1
|
Vasudevan A, Koushika SP. Physical presence of chemical synapses is necessary for turning behavior of anterograde synaptic vesicles at the branch point of PLM neurons in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024. [PMID: 38989012 PMCID: PMC11234195 DOI: 10.17912/micropub.biology.001204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Neurons exhibit complex branched axonal morphologies in both vertebrate and invertebrate systems, and show heterogeneity in the distribution of synaptic cargo across multiple synapses. It is possible that differences in transport across multiple branches contribute to the heterogeneity in cargo distribution across multiple synapses. However, the regulation of transport at axonal branch points is not well understood. We demonstrate that branch-specific transport of synaptic vesicles is dependent on the existence of a connection between the branch and synapses. The loss of this connection causes an immediate decrease in branch-specific transport of synaptic vesicles in the PLM neuron of C. elegans .
Collapse
Affiliation(s)
- Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
3
|
Shi Y, Qin L, Wu M, Zheng J, Xie T, Shao Z. Gut neuroendocrine signaling regulates synaptic assembly in C. elegans. EMBO Rep 2022; 23:e53267. [PMID: 35748387 DOI: 10.15252/embr.202153267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Synaptic connections are essential to build a functional brain. How synapses are formed during development is a fundamental question in neuroscience. Recent studies provided evidence that the gut plays an important role in neuronal development through processing signals derived from gut microbes or nutrients. Defects in gut-brain communication can lead to various neurological disorders. Although the roles of the gut in communicating signals from its internal environment to the brain are well known, it remains unclear whether the gut plays a genetically encoded role in neuronal development. Using C. elegans as a model, we uncover that a Wnt-endocrine signaling pathway in the gut regulates synaptic development in the brain. A canonical Wnt signaling pathway promotes synapse formation through regulating the expression of the neuropeptides encoding gene nlp-40 in the gut, which functions through the neuronally expressed GPCR/AEX-2 receptor during development. Wnt-NLP-40-AEX-2 signaling likely acts to modulate neuronal activity. Our study reveals a genetic role of the gut in synaptic development and identifies a novel contribution of the gut-brain axis.
Collapse
Affiliation(s)
- Yanjun Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Qin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengting Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junyu Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Duerr JS, McManus JR, Crowell JA, Rand JB. Analysis of C. elegans acetylcholine synthesis mutants reveals a temperature-sensitive requirement for cholinergic neuromuscular function. Genetics 2021; 218:6283614. [PMID: 34028515 DOI: 10.1093/genetics/iyab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
In Caenorhabditis elegans, the cha-1 gene encodes choline acetyltransferase (ChAT), the enzyme that synthesizes the neurotransmitter acetylcholine. We have analyzed a large number of cha-1 hypomorphic mutants, most of which are missense alleles. Some homozygous cha-1 mutants have approximately normal ChAT immunoreactivity; many other alleles lead to consistent reductions in synaptic immunostaining, although the residual protein appears to be stable. Regardless of protein levels, neuromuscular function of almost all mutants is temperature sensitive, i.e., neuromuscular function is worse at 25° than at 14°. We show that the temperature effects are not related to acetylcholine release, but specifically to alterations in acetylcholine synthesis. This is not a temperature-dependent developmental phenotype, because animals raised at 20° to young adulthood and then shifted for 2 hours to either 14° or 25° had swimming and pharyngeal pumping rates similar to animals grown and assayed at either 14° or 25°, respectively. We also show that the temperature-sensitive phenotypes are not limited to missense alleles; rather, they are a property of most or all severe cha-1 hypomorphs. We suggest that our data are consistent with a model of ChAT protein physically, but not covalently, associated with synaptic vesicles; and there is a temperature-dependent equilibrium between vesicle-associated and cytoplasmic (i.e., soluble) ChAT. Presumably, in severe cha-1 hypomorphs, increasing the temperature would promote dissociation of some of the mutant ChAT protein from synaptic vesicles, thus removing the site of acetylcholine synthesis (ChAT) from the site of vesicular acetylcholine transport. This, in turn, would decrease the rate and extent of vesicle-filling, thus increasing the severity of the behavioral deficits.
Collapse
Affiliation(s)
- Janet S Duerr
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA
| | - John R McManus
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - John A Crowell
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - James B Rand
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019; 571:63-71. [PMID: 31270481 DOI: 10.1038/s41586-019-1352-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/28/2019] [Indexed: 01/08/2023]
Abstract
Knowledge of connectivity in the nervous system is essential to understanding its function. Here we describe connectomes for both adult sexes of the nematode Caenorhabditis elegans, an important model organism for neuroscience research. We present quantitative connectivity matrices that encompass all connections from sensory input to end-organ output across the entire animal, information that is necessary to model behaviour. Serial electron microscopy reconstructions that are based on the analysis of both new and previously published electron micrographs update previous results and include data on the male head. The nervous system differs between sexes at multiple levels. Several sex-shared neurons that function in circuits for sexual behaviour are sexually dimorphic in structure and connectivity. Inputs from sex-specific circuitry to central circuitry reveal points at which sexual and non-sexual pathways converge. In sex-shared central pathways, a substantial number of connections differ in strength between the sexes. Quantitative connectomes that include all connections serve as the basis for understanding how complex, adaptive behavior is generated.
