1
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
2
|
Tavano S, Brückner DB, Tasciyan S, Tong X, Kardos R, Schauer A, Hauschild R, Heisenberg CP. BMP-dependent patterning of ectoderm tissue material properties modulates lateral mesendoderm cell migration during early zebrafish gastrulation. Cell Rep 2025; 44:115387. [PMID: 40057955 DOI: 10.1016/j.celrep.2025.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Cell migration is a fundamental process during embryonic development. Most studies in vivo have focused on the migration of cells using the extracellular matrix (ECM) as their substrate for migration. In contrast, much less is known about how cells migrate on other cells, as found in early embryos when the ECM has not yet formed. Here, we show that lateral mesendoderm (LME) cells in the early zebrafish gastrula use the ectoderm as their substrate for migration. We show that the lateral ectoderm is permissive for the animal-pole-directed migration of LME cells, while the ectoderm at the animal pole halts it. These differences in permissiveness depend on the lateral ectoderm being more cohesive than the animal ectoderm, a property controlled by bone morphogenetic protein (BMP) signaling within the ectoderm. Collectively, these findings identify ectoderm tissue cohesion as one critical factor in regulating LME migration during zebrafish gastrulation.
Collapse
Affiliation(s)
- Stefania Tavano
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - David B Brückner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Saren Tasciyan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Xin Tong
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roland Kardos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexandra Schauer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | |
Collapse
|
3
|
Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg CP. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development 2024; 151:dev202316. [PMID: 38372390 PMCID: PMC10911127 DOI: 10.1242/dev.202316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.
Collapse
Affiliation(s)
- Alexandra Schauer
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | | | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | | |
Collapse
|
4
|
Anwar S, Yokota T. Navigating the Complex Landscape of Fibrodysplasia Ossificans Progressiva: From Current Paradigms to Therapeutic Frontiers. Genes (Basel) 2023; 14:2162. [PMID: 38136984 PMCID: PMC10742611 DOI: 10.3390/genes14122162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an enigmatic, ultra-rare genetic disorder characterized by progressive heterotopic ossification, wherein soft connective tissues undergo pathological transformation into bone structures. This incapacitating process severely limits patient mobility and poses formidable challenges for therapeutic intervention. Predominantly caused by missense mutations in the ACVR1 gene, this disorder has hitherto defied comprehensive mechanistic understanding and effective treatment paradigms. This write-up offers a comprehensive overview of the contemporary understanding of FOP's complex pathobiology, underscored by advances in molecular genetics and proteomic studies. We delve into targeted therapy, spanning genetic therapeutics, enzymatic and transcriptional modulation, stem cell therapies, and innovative immunotherapies. We also highlight the intricate complexities surrounding clinical trial design for ultra-rare disorders like FOP, addressing fundamental statistical limitations, ethical conundrums, and methodological advancements essential for the success of interventional studies. We advocate for the adoption of a multi-disciplinary approach that converges bench-to-bedside research, clinical expertise, and ethical considerations to tackle the challenges of ultra-rare diseases like FOP and comparable ultra-rare diseases. In essence, this manuscript serves a dual purpose: as a definitive scientific resource for ongoing and future FOP research and a call to action for innovative solutions to address methodological and ethical challenges that impede progress in the broader field of medical research into ultra-rare conditions.
