1) and Single Minded 2 (SIM2), are essential for postnatal survival but differ from other prototypical family members such as the dioxin receptor (DR) and hypoxia-inducible factors, in that they behave as transcriptional repressors in mammalian one-hybrid experiments and have yet to be ascribed a regulating signal. In cell lines engineered to stably express SIM1 and SIM2, we show that both are nuclear proteins that constitutively complex with the general bHLH/PAS partner factor, ARNT. We report that the murine SIM factors, in combination with ARNT, attenuate transcription from the hypoxia-inducible erythropoietin (EPO) enhancer during hypoxia. Such cross-talk between coexpressed bHLH/PAS factors can occur through competition for ARNT, which we find evident in SIM repression of DR-induced transcription from a xenobiotic response element reporter gene. However, SIM1/ARNT, but not SIM2/ARNT, can activate transcription from the EPO enhancer at normoxia, implying that the SIM proteins have the ability to bind hypoxia response elements and affect either activation or repression of transcription. This notion is supported by co-immunoprecipitation of EPO enhancer sequences with the SIM2 protein. SIM protein levels decrease with hypoxia treatment in our stable cell lines, although levels of the transcripts encoding SIM1 and SIM2 and the approximately 2-h half-lives of each protein are unchanged during hypoxia. Inhibition of protein synthesis, known to occur in cells during hypoxic stress in order to decrease ATP utilization, appears to account for the fall in SIM levels. Our data suggest the existence of a hypoxic switch mechanism in cells that coexpress hypoxia-inducible factor and SIM proteins, where up-regulation and activation of hypoxia-inducible factor-1alpha is concomitant with attenuation of SIM activities.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Binding, Competitive
- Blotting, Northern
- Blotting, Western
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Chromatin/metabolism
- DNA, Complementary/metabolism
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Epitopes
- Genes, Reporter
- Genetic Vectors
- Helix-Loop-Helix Motifs
- Humans
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit
- Immunoblotting
- Kidney/cytology
- Kidney/embryology
- Luciferases/metabolism
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/metabolism
- Response Elements
- Sequence Homology, Amino Acid
- Time Factors
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Susan L Woods
- Department of Molecular BioSciences, Center for the Molecular Genetics of Development, Adelaide University, South Australia 5005, Australia
| | | |
Collapse
|
24
|
Abstract
Recently we isolated a homolog of the Drosophila single-minded (sim) gene from a zebrafish cDNA library. The 4380-bp of zebrafish sim cDNA encodes a polypeptide of 585 amino acids with strikingly conserved bHLH and PAS A/B domains in the amino-terminal region. During embryogenesis, sim mRNA appears in the animal hemisphere as early as 3 h post-fertilization and is expressed in a widespread pattern throughout the epiblast at the 75% epiboly stage. During the segmentation stage, sim mRNA is prominently expressed in the primordium of the hindbrain and appears as a transverse stripe in the epithelial layers of the mid-diencephalic boundary (MDB). During the pharyngula stage, sim is no longer expressed in the hindbrain, but continues to be expressed in the MDB and extends to the caudal diencephalon along the ventral midline. In addition, sim mRNA is prominent in the two pharyngeal arches. During the larval stage, sim mRNA is transcribed in the esophagus, liver, pancreas, and intestine. In contrast, sim mRNA is no longer detectable in the forebrain after hatching. In adult fish, sim is widely expressed in brain, eyes, gill, heart, liver, and intestine.
Collapse
Affiliation(s)
- Hui-Ju Wen
- Institute of Marine Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202-24, Taiwan
| | | | | | | |
Collapse
|
25
|
Estes P, Mosher J, Crews ST. Drosophila single-minded represses gene transcription by activating the expression of repressive factors. Dev Biol 2001; 232:157-75. [PMID: 11254355 DOI: 10.1006/dbio.2001.0174] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila single-minded gene controls CNS midline cell development by both activating midline gene expression and repressing lateral CNS gene expression in the midline cells. The mechanism by which Single-minded represses transcription was examined using the ventral nervous system defective gene as a target gene. Transgenic-lacZ analysis of constructs containing fragments of the ventral nervous system defective regulatory region identified sequences required for lateral CNS transcription and midline repression. Elimination of Single-minded:Tango binding sites within the ventral nervous system defective gene did not affect midline repression. Mutants of Single-minded that removed the DNA binding and transcriptional activation regions abolished ventral nervous system defective repression, as well as transcriptional activation of other genes. The replacement of the Single-minded transcriptional activation region with a heterologous VP16 transcriptional activation region restored the ability of Single-minded to both activate and repress transcription. These results indicate that Single-minded indirectly represses transcription by activating the expression of repressive factors. Single-minded provides a model system for how regulatory proteins that act only as transcriptional activators can control lineage-specific transcription in both positive and negative modes.
Collapse
Affiliation(s)
- P Estes
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7260, USA
| | | | | |
Collapse
|
26
|
Collins P. Sim and Sonic. Nat Rev Neurosci 2000. [DOI: 10.1038/35039023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|