Collapse
|
6
|
White J. Clues to basis of exploratory behaviour of the C. elegans snout from head somatotropy. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0367. [PMID: 30201833 DOI: 10.1098/rstb.2017.0367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2018] [Indexed: 12/16/2022] Open
Abstract
Wave propagation during locomotory movements of Caenorhabditis elegans is constrained to a single dorso/ventral plane. By contrast, the tip of the head (snout) can make rapid exploratory movements in all directions relative to the body axis. These extra degrees of freedom are probably important for animals to seek and identify desirable passages in the interstices of the three-dimensional matrix of soil particles, their usual habitat. The differences in degrees of freedom of movement between snout and body are reflected in the innervation of the musculature. Along the length of the body, the two quadrants of dorsal muscle receive common innervation as do the two quadrants of ventral muscle. By contrast, muscles in the snout have an octagonal arrangement of innervation. It is likely that the exploratory behaviour of the snout is mediated by octant-specific motor and sensory neurons, together with their associated interneurons. The well-defined anatomical structure and neural circuitry of the snout together with behavioural observations should facilitate the implementation of models of the neural basis of exploratory movements, which could lead to an understanding of the basis of this relatively complex behaviour, a behaviour that has similarities to foraging in some vertebrates.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- John White
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
7
|
Grill B, Murphey RK, Borgen MA. The PHR proteins: intracellular signaling hubs in neuronal development and axon degeneration. Neural Dev 2016; 11:8. [PMID: 27008623 PMCID: PMC4806438 DOI: 10.1186/s13064-016-0063-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
During development, a coordinated and integrated series of events must be accomplished in order to generate functional neural circuits. Axons must navigate toward target cells, build synaptic connections, and terminate outgrowth. The PHR proteins (consisting of mammalian Phr1/MYCBP2, Drosophila Highwire and C. elegans RPM-1) function in each of these events in development. Here, we review PHR function across species, as well as the myriad of signaling pathways PHR proteins regulate. These findings collectively suggest that the PHR proteins are intracellular signaling hubs, a concept we explore in depth. Consistent with prominent developmental functions, genetic links have begun to emerge between PHR signaling networks and neurodevelopmental disorders, such as autism, schizophrenia and intellectual disability. Finally, we discuss the recent and important finding that PHR proteins regulate axon degeneration, which has further heightened interest in this fascinating group of molecules.
Collapse
Affiliation(s)
- Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA.
| | - Rodney K Murphey
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
8
|
Pereira L, Kratsios P, Serrano-Saiz E, Sheftel H, Mayo AE, Hall DH, White JG, LeBoeuf B, Garcia LR, Alon U, Hobert O. A cellular and regulatory map of the cholinergic nervous system of C. elegans. eLife 2015; 4. [PMID: 26705699 PMCID: PMC4769160 DOI: 10.7554/elife.12432] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022] Open
Abstract
Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI:http://dx.doi.org/10.7554/eLife.12432.001 To better understand the nervous system—the most complex of all the body’s organs—scientists have begun to painstakingly map its many features. These maps can then be used as a basis for understanding how the nervous system develops and works. Researchers have mapped the connections – called synapses – between all the nerve cells in the nervous system of a simple worm called Caenorhabditis elegans. Cells communicate by releasing chemicals called neurotransmitters across the synapses, but it is not fully known which types of neurotransmitters are released across each of the synapses in C. elegans. Now, Pereira et al. have mapped all worm nerve cells that use a neurotransmitter called acetylcholine by fluorescently marking proteins that synthesize and transport the neurotransmitter. This map revealed that 52 of the 118 types of nerve cells in the worm use acetylcholine, making it the most widely used neurotransmitter. This information was then combined with the findings of previous work that investigated which nerve cells release some other types of neurotransmitters. The combined data mean that it is now known which neurotransmitter is used for signaling by over 90% of the nerve cells in C. elegans. Using the map, Pereira et al. found that some neurons release different neurotransmitters in the different sexes of the worm. Additionally, the experiments revealed a set of proteins that cause the nerve cells to produce acetylcholine. Some of these proteins affect the fates of connected nerve cells. Overall, this information will allow scientists to more precisely manipulate specific cells or groups of cells in the worm nervous system to investigate how the nervous system develops and is regulated. DOI:http://dx.doi.org/10.7554/eLife.12432.002
Collapse
Affiliation(s)
- Laura Pereira
- Department of Biological Sciences, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Paschalis Kratsios
- Department of Biological Sciences, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Esther Serrano-Saiz
- Department of Biological Sciences, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Hila Sheftel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avi E Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - John G White