Collapse
Affiliation(s)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
5
|
Van Wynsberghe J, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Allen RS, Jones WD, Hale M, Warder BN, Shore EM, Mullins MC. Reduced GS Domain Serine/Threonine Requirements of Fibrodysplasia Ossificans Progressiva Mutant Type I BMP Receptor ACVR1 in the Zebrafish. J Bone Miner Res 2023; 38:1364-1385. [PMID: 37329499 PMCID: PMC11472394 DOI: 10.1002/jbmr.4869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/29/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic condition characterized by altered skeletal development and extraskeletal bone formation. All cases of FOP are caused by mutations in the type I bone morphogenetic protein (BMP) receptor gene ACVR1 that result in overactivation of the BMP signaling pathway. Activation of the wild-type ACVR1 kinase requires assembly of a tetrameric type I and II BMP receptor complex followed by phosphorylation of the ACVR1 GS domain by type II BMP receptors. Previous studies showed that the FOP-mutant ACVR1-R206H required type II BMP receptors and presumptive glycine/serine-rich (GS) domain phosphorylation for overactive signaling. Structural modeling of the ACVR1-R206H mutant kinase domain supports the idea that FOP mutations alter the conformation of the GS domain, but it is unclear how this leads to overactive signaling. Here we show, using a developing zebrafish embryo BMP signaling assay, that the FOP-mutant receptors ACVR1-R206H and -G328R have reduced requirements for GS domain phosphorylatable sites to signal compared to wild-type ACVR1. Further, ligand-independent and ligand-dependent signaling through the FOP-mutant ACVR1 receptors have distinct GS domain phosphorylatable site requirements. ACVR1-G328R showed increased GS domain serine/threonine requirements for ligand-independent signaling compared to ACVR1-R206H, whereas it exhibited reduced serine/threonine requirements for ligand-dependent signaling. Remarkably, while ACVR1-R206H does not require the type I BMP receptor partner, Bmpr1, to signal, a ligand-dependent GS domain mutant of ACVR1-R206H could signal independently of Bmpr1 only when Bmp7 ligand was overexpressed. Of note, unlike human ACVR1-R206H, the zebrafish paralog Acvr1l-R203H does not show increased signaling activity. However, in domain-swapping studies, the human kinase domain, but not the human GS domain, was sufficient to confer overactive signaling to the Acvr1l-R203H receptor. Together these results reflect the importance of GS domain activation and kinase domain functions in regulating ACVR1 signaling and identify mechanisms of reduced regulatory constraints conferred by FOP mutations. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Robyn S Allen
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - William D Jones
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Maya Hale
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bailey N Warder
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Lalonde RL, Nicolas HA, Cutler RS, Pantekidis I, Zhang W, Yelick PC. Functional comparison of human ACVR1 and zebrafish Acvr1l FOP-associated variants in embryonic zebrafish. Dev Dyn 2023; 252:605-628. [PMID: 36606464 PMCID: PMC10311797 DOI: 10.1002/dvdy.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP), a rare disease characterized by progressive heterotopic ossification of muscle and connective tissues, is caused by autosomal dominant activating mutations in the type I receptor, ACVR1/ALK2. The classic human FOP variant, ACVR1R206H , shows increased bone morphogenetic protein (BMP) signaling and activation by activins. RESULTS Here, we performed in vivo functional characterization of human ACVR1R206H and orthologous zebrafish Acvr1lR203H using early embryonic zebrafish dorsoventral patterning as a phenotypic readout for receptor activity. Our results showed that human ACVR1R206H and zebrafish Acvr1lR203H exhibit functional differences in early embryonic zebrafish, and that human ACVR1R206H retained its signaling activity in the absence of a ligand-binding domain (LBD). We also showed, for the first time, that zebrafish Acvr2ba/Acvr2bb receptors are required for human ACVR1R206H signaling in early embryonic zebrafish. CONCLUSIONS Together, these data provide new insight into ACVR1R206H signaling pathways that may facilitate the design of new and effective therapies for FOP patients.
