1
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
2
|
Maekawa M, Saito S, Isobe D, Takemoto K, Miura Y, Dobashi Y, Yamasu K. The Oct4-related PouV gene, pou5f3, mediates isthmus development in zebrafish by directly and dynamically regulating pax2a. Cells Dev 2024; 179:203933. [PMID: 38908828 DOI: 10.1016/j.cdev.2024.203933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Using a transgenic zebrafish line harboring a heat-inducible dominant-interference pou5f3 gene (en-pou5f3), we reported that this PouV gene is involved in isthmus development at the midbrain-hindbrain boundary (MHB), which patterns the midbrain and cerebellum. Importantly, the functions of pou5f3 reportedly differ before and after the end of gastrulation. In the present study, we examined in detail the effects of en-pou5f3 induction on isthmus development during embryogenesis. When en-pou5f3 was induced around the end of gastrulation (bud stage), the isthmus was abrogated or deformed by the end of somitogenesis (24 hours post-fertilization). At this stage, the expression of MHB markers -- such as pax2a, fgf8a, wnt1, and gbx2 -- was absent in embryos lacking the isthmus structure, whereas it was present, although severely distorted, in embryos with a deformed isthmus. We further found that, after en-pou5f3 induction at late gastrulation, pax2a, fgf8a, and wnt1 were immediately and irreversibly downregulated, whereas the expression of en2a and gbx2 was reduced only weakly and slowly. Induction of en-pou5f3 at early somite stages also immediately downregulated MHB genes, particularly pax2a, but their expression was restored later. Overall, the data suggested that pou5f3 directly upregulates at least pax2a and possibly fgf8a and wnt1, which function in parallel in establishing the MHB, and that the role of pou5f3 dynamically changes around the end of gastrulation. We next examined the transcriptional regulation of pax2a using both in vitro and in vivo reporter analyses; the results showed that two upstream 1.0-kb regions with sequences conserved among vertebrates specifically drove transcription at the MHB. These reporter analyses confirmed that development of the isthmic organizer is regulated by PouV through direct regulation of pax2/pax2a in vertebrate embryos.
Collapse
Affiliation(s)
- Masato Maekawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Shinji Saito
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan; Institute for Vaccine Research and Development, Hokkaido University, N21, W11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Daiki Isobe
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Kazumasa Takemoto
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan; Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U3156, Storrs, CT 06269, USA
| | - Yuhei Miura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Yurie Dobashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.
| |
Collapse
|
3
|
Casey MJ, Chan PP, Li Q, Zu JF, Jette CA, Kohler M, Myers BR, Stewart RA. A simple and scalable zebrafish model of Sonic hedgehog medulloblastoma. Cell Rep 2024; 43:114559. [PMID: 39078737 PMCID: PMC11404834 DOI: 10.1016/j.celrep.2024.114559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ∼30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe a zebrafish model of SHH MB using CRISPR to create mutant ptch1, the primary genetic driver of human SHH MB. In these animals, tumors rapidly arise in the cerebellum and resemble human SHH MB by histology and comparative onco-genomics. Similar to human patients, MB tumors with loss of both ptch1 and tp53 have aggressive tumor histology and significantly worse survival outcomes. The simplicity and scalability of the ptch1-crispant MB model makes it highly amenable to CRISPR-based genome-editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the gene encoding Grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- High-Throughput Genomics and Cancer Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ju-Fen Zu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Yuikawa T, Sato T, Ikeda M, Tsuruoka M, Yasuda K, Sato Y, Nasu K, Yamasu K. Elongation of the developing spinal cord is driven by Oct4-type transcription factor-mediated regulation of retinoic acid signaling in zebrafish embryos. Dev Dyn 2024; 253:404-422. [PMID: 37850839 DOI: 10.1002/dvdy.666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Elongation of the spinal cord is dependent on neural development from neuromesodermal progenitors in the tail bud. We previously showed the involvement of the Oct4-type gene, pou5f3, in this process in zebrafish mainly by dominant-interference gene induction, but, to compensate for the limitation of this transgene approach, mutant analysis was indispensable. pou5f3 involvement in the signaling pathways was another unsolved question. RESULTS We examined the phenotypes of pou5f3 mutants and the effects of Pou5f3 activation by the tamoxifen-ERT2 system in the posterior neural tube, together confirming the involvement of pou5f3. The reporter assays using P19 cells implicated tail bud-related transcription factors in pou5f3 expression. Regulation of tail bud development by retinoic acid (RA) signaling was confirmed by treatment of embryos with RA and the synthesis inhibitor, and in vitro reporter assays further showed that RA signaling regulated pou5f3 expression. Importantly, the expression of the RA degradation enzyme gene, cyp26a1, was down-regulated in embryos with disrupted pou5f3 activity. CONCLUSIONS The involvement of pou5f3 in spinal cord extension was supported by using mutants and the gain-of-function approach. Our findings further suggest that pou5f3 regulates the RA level, contributing to neurogenesis in the posterior neural tube.
Collapse
Affiliation(s)
- Tatsuya Yuikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama, Japan
| | - Takehisa Sato
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama, Japan
| | - Masaaki Ikeda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama, Japan
| | - Momo Tsuruoka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama, Japan
| | - Kaede Yasuda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama, Japan
| | - Yuto Sato
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama, Japan
| | - Kouhei Nasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama, Japan
| |
Collapse
|
5
|
Pose-Méndez S, Schramm P, Valishetti K, Köster RW. Development, circuitry, and function of the zebrafish cerebellum. Cell Mol Life Sci 2023; 80:227. [PMID: 37490159 PMCID: PMC10368569 DOI: 10.1007/s00018-023-04879-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
The cerebellum represents a brain compartment that first appeared in gnathostomes (jawed vertebrates). Besides the addition of cell numbers, its development, cytoarchitecture, circuitry, physiology, and function have been highly conserved throughout avian and mammalian species. While cerebellar research in avian and mammals is extensive, systematic investigations on this brain compartment in zebrafish as a teleostian model organism started only about two decades ago, but has provided considerable insight into cerebellar development, physiology, and function since then. Zebrafish are genetically tractable with nearly transparent small-sized embryos, in which cerebellar development occurs within a few days. Therefore, genetic investigations accompanied with non-invasive high-resolution in vivo time-lapse imaging represents a powerful combination for interrogating the behavior and function of cerebellar cells in their complex native environment.
Collapse
Affiliation(s)
- Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| | - Paul Schramm
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
6
|
Sukparangsi W, Morganti E, Lowndes M, Mayeur H, Weisser M, Hammachi F, Peradziryi H, Roske F, Hölzenspies J, Livigni A, Godard BG, Sugahara F, Kuratani S, Montoya G, Frankenberg SR, Mazan S, Brickman JM. Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency. Nat Commun 2022; 13:5537. [PMID: 36130934 PMCID: PMC9492771 DOI: 10.1038/s41467-022-32481-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/30/2022] [Indexed: 12/31/2022] Open
Abstract
The support of pluripotent cells over time is an essential feature of development. In eutherian embryos, pluripotency is maintained from naïve states in peri-implantation to primed pluripotency at gastrulation. To understand how these states emerged, we reconstruct the evolutionary trajectory of the Pou5 gene family, which contains the central pluripotency factor OCT4. By coupling evolutionary sequence analysis with functional studies in mouse embryonic stem cells, we find that the ability of POU5 proteins to support pluripotency originated in the gnathostome lineage, prior to the generation of two paralogues, Pou5f1 and Pou5f3 via gene duplication. In osteichthyans, retaining both genes, the paralogues differ in their support of naïve and primed pluripotency. The specialization of these duplicates enables the diversification of function in self-renewal and differentiation. By integrating sequence evolution, cell phenotypes, developmental contexts and structural modelling, we pinpoint OCT4 regions sufficient for naïve pluripotency and describe their adaptation over evolutionary time.