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, United States
| | - L Rene Garcia
- Department of Biology, Texas A&M University, College Station, United States.,Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| |
Collapse
|
9
|
Transcriptional coordination of synaptogenesis and neurotransmitter signaling. Curr Biol 2015; 25:1282-95. [PMID: 25913400 DOI: 10.1016/j.cub.2015.03.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/10/2015] [Accepted: 03/18/2015] [Indexed: 11/21/2022]
Abstract
During nervous system development, postmitotic neurons face the challenge of generating and structurally organizing specific synapses with appropriate synaptic partners. An important unexplored question is whether the process of synaptogenesis is coordinated with the adoption of specific signaling properties of a neuron. Such signaling properties are defined by the neurotransmitter system that a neuron uses to communicate with postsynaptic partners, the neurotransmitter receptor type used to receive input from presynaptic neurons, and, potentially, other sensory receptors that activate a neuron. Elucidating the mechanisms that coordinate synaptogenesis, neuronal activation, and neurotransmitter signaling in a postmitotic neuron represents one key approach to understanding how neurons develop as functional units. Using the SAB class of Caenorhabditis elegans motor neurons as a model system, we show here that the phylogenetically conserved COE-type transcription factor UNC-3 is required for synaptogenesis. UNC-3 directly controls the expression of the ADAMTS-like protein MADD-4/Punctin, a presynaptically secreted synapse-organizing molecule that clusters postsynaptic receptors. UNC-3 also controls the assembly of presynaptic specializations and ensures the coordinated expression of enzymes and transporters that define the cholinergic neurotransmitter identity of the SAB neurons. Furthermore, synaptic output properties of the SAB neurons are coordinated with neuronal activation and synaptic input, as evidenced by UNC-3 also regulating the expression of ionotropic neurotransmitter receptors and putative stretch receptors. Our study shows how synaptogenesis and distinct, function-defining signaling features of a postmitotic neuron are hardwired together through coordinated transcriptional control.
Collapse
|
10
|
RPM-1 uses both ubiquitin ligase and phosphatase-based mechanisms to regulate DLK-1 during neuronal development. PLoS Genet 2014; 10:e1004297. [PMID: 24810406 PMCID: PMC4014440 DOI: 10.1371/journal.pgen.1004297] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 02/21/2014] [Indexed: 01/06/2023] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are key regulators of neuronal development that function in axon extension and guidance, termination of axon outgrowth, and synapse formation. Outside of development, the PHR proteins also regulate axon regeneration and Wallerian degeneration. The PHR proteins function in part by acting as ubiquitin ligases that degrade the Dual Leucine zipper-bearing Kinase (DLK). Here, we show that the Caenorhabditis elegans PHR protein, Regulator of Presynaptic Morphology 1 (RPM-1), also utilizes a phosphatase-based mechanism to regulate DLK-1. Using mass spectrometry, we identified Protein Phosphatase Magnesium/Manganese dependent 2 (PPM-2) as a novel RPM-1 binding protein. Genetic, transgenic, and biochemical studies indicated that PPM-2 functions coordinately with the ubiquitin ligase activity of RPM-1 and the F-box protein FSN-1 to negatively regulate DLK-1. PPM-2 acts on S874 of DLK-1, a residue implicated in regulation of DLK-1 binding to a short, inhibitory isoform of DLK-1 (DLK-1S). Our study demonstrates that PHR proteins function through both phosphatase and ubiquitin ligase mechanisms to inhibit DLK. Thus, PHR proteins are potentially more accurate and sensitive regulators of DLK than originally thought. Our results also highlight an important and expanding role for the PP2C phosphatase family in neuronal development. The molecular mechanisms that govern formation of functional synaptic connections are central to brain development and function. We have used the nematode C. elegans to explore the mechanism of how the intracellular signaling protein RPM-1 regulates neuronal development. Using a combination of proteomic, genetic, transgenic, and biochemical approaches we have shown that RPM-1 functions through a PP2C phosphatase, PPM-2, to regulate the activity of a MAP3 kinase, DLK-1. Our results indicate that a combination of PPM-2 phosphatase activity and RPM-1 ubiquitin ligase activity inhibit DLK-1.
Collapse
|
11
|
Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders. Mol Neurobiol 2013; 48:465-89. [DOI: 10.1007/s12035-013-8434-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
12
|
Arellano-Carbajal F, Briseño-Roa L, Couto A, Cheung BHH, Labouesse M, de Bono M. Macoilin, a conserved nervous system-specific ER membrane protein that regulates neuronal excitability. PLoS Genet 2011; 7:e1001341. [PMID: 21437263 PMCID: PMC3060067 DOI: 10.1371/journal.pgen.1001341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 02/16/2011] [Indexed: 12/27/2022] Open
Abstract
Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O₂ responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca²(+) transients, at least in some neurons: in maco-1 mutants the O₂-sensing neuron PQR is unable to generate a Ca²(+) response to a rise in O₂. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O₂, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca²(+) channels, also fails to disrupt Ca²(+) responses in the PQR cell body to O₂ stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca²(+) channel α1 subunit, recapitulate the Ca²(+) response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or traffic of ion channels or ion channel regulators.