Collapse
Affiliation(s)
- Robert L. Lalonde
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Hannah A. Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Rowan S. Cutler
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Irene Pantekidis
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Weibo Zhang
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Pamela C. Yelick
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| |
Collapse
|
8
|
Wang B, Zhao Q, Gong X, Wang C, Bai Y, Wang H, Zhou J, Rong X. Transmembrane anterior posterior transformation 1 regulates BMP signaling and modulates the protein stability of SMAD1/5. J Biol Chem 2022; 298:102684. [PMID: 36370851 PMCID: PMC9763856 DOI: 10.1016/j.jbc.2022.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway plays pivotal roles in various biological processes during embryogenesis and adult homeostasis. Transmembrane anterior posterior transformation 1 (TAPT1) is an evolutionarily conserved protein involved in murine axial skeletal patterning. Genetic defects in TAPT1 result in complex lethal osteochondrodysplasia. However, the specific cellular activity of TAPT1 is not clear. Herein, we report that TAPT1 inhibits BMP signaling and destabilizes the SMAD1/5 protein by facilitating its interaction with SMURF1 E3 ubiquitin ligase, which leads to SMAD1/5 proteasomal degradation. In addition, we found that the activation of BMP signaling facilitates the redistribution of TAPT1 and promotes its association with SMAD1. TAPT1-deficient murine C2C12 myoblasts or C3H/10T1/2 mesenchymal stem cells exhibit elevated SMAD1/5/9 protein levels, which amplifies BMP activation, in turn leading to a boost in the transdifferentiation or differentiation processing of these distinct TAPT1-deficient cell lines changing into mature osteoblasts. Furthermore, the enhancing effect of TAPT1 deficiency on osteogenic differentiation of C3H/10T1/2 cells was observed in an in vivo ectopic bone formation model. Importantly, a subset of TAPT1 mutations identified in humans with lethal skeletal dysplasia exhibited gain-of-function activity on SMAD1 protein levels. Thus, this finding elucidates the role of TAPT1 in the regulation of SMAD1/5 protein stability for controlling BMP signaling.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Qian Zhao
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiaoxia Gong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yan Bai
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Hongying Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| |
Collapse
|
9
|
Yamamoto M, Stoessel SJ, Yamamoto S, Goldhamer DJ. Overexpression of Wild-Type ACVR1 in Fibrodysplasia Ossificans Progressiva Mice Rescues Perinatal Lethality and Inhibits Heterotopic Ossification. J Bone Miner Res 2022; 37:2077-2093. [PMID: 35637634 PMCID: PMC9708949 DOI: 10.1002/jbmr.4617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/22/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a devastating disease of progressive heterotopic bone formation for which effective treatments are currently unavailable. FOP is caused by dominant gain-of-function mutations in the receptor ACVR1 (also known as ALK2), which render the receptor inappropriately responsive to activin ligands. In previous studies, we developed a genetic mouse model of FOP that recapitulates most clinical aspects of the disease. In this model, genetic loss of the wild-type Acvr1 allele profoundly exacerbated heterotopic ossification, suggesting the hypothesis that the stoichiometry of wild-type and mutant receptors dictates disease severity. Here, we tested this model by producing FOP mice that conditionally overexpress human wild-type ACVR1. Injury-induced heterotopic ossification (HO) was completely blocked in FOP mice when expression of both the mutant and wild-type receptor were targeted to Tie2-positive cells, which includes fibro/adipogenic progenitors (FAPs). Perinatal lethality of Acvr1R206H/+ mice was rescued by constitutive ACVR1 overexpression, and these mice survived to adulthood at predicted Mendelian frequencies. Constitutive overexpression of ACVR1 also provided protection from spontaneous abnormal skeletogenesis, and the incidence and severity of injury-induced HO in these mice was dramatically reduced. Analysis of pSMAD1/5/8 signaling both in cultured cells and in vivo indicates that ACVR1 overexpression functions cell-autonomously by reducing osteogenic signaling in response to activin A. We propose that ACVR1 overexpression inhibits HO by decreasing the abundance of ACVR1(R206H)-containing signaling complexes at the cell surface while increasing the representation of activin-A-bound non-signaling complexes comprised of wild-type ACVR1. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Masakazu Yamamoto
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| | - Sean J Stoessel
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| | - Shoko Yamamoto
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| | - David J Goldhamer
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| |
Collapse
|
10
|
Zhang C, Liu YW, Chen M, Min S, Mao J, Li Q, Chi Z. CoCl 2 -simulated hypoxia potentiates the osteogenic differentiation of fibroblasts derived from tympanosclerosis by upregulating the expression of BMP-2. Cell Biol Int 2022; 46:1423-1432. [PMID: 35811437 DOI: 10.1002/cbin.11845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Tympanosclerosis (TS) is a result of long-standing middle ear inflammation characterized by fibroblasts ossification. Fibrosis is the last revertible stage in the progress of middle ear inflammation to TS. It was hypothesized that chronic hypoxia could be modulating fibrosis, which in turn additionally further aggravated hypoxia via decreasing oxygen diffusion. However, the effects of hypoxia on osteoinductive activity of fibroblasts have not been explored. Herein, we purposed to explore the role of hypoxia in osteogenic differentiation of fibroblasts derived from TS. The expression of bone morphogenetic protein-2 (BMP-2), hypoxia-inducible factor-1α (HIF-1α), and Vimentin in the human surgical specimens of tympansclerosis was investigated by immunofluorescent staining. Furthermore, cultured fibroblasts were stratified into the following study groups: control, 25, 50, and 100 μM cobaltous chloride (CoCl2 ) group. BMP-2, as well as HIF-1α levels of expression were detected via western blotting and immunofluorescence analysis. We found that the expression of BMP-2 and HIF-1α was significantly upregulated in TS tissues and these fibroblasts, which was vimentin positive surrounding sclerotic plaques, were also expressing HIF-1α positive. The results also demonstrated that CoCl2 treatment increased nuclear HIF-1α protein level in the fibroblast. Furthermore, treatment with CoCl2 significantly increased BMP-2 expression and remarkably elevated alkaline phosphatse activity and the mineralized nodules area. These data illustrate that hypoxia may play an osteogenic role in TS fibroblasts via the elevated expression of a possible osteogenic factor, BMP-2.