Collapse
Affiliation(s)
- Woranop Sukparangsi
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark.,Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Elena Morganti
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Molly Lowndes
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Hélène Mayeur
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, F-66650, Banyuls sur Mer, France
| | - Melanie Weisser
- Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Fella Hammachi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Hanna Peradziryi
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Fabian Roske
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Jurriaan Hölzenspies
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Alessandra Livigni
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Benoit Gilbert Godard
- CNRS, Sorbonne Université, UPMC Univ Paris 06, FR2424, Development and Evolution of Vertebrates Group, Station Biologique, F-29688, Roscoff, France.,CNRS, Sorbonne Université, Laboratoire de Biologie du Développement de Villefranche, UMR7009, F-06234, Villefranche sur Mer, France
| | - Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | | | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, F-66650, Banyuls sur Mer, France.
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark.
| |
Collapse
|
7
|
Sato K, Sakai M, Ishii A, Maehata K, Takada Y, Yasuda K, Kotani T. Identification of embryonic RNA granules that act as sites of mRNA translation after changing their physical properties. iScience 2022; 25:104344. [PMID: 35620421 PMCID: PMC9127168 DOI: 10.1016/j.isci.2022.104344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
Fertilized eggs begin to translate mRNAs at appropriate times and placements to control development, but how the translation is regulated remains unclear. Here, we found that pou5f3 mRNA encoding a transcriptional factor essential for development formed granules in a dormant state in zebrafish oocytes. Although the number of pou5f3 granules remained constant, Pou5f3 protein accumulated after fertilization. Intriguingly, signals of newly synthesized peptides and a ribosomal protein became colocalized with pou5f3 granules after fertilization and, moreover, nascent Pou5f3 was shown to be synthesized in the granules. This functional change was accompanied by changes in the state and internal structure of granules. Dissolution of the granules reduced the rate of protein synthesis. Similarly, nanog and sox19b mRNAs in zebrafish and Pou5f1/Oct4 mRNA in mouse assembled into granules. Our results reveal that subcellular compartments, termed embryonic RNA granules, function as activation sites of translation after changing physical properties for directing vertebrate development.
Collapse
Affiliation(s)
- Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Moeko Sakai
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Anna Ishii
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kaori Maehata
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kyota Yasuda
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
8
|
Abstract
POUV is a relatively newly emerged class of POU transcription factors present in jawed vertebrates (Gnathostomata). The function of POUV-class proteins is inextricably linked to zygotic genome activation (ZGA). A large body of evidence now extends the role of these proteins to subsequent developmental stages. While some functions resemble those of other POU-class proteins and are related to neuroectoderm development, others have emerged de novo. The most notable of the latter functions is pluripotency control by Oct4 in mammals. In this review, we focus on these de novo functions in the best-studied species harbouring POUV proteins-zebrafish, Xenopus (anamniotes) and mammals (amniotes). Despite the broad diversity of their biological functions in vertebrates, POUV proteins exert a common feature related to their role in safeguarding the undifferentiated state of cells. Here we summarize numerous pieces of evidence for these specific functions of the POUV-class proteins and recap available loss-of-function data.
Collapse
Affiliation(s)
- Evgeny I. Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexey N. Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
9
|
Begum S, Gnanasree SM, Anusha N, Senthilkumaran B. Germ cell markers in fishes - A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Hidalgo-Sánchez M, Andreu-Cervera A, Villa-Carballar S, Echevarria D. An Update on the Molecular Mechanism of the Vertebrate Isthmic Organizer Development in the Context of the Neuromeric Model. Front Neuroanat 2022; 16:826976. [PMID: 35401126 PMCID: PMC8987131 DOI: 10.3389/fnana.2022.826976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
A crucial event during the development of the central nervous system (CNS) is the early subdivision of the neural tube along its anterior-to-posterior axis to form neuromeres, morphogenetic units separated by transversal constrictions and programed for particular genetic cascades. The narrower portions observed in the developing neural tube are responsible for relevant cellular and molecular processes, such as clonal restrictions, expression of specific regulatory genes, and differential fate specification, as well as inductive activities. In this developmental context, the gradual formation of the midbrain-hindbrain (MH) constriction has been an excellent model to study the specification of two major subdivisions of the CNS containing the mesencephalic and isthmo-cerebellar primordia. This MH boundary is coincident with the common Otx2-(midbrain)/Gbx2-(hindbrain) expressing border. The early interactions between these two pre-specified areas confer positional identities and induce the generation of specific diffusible morphogenes at this interface, in particular FGF8 and WNT1. These signaling pathways are responsible for the gradual histogenetic specifications and cellular identity acquisitions with in the MH domain. This review is focused on the cellular and molecular mechanisms involved in the specification of the midbrain/hindbrain territory and the formation of the isthmic organizer. Emphasis will be placed on the chick/quail chimeric experiments leading to the acquisition of the first fate mapping and experimental data to, in this way, better understand pioneering morphological studies and innovative gain/loss-of-function analysis.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Sergio Villa-Carballar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Diego Echevarria
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| |
Collapse
|
11
|
Pluripotency factors determine gene expression repertoire at zygotic genome activation. Nat Commun 2022; 13:788. [PMID: 35145080 PMCID: PMC8831532 DOI: 10.1038/s41467-022-28434-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Awakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyze chromatin accessibility and time-resolved transcription in single and double mutant zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that two factors modify chromatin in a largely independent manner. We distinguish four types of direct enhancers by differential requirements for Pou5f3 or Sox19b. We demonstrate that changes in chromatin accessibility of enhancers underlie the changes in zygotic expression repertoire in the double mutants. Pou5f3 or Sox19b promote chromatin accessibility of enhancers linked to the genes involved in gastrulation and ventral fate specification. The genes regulating mesendodermal and dorsal fates are primed for activation independently of Pou5f3 and Sox19b. Strikingly, simultaneous loss of Pou5f3 and Sox19b leads to premature expression of genes, involved in regulation of organogenesis and differentiation. Zygotic genome activation in zebrafish relies on pluripotency transcription factors Pou5f3 and Sox19b. Here the authors investigate how these factors interact in vivo by analyzing the changes in chromatin state and time-resolved transcription in Pou5f3 and Sox19b single and double mutant embryos.
Collapse
|
12
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Yuikawa T, Ikeda M, Tsuda S, Saito S, Yamasu K. Involvement of Oct4-type transcription factor Pou5f3 in posterior spinal cord formation in zebrafish embryos. Dev Growth Differ 2021; 63:306-322. [PMID: 34331767 DOI: 10.1111/dgd.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
In vertebrate embryogenesis, elongation of the posterior body is driven by de novo production of the axial and paraxial mesoderm as well as the neural tube at the posterior end. This process is presumed to depend on the stem cell-like population in the tail bud region, but the details of the gene regulatory network involved are unknown. Previous studies suggested the involvement of pou5f3, an Oct4-type POU gene in zebrafish, in axial elongation. In the present study, we first found that pou5f3 is expressed mainly in the dorsal region of the tail bud immediately after gastrulation, and that this expression is restricted to the posterior-most region of the elongating neural tube during somitogenesis. This pou5f3 expression was complementary to the broad expression of sox3 in the neural tube, and formed a sharp boundary with specific expression of tbxta (orthologue of mammalian T/Brachyury) in the tail bud, implicating pou5f3 in the specification of tail bud-derived cells toward neural differentiation in the spinal cord. When pou5f3 was functionally impaired after gastrulation by induction of a dominant-interfering pou5f3 mutant gene (en-pou5f3), trunk and tail elongation were markedly disturbed at distinct positions along the axis depending on the stage. This finding showed involvement of pou5f3 in de novo generation of the body from the tail bud. Conditional functional abrogation also showed that pou5f3 downregulates mesoderm-forming genes but promotes neural development by activating neurogenesis genes around the tail bud. These results suggest that pou5f3 is involved in formation of the posterior spinal cord.
