1
|
Huang P, Yang H, Kuang H, Yang J, Duan X, Bian H, Wang X. Pancreaticobiliary Maljunction: A Multidimensional Exploration of Pathophysiology, Diagnosis, Classification, Management and Research Prospects. Dig Dis Sci 2025:10.1007/s10620-025-09057-0. [PMID: 40252147 DOI: 10.1007/s10620-025-09057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Pancreaticobiliary maljunction is a congenital malformation in which the pancreatic and bile ducts join anatomically outside the duodenal wall, usually forming a markedly long common channel, which can cause reciprocal reflux between pancreatic juice and bile. Cholangiography, endoscopic ultrasonography, surgery, and autopsy can be used to diagnose pancreaticobiliary maljunction. Elevated amylase levels in bile and extrahepatic bile duct dilatation strongly suggest the existence of pancreaticobiliary maljunction. The regurgitation may lead to the development of various hepatobiliary and pancreatic disorders such as pancreatitis and biliary carcinoma. The pathogenesis of pancreaticobiliary maljunction is the result of a series of pathophysiological changes caused by reflux. Surgery is recommended for patients diagnosed with pancreaticobiliary maljunction irrespective of the presence or absence of symptoms because of its high biliary carcinogenicity, but the treatment strategy is quite different between adult patients with and without biliary dilatation.
Collapse
Affiliation(s)
- Peng Huang
- Department of General Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China
| | - Hu Yang
- Department of General Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China
| | - Houfang Kuang
- Department of General Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China
| | - Jun Yang
- Department of General Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China
| | - Xufei Duan
- Department of General Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China
| | - Hongqiang Bian
- Department of General Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China
| | - Xin Wang
- Department of General Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China.
| |
Collapse
|
2
|
Snijesh VP, Krishnamurthy S, Bhardwaj V, Punya KM, Niranjana Murthy AS, Almutadares M, Habhab WT, Nasser KK, Banaganapalli B, Shaik NA, Albaqami WF. SHH Signaling as a Key Player in Endometrial Cancer: Unveiling the Correlation with Good Prognosis, Low Proliferation, and Anti-Tumor Immune Milieu. Int J Mol Sci 2024; 25:10443. [PMID: 39408773 PMCID: PMC11477284 DOI: 10.3390/ijms251910443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Endometrial Cancer (EC) is one of the most common gynecological malignancies. Despite its prevalence, molecular pathways, such as the Sonic Hedgehog (SHH) pathway, have not been extensively studied in the context of EC. This study aims to explore the clinical implications of SHH expression in EC, potentially uncovering new insights into the disease's pathogenesis and offering valuable insights for therapeutic strategies in EC. We utilized data from The Cancer Genome Atlas (TCGA) to divide the dataset into 'High SHH' and 'Low SHH' groups based on a gene signature score derived from SHH pathway-related genes. We explored the clinical and tumor characteristics of these groups, focusing on key cancer hallmarks, including stemness, proliferation, cytolytic activity, tumor micro-environment, and genomic instability. 'High SHH' tumors emerged as a distinct category with favorable clinical and molecular features. These tumors exhibited lower proliferation rates, reduced angiogenesis, and diminished genomic instability, indicating a controlled and less aggressive tumor growth pattern. Moreover, 'High SHH' tumors displayed lower stemness, highlighting a less invasive phenotype. The immune micro-environment in 'High SHH' tumors was enriched with immune cell types, such as macrophage M0, monocytes, B cells, CD8 T cells, CD4 T cells, follicular helper T cells, and natural killer cells. This immune enrichment, coupled with higher cytolytic activity, suggested an improved anti-tumor immune response. Our study sheds light on the clinical significance of Sonic signaling in EC. 'High SHH' tumors exhibit a unique molecular and clinical profile associated with favorable cancer hallmarks, lower grades, and better survival. These findings underscore the potential utility of SHH expression as a robust prognostic biomarker, offering valuable insights for tailored therapeutic strategies in EC. Understanding the SHH pathway's role in EC contributes to our growing knowledge of this cancer and may pave the way for more effective treatment strategies in the future.
Collapse
Affiliation(s)
- V. P. Snijesh
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore 560034, Karnataka, India;
| | - Shivakumar Krishnamurthy
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore 560034, Karnataka, India;
| | - Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - K. M. Punya
- Electronics & Communication Engineering, Excel College of Technology, Namakkal 637303, Tamilnadu, India;
| | - Ashitha S. Niranjana Murthy
- Department of Psychiatry, National Institute of Mental Health And Neuro Sciences, Bangalore 560029, Karnataka, India;
| | - Mahmoud Almutadares
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.); (W.T.H.); (B.B.); (N.A.S.)
| | - Wisam Tahir Habhab
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.); (W.T.H.); (B.B.); (N.A.S.)
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.); (W.T.H.); (B.B.); (N.A.S.)
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.); (W.T.H.); (B.B.); (N.A.S.)
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Walaa F. Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia
| |
Collapse
|
3
|
Liu R, Yu Y, Wang Q, Zhao Q, Yao Y, Sun M, Zhuang J, Sun C, Qi Y. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: current knowledge and therapeutic promises. Cell Commun Signal 2024; 22:432. [PMID: 39252010 PMCID: PMC11382420 DOI: 10.1186/s12964-024-01812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer ranks as one of the most common malignancies among women, with its prognosis and therapeutic efficacy heavily influenced by factors associated with the tumor cell biology, particularly the tumor microenvironment (TME). The diverse elements of the TME are engaged in dynamic bidirectional signaling interactions with various pathways, which together dictate the growth, invasiveness, and metastatic potential of breast cancer. The Hedgehog (Hh) signaling pathway, first identified in Drosophila, has been established as playing a critical role in human development and disease. Notably, the dysregulation of the Hh pathway is recognized as a major driver in the initiation, progression, and metastasis of breast cancer. Consequently, elucidating the mechanisms by which the Hh pathway interacts with the distinct components of the breast cancer TME is essential for comprehensively evaluating the link between Hh pathway activation and breast cancer risk. This understanding is also imperative for devising novel targeted therapeutic strategies and preventive measures against breast cancer. In this review, we delineate the current understanding of the impact of Hh pathway perturbations on the breast cancer TME, including the intricate and complex network of intersecting signaling cascades. Additionally, we focus on the therapeutic promise and clinical challenges of Hh pathway inhibitors that target the TME, providing insights into their potential clinical utility and the obstacles that must be overcome to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Ruijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Yang Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Qingyang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qianxiang Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Mengxuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
4
|
Swain S, Narayan RK, Mishra PR. Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis. Front Cell Dev Biol 2024; 12:1461278. [PMID: 39239563 PMCID: PMC11374643 DOI: 10.3389/fcell.2024.1461278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Pancreatic cancer continues to be a deadly disease because of its delayed diagnosis and aggressive tumor biology. Oncogenes and risk factors are being reported to influence the signaling pathways involved in pancreatic embryogenesis leading to pancreatic cancer genesis. Although studies using rodent models have yielded insightful information, the scarcity of human pancreatic tissue has made it difficult to comprehend how the human pancreas develops. Transcription factors like IPF1/PDX1, HLXB9, PBX1, MEIS, Islet-1, and signaling pathways, including Hedgehog, TGF-β, and Notch, are directing pancreatic organogenesis. Any derangements in the above pathways may lead to pancreatic cancer. TP53: and CDKN2A are tumor suppressor genes, and the mutations in TP53 and somatic loss of CDKN2A are the drivers of pancreatic cancer. This review clarifies the complex signaling mechanism involved in pancreatic cancer, the same signaling pathways in pancreas development, the current therapeutic approach targeting signaling molecules, and the mechanism of action of risk factors in promoting pancreatic cancer.
Collapse
|
5
|
Ashok A, Kalthur G, Kumar A. Degradation meets development: Implications in β-cell development and diabetes. Cell Biol Int 2024; 48:759-776. [PMID: 38499517 DOI: 10.1002/cbin.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic β-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic β-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of β-cells from stem cells.