Collapse
Affiliation(s)
- Chen Zhang
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yang-Wenyi Liu
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Min Chen
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Shiyao Min
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Jiabao Mao
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Qin Li
- Stomatology Department, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhangcai Chi
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| |
Collapse
|
11
|
Abstract
TGF-β family heterodimeric ligands show increased or exclusive signaling compared to homodimeric ligands in both vertebrate and insect development as well as in therapeutically relevant processes, like osteogenesis. However, the mechanisms that differentiate heterodimer and homodimer signaling remain uncharacterized. We show that BMP antagonists do not account for the exclusive signaling of Bmp2/7 heterodimers in zebrafish development. We found that overexpressed homodimers can signal but surprisingly require two distinct type I receptors, like heterodimers, indicating a required activity of the heteromeric type I receptor complex. We further demonstrate that a canonical type I receptor function has been delegated to only one of these receptors, Acvr1. Our findings should inform both basic and translational research in multiple TGF-β family signaling contexts. Heterodimeric TGF-β ligands outperform homodimers in a variety of developmental, cell culture, and therapeutic contexts; however, the mechanisms underlying this increased potency remain uncharacterized. Here, we use dorsal–ventral axial patterning of the zebrafish embryo to interrogate the BMP2/7 heterodimer signaling mechanism. We demonstrate that differential interactions with BMP antagonists do not account for the reduced signaling ability of homodimers. Instead, we find that while overexpressed BMP2 homodimers can signal, they require two nonredundant type I receptors, one from the Acvr1 subfamily and one from the Bmpr1 subfamily. This implies that all BMP signaling within the zebrafish gastrula, even BMP2 homodimer signaling, requires Acvr1. This is particularly surprising as BMP2 homodimers do not bind Acvr1 in vitro. Furthermore, we find that the roles of the two type I receptors are subfunctionalized within the heterodimer signaling complex, with the kinase activity of Acvr1 being essential, while that of Bmpr1 is not. These results suggest that the potency of the Bmp2/7 heterodimer arises from the ability to recruit both Acvr1 and Bmpr1 into the same signaling complex.
Collapse
|
12
|
Tian Y, Sun Y, Ou M, Cui X, Zhou D, Che W. Cloning and expression analysis of GATA1 gene in Carassius auratus red var. BMC Genom Data 2021; 22:12. [PMID: 33736593 PMCID: PMC7977614 DOI: 10.1186/s12863-021-00966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GATA1 is a key transcription factor in the GATA family, and promotes the differentiation and maturation of red blood cell, which is essential for normal hematopoiesis. RESULTS Our results showed that the cDNA sequence of GATA1 was 2730 bp long encoding 443 amino acids. qRT-PCR analysis demonstrated that GATA1 had the highest expression in testis (T), followed by pituitary (P) and spleen (S). GATA1 gene expression in C. auratus red var. embryo from the neuroblast stage (N) to the embryo hatching (H) changes continuously; and the gene expression levels of nonylphenol (NP)-treated and those of control embryos were significantly different. Moreover, Methylation levels of GATA1 gene in NP-treated embryos were higher than those in control embryos, indicating that NP affected GATA1 methylation. CONCLUSIONS Our study provides cues for further studying the roles of GATA1 gene in fish development, and suggested a potential molecular mechanism by which NP leads to abnormal development of fish embryos.
Collapse
Affiliation(s)
- Yusu Tian
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China
| | - Yuandong Sun
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China.