Collapse
Affiliation(s)
- Tatsuya Yuikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Masaaki Ikeda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Sachiko Tsuda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Shinji Saito
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| |
Collapse
|
14
|
Inomata C, Yuikawa T, Nakayama-Sadakiyo Y, Kobayashi K, Ikeda M, Chiba M, Konishi C, Ishioka A, Tsuda S, Yamasu K. Involvement of an Oct4-related PouV gene, pou5f3/pou2, in neurogenesis in the early neural plate of zebrafish embryos. Dev Biol 2020; 457:30-42. [DOI: 10.1016/j.ydbio.2019.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/03/2023]
|
15
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
16
|
Yanagi K, Sone R, Ohga R, Kawahara A. Involvement of the centrosomal protein 55 (cep55) gene in zebrafish head formation. Genes Cells 2019; 24:642-649. [PMID: 31365163 DOI: 10.1111/gtc.12715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Mammalian CEP55 (centrosomal protein 55 kDa) is a coiled-coil protein localized to the centrosome in interphase cells and is required for cytokinesis. A homozygous non-sense mutation in human CEP55 has been recently identified in perinatal lethal MARCH (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly) syndrome. We have isolated zebrafish cep55 mutants defective in head morphology. The zebrafish cep55 gene was expressed in the head including the retina and the pectoral fin at 1 day post-fertilization (dpf), and extensive cell death was widely observed in the head and tail of the cep55 mutant. In the cep55 mutant, the anterior-posterior distance of the ventral pharyngeal arches was short, and retinal lamination was disorganized. Neural cells, such as islet1-positive cells and pax2-positive cells, and fli1b-positive vascular cells were reduced in the head of the cep55 mutant. Thus, we propose that the zebrafish cep55 mutant is a model organism for human MARCH syndrome.
Collapse
Affiliation(s)
- Kanoko Yanagi
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
| | - Ryota Sone
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
| | - Rie Ohga
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
| |
Collapse
|
17
|
Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes. Results Probl Cell Differ 2019; 63:297-324. [PMID: 28779323 DOI: 10.1007/978-3-319-60855-6_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From the beginning of oogenesis, oocytes accumulate tens of thousands of mRNAs for promoting oocyte growth and development. A large number of these mRNAs are translationally repressed and localized within the oocyte cytoplasm. Translational activation of these dormant mRNAs at specific sites and timings plays central roles in driving progression of the meiotic cell cycle, axis formation, mitotic cleavages, transcriptional initiation, and morphogenesis. Regulation of the localization and temporal translation of these mRNAs has been shown to rely on cis-acting elements in the mRNAs and trans-acting factors recognizing and binding to the elements. Recently, using model vertebrate zebrafish, localization itself and formation of physiological structures such as RNA granules have been shown to coordinate the accurate timings of translational activation of dormant mRNAs. This subcellular regulation of mRNAs is also utilized in other animals including mouse. In this chapter, we review fundamental roles of temporal regulation of mRNA translation in oogenesis and early development and then focus on the mechanisms of mRNA regulation in the oocyte cytoplasm by which the activation of dormant mRNAs at specific timings is achieved.
Collapse
|
18
|
Kobayashi K, Khan A, Ikeda M, Nakamoto A, Maekawa M, Yamasu K. In vitro analysis of the transcriptional regulatory mechanism of zebrafish pou5f3. Exp Cell Res 2018; 364:28-41. [PMID: 29366809 DOI: 10.1016/j.yexcr.2018.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022]
Abstract
Zebrafish pou5f3 (previously named pou2), a close homologue of mouse Oct4, encodes a PouV-family transcription factor. pou5f3 has been implicated in diverse aspects of developmental regulation during embryogenesis. In the present study, we addressed the molecular function of Pou5f3 as a transcriptional regulator and the mechanism by which pou5f3 expression is transcriptionally regulated. We examined the influence of effector genes on the expression of the luciferase gene under the control of the upstream 2.1-kb regulatory DNA of pou5f3 (Luc-2.2) in HEK293T and P19 cells. We first confirmed that Pou5f3 functions as a transcriptional activator both in cultured cells and embryos, which confirmed autoregulation of pou5f3 in embryos. It was further shown that Luc-2.2 was activated synergistically by pou5f3 and sox3, which is similar to the co-operative activity of Oct4 and Sox2 in mice, although synergy between pou5f3 and sox2 was less obvious in this zebrafish system. The effects of pou5f3 deletion constructs on the regulation of Luc-2.2 expression revealed different roles for the three subregions of the N-terminal region in Pou5f3 in terms of its regulatory functions and co-operativity with Sox3. Electrophoretic mobility shift assays confirmed that Pou5f3 and Sox3 proteins specifically bind to adjacent sites in the 2.1-kb DNA and that there is an interaction between the two proteins. The synergy with sox3 was unique to pou5f3-the other POU factor genes examined did not show such synergy in Luc-2.2 regulation. Finally, functional interaction was observed between pou5f3 and sox3 in embryos in terms of the regulation of dorsoventral patterning and convergent extension movement. These findings together demonstrate co-operative functions of pou5f3 and sox3, which are frequently coexpressed in early embryos, in the regulation of early development.
Collapse
Affiliation(s)
- Kana Kobayashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Alam Khan
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Masaaki Ikeda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Andrew Nakamoto
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Masato Maekawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan; Saitama University Brain Science Institute, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.