Collapse
Affiliation(s)
- Akshaya Ashok
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive and Developmental Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Lin R, Li H, Lin W, Yang F, Bao X, Pan C, Lai L, Lin W. Whole-genome selection signature differences between Chaohu and Ji'an red ducks. BMC Genomics 2024; 25:522. [PMID: 38802792 PMCID: PMC11131323 DOI: 10.1186/s12864-024-10339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Assessing the genetic structure of local varieties and understanding their genetic data are crucial for effective management and preservation. However, the genetic differences among local breeds require further explanation. To enhance our understanding of their population structure and genetic diversity, we conducted a genome-wide comparative study of Chaohu and Ji'an Red ducks using genome sequence and restriction site-associated DNA sequencing technology. Our analysis revealed a distinct genetic distinction between the two breeds, leading to divided groups. The phylogenetic tree for Chaohu duck displayed two branches, potentially indicating minimal impact from artificial selection. Additionally, our ROH (runs of homozygosity) analysis revealed that Chaohu ducks had a lower average inbreeding coefficient than Ji'an Red ducks. We identified several genomic regions with high genetic similarity in these indigenous duck breeds. By conducting a selective sweep analysis, we identified 574 candidate genes associated with muscle growth (BMP2, ITGA8, MYLK, and PTCH1), fat deposits (ELOVL1 and HACD2), and pigmentation (ASIP and LOC101797494). These results offer valuable insights for the further enhancement and conservation of Chinese indigenous duck breeds.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Huihuang Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Weilong Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Fan Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xinguo Bao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Chengfu Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Lianjie Lai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Weimin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
7
|
Kennedy VC, Lynch CS, Tanner AR, Winger QA, Gad A, Rozance PJ, Anthony RV. Fetal Hypoglycemia Induced by Placental SLC2A3-RNA Interference Alters Fetal Pancreas Development and Transcriptome at Mid-Gestation. Int J Mol Sci 2024; 25:4780. [PMID: 38731997 PMCID: PMC11084495 DOI: 10.3390/ijms25094780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Glucose, the primary energy substrate for fetal oxidative processes and growth, is transferred from maternal to fetal circulation down a concentration gradient by placental facilitative glucose transporters. In sheep, SLC2A1 and SLC2A3 are the primary transporters available in the placental epithelium, with SLC2A3 located on the maternal-facing apical trophoblast membrane and SLC2A1 located on the fetal-facing basolateral trophoblast membrane. We have previously reported that impaired placental SLC2A3 glucose transport resulted in smaller, hypoglycemic fetuses with reduced umbilical artery insulin and glucagon concentrations, in addition to diminished pancreas weights. These findings led us to subject RNA derived from SLC2A3-RNAi (RNA interference) and NTS-RNAi (non-targeting sequence) fetal pancreases to qPCR followed by transcriptomic analysis. We identified a total of 771 differentially expressed genes (DEGs). Upregulated pathways were associated with fat digestion and absorption, particularly fatty acid transport, lipid metabolism, and cholesterol biosynthesis, suggesting a potential switch in energetic substrates due to hypoglycemia. Pathways related to molecular transport and cell signaling in addition to pathways influencing growth and metabolism of the developing pancreas were also impacted. A few genes directly related to gluconeogenesis were also differentially expressed. Our results suggest that fetal hypoglycemia during the first half of gestation impacts fetal pancreas development and function that is not limited to β cell activity.
Collapse
Affiliation(s)
- Victoria C. Kennedy
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Cameron S. Lynch
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
- University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Quinton A. Winger
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Ahmed Gad
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Paul J. Rozance
- University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| |
Collapse
|
8
|
Dayer D, Bayati V, Ebrahimi M. Manipulation of Sonic Hedgehog Signaling Pathway in Maintenance, Differentiation, and Endocrine Activity of Insulin-Producing Cells: A Systematic Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:65-76. [PMID: 38356490 PMCID: PMC10862108 DOI: 10.30476/ijms.2023.95425.2678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 02/16/2024]
Abstract
Background Some studies have evaluated the manipulation of the sonic hedgehog (Shh) signaling pathway to generate more efficient insulin-producing cells (IPCs). In a systematic review, we evaluated in vitro and in vivo studies on the effect of inhibition or activation of the Shh pathway on the production, differentiation, maintenance, and endocrine activity of IPCs. Methods A systematic review was conducted using all available experimental studies published between January 2000 and November 2022. The review aimed at determining the effect of Shh manipulation on the differentiation of stem cells (SCs) into IPCs. Keywords and phrases using medical subject headings were extracted, and a complete search was performed in Web of Science, Embase, ProQuest, PubMed, Scopus, and Cochrane Library databases. The inclusion criteria were manipulation of Shh in SCs, SCs differentiation into IPCs, and endocrine activity of mature IPCs. Articles with incomplete data and duplications were excluded. Results A total of 208 articles were initially identified, out of which 11 articles were included in the study. The effect of Shh inhibition in the definitive endoderm stage to produce functional IPCs were confirmed. Some studies showed the importance of Shh re-activation at late-stage differentiation for the generation of efficient IPCs. It is proposed that baseline concentrations of Shh in mature pancreatic β-cells affect insulin secretion and endocrine activities of the cells. However, Shh overexpression in pancreatic β-cells ultimately leads to improper endocrine function and inadequate glucose-sensing insulin secretion. Conclusion Accurate manipulation of the Shh signaling pathway can be an effective approach in the production and maintenance of functional IPCs.
Collapse
Affiliation(s)
- Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomy, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ebrahimi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Wang Y, Ding H, Guo C, Bao Q, Li D, Xiong Y. LncRNA Malat1 regulates iPSC-derived β-cell differentiation by targeting the miR-15b-5p/Ihh axis. Cell Signal 2024; 113:110975. [PMID: 37972802 DOI: 10.1016/j.cellsig.2023.110975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Differentiation of induced pluripotent stem cells (iPSCs)-derived β-like cells is a novel strategy for treatment of type 1 diabetes. Elucidation of the regulatory mechanisms of long noncoding RNAs (lncRNAs) in β-like cells derived from iPSCs is important for understanding the development of the pancreas and pancreatic β-cells and may improve the quality of β-like cells for stem cell therapy. METHODS β-like cells were derived from iPSCs in a three-step protocol. RNA sequencing and bioinformatics analysis were carried out to screen the differentially expressed lncRNAs and identify the putative target genes separately. LncRNA Malat1 was chosen for further research. Series of loss and gain of functions experiments were performed to study the biological function of LncRNA Malat1. Quantitative real-time PCR (qRT-PCR), Western blot (WB) analysis and immunofluorescence (IF) staining were carried out to separately detect the functions of pancreatic β-cells at the mRNA and protein levels. Cytoplasmic and nuclear RNA fractionation and fluorescence in situ hybridization (FISH) were used to determine the subcellar location of lncRNA Malat1 in β-like cells. Enzyme-linked immunosorbent assays (ELISAs) were performed to examine the differentiation and insulin secretion of β-like cells after stimulation with different glucose concentrations. Structural interactions between lncRNA Malat1 and miR-15b-5p and between miR-15b-5p/Ihh were detected by dual luciferase reporter assays (LRAs). RESULTS We found that the expression of lncRNA Malat1 declined during differentiation, and overexpression (OE) of lncRNA Malat1 notably impaired the differentiation and maturation of β-like cells derived from iPSCs in vitro and in vivo. Most importantly, lncRNA Malat1 could function as a competing endogenous RNA (ceRNA) of miR-15b-5p to regulate the expression of Ihh according to bioinformatics prediction, mechanistic analysis and downstream experiments. CONCLUSION This study established an unreported regulatory network of lncRNA Malat1 and the miR-15b-5p/Ihh axis during the differentiation of iPSCs into β-like cells. In addition to acting as an oncogene promoting tumorigenesis, lncRNA Malat1 may be an effective and novel target for treatment of diabetes in the future.
Collapse
Affiliation(s)
- Yao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haoxiang Ding
- Nantong University Medical School, Nantong 226001, China
| | - Chengfeng Guo
- Nantong University Medical School, Nantong 226001, China
| | - Qian Bao
- Nantong University Medical School, Nantong 226001, China
| | - Dongqian Li
- Nantong University Medical School, Nantong 226001, China
| | - Yicheng Xiong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
10
|
Dale DJ, Rutan CD, Mastracci TL. Development of the Pancreatic Ducts and Their Contribution to Organogenesis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:31-55. [PMID: 39283481 PMCID: PMC11934529 DOI: 10.1007/978-3-031-62232-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The pancreas is a dual-function organ, with exocrine cells that aid in digestion and endocrine cells that regulate glucose homeostasis. These cell types share common progenitors and arise from the embryonic ducts. Early signaling events in the embryonic ducts shape the neonatal, adolescent, and adult exocrine and endocrine pancreas. This chapter discusses recent advances in the tools used to study the ducts and our current understanding of how ductal development contributes to pancreatic organogenesis.