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, Hunan, People's Republic of China
| | - Xiaojuan Cui
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China
| | - Dinggang Zhou
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China
| | - Wen'an Che
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China
| |
Collapse
|
13
|
Romano S, Kaufman OH, Marlow FL. Loss of dmrt1 restores zebrafish female fates in the absence of cyp19a1a but not rbpms2a/b. Development 2020; 147:dev.190942. [PMID: 32895289 DOI: 10.1242/dev.190942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
Abstract
Sex determination and differentiation is a complex process regulated by multiple factors, including factors from the germline or surrounding somatic tissue. In zebrafish, sex-determination involves establishment of a bipotential ovary that undergoes sex-specific differentiation and maintenance to form the functional adult gonad. However, the relationships among these factors are not fully understood. Here, we identify potential Rbpms2 targets and apply genetic epistasis experiments to decipher the genetic hierarchy of regulators of sex-specific differentiation. We provide genetic evidence that the crucial female factor rbpms2 is epistatic to the male factor dmrt1 in terms of adult sex. Moreover, the role of Rbpms2 in promoting female fates extends beyond repression of Dmrt1, as Rbpms2 is essential for female differentiation even in the absence of Dmrt1. In contrast, female fates can be restored in mutants lacking both cyp19a1a and dmrt1, and prolonged in bmp15 mutants in the absence of dmrt1. Taken together, this work indicates that cyp19a1a-mediated suppression of dmrt1 establishes a bipotential ovary and initiates female fate acquisition. Then, after female fate specification, Cyp19a1a regulates subsequent oocyte maturation and sustains female fates independently of Dmrt1 repression.
Collapse
Affiliation(s)
- Shannon Romano
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020, New York, NY 10029-6574, USA
| | - Odelya H Kaufman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Florence L Marlow
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020, New York, NY 10029-6574, USA .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Hoeksma J, van der Zon GCM, Ten Dijke P, den Hertog J. Cercosporamide inhibits bone morphogenetic protein receptor type I kinase activity in zebrafish. Dis Model Mech 2020; 13:dmm045971. [PMID: 32820031 PMCID: PMC7522027 DOI: 10.1242/dmm.045971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Zebrafish models are well-established tools for investigating the underlying mechanisms of diseases. Here, we identified cercosporamide, a metabolite from the fungus Ascochyta aquiliqiae, as a potent bone morphogenetic protein receptor (BMPR) type I kinase inhibitor through a zebrafish embryo phenotypic screen. The developmental defects in zebrafish, including lack of the ventral fin, induced by cercosporamide were strikingly similar to the phenotypes caused by renowned small-molecule BMPR type I kinase inhibitors and inactivating mutations in zebrafish BMPRs. In mammalian cell-based assays, cercosporamide blocked BMP/SMAD-dependent transcriptional reporter activity and BMP-induced SMAD1/5-phosphorylation. Biochemical assays with a panel of purified recombinant kinases demonstrated that cercosporamide directly inhibited kinase activity of type I BMPRs [also called activin receptor-like kinases (ALKs)]. In mammalian cells, cercosporamide selectively inhibited constitutively active BMPR type I-induced SMAD1/5 phosphorylation. Importantly, cercosporamide rescued the developmental defects caused by constitutively active Alk2 in zebrafish embryos. We believe that cercosporamide could be the first of a new class of molecules with potential to be developed further for clinical use against diseases that are causally linked to overactivation of BMPR signaling, including fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jelmer Hoeksma
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Gerard C M van der Zon
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
15
|
Kushawah G, Hernandez-Huertas L, Abugattas-Nuñez del Prado J, Martinez-Morales JR, DeVore ML, Hassan H, Moreno-Sanchez I, Tomas-Gallardo L, Diaz-Moscoso A, Monges DE, Guelfo JR, Theune WC, Brannan EO, Wang W, Corbin TJ, Moran AM, Sánchez Alvarado A, Málaga-Trillo E, Takacs CM, Bazzini AA, Moreno-Mateos MA. CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos. Dev Cell 2020; 54:805-817.e7. [DOI: 10.1016/j.devcel.2020.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023]
|
16
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
18
|
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare human skeletal disease caused by constitutively activating mutations in the gene ACVR1, which encodes a type I BMP/TGFβ family member receptor. FOP is characterized by progressive heterotopic ossification (HO) of fibrous tissues, including skeletal muscle, tendons, and ligaments, as well as malformation of the big toes, vertebral fusions, and osteochondromas. Surgical interventions in patients often result in enhanced HO, which can exacerbate rather than improve diagnostic outcomes. As a result of these difficulties, a variety of animal models are needed to study human FOP. Here we describe the methods for creating and characterizing zebrafish conditionally expressing Acvr1lQ204D, the first adult zebrafish model for FOP.