Collapse
Affiliation(s)
| | - Luis Briseño-Roa
- Medical Research Council–Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail: (LB-R); (MdB)
| | - Africa Couto
- Medical Research Council–Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Benny H. H. Cheung
- Medical Research Council–Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michel Labouesse
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Mario de Bono
- Medical Research Council–Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail: (LB-R); (MdB)
| |
Collapse
|
13
|
Abstract
UNC-6/Netrin is an evolutionarily conserved, secretory axon guidance molecule. In Caenorhabditis elegans, UNC-6 provides positional information to the axons of developing neurons, probably by establishing a concentration gradient from the ventral to the dorsal side of the animal. Although the proper localization of UNC-6 is important for accurate neuronal network formation, little is known about how its localization is regulated. Here, to examine the localization mechanism for UNC-6, we generated C. elegans expressing UNC-6 tagged with the fluorescent protein Venus and identified 13 genes, which are involved in the cellular localization of VenusUNC-6. For example, in unc-51, unc-14, and unc-104 mutants, the neurons showed an abnormal accumulation of VenusUNC-6 in the cell body and less than normal level of VenusUNC-6 in the axon. An aberrant accumulation of VenusUNC-6 in muscle cells was seen in unc-18 and unc-68 mutants. unc-51, unc-14, and unc-104 mutants also showed defects in the guidance of dorso-ventral axons, suggesting that the abnormal localization of UNC-6 disturbed the positional information it provides. We propose that these genes regulate the process of UNC-6 secretion: expression, maturation, sorting, transport, or exocytosis. Our findings provide novel insight into the localization mechanism of the axon guidance molecule UNC-6/Netrin.
Collapse
|
14
|
Abstract
Neuronal circuitries established in development must persist throughout life. This poses a serious challenge to the structural integrity of an embryonically patterned nervous system as an animal dramatically increases its size postnatally, remodels parts of its anatomy, and incorporates new neurons. In addition, body movements, injury, and ageing generate physical stress on the nervous system. Specific molecular pathways maintain intrinsic properties of neurons in the mature nervous system. Other factors ensure that the overall organization of entire neuronal ensembles into ganglia and fascicles is appropriately maintained upon external challenges. Here, we discuss different molecules underlying these neuronal maintenance mechanisms, with a focus on lessons learned from the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Claire Bénard
- Department of Biochemistry, Howard Hughes Medical Institute, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
15
|
Chung K, Crane MM, Lu H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat Methods 2008; 5:637-43. [PMID: 18568029 DOI: 10.1038/nmeth.1227] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 05/23/2008] [Indexed: 01/20/2023]
Abstract
Microscopy, phenotyping and visual screens are frequently applied to model organisms in combination with genetics. Although widely used, these techniques for multicellular organisms have mostly remained manual and low-throughput. Here we report the complete automation of sample handling, high-resolution microscopy, phenotyping and sorting of Caenorhabditis elegans. The engineered microfluidic system, coupled with customized software, has enabled high-throughput, high-resolution microscopy and sorting with no human intervention and may be combined with any microscopy setup. The microchip is capable of robust local temperature control, self-regulated sample-loading and automatic sample-positioning, while the integrated software performs imaging and classification of worms based on morphological and intensity features. We demonstrate the ability to perform sensitive and quantitative screens based on cellular and subcellular phenotypes with over 95% accuracy per round and a rate of several hundred worms per hour. Screening time can be reduced by orders of magnitude; moreover, screening is completely automated.
Collapse
Affiliation(s)
- Kwanghun Chung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
16
|
Single-synapse ablation and long-term imaging in live C. elegans. J Neurosci Methods 2008; 173:20-6. [PMID: 18579213 DOI: 10.1016/j.jneumeth.2008.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/09/2008] [Accepted: 05/10/2008] [Indexed: 11/23/2022]
Abstract
Synapses are individually operated, computational units for neural communication. To manipulate physically individual synapses in a living organism, we have developed a laser ablation technique for removing single synapses in live neurons in C. elegans that operates without apparent damage to the axon. As a complementary technique, we applied microfluidic immobilization of C. elegans to facilitate long-term fluorescence imaging and observation of neuronal development. With this technique, we directly demonstrated the existence of competition between developing synapses in the HSNL motor neuron.
Collapse
|
17
|
Abrams B, Grill B, Huang X, Jin Y. Cellular and molecular determinants targeting the Caenorhabditis elegans PHR protein RPM-1 to perisynaptic regions. Dev Dyn 2008; 237:630-9. [PMID: 18224716 PMCID: PMC2657606 DOI: 10.1002/dvdy.21446] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Caenorhabditis elegans RPM-1 is a member of a conserved protein family, the PHR proteins, that includes human Pam, mouse Phr1, zebrafish Esrom, and Drosophila Highwire. PHR proteins play important roles in the development of the nervous system. In particular, mutations in rpm-1 cause a disruption of synaptic architecture, affecting the distribution of synaptic vesicles and the number of presynaptic densities. Using antibodies against RPM-1, we determined the localization of the endogenous RPM-1 protein in wild-type and in several mutants that affect synaptic development. Our analyses show that, in mature neurons, RPM-1 resides in a distinct region that is close to, but does not overlap with, the synaptic exo- and endocytosis domains. The localization of RPM-1 occurs independently of several proteins that function in the transport or assembly of synapse components, and its abundance is partially dependent on its binding partner the F-box protein FSN-1. RPM-1 has been shown to target the MAPKKK DLK-1 for degradation. We show that activated DLK-1 may be preferentially targeted for degradation. Furthermore, using transgene analysis, we identified a critical role of the conserved PHR domain of RPM-1 in its subcellular localization.