| |
Collapse
|
19
|
Molecular cloning and expression of Octamer-binding transcription factor (Oct4) in the large yellow croaker, Larimichthys crocea. Gene Expr Patterns 2018; 27:16-30. [DOI: 10.1016/j.gep.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 12/29/2022]
|
20
|
Lansdon LA, Darbro BW, Petrin AL, Hulstrand AM, Standley JM, Brouillette RB, Long A, Mansilla MA, Cornell RA, Murray JC, Houston DW, Manak JR. Identification of Isthmin 1 as a Novel Clefting and Craniofacial Patterning Gene in Humans. Genetics 2018; 208:283-296. [PMID: 29162626 PMCID: PMC5753863 DOI: 10.1534/genetics.117.300535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Orofacial clefts are one of the most common birth defects, affecting 1-2 per 1000 births, and have a complex etiology. High-resolution array-based comparative genomic hybridization has increased the ability to detect copy number variants (CNVs) that can be causative for complex diseases such as cleft lip and/or palate. Utilizing this technique on 97 nonsyndromic cleft lip and palate cases and 43 cases with cleft palate only, we identified a heterozygous deletion of Isthmin 1 in one affected case, as well as a deletion in a second case that removes putative 3' regulatory information. Isthmin 1 is a strong candidate for clefting, as it is expressed in orofacial structures derived from the first branchial arch and is also in the same "synexpression group" as fibroblast growth factor 8 and sprouty RTK signaling antagonist 1a and 2, all of which have been associated with clefting. CNVs affecting Isthmin 1 are exceedingly rare in control populations, and Isthmin 1 scores as a likely haploinsufficiency locus. Confirming its role in craniofacial development, knockdown or clustered randomly interspaced short palindromic repeats/Cas9-generated mutation of isthmin 1 in Xenopus laevis resulted in mild to severe craniofacial dysmorphologies, with several individuals presenting with median clefts. Moreover, knockdown of isthmin 1 produced decreased expression of LIM homeobox 8, itself a gene associated with clefting, in regions of the face that pattern the maxilla. Our study demonstrates a successful pipeline from CNV identification of a candidate gene to functional validation in a vertebrate model system, and reveals Isthmin 1 as both a new human clefting locus as well as a key craniofacial patterning gene.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pediatrics
- Department of Biology
- Interdisciplinary Graduate Program in Genetics
| | - Benjamin W Darbro
- Department of Pediatrics
- Interdisciplinary Graduate Program in Genetics
| | - Aline L Petrin
- Department of Pediatrics
- College of Dentistry, University of Iowa, Iowa 52242 and
| | | | | | | | | | | | - Robert A Cornell
- Interdisciplinary Graduate Program in Genetics
- Department of Anatomy and Cell Biology, and
| | - Jeffrey C Murray
- Department of Pediatrics
- Department of Biology
- Department of Anatomy and Cell Biology, and
- Interdisciplinary Graduate Program in Genetics
- College of Dentistry, University of Iowa, Iowa 52242 and
| | | | - J Robert Manak
- Department of Pediatrics,
- Department of Biology
- Interdisciplinary Graduate Program in Genetics
| |
Collapse
|
21
|
Dong X, Li J, He L, Gu C, Jia W, Yue Y, Li J, Zhang Q, Chu L, Zhao Q. Zebrafish Znfl1 proteins control the expression of hoxb1b gene in the posterior neuroectoderm by acting upstream of pou5f3 and sall4 genes. J Biol Chem 2017. [PMID: 28623229 DOI: 10.1074/jbc.m117.777094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transcription factors play crucial roles in patterning posterior neuroectoderm. Previously, zinc finger transcription factor znfl1 was reported to be expressed in the posterior neuroectoderm of zebrafish embryos. However, its roles remain unknown. Here, we report that there are 13 copies of znfl1 in the zebrafish genome, and all the paralogues share highly identical protein sequences and cDNA sequences. When znfl1s are knocked down using a morpholino to inhibit their translation or dCas9-Eve to inhibit their transcription, the zebrafish gastrula displays reduced expression of hoxb1b, the marker gene for the posterior neuroectoderm. Further analyses reveal that diminishing znfl1s produces the decreased expressions of pou5f3, whereas overexpression of pou5f3 effectively rescues the reduced expression of hoxb1b in the posterior neuroectoderm. Additionally, knocking down znfl1s causes the reduced expression of sall4, a direct regulator of pou5f3, in the posterior neuroectoderm, and overexpression of sall4 rescues the expression of pou5f3 in the knockdown embryos. In contrast, knocking down either pou5f3 or sall4 does not affect the expressions of znfl1s Taken together, our results demonstrate that zebrafish znfl1s control the expression of hoxb1b in the posterior neuroectoderm by acting upstream of pou5f3 and sall4.
Collapse
Affiliation(s)
- Xiaohua Dong
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Institute of Genome Editing, Nanjing YSY Biotech Company, Limited, Nanjing 211812, China
| | - Jingyun Li
- Maternal and Child Health Medical Institute, Department of Plastic and Cosmetic Surgery, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Luqingqing He
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Chun Gu
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Wenshuang Jia
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Yunyun Yue
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jun Li
- Maternal and Child Health Medical Institute, Department of Plastic and Cosmetic Surgery, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Qinxin Zhang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Lele Chu
- Institute of Genome Editing, Nanjing YSY Biotech Company, Limited, Nanjing 211812, China
| | - Qingshun Zhao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| |
Collapse
|
22
|
γ2 and γ1AP-1 complexes: Different essential functions and regulatory mechanisms in clathrin-dependent protein sorting. Eur J Cell Biol 2017; 96:356-368. [PMID: 28372831 DOI: 10.1016/j.ejcb.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
γ2 adaptin is homologous to γ1, but is only expressed in vertebrates while γ1 is found in all eukaryotes. We know little about γ2 functions and their relation to γ1. γ1 is an adaptin of the heterotetrameric AP-1 complexes, which sort proteins in and do form clathrin-coated transport vesicles and they also regulate maturation of early endosomes. γ1 knockout mice develop only to blastocysts and thus γ2 does not compensate γ1-deficiency in development. γ2 has not been classified as a clathrin-coated vesicle adaptor protein in proteome analyses and functions for monomeric γ2 in endosomal protein sorting have been proposed, but adaptin interaction studies suggested formation of heterotetrameric AP-1/γ2 complexes. We detected γ2 at the trans-Golgi network, on peripheral vesicles and identified γ2 clathrin-coated vesicles in mice. Ubiquitous σ1A and tissue-specific σ1B adaptins bind γ2 and γ1. σ1B knockout in mice does not effect γ1/σ1A AP-1 levels, but γ2/σ1A AP-1 levels are increased in brain and adipocytes. Also γ2 is essential in development. In zebrafish AP-1/γ2 and AP-1/γ1 fulfill different, essential functions in brain and the vascular system.
Collapse
|
23
|
Gao J, Wang X, Zhang Q. Evolutionary Conservation of pou5f3 Genomic Organization and Its Dynamic Distribution during Embryogenesis and in Adult Gonads in Japanese Flounder Paralichthys olivaceus. Int J Mol Sci 2017; 18:ijms18010231. [PMID: 28124980 PMCID: PMC5297860 DOI: 10.3390/ijms18010231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (Oct4) is a member of POU (Pit-Oct-Unc) transcription factor family Class V that plays a crucial role in maintaining the pluripotency and self-renewal of stem cells. Though it has been deeply investigated in mammals, its lower vertebrate homologue, especially in the marine fish, is poorly studied. In this study, we isolated the full-length sequence of Paralichthys olivaceus pou5f3 (Popou5f3), and we found that it is homologous to mammalian Oct4. We identified two transcript variants with different lengths of 3′-untranslated regions (UTRs) generated by alternative polyadenylation (APA). Quantitative real-time RT-PCR (qRT-PCR), in situ hybridization (ISH) and immunohistochemistry (IHC) were implemented to characterize the spatial and temporal expression pattern of Popou5f3 during early development and in adult tissues. Our results show that Popou5f3 is maternally inherited, abundantly expressed at the blastula and early gastrula stages, then greatly diminishes at the end of gastrulation. It is hardly detectable from the heart-beating stage onward. We found that Popou5f3 expression is restricted to the adult gonads, and continuously expresses during oogenesis while its dynamics are downregulated during spermatogenesis. Additionally, numerous cis-regulatory elements (CRE) on both sides of the flanking regions show potential roles in regulating the expression of Popou5f3. Taken together, these findings could further our understanding of the functions and evolution of pou5f3 in lower vertebrates, and also provides fundamental information for stem cell tracing and genetic manipulation in Paralichthys olivaceus.
Collapse
Affiliation(s)
- Jinning Gao
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xubo Wang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| | - Quanqi Zhang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
24
|
Radhakrishnan B, Alwin Prem Anand A. Role of miRNA-9 in Brain Development. J Exp Neurosci 2016; 10:101-120. [PMID: 27721656 PMCID: PMC5053108 DOI: 10.4137/jen.s32843] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9) is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon), midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2, and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2, and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain–hindbrain boundary (MHB). It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain–hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern.