Collapse
Affiliation(s)
- Melissa LaBonty
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.,Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Pamela C Yelick
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA. .,Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
19
|
Zebrafish miR-462-731 regulates hematopoietic specification and pu.1-dependent primitive myelopoiesis. Cell Death Differ 2018; 26:1531-1544. [PMID: 30459392 DOI: 10.1038/s41418-018-0234-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) play significant roles in both embryonic hematopoiesis and hematological malignancy. Zebrafish miR-462-731 cluster is orthologous of miR-191-425 in human which regulates proliferation and tumorigenesis. In our previous work, miR-462-731 was found highly and ubiquitously expressed during early embryogenesis. In this study, by loss-of-function analysis (morpholino knockdown combined with CRISRP/Cas9 knockout) and mRNA profiling, we suggest that miR-462-731 is required for normal embryonic development by regulating cell survival. We found that loss of miR-462/miR-731 caused a remarkable decrease in the number of erythroid cells as well as an ectopic myeloid cell expansion at 48 hpf, suggesting a skewing of myeloid-erythroid lineage differentiation. Mechanistically, miR-462-731 provides an instructive input for pu.1-dependent primitive myelopoiesis through regulating etsrp/scl signaling combined with a novel pu.1/miR-462-731 feedback loop. On the other hand, morpholino (MO) knockdown of miR-462/miR-731 resulted in an expansion of posterior blood islands at 24 hpf, which is a mild ventralization phenotype resulted from elevation of BMP signaling. Rescue experiments with both BMP type I receptor inhibitor dorsomorphin and alk8 MO indicate that miR-462-731 acts upstream of alk8 within the BMP/Smad signaling pathway and functions as a novel endogenous BMP antagonist. Besides, an impairment of angiogenesis was observed in miR-462/miR-731 morphants. The specification of arteries and veins was also perturbed, as characterized by the irregular patterning of efnb2a and flt4 expression. Our study unveils a previously unrecognized role of miR-462-731 in BMP/Smad signaling mediated hematopoietic specification of mesodermal progenitors and demonstrates a miR-462-731 mediated regulatory mechanism driving primitive myelopoiesis in the ALPM. We also show a requirement for miR-462-731 in regulating arterial-venous specification and definitive hematopoietic stem cell (HSC) production. The current findings might provide further insights into the molecular mechanistic basis of miRNA regulation of embryonic hematopoiesis and hematological malignancy.
Collapse
|
20
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
21
|
LaBonty M, Yelick PC. Animal models of fibrodysplasia ossificans progressiva. Dev Dyn 2017; 247:279-288. [PMID: 29139166 DOI: 10.1002/dvdy.24606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Fibrodysplasia Ossificans Progressiva is a rare human disease of heterotopic ossification. FOP patients experience progressive development of ectopic bone within fibrous tissues that contributes to a gradual loss of mobility and can lead to early mortality. Due to lack of understanding of the etiology and progression of human FOP, and the fact that surgical interventions often exacerbate FOP disease progression, alternative therapeutic methods are needed, including modeling in animals, to study and improve understanding of human FOP. In this review we provide an overview of the existing animal models of FOP and the key mechanistic findings from each. In addition, we highlight the specific advantages of a new adult zebrafish model, generated by our lab, to study human FOP. Developmental Dynamics 247:279-288, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa LaBonty
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.,Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Pamela C Yelick
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.,Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
22
|
Covell DG. A data mining approach for identifying pathway-gene biomarkers for predicting clinical outcome: A case study of erlotinib and sorafenib. PLoS One 2017; 12:e0181991. [PMID: 28792525 PMCID: PMC5549706 DOI: 10.1371/journal.pone.0181991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
A novel data mining procedure is proposed for identifying potential pathway-gene biomarkers from preclinical drug sensitivity data for predicting clinical responses to erlotinib or sorafenib. The analysis applies linear ridge regression modeling to generate a small (N~1000) set of baseline gene expressions that jointly yield quality predictions of preclinical drug sensitivity data and clinical responses. Standard clustering of the pathway-gene combinations from gene set enrichment analysis of this initial gene set, according to their shared appearance in molecular function pathways, yields a reduced (N~300) set of potential pathway-gene biomarkers. A modified method for quantifying pathway fitness is used to determine smaller numbers of over and under expressed genes that correspond with favorable and unfavorable clinical responses. Detailed literature-based evidence is provided in support of the roles of these under and over expressed genes in compound efficacy. RandomForest analysis of potential pathway-gene biomarkers finds average treatment prediction errors of 10% and 22%, respectively, for patients receiving erlotinib or sorafenib that had a favorable clinical response. Higher errors were found for both compounds when predicting an unfavorable clinical response. Collectively these results suggest complementary roles for biomarker genes and biomarker pathways when predicting clinical responses from preclinical data.