Collapse
Affiliation(s)
- Benjamin Abrams
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California Santa Cruz, CA 95064, USA
| | - Brock Grill
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California Santa Cruz, CA 95064, USA
| | - Xun Huang
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California Santa Cruz, CA 95064, USA
| | - Yishi Jin
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California San Diego, CA 92093, USA
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, CA 92093, USA
| |
Collapse
|
18
|
Mahoney TR, Luo S, Nonet ML. Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc 2007; 1:1772-7. [PMID: 17487159 DOI: 10.1038/nprot.2006.281] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caenorhabditis elegans has emerged as a powerful model system for studying the biology of the synapse. Here we describe a widely used assay for synaptic transmission at the C. elegans neuromuscular junction. This protocol monitors the sensitivity of C. elegans to the paralyzing affects of an acetylcholinesterase inhibitor, aldicarb. Briefly, adult worms are incubated in the presence of aldicarb and scored for the time-course of aldicarb-induced paralysis. Animals harboring mutations in genes that affect synaptic transmission generally exhibit a change in their sensitivity to aldicarb (either increased sensitivity for enhancements in synaptic transmission or decreased sensitivity for blockage in synaptic transmission). This technique provides a simple assay for the accurate comparative analysis of synaptic transmission in multiple C. elegans strains. The protocol described can be performed relatively quickly and is a practical alternative to other techniques used to study synaptic transmission. This protocol can also be modified to follow the paralytic effects with other pharmacological reagents. The assay can be performed in about 3-6 hours depending on the severity of synaptic transmission defects.
Collapse
Affiliation(s)
- Timothy R Mahoney
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
19
|
Abstract
Two recent papers on social rearing and olfactory imprinting show that early developmental experiences can lead to long-lasting changes in behaviour of the model nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Cori Bargmann
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
20
|
Hall DH, Lints R, Altun Z. Nematode neurons: anatomy and anatomical methods in Caenorhabditis elegans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 69:1-35. [PMID: 16492460 DOI: 10.1016/s0074-7742(05)69001-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David H Hall
- Center for C. elegans Anatomy, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | |
Collapse
|
21
|
Gottschalk A, Schafer WR. Visualization of integral and peripheral cell surface proteins in live Caenorhabditis elegans. J Neurosci Methods 2006; 154:68-79. [PMID: 16466809 DOI: 10.1016/j.jneumeth.2005.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 11/08/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
To study the abundance of specific receptors and other cell surface proteins at synapses, it would be advantageous to specifically label these proteins only when inserted in the plasma membrane. We describe a method that allows to fluorescently label cell surface proteins in live and behaving animals, namely in the nematode Caenorhabditis elegans. Proteins such as subunits of the levamisole sensitive nicotinic acetylcholine receptor (nAChR) were epitope-tagged at their extracellular C-termini, and fluorescent antibodies against those tags were injected into the body fluid. These antibodies specifically labelled synaptic regions on the cell surface of muscles and neurons, and simultaneous use of different tags facilitated co-localization studies. Quantification of the fluorescence is possible, as verified by demonstrating that mutations in ric-3 and unc-38, which cause behavioural resistance to cholinergic agonists, strongly reduce or even abolish nAChR cell surface expression. We also used this method to visualize the extracellular peripheral membrane protein ODR-2, which is related to a neurotoxin-like protein regulating vertebrate neuronal nAChRs. Likewise, fluorescent alpha-bungarotoxin, when injected, bound to certain nAChRs in the pharynx and the nervous system. This showed that, theoretically, any molecular interaction of sufficient affinity may be used to specifically label cell surface structures in live nematodes.
Collapse
Affiliation(s)
- Alexander Gottschalk
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biochemistry, Biocenter N210, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | | |
Collapse
|
22
|
Materi W, Pilgrim D. Novel Caenorhabditis elegans unc-119 axon outgrowth defects correlate with behavioral phenotypes that are partially rescued by nonneural unc-119. Genesis 2005; 42:104-16. [PMID: 15892079 DOI: 10.1002/gene.20130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
UNC-119 function is necessary for the correct development of the Caenorhabditis elegans nervous system. Worms mutant for unc-119 exhibit nervous system structural defects, including supernumerary axon branches, defasciculated nerve fibers, and choice point errors. Axons of both mechanosensory (ALM) and chemo- sensory (ASI) neurons have elongation defects within the nerve ring. Expressing unc-119 cDNA in mechanosensory neurons rescues the elongation defect of ALM axons, but expression in ASI neurons does not rescue ASI axon elongation defects. Neither gross movement nor dauer larva formation defects are rescued in either case. However, expressing a construct including introns under the control of the same promoters results in substantial rescue of phenotypic defects. In these cases reporter expression expands to tissues outside those specified by the promoter, notably into head muscles. Surprisingly, expressing an unc-119 cDNA construct under the control of a muscle-specific promoter fully rescues the dauer formation defect and substantially rescues movement. Thus, although UNC-119 normally acts in a cell-autonomous fashion, the cell-nonautonomous rescue of neural function suggests that it either acts at the cell surface or that it can be transported into the cell from the extracellular environment and play its normal role.
Collapse
Affiliation(s)
- Wayne Materi
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
23
|
Mehta N, Loria PM, Hobert O. A genetic screen for neurite outgrowth mutants in Caenorhabditis elegans reveals a new function for the F-box ubiquitin ligase component LIN-23. Genetics 2004; 166:1253-67. [PMID: 15082545 PMCID: PMC1470768 DOI: 10.1534/genetics.166.3.1253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Axon pathfinding and target recognition are highly dynamic and tightly regulated cellular processes. One of the mechanisms involved in regulating protein activity levels during axonal and synaptic development is protein ubiquitination. We describe here the isolation of several Caenorhabditis elegans mutants, termed eno (ectopic/erratic neurite outgrowth) mutants, that display defects in axon outgrowth of specific neuron classes. One retrieved mutant is characterized by abnormal termination of axon outgrowth in a subset of several distinct neuron classes, including ventral nerve cord motor neurons, head motor neurons, and mechanosensory neurons. This mutant is allelic to lin-23, which codes for an F-box-containing component of an SCF E3 ubiquitin ligase complex that was previously shown to negatively regulate postembryonic cell divisions. We demonstrate that LIN-23 is a broadly expressed cytoplasmically localized protein that is required autonomously in neurons to affect axon outgrowth. Our newly isolated allele of lin-23, a point mutation in the C-terminal tail of the protein, displays axonal outgrowth defects similar to those observed in null alleles of this gene, but does not display defects in cell cycle regulation. We have thus defined separable activities of LIN-23 in two distinct processes, cell cycle control and axon patterning. We propose that LIN-23 targets distinct substrates for ubiquitination within each process.
Collapse
Affiliation(s)
- Nehal Mehta
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
24
|
Heeroma JH, Roelandse M, Wierda K, van Aerde KI, Toonen RFG, Hensbroek RA, Brussaard A, Matus A, Verhage M. Trophic support delays but does not prevent cell-intrinsic degeneration of neurons deficient for munc18-1. Eur J Neurosci 2004; 20:623-34. [PMID: 15255974 DOI: 10.1111/j.1460-9568.2004.03503.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stability of neuronal networks is thought to depend on synaptic transmission which provides activity-dependent maintenance signals for both synapses and neurons. Here, we tested the relationship between presynaptic secretion and neuronal maintenance using munc18-1-null mutant mice as a model. These mutants have a specific defect in secretion from synaptic and large dense-cored vesicles [Verhage et al. (2000), Science, 287, 864-869; Voets et al. (2001), Neuron, 31, 581-591]. Neuronal networks in these mutants develop normally up to synapse formation but eventually degenerate. The proposed relationship between secretion and neuronal maintenance was tested in low-density and organotypic cultures and, in vivo, by conditional cell-specific inactivation of the munc18-1 gene. Dissociated munc18-1-deficient neurons died within 4 days in vitro (DIV). Application of trophic factors, insulin or BDNF delayed degeneration up to 7 DIV. In organotypic cultures, munc18-1-deficient neurons survived until 9 DIV. On glial feeders, these neurons survived up to 10 DIV and 14 DIV when insulin was applied. Co-culturing dissociated mutant neurons with wild-type neurons did not prolong survival beyond 4 DIV, but coculturing mutant slices with wild-type slices prolonged survival up to 19 DIV. Cell-specific deletion of munc18-1 expression in cerebellar Purkinje cells in vivo resulted in the specific loss of these neurons without affecting connected or surrounding neurons. Together, these data allow three conclusions. First, the lack of synaptic activity cannot explain the degeneration in munc18-1-null mutants. Second, trophic support delays but cannot prevent degeneration. Third, a cell-intrinsic yet unknown function of munc18-1 is essential for prolonged survival.
Collapse
Affiliation(s)
- Joost H Heeroma
- Department of Molecular Neuroscience, Rudolf Magnus Institute, University of Utrecht Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Heeroma JH, Plomp JJ, Roubos EW, Verhage M. Development of the mouse neuromuscular junction in the absence of regulated secretion. Neuroscience 2003; 120:733-44. [PMID: 12895513 DOI: 10.1016/s0306-4522(03)00258-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate the role of neurotransmitter secretion in the development and stabilization of synapses, the innervation of the diaphragm and intercostal muscles was studied in munc18-1 null mutant mice, which lack regulated secretion. We found that this mutant is completely devoid of both spontaneous and evoked neuromuscular transmission throughout embryonic development. At embryonic day (E) 14, axonal targeting and main branching of the phrenic nerve were normal in this mutant, but tertiary branches were elongated and no terminal branches were observed at this stage, in contrast to control littermates. Acetylcholinesterase staining was observed in the endplate region of mutant muscle from E14 onwards, but not as dense and confined to spots as in controls. Acetylcholine receptor staining was also present in the endplate region of the mutant muscle. In this case, the staining density and the concentration in spots (clusters) were similar to controls, but the distribution of these clusters was less organized. Starting at E15, some receptor clusters co-localized with nerve terminal staining, suggesting synapses, but most clusters remained a-neural. Electron microscopical analysis confirmed the presence of synaptic structures in the mutant. Between E14 and birth, the characteristic staining pattern of nerve branches gradually disappeared in the mutant until, at E18, an elaborate meshwork of nerve fibers with no apparent organization remained. In the same period, most of the motor neuronal cell bodies in the spinal cord degenerated. In contrast, sensory ganglia in the dorsal root showed no obvious degeneration. These data suggest that regulated secretion is not essential for initial axon path finding, clustering of acetylcholine receptors, acetylcholinesterase or the formation of synapses. However, in the absence of regulated secretion, the maintenance of the motor neuronal system, organization of nerve terminal branches and stabilization of synapses is impaired and a-neural postsynaptic elements persist.
Collapse
Affiliation(s)
- J H Heeroma
- Department of Molecular Neuroscience, Rudolf Magnus Institute, University of Utrecht Medical Center, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
26
|
Loria PM, Duke A, Rand JB, Hobert O. Two neuronal, nuclear-localized RNA binding proteins involved in synaptic transmission. Curr Biol 2003; 13:1317-23. [PMID: 12906792 DOI: 10.1016/s0960-9822(03)00532-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While there is evidence that distinct protein isoforms resulting from alternative pre-mRNA splicing play critical roles in neuronal development and function, little is known about molecules regulating alternative splicing in the nervous system. Using Caenorhabditis elegans as a model for studying neuron/target communication, we report that unc-75 mutant animals display neuroanatomical and behavioral defects indicative of a role in modulating GABAergic and cholinergic neurotransmission but not neuronal development. We show that unc-75 encodes an RRM domain-containing RNA binding protein that is exclusively expressed in the nervous system and neurosecretory gland cells. UNC-75 protein, as well as a subset of related C. elegans RRM proteins, localizes to dynamic nuclear speckles; this localization pattern supports a role for the protein in pre-mRNA splicing. We found that human orthologs of UNC-75, whose splicing activity has recently been documented in vitro, are expressed nearly exclusively in brain and when expressed in C. elegans, rescue unc-75 mutant phenotypes and localize to subnuclear puncta. Furthermore, we report that the subnuclear-localized EXC-7 protein, the C. elegans ortholog of the neuron-restricted Drosophila ELAV splicing factor, acts in parallel to UNC-75 to also affect cholinergic synaptic transmission. In conclusion, we identified a new neuronal, putative pre-mRNA splicing factor, UNC-75, and show that UNC-75, as well as the C. elegans homolog of ELAV, is required for the fine tuning of synaptic transmission. These findings thus provide a novel molecular link between pre-mRNA splicing and presynaptic function.
Collapse
Affiliation(s)
- Paula M Loria
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
27
|
Abstract
We wish to understand how the trajectories of the twenty pharyngeal neurons of C. elegans are established. In this study we focused on the two bilateral M2 pharyngeal motorneurons, which each have their cell body located in the posterior bulb and send one axon through the isthmus and into the metacorpus. We used a GFP reporter to visualize these neurons in cell-autonomous and cell-non-autonomous axon guidance mutant backgrounds, as well as other mutant classes. Our main findings are: 1). Mutants with impaired growth cone functions, such as unc-6, unc-51, unc-73 and sax-3, often exhibit abnormal terminations and inappropriate trajectories at the distal ends of the M2 axons, i.e. within the metacorpus; and 2). Growth cone function mutants never exhibit abnormalities in the proximal part of the M2 neuron trajectories, i.e. between the cell body and the metacorpus. Our results suggest that the proximal and distal trajectories are established using distinct mechanisms, including a growth cone-independent process to establish the proximal trajectory. We isolated five novel mutants in a screen for worms exhibiting abnormal morphology of the M2 neurons. These mutants define a new gene class designated mnm (M neuron morphology abnormal).
Collapse
Affiliation(s)
- Catarina Mörck
- Lundberg Laboratory, Chalmers University, Medicinaregatan 9C, Box 462, S-405 30, Göteborg, Sweden
| | | | | |
Collapse
|
28
|
Allan DW, St Pierre SE, Miguel-Aliaga I, Thor S. Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell 2003; 113:73-86. [PMID: 12679036 DOI: 10.1016/s0092-8674(03)00204-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Individual neurons express only one or a few of the many identified neurotransmitters and neuropeptides, but the molecular mechanisms controlling their selection are poorly understood. In the Drosophila ventral nerve cord, the six Tv neurons express the neuropeptide gene FMRFamide. Each Tv neuron resides within a neuronal cell group specified by the LIM-homeodomain gene apterous. We find that the zinc-finger gene squeeze acts in Tv cells to promote their unique axon pathfinding to a peripheral target. There, the BMP ligand Glass bottom boat activates the Wishful thinking receptor, initiating a retrograde BMP signal in the Tv neuron. This signal acts together with apterous and squeeze to activate FMRFamide expression. Reconstituting this "code," by combined BMP activation and apterous/squeeze misexpression, triggers ectopic FMRFamide expression in peptidergic neurons. Thus, an intrinsic transcription factor code integrates with an extrinsic retrograde signal to select a specific neuropeptide identity within peptidergic cells.
Collapse
Affiliation(s)
- Douglas W Allan
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
29
|
Duch C, Mentel T. Stage-specific activity patterns affect motoneuron axonal retraction and outgrowth during the metamorphosis of Manduca sexta. Eur J Neurosci 2003; 17:945-62. [PMID: 12653971 DOI: 10.1046/j.1460-9568.2003.02523.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the metamorphosis of holometabolous insects, most larval muscles and sensory neurons are replaced by new adult elements, whereas most motoneurons persist and are remodelled to serve new adult functions. In Manduca sexta, the formation of the anlagen of the adult dorsal longitudinal flight muscle (DLM) is characterized by retraction of axonal terminals and dendrites of persisting larval motoneurons, partial target muscle degeneration and myoblast accumulation during late larval life. Most of these structural changes have been attributed to hormonal control, not only because ecdysteroids govern metamorphosis, but also because motoneurons express ecdysteroid receptors and experimental manipulations of ecdysteroid titres perturb normal development. To test whether activity-dependent mechanisms also came into play, chronic extracellular recordings were conducted in vivo from the five future DLM motoneurons throughout the last 3 days of larval life. Motoneuron activity is regulated developmentally. The types of motoneurons recruited, the number of motor spikes and the duration of bursts change in a stereotypical fashion during different stages, indicating an internal control of motor activity. A characteristic cessation in the activity of the five future DLM motoneurons coincides in time with the retraction of their dendrites and their terminal arborizations, whereas their activation during ecdysis coincides with the onset of new outgrowth. Inducing advanced activity by stimulating the motoneurons selectively with ecdysis-like patterns results in significant outgrowth of their terminal arborizations. Therefore, steroids might act in concert with activity-dependent mechanisms during the postembryonic modifications of neuromuscular systems.
Collapse
Affiliation(s)
- C Duch
- Institute of Biology, Neurobiology, Free University Berlin, Koenigin-Luise Str 28-30, 14195 Berlin, Germany.
| | | |
Collapse
|
30
|
Affiliation(s)
- Catharine H Rankin
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
31
|
Doi M, Iwasaki K. Regulation of retrograde signaling at neuromuscular junctions by the novel C2 domain protein AEX-1. Neuron 2002; 33:249-59. [PMID: 11804572 DOI: 10.1016/s0896-6273(01)00587-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Retrograde signaling from postsynaptic cells to presynaptic neurons is essential for regulation of synaptic development, maintenance, and plasticity. Here we report that the novel protein AEX-1 controls retrograde signaling at neuromuscular junctions in C. elegans. aex-1 mutants show neural defects including reduced presynaptic activity and abnormal localization of the synaptic vesicle fusion protein UNC-13. Muscle-specific AEX-1 expression rescues these defects but neuron-specific expression does not. AEX-1 has an UNC-13 homologous domain and appears to regulate exocytosis in muscles. This retrograde signaling requires prohormone-convertase function in muscles, suggesting that a peptide is the retrograde signal. This signal regulates synaptic vesicle release via the EGL-30 Gq(alpha) protein at presynaptic terminals.
Collapse
Affiliation(s)
- Motomichi Doi
- Laboratory of Molecular Neurobiology, Neuroscience Research Institute AIST, Tsukuba, 305-8566, Japan
| | | |
Collapse
|
32
|
White B, Osterwalder T, Keshishian H. Molecular genetic approaches to the targeted suppression of neuronal activity. Curr Biol 2001; 11:R1041-53. [PMID: 11747845 DOI: 10.1016/s0960-9822(01)00621-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding how the diverse cells of the nervous system generate sensations, memories and behaviors is a profound challenge. This is because the activity of most neurons cannot easily be monitored or individually manipulated in vivo. As a result, it has been difficult to determine how different neurons contribute to nervous system function, even in simple organisms like Drosophila. Recent advances promise to change this situation by supplying molecular genetic tools for modulating neuronal activity that can be deployed in a spatially and temporally restricted fashion. In some cases, targeted groups of neurons can be 'switched off' and back 'on' at will in living, behaving animals.
Collapse
Affiliation(s)
- B White
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
33
|
Abstract
Little is known about the development of presynaptic specializations. Recent studies that visualize tagged synaptic components in cultured cells and in vivo have identified molecular participants and reveal common features in cellular processes of presynaptic assembly.
Collapse
Affiliation(s)
- A M Schaefer
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8108, St Louis, MO 63110, USA.
| | | |
Collapse
|
34
|
Affiliation(s)
- Q Chang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|