Collapse
Affiliation(s)
| | - A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Perez-Camps M, Tian J, Chng SC, Sem KP, Sudhaharan T, Teh C, Wachsmuth M, Korzh V, Ahmed S, Reversade B. Quantitative imaging reveals real-time Pou5f3-Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish. eLife 2016; 5. [PMID: 27684073 PMCID: PMC5042653 DOI: 10.7554/elife.11475] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/04/2016] [Indexed: 12/11/2022] Open
Abstract
Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI:http://dx.doi.org/10.7554/eLife.11475.001 As an animal embryo develops, cells divide and establish three distinct layers called the ectoderm, mesoderm and endoderm. Proteins called transcription factors control this process by regulating the activity of particular genes. Two or more transcription factors may interact to modulate each other’s activity. Zebrafish embryos provide an ideal model system for monitoring how these embryonic layers form and the interactions between transcription factors in real-time because they are transparent and develop outside their parents. Pou5f3 and Nanog are two key transcription factors involved in this process in zebrafish. However, it is not clear how Pou5f3 and Nanog instruct cells to become ectoderm, mesoderm or endoderm. Perez Camps et al. used imaging techniques to study Pou5f3 and Nanog. The experiments show that Pou5f3 and Nanog bind together to form complexes that instruct cells to form the temporary layer that later gives rise to both the mesoderm and endoderm. The cells in which there are less Pou5f3 and Nanog complexes form the ectoderm layer. To develop the body shape of adult zebrafish, the embryos need to give individual cells information about their location in the body. For example, a signal protein called bone morphogenetic protein (BMP) accumulates on the side of the embryo that will become the underside of the fish. Perez Camps et al. show that once the endoderm, mesoderm and ectoderm have formed, Pou5f3–Nanog complexes regulate BMP signalling to specify the underside of the fish. Meanwhile, in the endoderm on the opposite side, another transcription factor called Sox32 binds to individual Pou5f3 and Nanog proteins. This prevents Pou5f3 and Nanog from forming complexes and determines which side of the embryo will make the topside of the fish. A future challenge is to explore other transcription factors that may prevent Pou5f1 and Nanog from binding in the mesoderm and ectoderm of the topside of the fish. DOI:http://dx.doi.org/10.7554/eLife.11475.002
Collapse
Affiliation(s)
| | - Jing Tian
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Serene C Chng
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Kai Pin Sem
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | | | - Cathleen Teh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Malte Wachsmuth
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sohail Ahmed
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| |
Collapse
|
26
|
Evolution and functions of Oct4 homologs in non-mammalian vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:770-9. [PMID: 27058398 DOI: 10.1016/j.bbagrm.2016.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
Abstract
PouV class transcription factor Oct4/Pou5f1 is a central regulator of indefinite pluripotency in mammalian embryonic stem cells (ESCs) but also participates in cell lineage specification in mouse embryos and in differentiating cell cultures. The molecular basis for this versatility, which is shared between Oct4 and its non-mammalian homologs Pou5f1 and Pou5f3, is not yet completely understood. Here, I review the current understanding of the evolution of PouV class transcription factors and discuss equivalent and diverse roles of Oct4 homologs in pluripotency, differentiation, and cell behavior in different vertebrate embryos. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
27
|
Onichtchouk D, Driever W. Zygotic Genome Activators, Developmental Timing, and Pluripotency. Curr Top Dev Biol 2016; 116:273-97. [PMID: 26970624 DOI: 10.1016/bs.ctdb.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The transcription factors Pou5f1, Sox2, and Nanog are central regulators of pluripotency in mammalian ES and iPS cells. In vertebrate embryos, Pou5f1/3, SoxB1, and Nanog control zygotic genome activation and participate in lineage decisions. We review the current knowledge of the roles of these genes in developing vertebrate embryos from fish to mammals and suggest a model for pluripotency gene regulatory network functions in early development.
Collapse
Affiliation(s)
- Daria Onichtchouk
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, and Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University, Freiburg, Germany.
| | - Wolfgang Driever
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, and Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
28
|
Rastegar S, Strähle U. The Zebrafish as Model for Deciphering the Regulatory Architecture of Vertebrate Genomes. GENETICS, GENOMICS AND FISH PHENOMICS 2016; 95:195-216. [DOI: 10.1016/bs.adgen.2016.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Curto GG, Gard C, Ribes V. Structures and properties of PAX linked regulatory networks architecting and pacing the emergence of neuronal diversity. Semin Cell Dev Biol 2015; 44:75-86. [DOI: 10.1016/j.semcdb.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022]
|
30
|
Kotkamp K, Kur E, Wendik B, Polok BK, Ben-Dor S, Onichtchouk D, Driever W. Pou5f1/Oct4 promotes cell survival via direct activation of mych expression during zebrafish gastrulation. PLoS One 2014; 9:e92356. [PMID: 24643012 PMCID: PMC3958507 DOI: 10.1371/journal.pone.0092356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 01/29/2023] Open
Abstract
Myc proteins control cell proliferation, cell cycle progression, and apoptosis, and play important roles in cancer as well in establishment of pluripotency. Here we investigated the control of myc gene expression by the Pou5f1/Oct4 pluripotency factor in the early zebrafish embryo. We analyzed the expression of all known zebrafish Myc family members, myca, mycb, mych, mycl1a, mycl1b, and mycn, by whole mount in situ hybridization during blastula and gastrula stages in wildtype and maternal plus zygotic pou5f1 mutant (MZspg) embryos, as well as by quantitative PCR and in time series microarray data. We found that the broad blastula and gastrula stage mych expression, as well as late gastrula stage mycl1b expression, both depend on Pou5f1 activity. We analyzed ChIP-Seq data and found that both Pou5f1 and Sox2 bind to mych and mycl1b control regions. The regulation of mych by Pou5f1 appears to be direct transcriptional activation, as overexpression of a Pou5f1 activator fusion protein in MZspg embryos induced strong mych expression even when translation of zygotically expressed mRNAs was suppressed. We further showed that MZspg embryos develop enhanced apoptosis already during early gastrula stages, when apoptosis was not be detected in wildtype embryos. However, Mych knockdown alone did not induce early apoptosis, suggesting potentially redundant action of several early expressed myc genes, or combination of several pathways affected in MZspg. Experimental mych overexpression in MZspg embryos did significantly, but not completely suppress the apoptosis phenotype. Similarly, p53 knockdown only partially suppressed apoptosis in MZspg gastrula embryos. However, combined knockdown of p53 and overexpression of Mych completely rescued the MZspg apoptosis phenotype. These results reveal that Mych has anti-apoptotic activity in the early zebrafish embryo, and that p53-dependent and Myc pathways are likely to act in parallel to control apoptosis at these stages.
Collapse
Affiliation(s)
- Kay Kotkamp
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Esther Kur
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Björn Wendik
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Bożena K. Polok
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Shifra Ben-Dor
- Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
- * E-mail:
| |
Collapse
|
31
|
Mohapatra C, Patra SK, Panda RP, Mohanta R, Saha A, Saha JN, Das Mahapatra K, Jayasankar P, Barman HK. Gene structure and identification of minimal promoter of Pou2 expressed in spermatogonial cells of rohu carp, Labeo rohita. Mol Biol Rep 2014; 41:4123-32. [PMID: 24566687 DOI: 10.1007/s11033-014-3283-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/13/2014] [Indexed: 12/16/2022]
Abstract
Mammalian Pou5f1 is a known transcriptional regulator involving maintenance of embryonic and spermatogonial stem cells. Little is known about teleost Pou2, an ortholog of mammalian Pou5f1. Evidences of discrepancy in expression pattern between fish species were documented. To better understand, we have cloned and characterized Pou2 gene of farmed rohu carp, Labeo rohita. It contained five exons with an open reading frame of 1419 bp long, translatable to 472 aa. A bipartite DNA binding domain termed POU domain, comprising of POU-specific and POU-homeo sub-domains, was identified. Rohu Pou2 is highly conserved with zebrafish counterpart, as evidenced by 92% overall sequence identity of deduced protein. The POU domain remained highly conserved (showing more than 90% identities) within fish species. Even though there is a divergence between Pou2 and Pou5f1, the common POU-specific domain remained conserved throughout eukaryotes indicating their possible involvements in common trans-activation pathway(s) between mammals and non-mammals. In support, we have provided evidence that Pou2 is indeed abundantly expressed in proliferating rohu spermatogonial cells and hence participates in stem cell maintenance. Its mRNA accumulation in the ovary supported about its maternal transmission with possible regulatory roles during embryogenesis. The 5'-flanking region (~2.7 kb) of rohu Pou2 was sequenced and computational analysis detected several putative regulatory elements. These elements have been conserved among fish species analysed. Luciferase assay identified a mammalian-type 'TATA-less promoter' capable of driving Pou2 gene transcription. These findings will help for future studies in elucidating participatory role of fish Pou2 in male germ cell development.
Collapse
Affiliation(s)
- Chinmayee Mohapatra
- Fish Genetics and Biotechnology Division, Central Institute of Freshwater Aquaculture, Indian Council of Agricultural Research, Kausalyaganga, Bhubaneswar, 751002, Odisha, India
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
A Pou5f1/Oct4 dependent Klf2a, Klf2b, and Klf17 regulatory sub-network contributes to EVL and ectoderm development during zebrafish embryogenesis. Dev Biol 2014; 385:433-47. [DOI: 10.1016/j.ydbio.2013.10.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/08/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
|
33
|
Lippok B, Song S, Driever W. Pou5f1 protein expression and posttranslational modification during early zebrafish development. Dev Dyn 2013; 243:468-77. [DOI: 10.1002/dvdy.24079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/23/2013] [Accepted: 10/03/2013] [Indexed: 11/10/2022] Open
Affiliation(s)
- Bernadette Lippok
- Developmental Biology, Institute Biology I, Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburg Germany
| | - Sungmin Song
- Developmental Biology, Institute Biology I, Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburg Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburg Germany
- BIOSS ‐ Center for Biological Signalling StudiesFreiburg Germany
| |
Collapse
|
34
|
Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A, Price E, Liu M, Barton ER, Kahn CR, Wagers AJ, Zon LI. A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 2013; 155:909-921. [PMID: 24209627 PMCID: PMC3902670 DOI: 10.1016/j.cell.2013.10.023] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/29/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023]
Abstract
Ex vivo expansion of satellite cells and directed differentiation of pluripotent cells to mature skeletal muscle have proved difficult challenges for regenerative biology. Using a zebrafish embryo culture system with reporters of early and late skeletal muscle differentiation, we examined the influence of 2,400 chemicals on myogenesis and identified six that expanded muscle progenitors, including three GSK3β inhibitors, two calpain inhibitors, and one adenylyl cyclase activator, forskolin. Forskolin also enhanced proliferation of mouse satellite cells in culture and maintained their ability to engraft muscle in vivo. A combination of bFGF, forskolin, and the GSK3β inhibitor BIO induced skeletal muscle differentiation in human induced pluripotent stem cells (iPSCs) and produced engraftable myogenic progenitors that contributed to muscle repair in vivo. In summary, these studies reveal functionally conserved pathways regulating myogenesis across species and identify chemical compounds that expand mouse satellite cells and differentiate human iPSCs into engraftable muscle.
Collapse
Affiliation(s)
- Cong Xu
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadsharif Tabebordbar
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Salvatore Iovino
- Harvard Medical School, Boston, MA 02115, USA
- Joslin Diabetes Center, Boston, MA 02115, USA
| | - Christie Ciarlo
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jingxia Liu
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alessandra Castiglioni
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Joslin Diabetes Center, Boston, MA 02115, USA
- Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Emily Price
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Min Liu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elisabeth R. Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C. Ronald Kahn
- Harvard Medical School, Boston, MA 02115, USA
- Joslin Diabetes Center, Boston, MA 02115, USA
| | - Amy J. Wagers
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Joslin Diabetes Center, Boston, MA 02115, USA
| | - Leonard I. Zon
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Tantin D. Oct transcription factors in development and stem cells: insights and mechanisms. Development 2013; 140:2857-66. [PMID: 23821033 DOI: 10.1242/dev.095927] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The POU domain family of transcription factors regulates developmental processes ranging from specification of the early embryo to terminal differentiation. About half of these factors display substantial affinity for an 8 bp DNA site termed the octamer motif, and are hence known as Oct proteins. Oct4 (Pou5f1) is a well-known Oct factor, but there are other Oct proteins with varied and essential roles in development. This Primer outlines our current understanding of Oct proteins and the regulatory mechanisms that govern their role in developmental processes and concludes with the assertion that more investigation into their developmental functions is needed.
Collapse
Affiliation(s)
- Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
36
|
Dworkin S, Jane SM. Novel mechanisms that pattern and shape the midbrain-hindbrain boundary. Cell Mol Life Sci 2013; 70:3365-74. [PMID: 23307071 PMCID: PMC11113640 DOI: 10.1007/s00018-012-1240-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/18/2012] [Accepted: 12/10/2012] [Indexed: 12/27/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is a highly conserved vertebrate signalling centre, acting to pattern and establish neural identities within the brain. While the core signalling pathways regulating MHB formation have been well defined, novel genetic and mechanistic processes that interact with these core components are being uncovered, helping to further elucidate the complicated networks governing MHB specification, patterning and shaping. Although formation of the MHB organiser is traditionally thought of as comprising three stages, namely positioning, induction and maintenance, we propose that a fourth stage, morphogenesis, should be considered as an additional stage in MHB formation. This review will examine evidence for novel factors regulating the first three stages of MHB development and will explore the evidence for regulation of MHB morphogenesis by non-classical MHB-patterning genes.
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Melbourne, VIC, 3004, Australia.
| | | |
Collapse
|
37
|
Leichsenring M, Maes J, Mössner R, Driever W, Onichtchouk D. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 2013; 341:1005-9. [PMID: 23950494 DOI: 10.1126/science.1242527] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of multicellular animals is initially controlled by maternal gene products deposited in the oocyte. During the maternal-to-zygotic transition, transcription of zygotic genes commences, and developmental control starts to be regulated by zygotic gene products. In Drosophila, the transcription factor Zelda specifically binds to promoters of the earliest zygotic genes and primes them for activation. It is unknown whether a similar regulation exists in other animals. We found that zebrafish Pou5f1, a homolog of the mammalian pluripotency transcription factor Oct4, occupies SOX-POU binding sites before the onset of zygotic transcription and activates the earliest zygotic genes. Our data position Pou5f1 and SOX-POU sites at the center of the zygotic gene activation network of vertebrates and provide a link between zygotic gene activation and pluripotency control.
Collapse
Affiliation(s)
- Manuel Leichsenring
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Song S, Eckerle S, Onichtchouk D, Marrs JA, Nitschke R, Driever W. Pou5f1-dependent EGF expression controls E-cadherin endocytosis, cell adhesion, and zebrafish epiboly movements. Dev Cell 2013; 24:486-501. [PMID: 23484854 DOI: 10.1016/j.devcel.2013.01.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/31/2012] [Accepted: 01/19/2013] [Indexed: 01/05/2023]
Abstract
Initiation of motile cell behavior in embryonic development occurs during late blastula stages when gastrulation begins. At this stage, the strong adhesion of blastomeres has to be modulated to enable dynamic behavior, similar to epithelial-to-mesenchymal transitions. We show that, in zebrafish maternal and zygotic (MZ)spg embryos mutant for the stem cell transcription factor Pou5f1/Oct4, which are severely delayed in the epiboly gastrulation movement, all blastomeres are defective in E-cadherin (E-cad) endosomal trafficking, and E-cad accumulates at the plasma membrane. We find that Pou5f1-dependent control of EGF expression regulates endosomal E-cad trafficking. EGF receptor may act via modulation of p120 activity. Loss of E-cad dynamics reduces cohesion of cells in reaggregation assays. Quantitative analysis of cell behavior indicates that dynamic E-cad endosomal trafficking is required for epiboly cell movements. We hypothesize that dynamic control of E-cad trafficking is essential to effectively generate new adhesion sites when cells move relative to each other.
Collapse
Affiliation(s)
- Sungmin Song
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The cerebellum controls smooth and skillful movements and it is also involved in higher cognitive and emotional functions. The cerebellum is derived from the dorsal part of the anterior hindbrain and contains two groups of cerebellar neurons: glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons. Purkinje cells are GABAergic and granule cells are glutamatergic. Granule and Purkinje cells receive input from outside of the cerebellum from mossy and climbing fibers. Genetic analysis of mice and zebrafish has revealed genetic cascades that control the development of the cerebellum and cerebellar neural circuits. During early neurogenesis, rostrocaudal patterning by intrinsic and extrinsic factors, such as Otx2, Gbx2 and Fgf8, plays an important role in the positioning and formation of the cerebellar primordium. The cerebellar glutamatergic neurons are derived from progenitors in the cerebellar rhombic lip, which express the proneural gene Atoh1. The GABAergic neurons are derived from progenitors in the ventricular zone, which express the proneural gene Ptf1a. The mossy and climbing fiber neurons originate from progenitors in the hindbrain rhombic lip that express Atoh1 or Ptf1a. Purkinje cells exhibit mediolateral compartmentalization determined on the birthdate of Purkinje cells, and linked to the precise neural circuitry formation. Recent studies have shown that anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost species). In this review, we describe the development of cerebellar neurons and neural circuitry, and discuss their evolution by comparing developmental processes of mammalian and teleost cerebellum.
Collapse
Affiliation(s)
- Mitsuhiro Hashimoto
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
| | | |
Collapse
|
40
|
Pou2, a class V POU-type transcription factor in zebrafish, regulates dorsoventral patterning and convergent extension movement at different blastula stages. Mech Dev 2012; 129:219-35. [DOI: 10.1016/j.mod.2012.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 01/30/2023]
|
41
|
Khan A, Nakamoto A, Tai M, Saito S, Nakayama Y, Kawamura A, Takeda H, Yamasu K. Mesendoderm specification depends on the function of Pou2, the class V POU-type transcription factor, during zebrafish embryogenesis. Dev Growth Differ 2012; 54:686-701. [DOI: 10.1111/j.1440-169x.2012.01369.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Alam Khan
- Division of Life Science; Graduate School of Science and Engineering, Saitama University; Shimo-Okubo, Sakura-ku; Saitama City; Saitama; 338-8570; Japan
| | - Andrew Nakamoto
- Division of Life Science; Graduate School of Science and Engineering, Saitama University; Shimo-Okubo, Sakura-ku; Saitama City; Saitama; 338-8570; Japan
| | - Miyako Tai
- Division of Life Science; Graduate School of Science and Engineering, Saitama University; Shimo-Okubo, Sakura-ku; Saitama City; Saitama; 338-8570; Japan
| | - Shinji Saito
- Division of Life Science; Graduate School of Science and Engineering, Saitama University; Shimo-Okubo, Sakura-ku; Saitama City; Saitama; 338-8570; Japan
| | - Yukiko Nakayama
- Division of Life Science; Graduate School of Science and Engineering, Saitama University; Shimo-Okubo, Sakura-ku; Saitama City; Saitama; 338-8570; Japan
| | - Akinori Kawamura
- Division of Life Science; Graduate School of Science and Engineering, Saitama University; Shimo-Okubo, Sakura-ku; Saitama City; Saitama; 338-8570; Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences; Graduate School of Science, University of Tokyo; Hongo; Bunkyo-ku; Tokyo; 113-0033; Japan
| | | |
Collapse
|
42
|
Ye H, Du H, Chen XH, Cao H, Liu T, Li CJ. Identification of a pou2 ortholog in Chinese sturgeon, Acipenser sinensis and its expression patterns in tissues, immature individuals and during embryogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:929-942. [PMID: 22127527 DOI: 10.1007/s10695-011-9579-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
The class V POU family genes, including pou5f1 and pou2, encode transcription factors critical for the maintenance of pluripotency in embryonic stem cells (ESC) and germ line cells in vertebrates. In the present study, the full-length cDNA of a pou2 ortholog in A. sinensis, Aspou2, was cloned and sequenced. This cDNA sequence is 2,853 base pairs in length and encodes a peptide of 431 amino acid residues. A comparison of the deduced amino acid sequence of Aspou2 with that of other vertebrate species showed that they were highly conserved in the POU domain, which shared 88 and 90% identity with that of zebrafish and medaka, respectively, and was 69, 67 and 67% identical to frog, mouse and human, respectively. RT-PCR analysis revealed that Aspou2 was detected in all tissues examined except for the liver, and high mRNA levels of Aspou2 were found in the muscle, pituitary and brain. During the embryogenesis and early larval development, the expression level of Aspou2 mRNAs decreased gradually apart from 1-day larvae that were not observed. Furthermore, Aspou2 seemed to raise with the development of gonads of immature Chinese sturgeons. These results suggested the possible involvement of Aspou2 in the nonpluripotent cells, pluripotent cells, embryogenesis, and gonad development.
Collapse
Affiliation(s)
- Huan Ye
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
- Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China
| | - Xi-Hua Chen
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Chuang-Ju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China.
- Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China.
| |
Collapse
|
43
|
Hibi M, Shimizu T. Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol 2012; 72:282-301. [DOI: 10.1002/dneu.20875] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Murray KN, Dreska M, Nasiadka A, Rinne M, Matthews JL, Carmichael C, Bauer J, Varga ZM, Westerfield M. Transmission, diagnosis, and recommendations for control of Pseudoloma neurophilia infections in laboratory zebrafish (Danio rerio) facilities. Comp Med 2011; 61:322-9. [PMID: 22330247 PMCID: PMC3155398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/07/2011] [Accepted: 05/08/2011] [Indexed: 05/31/2023]
Abstract
The microsporidium Pseudoloma neurophilia represents a considerable challenge for laboratory zebrafish (Danio rerio) facilities. In 2010, P. neurophilia infections were diagnosed in zebrafish from 74% of the facilities that submitted fish to the Zebrafish International Resource Center (ZIRC) pathology service, and this organism remains the most commonly diagnosed pathogen in submitted fish. Accordingly, many of the ZIRC pathology service consultations deal with control and prevention of microsporidiosis. Here we describe observations and experiments performed at the ZIRC elucidating aspects of P. neurophilia transmission in zebrafish colonies. We then review current knowledge about P. neurophilia transmission and diagnosis. Considering this information, we present recommendations for control of P. neurophilia in zebrafish facilities.
Collapse
Affiliation(s)
- Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Belting HG, Wendik B, Lunde K, Leichsenring M, Mössner R, Driever W, Onichtchouk D. Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol 2011; 356:323-36. [PMID: 21621531 DOI: 10.1016/j.ydbio.2011.05.660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/18/2022]
Abstract
Pou5f1/Oct-4 in mice is required for maintenance of embryonic pluripotent cell populations. Zebrafish pou5f1 maternal-zygotic mutant embryos (spiel ohne grenzen; MZspg) lack endoderm and have gastrulation and dorsoventral patterning defects. A contribution of Pou5f1 to the control of bmp2b, bmp4 and vox expression has been suggested, however the mechanisms remained unclear and are investigated in detail here. Low-level overexpression of a Pou5f1-VP16 activator fusion protein can rescue dorsalization in MZspg mutants, indicating that Pou5f1 acts as a transcriptional activator during dorsoventral patterning. Overexpression of larger quantities of Pou5f1-VP16 can ventralize wild-type embryos, while overexpression of a Pou5f1-En repressor fusion protein can dorsalize embryos. Lack of Pou5f1 causes a transient upregulation of fgf8a expression after mid-blastula transition, providing a mechanism for delayed activation of bmp2b in MZspg embryos. Overexpression of the Pou5f1-En repressor induces fgf8, suggesting an indirect mechanism of Pou5f1 control of fgf8a expression. Transcription of vox is strongly activated by Pou5f1-VP16 even when translation of zygotically expressed transcripts is experimentally inhibited by cycloheximide. In contrast, bmp2b and bmp4 are not activated under these conditions. We show that Pou5f1 binds to phylogenetically conserved Oct/Pou5f1 sites in the vox promoter, both in vivo (ChIP) and in vitro. Our data reveals a set of direct and indirect interactions of Pou5f1 with the BMP dorsoventral patterning network that serve to fine-tune dorsoventral patterning mechanisms and coordinate patterning with developmental timing.
Collapse
Affiliation(s)
- Heinz-Georg Belting
- Developmental Biology, Faculty of Biology, University of Freiburg, Hauptstrasse 1, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Wong L, Weadick CJ, Kuo C, Chang BSW, Tropepe V. Duplicate dmbx1 genes regulate progenitor cell cycle and differentiation during zebrafish midbrain and retinal development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:100. [PMID: 20860823 PMCID: PMC2954992 DOI: 10.1186/1471-213x-10-100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/22/2010] [Indexed: 01/03/2023]
Abstract
Background The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome. Results Using gene knockdown experiments we examined the function of the dmbx1 gene paralogs in zebrafish, dmbx1a and dmbx1b in regulating neurogenesis in the developing retina and midbrain. Dose-dependent loss of dmbx1a and dmbx1b function causes a significant reduction in growth of the midbrain and retina that is evident between 48-72 hpf. We show that this phenotype is not due to patterning defects or persistent cell death, but rather a deficit in progenitor cell cycle exit and differentiation. Analyses of the morphant retina or anterior hindbrain indicate that paralogous function is partially diverged since loss of dmbx1a is more severe than loss of dmbx1b. Molecular evolutionary analyses of the Dmbx1 genes suggest that while this gene family is conservative in its evolution, there was a dramatic change in selective constraint after the duplication event that gave rise to the dmbx1a and dmbx1b gene families in teleost fish, suggestive of positive selection. Interestingly, in contrast to zebrafish dmbx1a, over expression of the mouse Dmbx1 gene does not functionally compensate for the zebrafish dmbx1a knockdown phenotype, while over expression of the dmbx1b gene only partially compensates for the dmbx1a knockdown phenotype. Conclusion Our data suggest that both zebrafish dmbx1a and dmbx1b genes are retained in the fish genome due to their requirement during midbrain and retinal neurogenesis, although their function is partially diverged. At the cellular level, Dmbx1 regulates cell cycle exit and differentiation of progenitor cells. The unexpected observation of putative post-duplication positive selection of teleost Dmbx1 genes, especially dmbx1a, and the differences in functionality between the mouse and zebrafish genes suggests that the teleost Dmbx1 genes may have evolved a diverged function in the regulation of neurogenesis.
Collapse
Affiliation(s)
- Loksum Wong
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
47
|
Abstract
Whole genome duplication events are thought to have substantially contributed to organismal complexity, largely via divergent transcriptional regulation. Members of the vertebrate PAX2, PAX5 and PAX8 gene subfamily derived from an ancient class of paired box genes and arose from such whole genome duplication events. These genes are critical in establishing the midbrain-hindbrain boundary, specifying interneuron populations and for eye, ear and kidney development. Also PAX2 has adopted a unique role in pancreas development, whilst PAX5 is essential for early B-cell differentiation. The contribution of PAX258 genes to their collective role has diverged across paralogues and the animal lineages, resulting in a complex wealth of literature. It is now timely to provide a comprehensive comparative overview of these genes and their ancient and divergent roles. We also discuss their fundamental place within gene regulatory networks and the likely influence of cis-regulatory elements over their differential roles during early animal development.
Collapse
Affiliation(s)
- Debbie K Goode
- Queen Mary, University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | | |
Collapse
|
48
|
Onichtchouk D, Geier F, Polok B, Messerschmidt DM, Mössner R, Wendik B, Song S, Taylor V, Timmer J, Driever W. Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development. Mol Syst Biol 2010; 6:354. [PMID: 20212526 PMCID: PMC2858445 DOI: 10.1038/msb.2010.9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/18/2010] [Indexed: 12/22/2022] Open
Abstract
The transcription factor POU5f1/OCT4 controls pluripotency in mammalian ES cells, but little is known about its functions in the early embryo. We used time-resolved transcriptome analysis of zebrafish pou5f1 MZspg mutant embryos to identify genes regulated by Pou5f1. Comparison to mammalian systems defines evolutionary conserved Pou5f1 targets. Time-series data reveal many Pou5f1 targets with delayed or advanced onset of expression. We identify two Pou5f1-dependent mechanisms controlling developmental timing. First, several Pou5f1 targets are transcriptional repressors, mediating repression of differentiation genes in distinct embryonic compartments. We analyze her3 gene regulation as example for a repressor in the neural anlagen. Second, the dynamics of SoxB1 group gene expression and Pou5f1-dependent regulation of her3 and foxD3 uncovers differential requirements for SoxB1 activity to control temporal dynamics of activation, and spatial distribution of targets in the embryo. We establish a mathematical model of the early Pou5f1 and SoxB1 gene network to demonstrate regulatory characteristics important for developmental timing. The temporospatial structure of the zebrafish Pou5f1 target networks may explain aspects of the evolution of the mammalian stem cell networks.
Collapse
Affiliation(s)
- Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
For more than a decade, the zebrafish has proven to be an excellent model organism to investigate the mechanisms of neurogenesis during development. The often cited advantages, namely external development, genetic, and optical accessibility, have permitted direct examination and experimental manipulations of neurogenesis during development. Recent studies have begun to investigate adult neurogenesis, taking advantage of its widespread occurrence in the mature zebrafish brain to investigate the mechanisms underlying neural stem cell maintenance and recruitment. Here we provide a comprehensive overview of the tools and techniques available to study neurogenesis in zebrafish both during development and in adulthood. As useful resources, we provide tables of available molecular markers, transgenic, and mutant lines. We further provide optimized protocols for studying neurogenesis in the adult zebrafish brain, including in situ hybridization, immunohistochemistry, in vivo lipofection and electroporation methods to deliver expression constructs, administration of bromodeoxyuridine (BrdU), and finally slice cultures. These currently available tools have put zebrafish on par with other model organisms used to investigate neurogenesis.
Collapse
Affiliation(s)
- Prisca Chapouton
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
50
|
The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial. Dev Biol 2010; 337:162-70. [DOI: 10.1016/j.ydbio.2009.10.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 11/18/2022]
|