Collapse
Affiliation(s)
- Dorian J Dale
- Department of Biology, Indiana University-Indianapolis, Indianapolis, IN, USA
| | - Caleb D Rutan
- Department of Biology, Indiana University-Indianapolis, Indianapolis, IN, USA
| | - Teresa L Mastracci
- Department of Biology, Indiana University-Indianapolis, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
11
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Rezaei Zonooz E, Ghezelayagh Z, Moradmand A, Baharvand H, Tahamtani Y. Protocol-Dependent Morphological Changes in Human Embryonic Stem Cell Aggregates during Differentiation toward Early Pancreatic Fate. Cells Tissues Organs 2022; 213:223-234. [PMID: 36380637 DOI: 10.1159/000527863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 10/11/2022] [Indexed: 02/17/2024] Open
Abstract
Cell therapy is one of the promising approaches used against type 1 diabetes. Efficient generation of human embryonic stem cell (hESC)-derived pancreatic progenitors (PPs) is of great importance. Since signaling pathways underlying human pancreas development are not yet fully understood, various differentiation protocols are conducted, each considering variable duration, timing, and concentrations of growth factors and small molecules. Therefore, we compared two PP differentiation protocols in static suspension culture. We tested modified protocols developed by Pagliuca et al. (protocol 1) and Royan researchers (protocol 2) until early PP stage. The morphological changes of hESC aggregates during differentiation, and also gene and protein expression after differentiation, were evaluated. Different morphological structures were formed in each protocol. Quantitative gene expression analysis, flow cytometry, and immunostaining revealed a high level of PDX1 expression on day 13 of Royan's differentiation protocol compared to protocol 1. Our data showed that using protocol 2, cells were further differentiated until day 16, showing higher efficiency of early PPs. Moreover, protocol 2 is able to produce hESCs-PPs in a static suspension culture. Since protocol 2 is inexpensive in terms of media, growth factors, and chemicals, it can be used for massive production of PPs using static and dynamic suspension cultures.
Collapse
Affiliation(s)
- Elmira Rezaei Zonooz
- Department of Developmental Biology, Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Duque M, Amorim JP, Bessa J. Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J 2022; 289:5121-5136. [PMID: 34125483 PMCID: PMC9545688 DOI: 10.1111/febs.16075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Vertebrate pancreas organogenesis is a stepwise process regulated by a complex network of signaling and transcriptional events, progressively steering the early endoderm toward pancreatic fate. Many crucial players of this process have been identified, including signaling pathways, cis-regulatory elements, and transcription factors (TFs). Pancreas-associated transcription factor 1a (PTF1A) is one such TF, crucial for pancreas development. PTF1A mutations result in dramatic pancreatic phenotypes associated with severe complications, such as neonatal diabetes and impaired food digestion due to exocrine pancreatic insufficiency. Here, we present a brief overview of vertebrate pancreas development, centered on Ptf1a function and transcriptional regulation, covering similarities and divergences in three broadly studied organisms: human, mouse and zebrafish.
Collapse
Affiliation(s)
- Marta Duque
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - João Pedro Amorim
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - José Bessa
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
| |
Collapse
|
14
|
Saalabian K, Friedmacher F, Theilen TM, Keese D, Rolle U, Gfroerer S. Prenatal Detection of Congenital Duodenal Obstruction-Impact on Postnatal Care. CHILDREN (BASEL, SWITZERLAND) 2022; 9:160. [PMID: 35204881 PMCID: PMC8870145 DOI: 10.3390/children9020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Duodenal obstruction is a rare cause of congenital bowel obstruction. Prenatal ultrasound could be suggestive of duodenal atresia if polyhydramnios and the double bubble sign are visible. Prenatal diagnosis should prompt respective prenatal care, including surgery. The aim of this study was to investigate the rate and importance of prenatally diagnosed duodenal obstruction, comparing incomplete and complete duodenal obstruction. METHODS A retrospective, single-center study was performed using data from patients operated on for duodenal obstruction between 2004 and 2019. Prenatal ultrasound findings were obtained from maternal logbooks and directly from the investigating obstetricians. Postnatal data were obtained from electronic charts, including imaging, operative notes and follow-up. RESULTS A total of 33/64 parents of respective patients agreed to provide information on prenatal diagnostics. In total, 11/15 patients with complete duodenal obstruction and 0/18 patients with incomplete duodenal obstruction showed typical prenatal features. Prenatal diagnosis prompted immediate surgical treatment after birth. CONCLUSION Prenatal diagnosis of congenital duodenal obstruction is only achievable in cases of complete congenital duodenal obstruction by sonographic detection of the pathognomonic double bubble sign. Patients with incomplete duodenal obstruction showed no sign of duodenal obstruction on prenatal scans and thus were diagnosed and treated later.
Collapse
Affiliation(s)
- Kerstin Saalabian
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (K.S.); (F.F.); (T.-M.T.); (D.K.)
| | - Florian Friedmacher
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (K.S.); (F.F.); (T.-M.T.); (D.K.)
| | - Till-Martin Theilen
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (K.S.); (F.F.); (T.-M.T.); (D.K.)
| | - Daniel Keese
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (K.S.); (F.F.); (T.-M.T.); (D.K.)
| | - Udo Rolle
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (K.S.); (F.F.); (T.-M.T.); (D.K.)
| | - Stefan Gfroerer
- Department of Pediatric Surgery, Helios-Klinikum, 13125 Berlin, Germany;
| |
Collapse
|
15
|
Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021; 13:5028. [PMID: 34638513 PMCID: PMC8507722 DOI: 10.3390/cancers13195028] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human solid tumors, despite great efforts in improving therapeutics over the past few decades. In PDAC, the distinct characteristic of the tumor microenvironment (TME) is the main barrier for developing effective treatments. PDAC TME is characterized by a dense stroma, cancer-associated fibroblasts, and immune cells populations that crosstalk to the subpopulations of neoplastic cells that include cancer stem cells (CSCs). The heterogeneity in TME is also exhibited in the diversity and dynamics of acellular components, including the Extracellular matrix (ECM), cytokines, growth factors, and secreted ligands to signaling pathways. These contribute to drug resistance, metastasis, and relapse in PDAC. However, clinical trials targeting TME components have often reported unexpected results and still have not benefited patients. The failures in those trials and various efforts to understand the PDAC biology demonstrate the highly heterogeneous and multi-faceted TME compositions and the complexity of their interplay within TME. Hence, further functional and mechanistic insight is needed. In this review, we will present a current understanding of PDAC biology with a focus on the heterogeneity in TME and crosstalk among its components. We also discuss clinical challenges and the arising therapeutic opportunities in PDAC research.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
16
|
Korzh S, Winata CL, Gong Z, Korzh V. The development of zebrafish pancreas affected by deficiency of Hedgehog signaling. Gene Expr Patterns 2021; 41:119185. [PMID: 34087472 DOI: 10.1016/j.gep.2021.119185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The pancreas development depends on complex regulation of several signaling pathways, including the Hedgehog (Hh) signaling via a receptor complex component, Smoothened, which deficiency blocks the Hh signaling. Such a defect in birds and mammals results in an annular pancreas. We showed that in developing zebrafish, the mutation of Smoothened or inhibition of Hh signaling by its antagonist cyclopamine caused developmental defects of internal organs, liver, pancreas, and gut. In particular, the pancreatic primordium was duplicated. The two exocrine pancreatic primordia surround the gut. This phenomenon correlates with a significant reduction of the gut's diameter, causing the annular pancreas phenotype.
Collapse
Affiliation(s)
- Svitlana Korzh
- -Department of Biological Sciences, National University of Singapore, Singapore
| | - Cecilia L Winata
- -International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Zhiyuan Gong
- -Department of Biological Sciences, National University of Singapore, Singapore.
| | - Vladimir Korzh
- -International Institute of Molecular and Cell Biology in Warsaw, Poland; -Institute of Molecular and Cell Biology, Singapore.
| |
Collapse
|
17
|
Dumasia NP, Khanna AP, Pethe PS. Sonic hedgehog signals hinder the transcriptional network necessary for pancreatic endoderm formation from human embryonic stem cells. Genes Cells 2021; 26:282-297. [PMID: 33599359 DOI: 10.1111/gtc.12839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023]
Abstract
Hedgehog morphogens govern multiple aspects of pancreas organogenesis and functioning with diverse outcomes across species. Although most current differentiation protocols repress Sonic hedgehog (SHH) signals during in vitro endocrine specification, the role and mechanisms through which the SHH pathway antagonizes pancreas development during in vitro human embryonic stem (hES) cell differentiation remain unclear. We modulated SHH signaling at transitory stages of hES cell-derived pancreatic progenitors and analyzed the effect on cellular fate decisions. We identify the Hedgehog pathway as a negative regulator of pancreatic endoderm formation through up-regulation of a set of pancreatobiliary markers required for ductal specification, including SOX17, FOXA2, HNF1β, HNF6, PDX1, and SOX9. Surprisingly, active Hedgehog signals impeded a group of pancreatic epithelium markers, including HNF4α, HHEX, PAX6, and PTF1α. To understand how SHH signals repress the transcription of these specific markers, we analyzed Polycomb group proteins. We found differential expression of Polycomb Repressive Complex 1 subunit, BMI1 upon Shh pathway modulation in the pancreatic progenitors. Ectopic activation of Sonic hedgehog results in over-expression of BMI1 and its associated repressive histone mark, H2AK119Ub1, in the multipotent progenitors. Our data suggest that Sonic hedgehog restricts the pancreatic differentiation program by limiting progenitor cells acquiring pancreatic epithelial fates and instead promotes pancreatobiliary differentiation. We further provide mechanistic cues of an association between Hedgehog signaling and epigenetic silencers during pancreatic lineage decisions.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
| | - Aparna P Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
- Centre for Computational Biology & Translational Research, Amity Institute of Biotechnology (AIB), Amity University, Mumbai, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Pune, India
| |
Collapse
|
18
|
Barman S, Fatima I, Singh AB, Dhawan P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22094765. [PMID: 33946266 PMCID: PMC8124621 DOI: 10.3390/ijms22094765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence:
| |
Collapse
|
19
|
Abstract
The hedgehog (Hh) signaling pathway plays several diverse regulatory and patterning roles during organogenesis of the intestine and in the regulation of adult intestinal homeostasis. In the embryo, fetus, and adult, intestinal Hh signaling is paracrine: Hh ligands are expressed in the endodermally derived epithelium, while signal transduction is confined to the mesenchymal compartment, where at least a dozen distinct cell types are capable of responding to Hh signals. Epithelial Hh ligands not only regulate a variety of mesenchymal cell behaviors, but they also direct these mesenchymal cells to secrete additional soluble factors (e.g., Wnts, Bmps, inflammatory mediators) that feed back to regulate the epithelial cells themselves. Evolutionary conservation of the core Hh signaling pathway, as well as conservation of epithelial/mesenchymal cross talk in the intestine, has meant that work in many diverse model systems has contributed to our current understanding of the role of this pathway in intestinal organogenesis, which is reviewed here.
Collapse
Affiliation(s)
- Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; ,
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
20
|
Pethe PS, Dumasia NP, Bhartiya D. Effect of Sonic hedgehog pathway inhibition on PDX1 expression during pancreatic differentiation of human embryonic stem cells. Mol Biol Rep 2021; 48:1615-1623. [PMID: 33484392 DOI: 10.1007/s11033-021-06147-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Differentiation processes for generating pancreatic progenitors from pluripotent stem cells inhibit Sonic hedgehog signaling through synthetic antagonists. However, the effect of sonic hedgehog inhibition in differentiating human embryonic stem cells remains unclear. The primary aim of this study was to understand the effect of Sonic hedgehog inhibition on key pancreas-specific transcription factors during differentiation of human embryonic stem cells towards a pancreatic lineage. We differentiated human embryonic stem (ES) cells towards the pancreatic progenitor stage. To analyze the effect of Sonic hedgehog inhibition, we differentiated human ES cells in the presence or absence of pathway antagonist, cyclopamine, using the same concentration (0.25 µM) as reported earlier. Changes in gene expression between the groups were examined by quantitative reverse-transcription PCR and immunoblot analyses. Surprisingly, we found that expression of key transcription factors, PDX1 and SOX9, was not majorly affected by inhibition of Sonic hedgehog signals. Effects of inhibiting Hedgehog signals on pancreas-specific markers in differentiating human embryonic stem cells were analyzed in the study. We identified that the expression of pancreas-specific PDX1 and SOX9 was not affected by the Sonic hedgehog pathway in pancreatic progenitor populations from human ES cells. Thus, the restrictive nature of Hedgehog signaling during the early stages of pancreas formation could be facilitated through a transcriptional network beyond PDX1 and SOX9.
Collapse
Affiliation(s)
- Prasad S Pethe
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400 012, India.
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Lavale, Mulshi, Pune, 412 115, India.
| | - Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, 400 056, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
21
|
Abstract
A comprehensive understanding of mechanisms that underlie the development and function of human cells requires human cell models. For the pancreatic lineage, protocols have been developed to differentiate human pluripotent stem cells (hPSCs) into pancreatic endocrine and exocrine cells through intermediates resembling in vivo development. In recent years, this differentiation system has been employed to decipher mechanisms of pancreatic development, congenital defects of the pancreas, as well as genetic forms of diabetes and exocrine diseases. In this review, we summarize recent insights gained from studies of pancreatic hPSC models. We discuss how genome-scale analyses of the differentiation system have helped elucidate roles of chromatin state, transcription factors, and noncoding RNAs in pancreatic development and how the analysis of cells with disease-relevant mutations has provided insight into the molecular underpinnings of genetically determined diseases of the pancreas.
Collapse
Affiliation(s)
- Bjoern Gaertner
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Andrea C Carrano
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
22
|
Wu J, Zhu P, Lu T, Du Y, Wang Y, He L, Ye B, Liu B, Yang L, Wang J, Gu Y, Lan J, Hao Y, He L, Fan Z. The long non-coding RNA LncHDAC2 drives the self-renewal of liver cancer stem cells via activation of Hedgehog signaling. J Hepatol 2019; 70:918-929. [PMID: 30582981 DOI: 10.1016/j.jhep.2018.12.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Liver cancer is the second leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults. The aim of this study was to define the role of the long non-coding RNA lncHDAC2 in the tumorigenesis of HCC. METHODS CD13+CD133+ cells (hereafter called liver cancer stem cells [CSCs]) and CD13-CD133- cells (referred to as non-CSCs) were sorted from 3 primary HCC tumor tissues and followed by transcriptome microarray. The expression and function of lncHDAC2 were further assessed by northern blot, sphere formation and xenograft tumor models. RESULTS LncHDAC2 is highly expressed in HCC tumors and liver CSCs. LncHDAC2 promotes the self-renewal of liver CSCs and tumor propagation. In liver CSCs, lncHDAC2 recruits the NuRD complex onto the promoter of PTCH1 to inhibit its expression, leading to activation of Hedgehog signaling. Moreover, HDAC2 expression levels are positively related to HCC severity and PTCH1 levels are negatively related to HCC severity. Additionally, the Smo inhibitor cyclopamine was shown to impair the self-renewal of liver CSCs and suppress tumor propagation. CONCLUSION Our findings reveal that lncHDAC2 promotes the self-renewal of liver CSCs and tumor propagation by activating the Hedgehog signaling pathway. Downregulating lncHDAC2 is a promising antitumor strategy in HCC. LAY SUMMARY Liver cancer stem cells harbor high tumor-initiating potential and confer resistance to typical therapies, but the mechanism underlying their self-renewal remains elusive. LncHDAC2 augments the self-renewal of these cells, promoting tumor propagation. In liver cancer stem cells, lncHDAC2 activates Hedgehog signaling to initiate liver tumorigenesis. Therefore, lncHDAC2 and the Hedgehog signaling pathway may serve as biomarkers and potential drug targets for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiayi Wu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tiankun Lu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Du
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanying Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyun He
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Benyu Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuliu Yang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Gu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Lan
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Hao
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing 100853, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Pancreatic duct-like cell line derived from pig embryonic stem cells: expression of uroplakin genes in pig pancreatic tissue. In Vitro Cell Dev Biol Anim 2019; 55:285-301. [PMID: 30868438 DOI: 10.1007/s11626-019-00336-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/12/2019] [Indexed: 02/04/2023]
Abstract
The isolation of a cell line, PICM-31D, with phenotypic characteristics like pancreatic duct cells is described. The PICM-31D cell line was derived from the previously described pig embryonic stem cell-derived exocrine pancreatic cell line, PICM-31. The PICM-31D cell line was morphologically distinct from the parental cells in growing as a monolayer rather than self-assembling into multicellular acinar-like structures. The PICM-31D cells were propagated for over a year at split ratios of 1:3 to 1:10 at each passage without change in phenotype or growth rate. Electron microscopy showed the cells to be a polarized epithelium of cuboidal cells joined by tight junction-like adhesions at their apical/lateral aspect. The cells contained numerous mucus-like secretory vesicles under their apical cell membrane. Proteomic analysis of the PICM-31D's cellular proteins detected MUC1 and MUC4, consistent with mucus vesicle morphology. Gene expression analysis showed the cells expressed pancreatic ductal cell-related transcription factors such as GATA4, GATA6, HES1, HNF1A, HNF1B, ONECUT1 (HNF6), PDX1, and SOX9, but little or no pancreas progenitor cell markers such as PTF1A, NKX6-1, SOX2, or NGN3. Pancreas ductal cell-associated genes including CA2, CFTR, MUC1, MUC5B, MUC13, SHH, TFF1, KRT8, and KRT19 were expressed by the PICM-31D cells, but the exocrine pancreas marker genes, CPA1 and PLA2G1B, were not expressed by the cells. However, the exocrine marker, AMY2A, was still expressed by the cells. Surprisingly, uroplakin proteins were prominent in the PICM-31D cell proteome, particularly UPK1A. Annexin A1 and A2 proteins were also relatively abundant in the cells. The expression of the uroplakin and annexin genes was detected in the cells, although only UPK1B, UPK3B, ANXA2, and ANXA4 were detected in fetal pig pancreatic duct tissue. In conclusion, the PICM-31D cell line models the mucus-secreting ductal cells of the fetal pig pancreas.