Collapse
Affiliation(s)
- David G. Covell
- Information Technology Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States of America
| |
Collapse
|
23
|
LaBonty M, Pray N, Yelick PC. A Zebrafish Model of Human Fibrodysplasia Ossificans Progressiva. Zebrafish 2017; 14:293-304. [PMID: 28394244 DOI: 10.1089/zeb.2016.1398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare, autosomal dominant genetic disorder in humans characterized by explosive inflammatory response to injury leading to gradual ossification within fibrous tissues, including skeletal muscle, tendons, and ligaments. A variety of animal models are needed to study and understand the etiology of human FOP. To address this need, here we present characterizations of the first adult zebrafish model for FOP. In humans, activating mutations in the Type I BMP/TGFβ family member receptor, ACVR1, are associated with FOP. Zebrafish acvr1l, previously known as alk8, is the functional ortholog of human ACVR1, and has been studied extensively in the developing zebrafish embryo, where it plays a role in early dorsoventral patterning. Constitutively active and dominant negative mutations in zebrafish acvr1l cause early lethal defects. Therefore, to study roles for activating acvr1l mutations in adult zebrafish, we created transgenic animals expressing mCherry-tagged, heat-shock-inducible constitutively active Acvr1l, Acvr1lQ204D, to investigate phenotypes in juvenile and adult zebrafish. Our studies showed that adult zebrafish expressing heat-shock-induced Acvr1lQ204D develop a number of human FOP-like phenotypes, including heterotopic ossification lesions, spinal lordosis, vertebral fusions, and malformed pelvic fins. Together, these results suggest that transgenic zebrafish expressing heat-shock-inducible Acvr1lQ204D can serve as a model for human FOP.
Collapse
Affiliation(s)
- Melissa LaBonty
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, Massachusetts.,2 Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Nicholas Pray
- 2 Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Pamela C Yelick
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, Massachusetts.,2 Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
24
|
Dranow DB, Hu K, Bird AM, Lawry ST, Adams MT, Sanchez A, Amatruda JF, Draper BW. Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish. PLoS Genet 2016; 12:e1006323. [PMID: 27642754 PMCID: PMC5028036 DOI: 10.1371/journal.pgen.1006323] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/25/2016] [Indexed: 11/30/2022] Open
Abstract
Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle.
Collapse
Affiliation(s)
- Daniel B. Dranow
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Kevin Hu
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - April M. Bird
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - S. Terese Lawry
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Melissa T. Adams
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Angelica Sanchez
- Departments of Pediatrics and Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - James F. Amatruda
- Departments of Pediatrics and Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
25
|
The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021865. [PMID: 27328871 DOI: 10.1101/cshperspect.a021865] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factors (TGFs) were discovered as activities that were secreted by cancer cells, and later by normal cells, and had the ability to phenotypically and reversibly transform immortalized fibroblasts. TGF-β distinguished itself from TGF-α because it did not bind to the same epidermal growth factor (EGF) receptor as TGF-α and, therefore, acted through different cell-surface receptors and signaling mediators. This review summarizes the discovery of TGF-β, the early developments in its molecular and biological characterization with its many biological activities in different cell and tissue contexts and its roles in disease, the realization that there is a family of secreted TGF-β-related proteins with many differentiation functions in development and activities in normal cell and tissue physiology, and the subsequent identification and characterization of the receptors and effectors that mediate TGF-β family signaling responses.
Collapse
|
26
|
Schille C, Heller J, Schambony A. Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:1. [PMID: 26780949 PMCID: PMC4717534 DOI: 10.1186/s12861-016-0101-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023]
Abstract
Background Bone morphogenetic proteins regulate multiple processes in embryonic development, including early dorso-ventral patterning and neural crest development. BMPs activate heteromeric receptor complexes consisting of type I and type II receptor-serine/threonine kinases. BMP receptors Ia and Ib, also known as ALK3 and ALK6 respectively, are the most common type I receptors that likely mediate most BMP signaling events. Since early expression patterns and functions in Xenopus laevis development have not been described, we have addressed these questions in the present study. Results Here we have analyzed the temporal and spatial expression patterns of ALK3 and ALK6; we have also carried out loss-of-function studies to define the function of these receptors in early Xenopus development. We detected both redundant and non-redundant roles of ALK3 and ALK6 in dorso-ventral patterning. From late gastrula stages onwards, their expression patterns diverged, which correlated with a specific, non-redundant requirement of ALK6 in post-gastrula neural crest cells. ALK6 was essential for induction of neural crest cell fate and further development of the neural crest and its derivatives. Conclusions ALK3 and ALK6 both contribute to the gene regulatory network that regulates dorso-ventral patterning; they play partially overlapping and partially non-redundant roles in this process. ALK3 and ALK6 are independently required for the spatially restricted activation of BMP signaling and msx2 upregulation at the neural plate border, whereas in post-gastrula development ALK6 exerts a highly specific, conserved function in neural crest development. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0101-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Jens Heller
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|
27
|
Hahn ME, Timme-Laragy AR, Karchner SI, Stegeman JJ. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Free Radic Biol Med 2015; 88:275-289. [PMID: 26130508 PMCID: PMC4698826 DOI: 10.1016/j.freeradbiomed.2015.06.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America.
| | - Alicia R Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
28
|
Pauli A, Montague TG, Lennox KA, Behlke MA, Schier AF. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. PLoS One 2015; 10:e0139504. [PMID: 26436892 PMCID: PMC4593562 DOI: 10.1371/journal.pone.0139504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/12/2015] [Indexed: 01/04/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are synthetic, single-strand RNA-DNA hybrids that induce catalytic degradation of complementary cellular RNAs via RNase H. ASOs are widely used as gene knockdown reagents in tissue culture and in Xenopus and mouse model systems. To test their effectiveness in zebrafish, we targeted 20 developmental genes and compared the morphological changes with mutant and morpholino (MO)-induced phenotypes. ASO-mediated transcript knockdown reproduced the published loss-of-function phenotypes for oep, chordin, dnd, ctnnb2, bmp7a, alk8, smad2 and smad5 in a dosage-sensitive manner. ASOs knocked down both maternal and zygotic transcripts, as well as the long noncoding RNA (lncRNA) MALAT1. ASOs were only effective within a narrow concentration range and were toxic at higher concentrations. Despite this drawback, quantitation of knockdown efficiency and the ability to degrade lncRNAs make ASOs a useful knockdown reagent in zebrafish.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Masschusetts, United States of America
- * E-mail: (AP); (AFS)
| | - Tessa G. Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Masschusetts, United States of America
| | - Kim A. Lennox
- Integrated DNA Technologies, Inc., Coralville, Iowa, United States of America
| | - Mark A. Behlke
- Integrated DNA Technologies, Inc., Coralville, Iowa, United States of America
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Masschusetts, United States of America
- * E-mail: (AP); (AFS)
| |
Collapse
|
29
|
Wang Y, Li WH, Li Z, Liu W, Zhou L, Gui JF. BMP and RA signaling cooperate to regulate Apolipoprotein C1 expression during embryonic development. Gene 2015; 554:196-204. [DOI: 10.1016/j.gene.2014.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
|
30
|
Carroll KJ, North TE. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp Hematol 2014; 42:684-96. [PMID: 24816275 PMCID: PMC4461861 DOI: 10.1016/j.exphem.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/09/2023]
Abstract
Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor, and effector cell emergence, expansion, and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell types can be identified and characterized. