1
|
Sharma R, Kalot R, Levin Y, Babayeva S, Kachurina N, Chung CF, Liu KJ, Bouchard M, Torban E. The CPLANE protein Fuzzy regulates ciliogenesis by suppressing actin polymerization at the base of the primary cilium via p190A RhoGAP. Development 2024; 151:dev202322. [PMID: 38546045 PMCID: PMC11006408 DOI: 10.1242/dev.202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 04/12/2024]
Abstract
The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.
Collapse
Affiliation(s)
- Rhythm Sharma
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Yossef Levin
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Sima Babayeva
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Nadezda Kachurina
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Chen-Feng Chung
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Institute, Department of Medicine of the McGill University,McGill University, Montreal H3A 1A3, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| |
Collapse
|
2
|
Reis LM, Chassaing N, Bardakjian T, Thompson S, Schneider A, Semina EV. ARHGAP35 is a novel factor disrupted in human developmental eye phenotypes. Eur J Hum Genet 2023; 31:363-367. [PMID: 36450800 PMCID: PMC9995503 DOI: 10.1038/s41431-022-01246-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
ARHGAP35 has known roles in cell migration, invasion and division, neuronal morphogenesis, and gene/mRNA regulation; prior studies indicate a role in cancer in humans and in the developing eyes, neural tissue, and renal structures in mice. We identified damaging variants in ARHGAP35 in five individuals from four families affected with anophthalmia, microphthalmia, coloboma and/or anterior segment dysgenesis disorders, together with variable non-ocular phenotypes in some families including renal, neurological, or cardiac anomalies. Three variants affected the extreme C-terminus of the protein, with two resulting in a frameshift and C-terminal extension and the other a missense change in the Rho-GAP domain; the fourth (nonsense) variant affected the middle of the gene and is the only allele predicted to undergo nonsense-mediated decay. This study implicates ARHGAP35 in human developmental eye phenotypes. C-terminal clustering of the identified alleles indicates a possible common mechanism for ocular disease but requires further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France
- Platerforme AURAGEN, Lyon, France
| | | | - Samuel Thompson
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | | | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA.
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Lippincott MF, Xu W, Smith AA, Miao X, Lafont A, Shennib O, Farley GJ, Sabbagh R, Delaney A, Stamou M, Plummer L, Salnikov K, Georgopoulos NA, Mericq V, Quinton R, Mau-Them FT, Nambot S, Hamad A, Brittain H, Tooze RS, Calpena E, Wilkie AOM, Willems M, Crowley WF, Balasubramanian R, Lamarche-Vane N, Davis EE, Seminara SB. The p190 RhoGAPs, ARHGAP35, and ARHGAP5 are implicated in GnRH neuronal development: Evidence from patients with idiopathic hypogonadotropic hypogonadism, zebrafish, and in vitro GAP activity assay. Genet Med 2022; 24:2501-2515. [PMID: 36178483 PMCID: PMC9730938 DOI: 10.1016/j.gim.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.
Collapse
Affiliation(s)
| | - Wanxue Xu
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Abigail A Smith
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Xinyu Miao
- Cancer Research Program, Research Institute of the McGill University Health Centre, Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Agathe Lafont
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC
| | - Omar Shennib
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Gordon J Farley
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Riwa Sabbagh
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Angela Delaney
- Intramural Research Program, National Institutes of Health, Bethesda, MD
| | - Maria Stamou
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Lacey Plummer
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Kathryn Salnikov
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Neoklis A Georgopoulos
- Division of Endocrinology-Department of Internal Medicine, University of Patras School of Health Sciences, Rio-Patras, Greece
| | - Veronica Mericq
- Instituto de Investigaciones Materno Infantil (IDIMI), University of Chile, Santiago, Chile
| | - Richard Quinton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frederic Tran Mau-Them
- Functional Unit 6254 Innovation in Genomic Diagnosis of Rare Diseases, CHU Dijon Bourgogne, Dijon, France
| | - Sophie Nambot
- Centre de Référence Maladies Rares « Anomalies du Développement Et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Asma Hamad
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Helen Brittain
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Rebecca S Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, INM, Montpellier University, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | | | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Erica E Davis
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | |
Collapse
|
4
|
Hemkemeyer SA, Liu Z, Vollmer V, Xu Y, Lohmann B, Bähler M. The RhoGAP-myosin Myo9b regulates ocular lens pit morphogenesis. Dev Dyn 2022; 251:1897-1907. [PMID: 36008362 DOI: 10.1002/dvdy.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND During eye development the lens placode invaginates to form the lens pit. Further bending of lens epithelium and separation from ectoderm leads eventually to a spherical lens vesicle with enclosed extracellular fluid. Changes in epithelial morphology involve the actin cytoskeleton and its regulators. The myosin Myo9b is simultaneously an actin-based motor and Rho GTPase-activating protein that regulates actin cytoskeleton organization. Myo9b-deficient adult mice and embryos were analyzed for eye malformations and alterations in lens development. RESULTS Myo9b-deficient mice showed a high incidence of microphthalmia and cataracts with occasional blepharitis. Formation of the lens vesicle during embryonic lens development was disordered in virtually all embryos. Lens placode invagination was less deep and gave rise to a conical structure instead of a spherical pit. At later stages either no lens vesicle was formed or a significantly smaller one that was not enclosed by the optic cup. Expression of the cell fate marker Pax6 was not altered. Staining of adherens junctions and F-actin was most intense at the tip of conical invaginations, suggesting that mechanical forces are not properly coordinated between epithelial cells that form the pit. CONCLUSIONS Myo9b is a critical regulator of ocular lens vesicle morphogenesis during eye development.
Collapse
Affiliation(s)
- Sandra A Hemkemeyer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Zhijun Liu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Veith Vollmer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Yan Xu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Birgit Lohmann
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| |
Collapse
|
5
|
Engelhardt DM, Martyr CA, Niswander L. Pathogenesis of neural tube defects: The regulation and disruption of cellular processes underlying neural tube closure. WIREs Mech Dis 2022; 14:e1559. [PMID: 35504597 PMCID: PMC9605354 DOI: 10.1002/wsbm.1559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Neural tube closure (NTC) is crucial for proper development of the brain and spinal cord and requires precise morphogenesis from a sheet of cells to an intact three-dimensional structure. NTC is dependent on successful regulation of hundreds of genes, a myriad of signaling pathways, concentration gradients, and is influenced by epigenetic and environmental cues. Failure of NTC is termed a neural tube defect (NTD) and is a leading class of congenital defects in the United States and worldwide. Though NTDs are all defined as incomplete closure of the neural tube, the pathogenesis of an NTD determines the type, severity, positioning, and accompanying phenotypes. In this review, we survey pathogenesis of NTDs relating to disruption of cellular processes arising from genetic mutations, altered epigenetic regulation, and environmental influences by micronutrients and maternal condition. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Engelhardt
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Cara A Martyr
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Lee Niswander
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
6
|
Christodoulou N, Skourides PA. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure. Development 2022; 149:275604. [PMID: 35662330 PMCID: PMC9340557 DOI: 10.1242/dev.200358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Neural tube closure (NTC) is a fundamental process during vertebrate development and is indispensable for the formation of the central nervous system. Here, using Xenopus laevis embryos, live imaging, single-cell tracking, optogenetics and loss-of-function experiments, we examine the roles of convergent extension and apical constriction, and define the role of the surface ectoderm during NTC. We show that NTC is a two-stage process with distinct spatiotemporal contributions of convergent extension and apical constriction at each stage. Convergent extension takes place during the first stage and is spatially restricted at the posterior tissue, whereas apical constriction occurs during the second stage throughout the neural plate. We also show that the surface ectoderm is mechanically coupled with the neural plate and its movement during NTC is driven by neural plate morphogenesis. Finally, we show that an increase in surface ectoderm resistive forces is detrimental for neural plate morphogenesis. Summary: Detailed characterization of the contribution of distinct morphogenetic processes and mechanical tissue coupling during neural tube closure, a process indispensable for central nervous system formation in vertebrates.
Collapse
Affiliation(s)
- Neophytos Christodoulou
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| | - Paris A. Skourides
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| |
Collapse
|
7
|
Nakashima Y, Tsukahara M. Laminin-511 activates the human induced pluripotent stem cell survival via α6β1 integrin-Fyn-RhoA-ROCK signaling. Stem Cells Dev 2022; 31:706-719. [PMID: 35726387 DOI: 10.1089/scd.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
In human induced pluripotent stem cells (hiPSCs), laminin-511/α6β1 integrin interacts with E-cadherin, an intercellular adhesion molecule, to induce the activation of the PI3K-dependent signaling pathway. The interaction between laminin-511/α6β1 integrin and E-cadherin, an intercellular adhesion molecule, results in protection against apoptosis via the proto-oncogene tyrosine-protein kinase Fyn(Fyn)-RhoA-ROCK signaling pathway and the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathway for cell death). In this paper, the impact of laminin-511 on hiPSC on α6β1 integrin-Fyn-RhoA-ROCK signaling is discussed and explored along with validation experiments. PIK3CA mRNA (mean [standard deviation {SD}]: iMatrix-511, 1.00 [0. 61]; collagen+MFGE8, 0.023 [0.02]; **P<0.01; n=6) and PIK3R1 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 79]; collagen+MFGE8, 0.040 [0.06]; *P<0.05; n=6) were upregulated by iMatrix-511 resulting from an increased expression of Integrin α6 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 42]; collagen+MFGE8, 0.23 [0.05]; **P<0.01; n=6). iMatrix-511 increased the expression of p120-Catenin mRNA (mean [SD]: iMatrix-511, 1.00 [0. 71]; collagen+MFGE8, 0.025 [0.03]; **P<0.01; n=6) and RAC1 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 28]; collagen+MFGE8, 0.39 [0.15]; **P<0.01; n=6) by increasing the expression of E-cadherin mRNA (mean [SD]: iMatrix-511, 1.00 [0. 38]; collagen+MFGE8, 0.16 [0.11]; **P<0.01; n=6). As a result, iMatrix-511 increased the expression of P190 RhoGAP (GTPase-activating proteins) mRNA, such as ARHGAP1 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 57]; collagen+MFGE8, 0.032 [0.03]; **P<0.01; n=6), ARHGAP4 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 56]; collagen+MFGE8, 0.039 [0.049]; **P<0.01; n=6), and ARHGAP5 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 39]; collagen+MFGE8, 0.063 [0.043]; **P<0.01; n=6). Western blotting showed that phospho-Rac1 remained in the cytoplasm and phospho-Fyn showed nuclear transition in iPSCs cultured on iMatrix-511. Proteome analysis showed that PI3K signaling was enhanced and cytoskeletal actin was activated in iPSCs cultured on iMatrix-511. In conclusion, laminin-511 strongly activated the cell survival by promoting α6β1 integrin-Fyn-RhoA-ROCK signaling in hiPSCs.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto Research Park KISTIC Building Room 501, 5th floor, KISTIC building,, Kyoto Research Park KISTIC Building Room 501, 5th floor, KISTIC building, 134 Chudoji Minami-cho,, Shimogyo-ku,, Kyoto, Kyoto, Japan, 600-8813;
| | - Masayoshi Tsukahara
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), kyoto, Kyoto, Japan;
| |
Collapse
|
8
|
Derisoud E, Jouneau L, Dubois C, Archilla C, Jaszczyszyn Y, Legendre R, Daniel N, Peynot N, Dahirel M, Auclair-Ronzaud J, Wimel L, Duranthon V, Chavatte-Palmer P. Maternal age affects equine day 8 embryo gene expression both in trophoblast and inner cell mass. BMC Genomics 2022; 23:443. [PMID: 35705916 PMCID: PMC9199136 DOI: 10.1186/s12864-022-08593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Breeding a mare until she is not fertile or even until her death is common in equine industry but the fertility decreases as the mare age increases. Embryo loss due to reduced embryo quality is partly accountable for this observation. Here, the effect of mare's age on blastocysts' gene expression was explored. Day 8 post-ovulation embryos were collected from multiparous young (YM, 6-year-old, N = 5) and older (OM, > 10-year-old, N = 6) non-nursing Saddlebred mares, inseminated with the semen of one stallion. Pure or inner cell mass (ICM) enriched trophoblast, obtained by embryo bisection, were RNA sequenced. Deconvolution algorithm was used to discriminate gene expression in the ICM from that in the trophoblast. Differential expression was analyzed with embryo sex and diameter as cofactors. Functional annotation and classification of differentially expressed genes and gene set enrichment analysis were also performed. RESULTS Maternal aging did not affect embryo recovery rate, embryo diameter nor total RNA quantity. In both compartments, the expression of genes involved in mitochondria and protein metabolism were disturbed by maternal age, although more genes were affected in the ICM. Mitosis, signaling and adhesion pathways and embryo development were decreased in the ICM of embryos from old mares. In trophoblast, ion movement pathways were affected. CONCLUSIONS This is the first study showing that maternal age affects gene expression in the equine blastocyst, demonstrating significant effects as early as 10 years of age. These perturbations may affect further embryo development and contribute to decreased fertility due to aging.
Collapse
Affiliation(s)
- Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Cédric Dubois
- IFCE, Plateau technique de Chamberet, 19370, Chamberet, France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Paris-Sud University F-91198, Gif-sur-Yvette, France
| | - Rachel Legendre
- Institut Pasteur-Bioinformatics and Biostatistics Hub-Department of Computational Biology, Paris, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | | | - Laurence Wimel
- IFCE, Plateau technique de Chamberet, 19370, Chamberet, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
9
|
Ouyang H, Luong P, Frödin M, Hansen SH. p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth. Oncogene 2020; 39:5570-5587. [PMID: 32641858 PMCID: PMC7426264 DOI: 10.1038/s41388-020-1385-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
The ARHGAP35 gene encoding p190A RhoGAP (p190A) is significantly altered by both mutation and allelic deletion in human cancer, but the functional implications of such alterations are not known. Here, we demonstrate for the first time that p190A is a tumor suppressor using a xenograft mouse model with carcinoma cells harboring defined ARHGAP35 alterations. In vitro, restoration of p190A expression in carcinoma cells promotes contact inhibition of proliferation (CIP) through activation of LATS kinases and phosphorylation of the proto-oncogenic transcriptional co-activator YAP. In contrast, p190A forms harboring recurrent cancer mutations exhibit loss of function in modulating the Hippo pathway, inducing CIP, as well as attenuated suppression of tumor growth in mice. We determine that p190A promotes mesenchymal to epithelial transition (MET) and elicits expression of a cassette of epithelial adherens junction-associated genes in a cell density-dependent manner. This cassette includes CDH1 encoding E-cadherin, which amplifies p190A-mediated LATS activation and is necessary for CIP. Oppositely, we establish that p190A is obligatory for E-cadherin to activate LATS kinases and induce CIP. Collectively, this work defines a novel mechanism by which p190A and E-cadherin cooperate in modulating Hippo signaling to suppress tumor cell growth.
Collapse
Affiliation(s)
- Hanyue Ouyang
- GI Cell Biology Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Phi Luong
- GI Cell Biology Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Morten Frödin
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Steen H Hansen
- GI Cell Biology Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Kaur N, Han W, Li Z, Madrigal MP, Shim S, Pochareddy S, Gulden FO, Li M, Xu X, Xing X, Takeo Y, Li Z, Lu K, Imamura Kawasawa Y, Ballester-Lurbe B, Moreno-Bravo JA, Chédotal A, Terrado J, Pérez-Roger I, Koleske AJ, Sestan N. Neural Stem Cells Direct Axon Guidance via Their Radial Fiber Scaffold. Neuron 2020; 107:1197-1211.e9. [PMID: 32707082 DOI: 10.1016/j.neuron.2020.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wenqi Han
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhuo Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Graduate Program in Histology and Embryology, Zhengzhou University, 450001 Zhengzhou, China
| | - M Pilar Madrigal
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Sungbo Shim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biochemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xuming Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaojun Xing
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Genome Editing Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yutaka Takeo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhen Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kangrong Lu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuka Imamura Kawasawa
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology and of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Begoña Ballester-Lurbe
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | | | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - José Terrado
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Ignacio Pérez-Roger
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Anthony J Koleske
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Departments of Genetics, Psychiatry, and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
Héraud C, Pinault M, Lagrée V, Moreau V. p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease. Cells 2019; 8:cells8040351. [PMID: 31013840 PMCID: PMC6523970 DOI: 10.3390/cells8040351] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) gathered in the Rat sarcoma (Ras) superfamily represent a large family of proteins involved in several key cellular mechanisms. Within the Ras superfamily, the Ras homolog (Rho) family is specialized in the regulation of actin cytoskeleton-based mechanisms. These proteins switch between an active and an inactive state, resulting in subsequent inhibiting or activating downstream signals, leading finally to regulation of actin-based processes. The On/Off status of Rho GTPases implicates two subsets of regulators: GEFs (guanine nucleotide exchange factors), which favor the active GTP (guanosine triphosphate) status of the GTPase and GAPs (GTPase activating proteins), which inhibit the GTPase by enhancing the GTP hydrolysis. In humans, the 20 identified Rho GTPases are regulated by over 70 GAP proteins suggesting a complex, but well-defined, spatio-temporal implication of these GAPs. Among the quite large number of RhoGAPs, we focus on p190RhoGAP, which is known as the main negative regulator of RhoA, but not exclusively. Two isoforms, p190A and p190B, are encoded by ARHGAP35 and ARHGAP5 genes, respectively. We describe here the function of each of these isoforms in physiological processes and sum up findings on their role in pathological conditions such as neurological disorders and cancers.
Collapse
Affiliation(s)
- Capucine Héraud
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Mathilde Pinault
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Valérie Lagrée
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Violaine Moreau
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| |
Collapse
|
12
|
Bonanomi D, Valenza F, Chivatakarn O, Sternfeld MJ, Driscoll SP, Aslanian A, Lettieri K, Gullo M, Badaloni A, Lewcock JW, Hunter T, Pfaff SL. p190RhoGAP Filters Competing Signals to Resolve Axon Guidance Conflicts. Neuron 2019; 102:602-620.e9. [PMID: 30902550 PMCID: PMC8608148 DOI: 10.1016/j.neuron.2019.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
Abstract
The rich functional diversity of the nervous system is founded in the specific connectivity of the underlying neural circuitry. Neurons are often preprogrammed to respond to multiple axon guidance signals because they use sequential guideposts along their pathways, but this necessitates a strict spatiotemporal regulation of intracellular signaling to ensure the cues are detected in the correct order. We performed a mouse mutagenesis screen and identified the Rho GTPase antagonist p190RhoGAP as a critical regulator of motor axon guidance. Rather than acting as a compulsory signal relay, p190RhoGAP uses a non-conventional GAP-independent mode to transiently suppress attraction to Netrin-1 while motor axons exit the spinal cord. Once in the periphery, a subset of axons requires p190RhoGAP-mediated inhibition of Rho signaling to target specific muscles. Thus, the multifunctional activity of p190RhoGAP emerges from its modular design. Our findings reveal a cell-intrinsic gate that filters conflicting signals, establishing temporal windows of signal detection.
Collapse
Affiliation(s)
- Dario Bonanomi
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA; San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy.
| | - Fabiola Valenza
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Onanong Chivatakarn
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Matthew J Sternfeld
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Aaron Aslanian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Karen Lettieri
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Miriam Gullo
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Aurora Badaloni
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Joseph W Lewcock
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Frank SR, Köllmann CP, Luong P, Galli GG, Zou L, Bernards A, Getz G, Calogero RA, Frödin M, Hansen SH. p190 RhoGAP promotes contact inhibition in epithelial cells by repressing YAP activity. J Cell Biol 2018; 217:3183-3201. [PMID: 29934311 PMCID: PMC6122998 DOI: 10.1083/jcb.201710058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022] Open
Abstract
ARHGAP35 encoding p190A RhoGAP is a cancer-associated gene with a mutation spectrum suggestive of a tumor-suppressor function. In this study, we demonstrate that loss of heterozygosity for ARHGAP35 occurs in human tumors. We sought to identify tumor-suppressor capacities for p190A RhoGAP (p190A) and its paralog p190B in epithelial cells. We reveal an essential role for p190A and p190B to promote contact inhibition of cell proliferation (CIP), a function that relies on RhoGAP activity. Unbiased mRNA sequencing analyses establish that p190A and p190B modulate expression of genes associated with the Hippo pathway. Accordingly, we determine that p190A and p190B induce CIP by repressing YAP-TEAD-regulated gene transcription through activation of LATS kinases and inhibition of the Rho-ROCK pathway. Finally, we demonstrate that loss of a single p190 paralog is sufficient to elicit nuclear translocation of YAP and perturb CIP in epithelial cells cultured in Matrigel. Collectively, our data reveal a novel mechanism consistent with a tumor-suppressor function for ARHGAP35.
Collapse
Affiliation(s)
- Scott R Frank
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Clemens P Köllmann
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Phi Luong
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Giorgio G Galli
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Lihua Zou
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - André Bernards
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA
| | - Gad Getz
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA
| | - Raffaele A Calogero
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Morten Frödin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Steen H Hansen
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Martin-Lopez E, Meller SJ, Greer CA. Development of piriform cortex interhemispheric connections via the anterior commissure: progressive and regressive strategies. Brain Struct Funct 2018; 223:4067-4085. [PMID: 30141078 DOI: 10.1007/s00429-018-1741-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
The anterior commissure (AC) is a phylogenetically conserved inter-hemispheric connection found among vertebrates with bilateral symmetry. The AC connects predominantly olfactory areas but many aspects of its development and structure are unknown. To fill this gap, we investigated the embryonic and postnatal development of the AC by tracing axons with DiI and the piggyback transposon multicolor system. With this strategy, we show that axon growth during establishment of the AC follows a strictly regulated timeline of events that include waiting periods ("regressive strategies") as well as periods of active axon outgrowth ("progressive strategies"). We also provide evidence that these processes may be regulated in the midline via overexpression of chondroitin sulfate proteoglycans. Additionally, we demonstrate that the ipsi- and contralateral innervation of piriform cortex occurs simultaneously. Morphologically, we found that 20% of axons were myelinated by postnatal day (P) 22, in a process that occurred fundamentally around P14. By immunohistochemistry, we described the presence of glial cells and two new subtypes of neurons: one expressing a calretinin (CR)-/MAP2+ phenotype, distributed homogeneously inside the AC; and the other expressing a CR+/MAP2+ phenotype that lies beneath the bed nucleus of the stria terminalis. Our results are consistent with the notion that the AC follows a strictly regulated program during the embryonic and postnatal development similarly to other distal targeting axonal tracts.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA. .,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA. .,The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
15
|
Yang J, Du F, Zhou X, Wang L, Li S, Fang R, Zhao J. Brain proteomic differences between wild-type and CD44- mice induced by chronic Toxoplasma gondii infection. Parasitol Res 2018; 117:2623-2633. [PMID: 29948204 DOI: 10.1007/s00436-018-5954-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Abstract
Chronic clinical Toxoplasma gondii (T. gondii) infection is the primary disease state that causes severe encephalitis. CD44 is a member of the cell adhesion molecule family and plays an important role in T. gondii infection. However, proteomic changes in CD44 during chronic T. gondii infection have rarely been reported. Thus, an iTRAQ-based proteomic study coupled with 2D-LC-MS/MS analysis was performed to screen CD44-related proteins during chronic T. gondii infection. As a result, a total of 2612 proteins were reliably identified and quantified. Subsequently, 259, 106, and 249 differentially expressed proteins (DEPs) were compared between CD44- mice (A) vs wild-type mice (B), B vs wild-type mice infected with T. gondii (C), and C vs CD44- mice infected with T. gondii (D). Gene ontology, KEGG pathway, and protein-protein interaction analyses were performed on the DEPs. According to the results, immune-related proteins were altered significantly among the A vs B, B vs C, and C vs D comparisons, which might indicate that chronic T. gondii infection caused changes in the host immune response. Additionally, Ca2+- and metabolism-related proteins were upregulated in C vs D, which supported the hypothesis that CD44 mediated the production of host Ca2+ and IFN-γ and that the parasite preferentially invaded cells expressing high levels of CD44. The present findings validate and enable a more comprehensive knowledge of the role of CD44 in hosts chronically infected with T. gondii, thus providing new ideas for future studies on the specific functions of CD44 in latent toxoplasmosis.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Fen Du
- Hubei Centre for Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiaoliu Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lixia Wang
- Hubei Provincial Centre for Diseases Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Senyang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
16
|
López-Escobar B, Caro-Vega JM, Vijayraghavan DS, Plageman TF, Sanchez-Alcazar JA, Moreno RC, Savery D, Márquez-Rivas J, Davidson LA, Ybot-González P. The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate. Development 2018; 145:dev.157487. [PMID: 29636380 DOI: 10.1242/dev.157487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023]
Abstract
The last stage of neural tube (NT) formation involves closure of the caudal neural plate (NP), an embryonic structure formed by neuromesodermal progenitors and newly differentiated cells that becomes incorporated into the NT. Here, we show in mouse that, as cell specification progresses, neuromesodermal progenitors and their progeny undergo significant changes in shape prior to their incorporation into the NT. The caudo-rostral progression towards differentiation is coupled to a gradual reliance on a unique combination of complex mechanisms that drive tissue folding, involving pulses of apical actomyosin contraction and planar polarised cell rearrangements, all of which are regulated by the Wnt-PCP pathway. Indeed, when this pathway is disrupted, either chemically or genetically, the polarisation and morphology of cells within the entire caudal NP is disturbed, producing delays in NT closure. The most severe disruptions of this pathway prevent caudal NT closure and result in spina bifida. In addition, a decrease in Vangl2 gene dosage also appears to promote more rapid progression towards a neural fate, but not the specification of more neural cells.
Collapse
Affiliation(s)
- Beatriz López-Escobar
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - José Manuel Caro-Vega
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | | | | | - José A Sanchez-Alcazar
- Centro Andaluz de Biología del Desarrollo (CABD), and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain
| | - Roberto Carlos Moreno
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Dawn Savery
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Javier Márquez-Rivas
- Unidad de Gestión Clínica de Neurocirugía, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain .,Unidad de Gestión Clínica de Neurología y Neurofisiología, Hospital Universitario Virgen Macarena, Sevilla 41009, Spain
| |
Collapse
|
17
|
Manukyan A, Sargsyan L, Parsons SJ, Stukenberg PT. P190RhoGAP prevents mitotic spindle fragmentation and is required to activate Aurora A kinase at acentriolar poles. Chromosoma 2018; 127:375-386. [PMID: 29656322 DOI: 10.1007/s00412-018-0670-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 02/03/2023]
Abstract
Assembly of the mitotic spindle is essential for proper chromosome segregation during mitosis. Maintenance of spindle poles requires precise regulation of kinesin- and dynein-generated forces, and improper regulation of these forces disrupts pole integrity leading to pole fragmentation. The formation and function of the mitotic spindle are regulated by many proteins, including Aurora A kinase and the motor proteins Kif2a and Eg5. Here, we characterize a surprising role for the RhoA GTPase-activating protein, p190RhoGAP, in regulating the mitotic spindle. We show that cells depleted of p190RhoGAP arrest for long periods in mitosis during which cells go through multiple transitions between having bipolar and multipolar spindles. Most of the p190RhoGAP-depleted cells finally achieve a stable bipolar attachment and proceed through anaphase. The multipolar spindle phenotype can be rescued by low doses of an Eg5 inhibitor. Moreover, we show that p190RhoGAP-depleted multipolar cells localize Aurora A to all the poles, but the kinase is only activated at the two centriolar poles. Overall, our data identify an unappreciated connection between p190RhoGAP and the proteins that control spindle poles including Aurora A kinase and Eg5 that is required to prevent or correct spindle pole fragmentation.
Collapse
Affiliation(s)
- Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lilit Sargsyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Sarah J Parsons
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
- , Charlottesville, USA.
| |
Collapse
|
18
|
Koinuma S, Takeuchi K, Wada N, Nakamura T. cAMP-induced activation of protein kinase A and p190B RhoGAP mediates down-regulation of TC10 activity at the plasma membrane and neurite outgrowth. Genes Cells 2017; 22:953-967. [PMID: 29072354 DOI: 10.1111/gtc.12538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Cyclic AMP plays a pivotal role in neurite growth. During outgrowth, a trafficking system supplies membrane at growth cones. However, the cAMP-induced signaling leading to the regulation of membrane trafficking remains unknown. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking. Recent studies have shown a role of TC10 in neurite growth in NGF-treated PC12 cells. Here, we investigated a mechanical linkage between cAMP and TC10 in neuritogenesis. Plasmalemmal TC10 activity decreased abruptly after cAMP addition in neuronal cells. TC10 was locally inactivated at extending neurite tips in cAMP-treated PC12 cells. TC10 depletion led to a decrease in cAMP-induced neurite outgrowth. Constitutively active TC10 could not rescue this growth reduction, supporting our model for a role of GTP hydrolysis of TC10 in neuritogenesis by accelerating vesicle fusion. The cAMP-induced TC10 inactivation was mediated by PKA. Considering cAMP-induced RhoA inactivation, we found that p190B, but not p190A, mediated inactivation of TC10 and RhoA. Upon cAMP treatment, p190B was recruited to the plasma membrane. STEF depletion and Rac1-N17 expression reduced cAMP-induced TC10 inactivation. Together, the PKA-STEF-Rac1-p190B pathway leading to inactivation of TC10 and RhoA at the plasma membrane plays an important role in cAMP-induced neurite outgrowth.
Collapse
Affiliation(s)
- Shingo Koinuma
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Kohei Takeuchi
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
19
|
Kim HJ, Choi HS, Park JH, Kim MJ, Lee HG, Petersen RB, Kim YS, Park JB, Choi EK. Regulation of RhoA activity by the cellular prion protein. Cell Death Dis 2017; 8:e2668. [PMID: 28300846 PMCID: PMC5386549 DOI: 10.1038/cddis.2017.37] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/18/2016] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
The cellular prion protein (PrPC) is a highly conserved glycosylphosphatidylinositol (GPI)-anchored membrane protein that is involved in the signal transduction during the initial phase of neurite outgrowth. The Ras homolog gene family member A (RhoA) is a small GTPase that is known to have an essential role in regulating the development, differentiation, survival, and death of neurons in the central nervous system. Although recent studies have shown the dysregulation of RhoA in a variety of neurodegenerative diseases, the role of RhoA in prion pathogenesis remains unclear. Here, we investigated the regulation of RhoA-mediated signaling by PrPC using both in vitro and in vivo models and found that overexpression of PrPC significantly induced RhoA inactivation and RhoA phosphorylation in hippocampal neuronal cells and in the brains of transgenic mice. Using siRNA-mediated depletion of endogenous PrPC and overexpression of disease-associated mutants of PrPC, we confirmed that PrPC induced RhoA inactivation, which accompanied RhoA phosphorylation but reduced the phosphorylation levels of LIM kinase (LIMK), leading to cofilin activation. In addition, PrPC colocalized with RhoA, and the overexpression of PrPC significantly increased neurite outgrowth in nerve growth factor-treated PC12 cells through RhoA inactivation. However, the disease-associated mutants of PrPC decreased neurite outgrowth compared with wild-type PrPC. Moreover, inhibition of Rho-associated kinase (ROCK) substantially facilitated neurite outgrowth in NGF-treated PC12 cells, similar to the effect induced by PrPC. Interestingly, we found that the induction of RhoA inactivation occurred through the interaction of PrPC with RhoA and that PrPC enhanced the interaction between RhoA and p190RhoGAP (a GTPase-activating protein). These findings suggest that the interactions of PrPC with RhoA and p190RhoGAP contribute to neurite outgrowth by controlling RhoA inactivation and RhoA-mediated signaling and that disease-associated mutations of PrPC impair RhoA inactivation, which in turn leads to prion-related neurodegeneration.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | - Hong-Seok Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Robert Bob Petersen
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.,Departments of Neuroscience and Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
20
|
Bidaud-Meynard A, Binamé F, Lagrée V, Moreau V. Regulation of Rho GTPase activity at the leading edge of migrating cells by p190RhoGAP. Small GTPases 2017; 10:99-110. [PMID: 28287334 DOI: 10.1080/21541248.2017.1280584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell migration, a key feature of embryonic development, immunity, angiogenesis, and tumor metastasis, is based on the coordinated regulation of actin dynamics and integrin-mediated adhesion. Rho GTPases play a major role in this phenomenon by regulating the onset and maintenance of actin-based protruding structures at cell leading edges (i.e. lamellipodia and filopodia) and contractile structures (i.e., stress fibers) at their trailing edge. While spatio-temporal analysis demonstrated the tight regulation of Rho GTPases at the migration front during cell locomotion, little is known about how the main regulators of Rho GTPase activity, such as GAPs, GEFs and GDIs, play a role in this process. In this review, we focus on a major negative regulator of RhoA, p190RhoGAP-A and its close isoform p190RhoGAP-B, which are necessary for efficient cell migration. Recent studies, including our, demonstrated that p190RhoGAP-A localization and activity undergo a complex regulatory mechanism, accounting for the tight regulation of RhoA, but also other members of the Rho GTPase family, at the cell periphery.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Fabien Binamé
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Valérie Lagrée
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Violaine Moreau
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| |
Collapse
|
21
|
Mohd-Zin SW, Marwan AI, Abou Chaar MK, Ahmad-Annuar A, Abdul-Aziz NM. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans. SCIENTIFICA 2017; 2017:5364827. [PMID: 28286691 PMCID: PMC5327787 DOI: 10.1155/2017/5364827] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 05/26/2023]
Abstract
Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs). It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s) without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.
Collapse
Affiliation(s)
- Siti W. Mohd-Zin
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmed I. Marwan
- Laboratory for Fetal and Regenerative Biology, Colorado Fetal Care Center, Division of Pediatric Surgery, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, 12700 E 17th Ave, Aurora, CO 80045, USA
| | | | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noraishah M. Abdul-Aziz
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Huang GH, Sun ZL, Li HJ, Feng DF. Rho GTPase-activating proteins: Regulators of Rho GTPase activity in neuronal development and CNS diseases. Mol Cell Neurosci 2017; 80:18-31. [PMID: 28163190 DOI: 10.1016/j.mcn.2017.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/06/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
The Rho family of small GTPases was considered as molecular switches in regulating multiple cellular events, including cytoskeleton reorganization. The Rho GTPase-activating proteins (RhoGAPs) are one of the major families of Rho GTPase regulators. RhoGAPs were initially considered negative mediators of Rho signaling pathways via their GAP domain. Recent studies have demonstrated that RhoGAPs also regulate numerous aspects of neuronal development and are related to various neurodegenerative diseases in GAP-dependent and GAP-independent manners. Moreover, RhoGAPs are regulated through various mechanisms, such as phosphorylation. To date, approximately 70 RhoGAPs have been identified; however, only a small portion has been thoroughly investigated. Thus, the characterization of important RhoGAPs in the central nervous system is crucial to understand their spatiotemporal role during different stages of neuronal development. In this review, we summarize the current knowledge of RhoGAPs in the brain with an emphasis on their molecular function, regulation mechanism and disease implications in the central nervous system.
Collapse
Affiliation(s)
- Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China; Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
23
|
Astrocyte-to-neuron communication through integrin-engaged Thy-1/CBP/Csk/Src complex triggers neurite retraction via the RhoA/ROCK pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:243-254. [DOI: 10.1016/j.bbamcr.2016.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
|
24
|
Wang L, Lin S, Zhang J, Tian T, Jin L, Ren A. Fetal DNA hypermethylation in tight junction pathway is associated with neural tube defects: A genome-wide DNA methylation analysis. Epigenetics 2017; 12:157-165. [PMID: 28059605 DOI: 10.1080/15592294.2016.1277298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neural tube defects (NTDs) are a spectrum of severe congenital malformations of fusion failure of the neural tube during early embryogenesis. Evidence on aberrant DNA methylation in NTD development remains scarce, especially when exposure to environmental pollutant is taken into consideration. DNA methylation profiling was quantified using the Infinium HumanMethylation450 array in neural tissues from 10 NTD cases and 8 non-malformed controls (stage 1). Subsequent validation was performed using a Sequenom MassARRAY system in neural tissues from 20 NTD cases and 20 non-malformed controls (stage 2). Correlation analysis of differentially methylated CpG sites in fetal neural tissues and polycyclic aromatic hydrocarbons concentrations in fetal neural tissues and maternal serum was conducted. Differentially methylated CpG sites of neural tissues were further validated in fetal mice with NTDs induced by benzo(a)pyrene given to pregnant mice. Differentially hypermethylated CpG sites in neural tissues from 17 genes and 6 pathways were identified in stage 1. Subsequently, differentially hypermethylated CpG sites in neural tissues from 6 genes (BDKRB2, CTNNA1, CYFIP2, MMP7, MYH2, and TIAM2) were confirmed in stage 2. Correlation analysis showed that methylated CpG sites in CTNNA1 and MYH2 from NTD cases were positively correlated to polycyclic aromatic hydrocarbon level in fetal neural tissues and maternal serum. The correlation was confirmed in NTD-affected fetal mice that were exposed to benzo(a)pyrene in utero. In conclusion, hypermethylation of the CTNNA1 and MYH2 genes in tight junction pathway is associated with the risk for NTDs, and the DNA methylation aberration may be caused by exposure to benzo(a)pyrene.
Collapse
Affiliation(s)
- Linlin Wang
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Shanshan Lin
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Ji Zhang
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Tian Tian
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Lei Jin
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Aiguo Ren
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| |
Collapse
|
25
|
Abstract
Neural tube closure is an important morphogenetic event that involves dramatic reshaping of both neural and non-neural tissues. Rho GTPases are key cytoskeletal regulators involved in cell motility and in several developmental processes, and are thus expected to play pivotal roles in neurulation. Here, we discuss 2 recent studies that shed light on the roles of distinct Rho GTPases in different tissues during neurulation. RhoA plays an essential role in regulating actomyosin dynamics in the neural epithelium of the elevating neural folds, while Rac1 is required for the formation of cell protrusions in the non-neural surface ectoderm during neural fold fusion.
Collapse
Affiliation(s)
- Ana Rolo
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Sarah Escuin
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Nicholas D E Greene
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Andrew J Copp
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| |
Collapse
|
26
|
Binamé F, Bidaud-Meynard A, Magnan L, Piquet L, Montibus B, Chabadel A, Saltel F, Lagrée V, Moreau V. Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration. J Cell Biol 2016; 214:859-73. [PMID: 27646271 PMCID: PMC5037408 DOI: 10.1083/jcb.201601063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023] Open
Abstract
p190RhoGAP (p190A) is a negative regulator of RhoA and localizes to membrane protrusions, where its GAP activity is required for directional migration. Here, Binamé et al. identify the protrusion-localization sequence in p190A and show that cancer-associated mutations in this region affect p190A localization and function as well as tumor cell migration. Spatiotemporal regulation of RhoGTPases such as RhoA is required at the cell leading edge to achieve cell migration. p190RhoGAP (p190A) is the main negative regulator of RhoA and localizes to membrane protrusions, where its GTPase-activating protein (GAP) activity is required for directional migration. In this study, we investigated the molecular processes responsible for p190A targeting to actin protrusions. By analyzing the subcellular localization of truncated versions of p190A in hepatocellular carcinoma cells, we identified a novel functional p190A domain: the protrusion localization sequence (PLS) necessary and sufficient for p190A targeting to leading edges. Interestingly, the PLS is also required for the negative regulation of p190A RhoGAP activity. Further, we show that the F-actin binding protein cortactin binds the PLS and is required for p190A targeting to protrusions. Lastly, we demonstrate that cancer-associated mutations in PLS affect p190A localization and function, as well as tumor cell migration. Altogether, our data unveil a new mechanism of regulation of p190A in migrating tumor cells.
Collapse
Affiliation(s)
- Fabien Binamé
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Aurélien Bidaud-Meynard
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Laure Magnan
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Léo Piquet
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Bertille Montibus
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Anne Chabadel
- Institut National de la Santé et de la Recherche Médicale, Unité 441, F-33600 Pessac, France
| | - Frédéric Saltel
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Valérie Lagrée
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Violaine Moreau
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| |
Collapse
|
27
|
Mason FM, Xie S, Vasquez CG, Tworoger M, Martin AC. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis. J Cell Biol 2016; 214:603-17. [PMID: 27551058 PMCID: PMC5004446 DOI: 10.1083/jcb.201603077] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/15/2016] [Indexed: 12/05/2022] Open
Abstract
During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding.
Collapse
Affiliation(s)
- Frank M Mason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Shicong Xie
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Claudia G Vasquez
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Michael Tworoger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
28
|
A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects. PLoS Genet 2016; 12:e1005785. [PMID: 26859289 PMCID: PMC4747337 DOI: 10.1371/journal.pgen.1005785] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/12/2015] [Indexed: 01/09/2023] Open
Abstract
Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.
Collapse
|
29
|
Hakanen J, Salminen M. Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice. Int J Dev Neurosci 2015; 47:206-15. [PMID: 26397040 DOI: 10.1016/j.ijdevneu.2015.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Corpus callosum (CC) is the largest commissural tract in mammalian brain and it acts to coordinate information between the two cerebral hemispheres. During brain development CC forms at the boundary area between the cortex and the septum and special transient neural and glial guidepost structures in this area are thought to be critical for CC formation. In addition, it is thought that the fusion of the two hemispheres in the septum area is a prerequisite for CC formation. However, very little is known of the molecular mechanisms behind the fusion of the two hemispheres. Netrin1 (NTN1) acts as an axon guidance molecule in the developing central nervous system and Ntn1 deficiency leads to the agenesis of CC in mouse. Here we have analyzed Ntn1 deficient mice to better understand the reasons behind the observed lack of CC. We show that Ntn1 deficiency leads to defects in neural, but not in glial guidepost structures that may contribute to the agenesis of CC. In addition, Nnt1 was expressed by the leptomeningeal cells bordering the two septal walls prior to fusion. Normally these cells are removed when the septal fusion occurs. At the same time, the Laminin containing basal lamina produced by the leptomeningeal cells is disrupted in the midline area to allow the cells to mix and the callosal axons to cross. In Ntn1 deficient embryos however, the leptomeninges and the basal lamina were not removed properly from the midline area and the septal fusion did not occur. Thus, NTN1 contributes to the formation of the CC by promoting the preceding removal of the midline leptomeningeal cells and interhemispheric fusion.
Collapse
Affiliation(s)
- Janne Hakanen
- Department of Veterinary Biosciences, University of Helsinki, Finland.
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
30
|
Kshitiz, Afzal J, Kim DH, Levchenko A. Concise review: Mechanotransduction via p190RhoGAP regulates a switch between cardiomyogenic and endothelial lineages in adult cardiac progenitors. Stem Cells 2015; 32:1999-2007. [PMID: 24710857 DOI: 10.1002/stem.1700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/18/2014] [Indexed: 01/01/2023]
Abstract
Mechanical cues can have pleiotropic influence on stem cell shape, proliferation, differentiation, and morphogenesis, and are increasingly realized to play an instructive role in regeneration and maintenance of tissue structure and functions. To explore the putative effects of mechanical cues in regeneration of the cardiac tissue, we investigated therapeutically important cardiosphere-derived cells (CDCs), a heterogeneous patient- or animal-specific cell population containing c-Kit(+) multipotent stem cells. We showed that mechanical cues can instruct c-Kit(+) cell differentiation along two lineages with corresponding morphogenic changes, while also serving to amplify the initial c-Kit(+) subpopulation. In particular, mechanical cues mimicking the structure of myocardial extracellular matrix specify cardiomyogenic fate, while cues mimicking myocardium rigidity specify endothelial fates. Furthermore, we found that these cues dynamically regulate the same molecular species, p190RhoGAP, which then acts through both RhoA-dependent and independent mechanisms. Thus, differential regulation of p190RhoGAP molecule by either mechanical inputs or genetic manipulation can determine lineage type specification. Since human CDCs are already in phase II clinical trials, the potential therapeutic use of mechanical or genetic manipulation of the cell fate could enhance effectiveness of these progenitor cells in cardiac repair, and shed new light on differentiation mechanisms in cardiac and other tissues.
Collapse
Affiliation(s)
- Kshitiz
- Department of Bioengineering, Institute of Stem Cells and Regenerative Medicine and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA; Institute of Stem Cells and Regenerative Medicine and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
31
|
Azzarelli R, Kerloch T, Pacary E. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies. Front Cell Neurosci 2015; 8:445. [PMID: 25610373 PMCID: PMC4285737 DOI: 10.3389/fncel.2014.00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022] Open
Abstract
The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, University of Cambridge Cambridge, UK
| | - Thomas Kerloch
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Institut National de la Santé et de la Recherche Médicale, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux Bordeaux, France
| | - Emilie Pacary
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Institut National de la Santé et de la Recherche Médicale, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux Bordeaux, France
| |
Collapse
|
32
|
Billmyre KK, Hutson M, Klingensmith J. One shall become two: Separation of the esophagus and trachea from the common foregut tube. Dev Dyn 2014; 244:277-88. [PMID: 25329576 DOI: 10.1002/dvdy.24219] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022] Open
Abstract
The alimentary and respiratory organ systems arise from a common endodermal origin, the anterior foregut tube. Formation of the esophagus from the dorsal region and the trachea from the ventral region of the foregut primordium occurs by means of a poorly understood compartmentalization process. Disruption of this process can result in severe birth defects, such as esophageal atresia and tracheo-esphageal fistula (EA/TEF), in which the lumina of the trachea and esophagus remain connected. Here we summarize the signaling networks known to be necessary for regulating dorsoventral patterning within the common foregut tube and cellular behaviors that may occur during normal foregut compartmentalization. We propose that dorsoventral patterning serves to establish a lateral region of the foregut tube that is capable of undergoing specialized cellular rearrangements, culminating in compartmentalization. We review established as well as new rodent models that may be useful in addressing this hypothesis. Finally, we discuss new experimental models that could help elucidate the mechanism behind foregut compartmentalization. An integrated approach to future foregut morphogenesis research will allow for a better understanding of this complex process.
Collapse
|
33
|
Bhattacharya M, Sundaram A, Kudo M, Farmer J, Ganesan P, Khalifeh-Soltani A, Arjomandi M, Atabai K, Huang X, Sheppard D. IQGAP1-dependent scaffold suppresses RhoA and inhibits airway smooth muscle contraction. J Clin Invest 2014; 124:4895-8. [PMID: 25271629 DOI: 10.1172/jci76658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022] Open
Abstract
The intracellular scaffold protein IQGAP1 supports protein complexes in conjunction with numerous binding partners involved in multiple cellular processes. Here, we determined that IQGAP1 modulates airway smooth muscle contractility. Compared with WT controls, at baseline as well as after immune sensitization and challenge, Iqgap1-/- mice had higher airway responsiveness. Tracheal rings from Iqgap1-/- mice generated greater agonist-induced contractile force, even after removal of the epithelium. RhoA, a regulator of airway smooth muscle contractility, was activated in airway smooth muscle lysates from Iqgap1-/- mice. Likewise, knockdown of IQGAP1 in primary human airway smooth muscle cells increased RhoA activity. Immunoprecipitation studies indicated that IQGAP1 binds to both RhoA and p190A-RhoGAP, a GTPase-activating protein that normally inhibits RhoA activation. Proximity ligation assays in primary airway human smooth muscle cells and mouse tracheal sections revealed colocalization of p190A-RhoGAP and RhoA; however, these proteins did not colocalize in IQGAP1 knockdown cells or in Iqgap1-/- trachea. Compared with healthy controls, human subjects with asthma had decreased IQGAP1 expression in airway biopsies. Together, these data demonstrate that IQGAP1 acts as a scaffold that colocalizes p190A-RhoGAP and RhoA, inactivating RhoA and suppressing airway smooth muscle contraction. Furthermore, our results suggest that IQGAP1 has the potential to modulate airway contraction severity in acute asthma.
Collapse
|
34
|
Das D, Zalewski JK, Mohan S, Plageman TF, VanDemark AP, Hildebrand JD. The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice. Biol Open 2014; 3:850-60. [PMID: 25171888 PMCID: PMC4163662 DOI: 10.1242/bio.20147450] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shroom3 is an actin-associated regulator of cell morphology that is required for neural tube closure, formation of the lens placode, and gut morphogenesis in mice and has been linked to chronic kidney disease and directional heart looping in humans. Numerous studies have shown that Shroom3 likely regulates these developmental processes by directly binding to Rho-kinase and facilitating the assembly of apically positioned contractile actomyosin networks. We have characterized the molecular basis for the neural tube defects caused by an ENU-induced mutation that results in an arginine-to-cysteine amino acid substitution at position 1838 of mouse Shroom3. We show that this substitution has no effect on Shroom3 expression or localization but ablates Rock binding and renders Shroom3 non-functional for the ability to regulate cell morphology. Our results indicate that Rock is the major downstream effector of Shroom3 in the process of neural tube morphogenesis. Based on sequence conservation and biochemical analysis, we predict that the Shroom-Rock interaction is highly conserved across animal evolution and represents a signaling module that is utilized in a variety of biological processes.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jenna K Zalewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Swarna Mohan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Timothy F Plageman
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
35
|
Syndecan-2 regulation of morphology in breast carcinoma cells is dependent on RhoGTPases. Biochim Biophys Acta Gen Subj 2014; 1840:2482-90. [DOI: 10.1016/j.bbagen.2014.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/21/2023]
|
36
|
De Filippis B, Romano E, Laviola G. Aberrant Rho GTPases signaling and cognitive dysfunction: in vivo evidence for a compelling molecular relationship. Neurosci Biobehav Rev 2014; 46 Pt 2:285-301. [PMID: 24971827 DOI: 10.1016/j.neubiorev.2014.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 01/11/2023]
Abstract
Rho GTPases are key intracellular signaling molecules that coordinate dynamic changes in the actin cytoskeleton, thereby stimulating a variety of processes, including morphogenesis, migration, neuronal development, cell division and adhesion. Deviations from normal Rho GTPases activation state have been proposed to disrupt cognition and synaptic plasticity. This review focuses on the functional consequences of genetic ablation of upstream and downstream Rho GTPases molecules on cognitive function and neuronal morphology and connectivity. Available information on this issue is described and compared to that gained from mice carrying mutations in the most studied Rho GTPases and from pharmacological in vivo studies in which brain Rho GTPases signaling was modulated. Results from reviewed literature provide definitive evidence of a compelling link between Rho GTPases signaling and cognitive function, thus supporting the notion that Rho GTPases and their downstream effectors may represent important therapeutic targets for disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca De Filippis
- Sect. Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy.
| | - Emilia Romano
- Sect. Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy; Bambino Gesù, Children Hospital, IRCCS, Roma, Italy
| | - Giovanni Laviola
- Sect. Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
37
|
Lamprecht R. The actin cytoskeleton in memory formation. Prog Neurobiol 2014; 117:1-19. [DOI: 10.1016/j.pneurobio.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 01/21/2023]
|
38
|
Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. ACTA ACUST UNITED AC 2014; 137:1579-613. [PMID: 24477430 DOI: 10.1093/brain/awt358] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a genetic and developmental framework for the interpretation of future research that will guide the next advances in the field.
Collapse
Affiliation(s)
- Timothy J Edwards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia2 Departments of Neurology and Pediatrics, The University of California and the Benioff Children's Hospital, CA, 94158, USA
| | - Elliott H Sherr
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA
| | - A James Barkovich
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA4 Departments of Paediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California San Francisco and The Benioff Children's Hospital, CA 94143-0628 USA
| | - Linda J Richards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia5 School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
39
|
Zhou X, Zheng Y. Cell type-specific signaling function of RhoA GTPase: lessons from mouse gene targeting. J Biol Chem 2013; 288:36179-88. [PMID: 24202176 DOI: 10.1074/jbc.r113.515486] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RhoA GTPase is a key intracellular regulator of actomyosin dynamics and other cell functions, including adhesion, proliferation, survival, and gene expression. Most of our knowledge of RhoA signaling function is from studies in immortalized cell lines utilizing inhibitors or dominant mutant overexpression, both of which are limited in terms of specificity, dosage, and clonal variation. Recent mouse gene targeting studies of rhoA and its regulators/effectors have revealed cell type-specific signaling mechanisms in the context of mammalian physiology. The new knowledge may present therapeutic opportunities for the rational targeting of RhoA signaling-mediated pathophysiologies.
Collapse
Affiliation(s)
- Xuan Zhou
- From the Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229
| | | |
Collapse
|
40
|
Singh CK, Kumar A, Lavoie HA, Dipette DJ, Singh US. Diabetic complications in pregnancy: is resveratrol a solution? Exp Biol Med (Maywood) 2013; 238:482-90. [PMID: 23436883 DOI: 10.1177/1535370212473704] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes is a metabolic disorder that, during pregnancy, may affect fetal development. Fetal outcome depends on the type of diabetes present, the concentration of blood glucose and the extent of fetal exposure to elevated or frequently fluctuating glucose concentrations. The result of some diabetic pregnancies will be embryonic developmental abnormalities, a condition referred to as diabetic embryopathy. Tight glycemic control in type 1 diabetes during pregnancy using insulin therapy together with folic acid supplementation are partially able to prevent diabetic embryopathy; however, the protection is not complete and additional interventions are needed. Resveratrol, a polyphenol found largely in the skins of red grapes, is known to have antidiabetic action and is in clinical trials for the treatment of diabetes, insulin resistance, obesity and metabolic syndrome. Studies of resveratrol in a rodent model of diabetic embryopathy reveal that it significantly improves the embryonic outcome in terms of diminishing developmental abnormalities. Improvements in maternal and embryonic outcomes observed in rodent models may arise from resveratrol's antioxidative potential, antidiabetic action and antidyslipidemic nature. Whether resveratrol will have similar actions in human diabetic pregnancy is unknown. Here, we review the potential therapeutic use of resveratrol in diabetes and diabetic pregnancy.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Pathology, School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29209, USA
| | | | | | | | | |
Collapse
|
41
|
Lévay M, Bartos B, Ligeti E. p190RhoGAP has cellular RacGAP activity regulated by a polybasic region. Cell Signal 2013; 25:1388-94. [PMID: 23499677 DOI: 10.1016/j.cellsig.2013.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/19/2013] [Accepted: 03/06/2013] [Indexed: 01/09/2023]
Abstract
p190RhoGAP is a GTPase-activating protein (GAP) known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of the intrinsic GTPase activity of Rho. Although the GAP domain of p190RhoGAP stimulates the intrinsic' GTPase activity of several Rho family members (Rho, Rac, Cdc42) under in vitro conditions, p190RhoGAP is generally regarded as a GAP for RhoA in the cell. The cellular RacGAP activity of the protein has not been proven directly. We have previously shown that the in vitro RacGAP and RhoGAP activity of p190RhoGAP was inversely regulated through a polybasic region of the protein. Here we provide evidence that p190RhoGAP shows remarkable GAP activity toward Rac also in the cell. The cellular RacGAP activity of p190RhoGAP requires an intact polybasic region adjacent to the GAP domain whereas the RhoGAP activity is inhibited by the same domain. Our data indicate that through its alternating RacGAP and RhoGAP activity, p190RhoGAP plays a more complex role in the Rac-Rho antagonism than it was realized earlier.
Collapse
Affiliation(s)
- Magdolna Lévay
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
42
|
Kondrychyn I, Teh C, Sin M, Korzh V. Stretching morphogenesis of the roof plate and formation of the central canal. PLoS One 2013; 8:e56219. [PMID: 23409159 PMCID: PMC3567028 DOI: 10.1371/journal.pone.0056219] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/07/2013] [Indexed: 12/20/2022] Open
Abstract
Background Neurulation is driven by apical constriction of actomyosin cytoskeleton resulting in conversion of the primitive lumen into the central canal in a mechanism driven by F-actin constriction, cell overcrowding and buildup of axonal tracts. The roof plate of the neural tube acts as the dorsal morphogenetic center and boundary preventing midline crossing by neural cells and axons. Methodology/Principal Findings The roof plate zebrafish transgenics expressing cytosolic GFP were used to study and describe development of this structure in vivo for a first time ever. The conversion of the primitive lumen into the central canal causes significant morphogenetic changes of neuroepithelial cells in the dorsal neural tube. We demonstrated that the roof plate cells stretch along the D–V axis in parallel with conversion of the primitive lumen into central canal and its ventral displacement. Importantly, the stretching of the roof plate is well-coordinated along the whole spinal cord and the roof plate cells extend 3× in length to cover 2/3 of the neural tube diameter. This process involves the visco-elastic extension of the roof place cytoskeleton and depends on activity of Zic6 and the Rho-associated kinase (Rock). In contrast, stretching of the floor plate is much less extensive. Conclusions/Significance The extension of the roof plate requires its attachment to the apical complex of proteins at the surface of the central canal, which depends on activity of Zic6 and Rock. The D–V extension of the roof plate may change a range and distribution of morphogens it produces. The resistance of the roof plate cytoskeleton attenuates ventral displacement of the central canal in illustration of the novel mechanical role of the roof plate during development of the body axis.
Collapse
Affiliation(s)
- Igor Kondrychyn
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Melvin Sin
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Yamaguchi Y, Miura M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2012; 70:3171-86. [PMID: 23242429 PMCID: PMC3742426 DOI: 10.1007/s00018-012-1227-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
44
|
Bassuk AG, Muthuswamy LB, Boland R, Smith TL, Hulstrand AM, Northrup H, Hakeman M, Dierdorff JM, Yung CK, Long A, Brouillette RB, Au KS, Gurnett C, Houston DW, Cornell RA, Manak JR. Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Hum Mol Genet 2012; 22:1097-111. [PMID: 23223018 DOI: 10.1093/hmg/dds515] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development.
Collapse
Affiliation(s)
- Alexander G Bassuk
- Department of Pediatrics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Qian X, Durkin ME, Wang D, Tripathi BK, Olson L, Yang XY, Vass WC, Popescu NC, Lowy DR. Inactivation of the Dlc1 gene cooperates with downregulation of p15INK4b and p16Ink4a, leading to neoplastic transformation and poor prognosis in human cancer. Cancer Res 2012; 72:5900-11. [PMID: 23010077 DOI: 10.1158/0008-5472.can-12-2368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tumor suppressor gene deleted in liver cancer-1 (DLC1), which encodes a protein with strong RhoGAP (GTPase activating protein) activity and weak Cdc42GAP activity, is inactivated in various human malignancies. Following Dlc1 inactivation, mouse embryo fibroblasts (MEF) with a conditional Dlc1 knockout allele reproducibly underwent neoplastic transformation. In addition to inactivation of Dlc1 and increased activity of Rho and Cdc42, transformation depended on the subsequent decreased expression of the Cdk4/6 inhibitors p15(Ink4b) and p16(Ink4a) together with increased expression and activation of Cdk4/6. The level of expression of these cell-cycle regulatory genes was relevant to human tumors with low DLC1 expression. Analysis of publicly available annotated datasets of lung and colon cancer with gene expression microarray profiles indicated that, in pairwise comparisons, low DLC1 expression occurred frequently together (P < 0.01) with downregulation of p15(Ink4b) or p16(Ink4a) or upregulation of CDK4 or CDK6. In addition, an unfavorable prognosis (P < 0.05) was associated with low DLC1 and low p15(Ink4b) in lung cancer and colon cancer, low DLC1 and low p16(Ink4a) in lung cancer, low DLC1 and high CDK4 in lung cancer, and low DLC1 and high CDK6 in colon cancer. Thus, several genes and biochemical activities collaborate with the inactivation of DLC1 to give rise to cell transformation in MEFs, and the identified genes are relevant to human tumors with low DLC1 expression.
Collapse
Affiliation(s)
- Xiaolan Qian
- Laboratories of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ohmura T, Shioi G, Hirano M, Aizawa S. Neural tube defects by NUAK1 and NUAK2 double mutation. Dev Dyn 2012; 241:1350-64. [PMID: 22689267 DOI: 10.1002/dvdy.23816] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND NUAK1 and NUAK2, members of the AMP-activated protein kinase family of serine/threonine kinases, are prominently expressed in neuroectoderm, but their functions in neurulation have not been elucidated. RESULTS NUAK1 and NUAK2 double mutants exhibited exencephaly, facial clefting, and spina bifida. Median hinge point was formed, but dorsolateral hinge point formation was not apparent in cranial neural plate; neither apical constriction nor apico-basal elongation took place efficiently in the double mutants during the 5-10-somite stages. Concomitantly, the apical concentration of phosphorylated myosin light chain 2, F-actin, and cortactin was insignificant, and development of acetylated α-tubulin-positive microtubules was poor. However, the distribution of F-actin, cortactin, Shroom3, Rho, myosin heavy chain IIB, phosphorylated myosin light chain 2, α-tubulin, γ-tubulin, or acetylated α-tubulin was apparently normal in the double mutant neuroepithelia at the 5-somite stage. CONCLUSIONS NUAK1 and NUAK2 complementarily function in the apical constriction and apico-basal elongation that associate with the dorsolateral hinge point formation in cephalic neural plate during the 5- to 10-somite stages. In the double mutant neural plate, phosphorylated myosin light chain 2, F-actin, and cortactin did not concentrate efficiently in apical surfaces, and acetylated α-tubulin-positive microtubules did not develop significantly.
Collapse
Affiliation(s)
- Tomomi Ohmura
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Kobe, Japan
| | | | | | | |
Collapse
|
47
|
Saneyoshi T, Hayashi Y. The Ca2+ and Rho GTPase signaling pathways underlying activity-dependent actin remodeling at dendritic spines. Cytoskeleton (Hoboken) 2012; 69:545-54. [PMID: 22566410 DOI: 10.1002/cm.21037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/17/2012] [Accepted: 04/25/2012] [Indexed: 02/06/2023]
Abstract
Most excitatory synapses reside on small protrusions located on the dendritic shaft of neurons called dendritic spines. Neuronal activity regulates the number and structure of spines in both developing and mature brains. Such morphological changes are mediated by the modification of the actin cytoskeleton, the major structural component of spines. Because the number and size of spines is tightly correlated with the strength of synaptic transmission, the activity-dependent structural remodeling of a spine plays an important role in the modulation of synaptic transmission. The regulation of spine morphogenesis utilizes multiple intracellular signaling pathways that alter the dynamics of actin remodeling. Here, we will review recent studies examining the signaling pathways underlying activity-dependent actin remodeling at excitatory postsynaptic neurons.
Collapse
|
48
|
Suzuki M, Morita H, Ueno N. Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Dev Growth Differ 2012; 54:266-76. [DOI: 10.1111/j.1440-169x.2012.01346.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Hitoshi Morita
- Division of Morphogenesis; Department of Developmental Biology; National Institute for Basic Biology; Nishigonaka 38, Myodaiji; Okazaki; 444-8585; Aichi; Japan
| | | |
Collapse
|
49
|
Ligeti E, Welti S, Scheffzek K. Inhibition and Termination of Physiological Responses by GTPase Activating Proteins. Physiol Rev 2012; 92:237-72. [DOI: 10.1152/physrev.00045.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Physiological processes are strictly organized in space and time. However, in cell physiology research, more attention is given to the question of space rather than to time. To function as a signal, environmental changes must be restricted in time; they need not only be initiated but also terminated. In this review, we concentrate on the role of one specific protein family involved in biological signal termination. GTPase activating proteins (GAPs) accelerate the endogenously low GTP hydrolysis rate of monomeric guanine nucleotide-binding proteins (GNBPs), limiting thereby their prevalence in the active, GTP-bound form. We discuss cases where defective or excessive GAP activity of specific proteins causes significant alteration in the function of the nervous, endocrine, and hemopoietic systems, or contributes to development of infections and tumors. Biochemical and genetic data as well as observations from human pathology support the notion that GAPs represent vital elements in the spatiotemporal fine tuning of physiological processes.
Collapse
Affiliation(s)
- Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Stefan Welti
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Scheffzek
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
50
|
Jeon CY, Moon MY, Kim JH, Kim HJ, Kim JG, Li Y, Jin JK, Kim PH, Kim HC, Meier KE, Kim YS, Park JB. Control of neurite outgrowth by RhoA inactivation. J Neurochem 2011; 120:684-98. [PMID: 22035369 DOI: 10.1111/j.1471-4159.2011.07564.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
cAMP induces neurite outgrowth in the rat pheochromocytoma cell line 12 (PC12). In particular, di-butyric cAMP (db-cAMP) induces a greater number of primary processes with shorter length than the number induced by nerve growth factor (NGF). db-cAMP up- and down-regulates GTP-RhoA levels in PC12 cells in a time-dependent manner. Tat-C3 toxin stimulates neurite outgrowth, whereas lysophosphatidic acid (LPA) and constitutively active (CA)-RhoA reduce neurite outgrowth, suggesting that RhoA inactivation is essential for the neurite outgrowth from PC12 cells stimulated by cAMP. In this study, the mechanism by which RhoA is inactivated in response to cAMP was examined. db-cAMP induces phosphorylation of RhoA and augments the binding of RhoA with Rho guanine nucleotide dissociation inhibitor (GDI). Moreover, RhoA (S188D) mimicking phosphorylated RhoA induces greater neurite outgrowth than RhoA (S188A) mimicking dephosphorylated form does. Additionally, db-cAMP increases GTP-Rap1 levels, and dominant negative (DN)-Rap1 and DN-Rap-dependent RhoGAP (ARAP3) block neurite outgrowth induced by db-cAMP. DN-p190RhoGAP and the Src inhibitor PP2 suppress neurite outgrowth, whereas transfection of c-Src and p190RhoGAP cDNAs synergistically stimulate neurite outgrowth. Taken together, RhoA is inactivated by phosphorylation of itself, by p190RhoGAP which is activated by Src, and by ARAP3 which is activated by Rap1 during neurite outgrowth from PC12 cells in response to db-cAMP.
Collapse
Affiliation(s)
- Chan-Young Jeon
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|