Collapse
|
24
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Sambathkumar R, Migliorini A, Nostro MC. Pluripotent Stem Cell-Derived Pancreatic Progenitors and β-Like Cells for Type 1 Diabetes Treatment. Physiology (Bethesda) 2018; 33:394-402. [DOI: 10.1152/physiol.00026.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we focus on the processes guiding human pancreas development and provide an update on methods to efficiently generate pancreatic progenitors (PPs) and β-like cells in vitro from human pluripotent stem cells (hPSCs). Furthermore, we assess the strengths and weaknesses of using PPs and β-like cell for cell replacement therapy for the treatment of Type 1 diabetes with respect to cell manufacturing, engrafting, functionality, and safety. Finally, we discuss the identification and use of specific cell surface markers to generate safer populations of PPs for clinical translation and to study the development of PPs in vivo and in vitro.
Collapse
Affiliation(s)
- Rangarajan Sambathkumar
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Adriana Migliorini
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Maria Cristina Nostro
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Jørgensen MC, de Lichtenberg KH, Collin CA, Klinck R, Ekberg JH, Engelstoft MS, Lickert H, Serup P. Neurog3-dependent pancreas dysgenesis causes ectopic pancreas in Hes1 mutant mice. Development 2018; 145:dev.163568. [PMID: 30093553 DOI: 10.1242/dev.163568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Mutations in Hes1, a target gene of the Notch signalling pathway, lead to ectopic pancreas by a poorly described mechanism. Here, we use genetic inactivation of Hes1 combined with lineage tracing and live imaging to reveal an endodermal requirement for Hes1, and show that ectopic pancreas tissue is derived from the dorsal pancreas primordium. RNA-seq analysis of sorted E10.5 Hes1+/+ and Hes1-/- Pdx1-GFP+ cells suggested that upregulation of endocrine lineage genes in Hes1-/- embryos was the major defect and, accordingly, early pancreas morphogenesis was normalized, and the ectopic pancreas phenotype suppressed, in Hes1-/-Neurog3-/- embryos. In Mib1 mutants, we found a near total depletion of dorsal progenitors, which was replaced by an anterior Gcg+ extension. Together, our results demonstrate that aberrant morphogenesis is the cause of ectopic pancreas and that a part of the endocrine differentiation program is mechanistically involved in the dysgenesis. Our results suggest that the ratio of endocrine lineage to progenitor cells is important for morphogenesis and that a strong endocrinogenic phenotype without complete progenitor depletion, as seen in Hes1 mutants, provokes an extreme dysgenesis that causes ectopic pancreas.
Collapse
Affiliation(s)
- Mette C Jørgensen
- NNF Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kristian H de Lichtenberg
- NNF Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Caitlin A Collin
- NNF Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rasmus Klinck
- Novo Nordisk A/S, Department of User Research and Communication, Brennum Park 1, DK-3400 Hillerød, Denmark
| | - Jeppe H Ekberg
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Laboratory for Molecular Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Maja S Engelstoft
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Laboratory for Molecular Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Palle Serup
- NNF Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
27
|
Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 2018; 92:77-88. [PMID: 30142440 DOI: 10.1016/j.semcdb.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing β-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-β superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to β-cells in vitro.
Collapse
|
28
|
Malenczyk K, Szodorai E, Schnell R, Lubec G, Szabó G, Hökfelt T, Harkany T. Secretagogin protects Pdx1 from proteasomal degradation to control a transcriptional program required for β cell specification. Mol Metab 2018; 14:108-120. [PMID: 29910119 PMCID: PMC6034064 DOI: 10.1016/j.molmet.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Specification of endocrine cell lineages in the developing pancreas relies on extrinsic signals from non-pancreatic tissues, which initiate a cell-autonomous sequence of transcription factor activation and repression switches. The steps in this pathway share reliance on activity-dependent Ca2+ signals. However, the mechanisms by which phasic Ca2+ surges become converted into a dynamic, cell-state-specific and physiologically meaningful code made up by transcription factors constellations remain essentially unknown. METHODS We used high-resolution histochemistry to explore the coincident expression of secretagogin and transcription factors driving β cell differentiation. Secretagogin promoter activity was tested in response to genetically manipulating Pax6 and Pax4 expression. Secretagogin null mice were produced with their pancreatic islets morphologically and functionally characterized during fetal development. A proteomic approach was utilized to identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome and verified in vitro by focusing on Pdx1 retention. RESULTS Here, we show that secretagogin, a Ca2+ sensor protein that controls α and β cell turnover in adult, is in fact expressed in endocrine pancreas from the inception of lineage segregation in a Pax4-and Pax6-dependent fashion. By genetically and pharmacologically manipulating secretagogin expression and interactome engagement in vitro, we find secretagogin to gate excitation-driven Ca2+ signals for β cell differentiation and insulin production. Accordingly, secretagogin-/- fetuses retain a non-committed pool of endocrine progenitors that co-express both insulin and glucagon. We identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome complex to prevent Pdx1 degradation through proteasome inactivation. This coincides with retained Nkx6.1, Pax4 and insulin transcription in prospective β cells. CONCLUSIONS In sum, secretagogin scales the temporal availability of a Ca2+-dependent transcription factor network to define β cell identity.
Collapse
Affiliation(s)
- Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden
| | - Gert Lubec
- Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, H-1083, Budapest, Hungary
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden.
| |
Collapse
|
29
|
Jimenez-Caliani AJ, Pillich R, Yang W, Diaferia GR, Meda P, Crisa L, Cirulli V. αE-Catenin Is a Positive Regulator of Pancreatic Islet Cell Lineage Differentiation. Cell Rep 2018; 20:1295-1306. [PMID: 28793255 PMCID: PMC5611824 DOI: 10.1016/j.celrep.2017.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
The development and function of epithelia depend on the establishment and maintenance of cell-cell adhesion and intercellular junctions, which operate as mechanosensor hubs for the transduction of biochemical signals regulating cell proliferation, differentiation, survival, and regeneration. Here, we show that αE-catenin, a key component of adherens junctions, functions as a positive regulator of pancreatic islet cell lineage differentiation by repressing the sonic hedgehog pathway (SHH). Thus, deletion of αE-catenin in multipotent pancreatic progenitors resulted in (1) loss of adherens junctions, (2) constitutive activation of SHH, (3) decrease in islet cell lineage differentiation, and (4) accumulation of immature Sox9+ progenitors. Pharmacological blockade of SHH signaling in pancreatic organ cultures and in vivo rescued this defect, allowing αE-catenin-null Sox9+ pancreatic progenitors to differentiate into endocrine cells. The results uncover crucial functions of αE-catenin in pancreatic islet development and harbor significant implications for the design of β cell replacement and regeneration therapies in diabetes.
Collapse
Affiliation(s)
- Antonio J Jimenez-Caliani
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Dermatology, Rheumatology, Diabetology, University of Bremen, Bremen, Germany
| | - Rudolf Pillich
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wendy Yang
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Giuseppe R Diaferia
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Laura Crisa
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | - Vincenzo Cirulli
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Elliott KH, Millington G, Brugmann SA. A novel role for cilia-dependent sonic hedgehog signaling during submandibular gland development. Dev Dyn 2018. [PMID: 29532549 DOI: 10.1002/dvdy.24627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Submandibular glands (SMGs) are specialized epithelial structures which generate saliva necessary for mastication and digestion. Loss of SMGs can lead to inflammation, oral lesions, fungal infections, problems with chewing/swallowing, and tooth decay. Understanding the development of the SMG is important for developing therapeutic options for patients with impaired SMG function. Recent studies have suggested Sonic hedgehog (Shh) signaling in the epithelium plays an integral role in SMG development; however, the mechanism by which Shh influences gland development remains nebulous. RESULTS Using the Kif3af/f ;Wnt1-Cre ciliopathic mouse model to prevent Shh signal transduction by means of the loss of primary cilia in neural crest cells, we report that mesenchymal Shh activity is necessary for gland development. Furthermore, using a variety of murine transgenic lines with aberrant mesenchymal Shh signal transduction, we determine that loss of Shh activity, by means of loss of the Gli activator, rather than gain of Gli repressor, is sufficient to cause the SMG aplasia. Finally, we determine that loss of the SMG correlates with reduced Neuregulin1 (Nrg1) expression and lack of innervation of the SMG epithelium. CONCLUSIONS Together, these data suggest a novel mechanistic role for mesenchymal Shh signaling during SMG development. Developmental Dynamics 247:818-831, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Grethel Millington
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
31
|
Gu J, Saiyin H, Fu D, Li J. Stroma - A Double-Edged Sword in Pancreatic Cancer: A Lesson From Targeting Stroma in Pancreatic Cancer With Hedgehog Signaling Inhibitors. Pancreas 2018; 47:382-389. [PMID: 29521941 DOI: 10.1097/mpa.0000000000001023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is a uniformly lethal malignancy with an abundant dense desmoplastic stroma. Because of its dense stroma, conventional drugs were considered to not penetrate this physical barrier, and this caused a systemic drug resistance. Thus, abolishing this barrier with targeted agents is considered to improve the efficiency of chemotherapeutic treatment. The Hedgehog (Hh) signaling pathway is a critical regulator of pancreas development and plays diversified roles in pancreatic cancer stroma and neoplastic cells. Increasing Hh expression in neoplastic cells added desmoplastic stroma accumulation in orthotopic tumors, and Hh inhibitors that target the stroma have an ability to prolong the overall survival of Pdx-1-Cre/KrasG12D/p53R172H mice models via deleting the stromal components and increasing vascularity in pancreatic tumor. However, the failure of translation from bench to bedside indicate the complexity of the relationship between Hh signaling and desmoplastic stroma, and more insights into the complex relationships between Hh signaling pathway and stroma, even tumor cells, might help redesign Hh-targeted therapy. In this review, we discuss the possible mechanism of translation of Hh inhibitor in the clinic from pathology to molecular mechanism.
Collapse
|
32
|
Elliott KH, Brugmann SA. Sending mixed signals: Cilia-dependent signaling during development and disease. Dev Biol 2018; 447:28-41. [PMID: 29548942 DOI: 10.1016/j.ydbio.2018.03.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Molecular signals are the guiding force of development, imparting direction upon cells to divide, migrate, differentiate, etc. The mechanisms by which a cell can receive and transduce these signals into measurable actions remains a 'black box' in developmental biology. Primary cilia are ubiquitous, microtubule-based organelles that dynamically extend from a cell to receive and process molecular and mechanical signaling cues. In the last decade, this organelle has become increasingly intriguing to the research community due to its ability to act as a cellular antenna, receive and transduce molecular stimuli, and initiate a cellular response. In this review, we discuss the structure of primary cilia, emphasizing how the ciliary components contribute to the transduction of signaling pathways. Furthermore, we address how the cilium integrates these signals and conveys them into cellular processes such as proliferation, migration and tissue patterning. Gaining a deeper understanding of the mechanisms used by primary cilia to receive and integrate molecular signals is essential, as it opens the door for the identification of therapeutic targets within the cilium that could alleviate pathological conditions brought on by aberrant molecular signaling.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
33
|
da Silva ABS, Fonseca CMB, Cavalcante MMADS, de Oliveira IM, Ferraz MS, Viana FJC, Fontenele RD, Conde Júnior AM. Histomorphometry of pancreas development in hybrid chicken (Galus galus) embryo and fetus. Microsc Res Tech 2018. [PMID: 29527773 DOI: 10.1002/jemt.23016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pancreas comprises an important metabolic organ of endocrine and exocrine character that has embryonic origin of rudimentary buds that fuse to form the organ. The present work aims to describe the pancreatic histogenesis of hybrid chick embryos (Gallus gallus). The research was performed in the UFPI, previously approved by the CEUA with protocol no. 040/15. We used 120 fertilized eggs of hybrid chickens kept in an incubator with controlled temperature and humidity. Daily collections of embryos and fetuses were performed from 4 to 21 days of incubation through the anatomical dissection consecutive the euthanasia. The tissues, previously fixed in 10% buffered formaldehyde, were submitted to histological processing and stained with hematoxylin-eosin. Finally, the mounted slides were analyzed in image software to obtain histomorphometric data, which were submitted to statistical analysis. The pancreas of hybrid chicken embryos originates around the fourth day of incubation with the dorsal and ventral pancreatic bud formation, which are composed by epithelial and mesenchymal cells. These cells differ in exocrine and endocrine cells. Around twelve embryonic days occurs the buds fusion and the immature organ formation that will give continue with the ductal system development, vascularization and compartmentalization of the endocrine and exocrine parts. Until 21st day of incubation it is possible to identify undifferentiated tissue forms which suggesting postnatal histogenesis. The description of pancreas histogenesis using histometric data on hybrid chicken embryos contributes to the clarification of embryonic development and reaffirms the premise that chickens serve as an experimental model for embryonic study of mammals.
Collapse
|
34
|
Hashemi Tabar M, Tabandeh MR, Moghimipour E, Dayer D, Ghadiri AA, Allah Bakhshi E, Orazizadeh M, Ghafari MA. The combined effect of Pdx1 overexpression and Shh manipulation on the function of insulin-producing cells derived from adipose-tissue stem cells. FEBS Open Bio 2018; 8:372-382. [PMID: 29511614 PMCID: PMC5832980 DOI: 10.1002/2211-5463.12378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 01/23/2023] Open
Abstract
Pancreatic and duodenal homeobox 1 (Pdx1) and Sonic hedgehog (Shh) are the key regulators of beta-cell function. In vitro experiments have shown that there is significant cooperation between Pdx1 and Shh with regard to the production and maintenance of insulin-producing cells (IPCs). In this study, the combined effect of Pdx1 overexpression and Shh manipulation on the function of adipose tissue-derived IPCs was determined. A eukaryotic expression vector (Pdx1- pCDNA3.1(+)) was constructed and transfected into a Chinese hamster ovary (CHO) cell line. Adipose tissue-derived mesenchymal stem cells (ADMSCs) obtained from rats were assigned to two groups [control (C) and manipulated (M)] and differentiated into IPCs. Manipulated cells were treated with a mixture of FGF-β and cyclopamine and recombinant Shh protein at days 3 and 11, respectively, and transfected with Pdx1- pCDNA3.1(+) at day 10. The expression of multiple genes related to function of beta cells was analyzed using real-time PCR. The functionality of IPCs in vitro was analyzed through dithizone (DTZ) staining and ELISA. IPCs were injected into the tail vein of diabetic rats, and blood glucose and insulin concentrations were measured. CHO cells transfected with Pdx1- pCDNA3.1(+) showed a significantly higher expression of Pdx1 compared with nontransfected cells. Manipulated IPCs exhibited a significantly higher expression of MafA, Nkx2.2, Nkx6.1, Ngn3, insulin, and Isl1 and a higher insulin secretion in response to glucose challenge in relation to control cells. Rats that received manipulated IPCs exhibited a higher ability to normalize blood glucose and insulin secretion when compared to controls. Our protocol might be used for more efficient cell therapy of patients with diabetes in the future.
Collapse
Affiliation(s)
- Mahmoud Hashemi Tabar
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of Anatomy Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology Faculty of Veterinary Medicine Shahid Chamran University of Ahvaz Iran.,Stem Cells and Transgenic Technology Research Center Shahid Chamran University of Ahvaz Iran
| | - Eskandar Moghimipour
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of pharmaceutics Faculty of Pharmacy Ahvaz Jundishapur University of Medical Sciences Iran
| | - Dian Dayer
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran
| | - Ata A Ghadiri
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of Immunology Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Iran
| | - Elham Allah Bakhshi
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of Anatomy Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Iran
| | - Mohammad Ali Ghafari
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of Biochemistry Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Iran
| |
Collapse
|
35
|
Angelo JR, Tremblay KD. Identification and fate mapping of the pancreatic mesenchyme. Dev Biol 2018; 435:15-25. [PMID: 29329912 DOI: 10.1016/j.ydbio.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 12/25/2022]
Abstract
The murine pancreas buds from the ventral embryonic endoderm at approximately 8.75 dpc and a second pancreas bud emerges from the dorsal endoderm by 9.0 dpc. Although it is clear that secreted signals from adjacent mesoderm-derived sources are required for both the appropriate emergence and further refinement of the pancreatic endoderm, neither the exact signals nor the requisite tissue sources have been defined in mammalian systems. Herein we use DiI fate mapping of cultured murine embryos to identify the embryonic sources of both the early inductive and later condensed pancreatic mesenchyme. Despite being capable of supporting pancreas induction from dorsal endoderm in co-culture experiments, we find that in the context of the developing embryo, the dorsal aortae as well as the paraxial, intermediate, and lateral mesoderm derivatives only transiently associate with the dorsal pancreas bud, producing descendants that are decidedly anterior to the pancreas bud. Unlike these other mesoderm derivatives, the axial (notochord) descendants maintain association with the dorsal pre-pancreatic endoderm and early pancreas bud. This fate mapping data points to the notochord as the likely inductive source in vivo while also revealing dynamic morphogenetic movements displayed by individual mesodermal subtypes. Because none of the mesoderm examined above produced the pancreatic mesenchyme that condenses around the induced bud to support exocrine and endocrine differentiation, we also sought to identify the mesodermal origins of this mesenchyme. We identify a portion of the coelomic mesoderm that contributes to the condensed pancreatic mesenchyme. In conclusion, we identify a portion of the notochord as a likely source of the signals required to induce and maintain the early dorsal pancreas bud, demonstrate that the coelomic mesothelium contributes to the dorsal and ventral pancreatic mesenchyme, and provide insight into the dynamic morphological rearrangements of mesoderm-derived tissues during early organogenesis stages of mammalian development.
Collapse
Affiliation(s)
- Jesse R Angelo
- Department of Veterinary&Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kimberly D Tremblay
- Department of Veterinary&Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
36
|
Lin J, Yu Y, Chen Y, Zheng M, Zhou D. Heterotopic pancreatic cyst in the adrenal gland: A case report and review of literature. Medicine (Baltimore) 2018; 97:e9414. [PMID: 29505516 PMCID: PMC5943131 DOI: 10.1097/md.0000000000009414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE The incidence of heterotopic pancreas (HP) is relatively rare and mainly found in the upper gastrointestinal tract, and no case of HP cyst in the adrenal gland has been reported. Informed consent has been obtained from the patient for the publication of the case details. PATIENT CONCERNS A 21-year-old woman who presented with chronic lower back pain for a week without urinary disturbance or gastrointestinal discomfortable. DIAGNOSES Ultrasound (US) revealed a left renal cyst, and computed tomography (CT) showed a cyst in the area of the adrenal gland. INTERVENTIONS Cystectomy was successfully performed laparoscopically. Histopathologic examination of the removed cyst wall showed heterotopic pancreatic cyst accompanied by cystic degeneration. OUTCOMES No unusual drainage or abdominal signs were observed during the 6-month follow-up. LESSONS Despite of its rarity, HP accompanied by cyst formation in the adrenal gland area can present with waist pain. Therefore, the possibility of such disease needs to be considered. For thorough evaluation, in addition to abdominal US, CT, and/or magnetic resonance imaging, histopathological examination should sometimes be performed to make a definite diagnosis. Total excision and regular follow-up is necessary for such cases due to the potential risk of complications or recurrent cyst formation.
Collapse
Affiliation(s)
- Jianzhong Lin
- Department of Urology and Center Laboratory, BenQ Medical Center
| | - Yang Yu
- The First Clinical Medical College
| | - Yi Chen
- School of Basic Medical Sciences
| | | | - Dan Zhou
- Department of Radiology, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Curr Top Dev Biol 2018; 129:143-190. [DOI: 10.1016/bs.ctdb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Abstract
This Outlook discusses the finding by Liu et al. that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increases acinar-to-ductal metaplasia. Pancreatic stromal fibroblasts provide structural support. Activated fibroblasts are critical in the tumor microenvironment. In this issue of Genes & Development, Liu and colleagues (pp. 1943–1955) unravel the finding that depletion of Smoothened (Smo) in pancreatic stromal fibroblasts results in AKT activation and noncanonical GLI2 activation with subsequent TGFα secretion, activation of EGFR in pancreatic epithelial cells, and augmentation of acinar–ductal metaplasia. Additionally, Smo-mediated signaling has proproliferative effects on pancreatic tumor cells.
Collapse
Affiliation(s)
- Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Department of Genetics, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
Rezvani M, Menias C, Sandrasegaran K, Olpin JD, Elsayes KM, Shaaban AM. Heterotopic Pancreas: Histopathologic Features, Imaging Findings, and Complications. Radiographics 2017; 37:484-499. [PMID: 28287935 DOI: 10.1148/rg.2017160091] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterotopic pancreas is a congenital anomaly in which pancreatic tissue is anatomically separate from the main gland. The most common locations of this displacement include the upper gastrointestinal tract-specifically, the stomach, duodenum, and proximal jejunum. Less common sites are the esophagus, ileum, Meckel diverticulum, biliary tree, mesentery, and spleen. Uncomplicated heterotopic pancreas is typically asymptomatic, with the lesion being discovered incidentally during an unrelated surgery, during an imaging examination, or at autopsy. The most common computed tomographic appearance of heterotopic pancreas is that of a small oval intramural mass with microlobulated margins and an endoluminal growth pattern. The attenuation and enhancement characteristics of these lesions parallel their histologic composition. Acinus-dominant lesions demonstrate avid homogeneous enhancement after intravenous contrast material administration, whereas duct-dominant lesions are hypovascular and heterogeneous. At magnetic resonance imaging, the heterotopic pancreas is isointense to the orthotopic pancreas, with characteristic T1 hyperintensity and early avid enhancement after intravenous gadolinium-based contrast material administration. Heterotopic pancreatic tissue has a rudimentary ductal system in which an orifice is sometimes visible at imaging as a central umbilication of the lesion. Complications of heterotopic pancreas include pancreatitis, pseudocyst formation, malignant degeneration, gastrointestinal bleeding, bowel obstruction, and intussusception. Certain complications may be erroneously diagnosed as malignancy. Paraduodenal pancreatitis is thought to be due to cystic degeneration of heterotopic pancreatic tissue in the medial wall of the duodenum. Recognizing the characteristic imaging features of heterotopic pancreas aids in differentiating it from cancer and thus in avoiding unnecessary surgery. © RSNA, 2017.
Collapse
Affiliation(s)
- Maryam Rezvani
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Christine Menias
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Kumaresan Sandrasegaran
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Jeffrey D Olpin
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Khaled M Elsayes
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Akram M Shaaban
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| |
Collapse
|
40
|
Roberts KJ, Kershner AM, Beachy PA. The Stromal Niche for Epithelial Stem Cells: A Template for Regeneration and a Brake on Malignancy. Cancer Cell 2017; 32:404-410. [PMID: 29017054 PMCID: PMC5679442 DOI: 10.1016/j.ccell.2017.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/06/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
Stromal restraint of cancer growth and progression-emerging as a widespread phenomenon in epithelial cancers such as bladder, pancreas, colon, and prostate-appears rooted in stromal cell niche activity. During normal tissue repair, stromal niche signals, often Hedgehog-induced, promote epithelial stem cell differentiation as well as self-renewal, thus specifying a regenerating epithelial pattern. In the case of cancerous tissue, stromal cell-derived differentiation signals in particular may provide a brake on malignant growth. Understanding and therapeutic harnessing of the role of stroma in cancer restraint may hinge on our knowledge of the signaling programs elaborated by the stromal niche.
Collapse
Affiliation(s)
- Kelsey J Roberts
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron M Kershner
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip A Beachy
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Abstract
Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden
| | - Henrik Fagman
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden
| |
Collapse
|
42
|
Monkkonen T, Lewis MT. New paradigms for the Hedgehog signaling network in mammary gland development and breast Cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:315-332. [PMID: 28624497 PMCID: PMC5567999 DOI: 10.1016/j.bbcan.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
The Hedgehog signaling network regulates organogenesis, cell fate, proliferation, survival, and stem cell self-renewal in many mammalian tissues. Aberrant activation of the Hedgehog signaling network is present in ~25% of all cancers, including breast. Altered expression of Hedgehog network genes in the mammary gland can elicit phenotypes at many stages of development. However, synthesizing a cohesive mechanistic model of signaling at different stages of development has been difficult. Emerging data suggest that this difficulty is due, in part, to non-canonical and tissue compartment-specific (i.e., epithelial, versus stromal, versus systemic) functions of Hedgehog network components. With respect to systemic functions, Hedgehog network genes regulate development of endocrine organs that impinge on mammary gland development extrinsically. These new observations offer insight into previously conflicting data, and have bearing on the potential for anti-Hedgehog therapeutics in the treatment of breast cancer.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; University of California, San Francisco, Dept. of Pathology, 513 Parnassus Ave., San Francisco, CA 94118, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Jacobson EF, Tzanakakis ES. Human pluripotent stem cell differentiation to functional pancreatic cells for diabetes therapies: Innovations, challenges and future directions. J Biol Eng 2017; 11:21. [PMID: 28680477 PMCID: PMC5494890 DOI: 10.1186/s13036-017-0066-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
Recent advances in the expansion and directed pancreatogenic differentiation of human pluripotent stem cells (hPSCs) have intensified efforts to generate functional pancreatic islet cells, especially insulin-secreting β-cells, for cell therapies against diabetes. However, the consistent generation of glucose-responsive insulin-releasing cells remains challenging. In this article, we first present basic concepts of pancreatic organogenesis, which frequently serves as a basis for engineering differentiation regimens. Next, past and current efforts are critically discussed for the conversion of hPSCs along pancreatic cell lineages, including endocrine β-cells and α-cells, as well as exocrine cells with emphasis placed on the later stages of commitment. Finally, major challenges and future directions are examined, such as the identification of factors for in vivo maturation, large-scale culture and post processing systems, cell loss during differentiation, culture economics, efficiency, and efficacy and exosomes and miRNAs in pancreatic differentiation.
Collapse
Affiliation(s)
- Elena F Jacobson
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Room 276A, Medford, MA 02155 USA
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Room 276A, Medford, MA 02155 USA.,Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA 02111 USA
| |
Collapse
|
44
|
Monkkonen T, Landua JD, Visbal AP, Lewis MT. Epithelial and non-epithelial Ptch1 play opposing roles to regulate proliferation and morphogenesis of the mouse mammary gland. Development 2017; 144:1317-1327. [PMID: 28275010 PMCID: PMC5399619 DOI: 10.1242/dev.140434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022]
Abstract
Patched 1 (Ptch1) has epithelial, stromal and systemic roles in murine mammary gland organogenesis, yet specific functions remain undefined. Cre-recombinase-mediated Ptch1 ablation in mammary epithelium increased proliferation and branching, but did not phenocopy transgenic expression of activated smoothened (SmoM2). The epithelium showed no evidence of canonical hedgehog signaling, and hyperproliferation was not blocked by smoothened (SMO) inhibition, suggesting a non-canonical function of PTCH1. Consistent with this possibility, nuclear localization of cyclin B1 was increased. In non-epithelial cells, heterozygous Fsp-Cre-mediated Ptch1 ablation increased proliferation and branching, with dysplastic terminal end buds (TEB) and ducts. By contrast, homozygous Ptch1 ablation decreased proliferation and branching, producing stunted ducts filled with luminal cells showing altered ovarian hormone receptor expression. Whole-gland transplantation into wild-type hosts or estrogen/progesterone treatment rescued outgrowth and hormone receptor expression, but not the histological changes. Bone marrow transplantation failed to rescue outgrowth. Ducts of Fsp-Cre;Ptch1fl/fl mice were similar to Fsp-Cre;SmoM2 ducts, but Fsp-Cre;SmoM2 outgrowths were not stunted, suggesting that the histology might be mediated by Smo in the local stroma, with systemic Ptch1 required for ductal outgrowth and proper hormone receptor expression in the mammary epithelium. Summary: Systemic and tissue-specific depletion of patched 1 in epithelial and stromal compartments of the mammary gland defines functions in ductal patterning, proliferation and gene expression.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - John D Landua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Adriana P Visbal
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA .,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
45
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
46
|
Pancreatic Mesenchyme Regulates Islet Cellular Composition in a Patched/Hedgehog-Dependent Manner. Sci Rep 2016; 6:38008. [PMID: 27892540 PMCID: PMC5125096 DOI: 10.1038/srep38008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/04/2016] [Indexed: 01/23/2023] Open
Abstract
Pancreas development requires restrained Hedgehog (Hh) signaling activation. While deregulated Hh signaling in the pancreatic mesenchyme has been long suggested to be detrimental for proper organogenesis, this association was not directly shown. Here, we analyzed the contribution of mesenchymal Hh signaling to pancreas development. To increase Hh signaling in the pancreatic mesenchyme of mouse embryos, we deleted Patched1 (Ptch1) in these cells. Our findings indicate that deregulated Hh signaling in mesenchymal cells was sufficient to impair pancreas development, affecting both endocrine and exocrine cells. Notably, transgenic embryos displayed disrupted islet cellular composition and morphology, with a reduced β-cell portion. Our results indicate that the cell-specific growth rates of α- and β-cell populations, found during normal development, require regulated mesenchymal Hh signaling. In addition, we detected hyperplasia of mesenchymal cells upon elevated Hh signaling, accompanied by them acquiring smooth-muscle like phenotype. By specifically manipulating mesenchymal cells, our findings provide direct evidence for the non-autonomous roles of the Hh pathway in pancreatic epithelium development. To conclude, we directly show that regulated mesenchymal Hh signaling is required for pancreas organogenesis and establishment of its proper cellular composition.
Collapse
|
47
|
Xuan S, Sussel L. GATA4 and GATA6 regulate pancreatic endoderm identity through inhibition of hedgehog signaling. Development 2016; 143:780-6. [PMID: 26932670 DOI: 10.1242/dev.127217] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GATA4 and GATA6 are zinc finger transcription factors that have important functions in several mesodermal and endodermal organs, including heart, liver and pancreas. In humans, heterozygous mutations of either factor are associated with pancreatic agenesis; however, homozygous deletion of both Gata4 and Gata6 is necessary to disrupt pancreas development in mice. In this study, we demonstrate that arrested pancreatic development in Gata4(fl/fl); Gata6(fl/fl); Pdx1:Cre (pDKO) embryos is accompanied by the transition of ventral and dorsal pancreatic fates into intestinal or stomach lineages, respectively. These results indicate that GATA4 and GATA6 play essential roles in maintaining pancreas identity by regulating foregut endodermal fates. Remarkably, pancreatic anlagen derived from pDKO embryos also display a dramatic upregulation of hedgehog pathway components, which are normally absent from the presumptive pancreatic endoderm. Consistent with the erroneous activation of hedgehog signaling, we demonstrate that GATA4 and GATA6 are able to repress transcription through the sonic hedgehog (Shh) endoderm-specific enhancer MACS1 and that GATA-binding sites within this enhancer are necessary for this repressive activity. These studies establish the importance of GATA4/6-mediated inhibition of hedgehog signaling as a major mechanism regulating pancreatic endoderm specification during patterning of the gut tube.
Collapse
Affiliation(s)
- Shouhong Xuan
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
48
|
Okita K, Mizuguchi T, Shigenori O, Ishii M, Nishidate T, Ueki T, Meguro M, Kimura Y, Tanimizu N, Ichinohe N, Torigoe T, Kojima T, Mitaka T, Sato N, Sawada N, Hirata K. Pancreatic regeneration: basic research and gene regulation. Surg Today 2016; 46:633-640. [PMID: 26148809 DOI: 10.1007/s00595-015-1215-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/19/2015] [Indexed: 12/28/2022]
Abstract
Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development.
Collapse
Affiliation(s)
- Kenji Okita
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan.
| | - Ota Shigenori
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Masayuki Ishii
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshihiko Nishidate
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomomi Ueki
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Makoto Meguro
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Yasutoshi Kimura
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology I, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology I, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Norimasa Sawada
- Department of Surgical Pathology II, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Koichi Hirata
- Department of Surgery, JR Sapporo Hospital, N-3, E-1, Chuo-Ku, Sapporo, Hokkaido, 060-0033, Japan
| |
Collapse
|
49
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
50
|
Jalabert A, Vial G, Guay C, Wiklander OPB, Nordin JZ, Aswad H, Forterre A, Meugnier E, Pesenti S, Regazzi R, Danty-Berger E, Ducreux S, Vidal H, El-Andaloussi S, Rieusset J, Rome S. Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia 2016; 59:1049-58. [PMID: 26852333 DOI: 10.1007/s00125-016-3882-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The crosstalk between skeletal muscle (SkM) and beta cells plays a role in diabetes aetiology. In this study, we have investigated whether SkM-released exosome-like vesicles (ELVs) can be taken up by pancreatic beta cells and can deliver functional cargoes. METHODS Mice were fed for 16 weeks with standard chow diet (SCD) or with standard diet enriched with 20% palmitate (HPD) and ELVs were purified from quadriceps muscle. Fluorescent ELVs from HPD or SCD quadriceps were injected i.v. or intramuscularly (i.m.) into mice to determine their biodistributions. Micro (mi)RNA quantification in ELVs was determined using quantitative real-time RT-PCR (qRT-PCR)-based TaqMan low-density arrays. Microarray analyses were performed to determine whether standard diet ELVs (SD-ELVs) and high palmitate diet ELVs (HPD-ELVs) induced specific transcriptional signatures in MIN6B1 cells. RESULTS In vivo, muscle ELVs were taken up by pancreas, 24 h post-injection. In vitro, both SD-ELVs and HPD-ELVs transferred proteins and miRNAs to MIN6B1 cells and modulated gene expressions whereas only HPD-ELVs induced proliferation of MIN6B1 cells and isolated islets. Bioinformatic analyses suggested that transferred HPD-ELV miRNAs may participate in these effects. To validate this, we demonstrated that miR-16, which is overexpressed in HPD-ELVs, was transferred to MIN6B1 cells and regulated Ptch1, involved in pancreas development. In vivo, islets from HPD mice showed increased size and altered expression of genes involved in development, including Ptch1, suggesting that the effect of palm oil on islet size in vivo was reproduced in vitro by treating beta cells with HPD-ELVs. CONCLUSIONS/INTERPRETATION Our data suggest that muscle ELVs might have an endocrine effect and could participate in adaptations in beta cell mass during insulin resistance.
Collapse
Affiliation(s)
- Audrey Jalabert
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Guillaume Vial
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Joel Z Nordin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Hala Aswad
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Alexis Forterre
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Emmanuelle Meugnier
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Sandra Pesenti
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Emmanuelle Danty-Berger
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Sylvie Ducreux
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Hubert Vidal
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jennifer Rieusset
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Sophie Rome
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France.
| |
Collapse
|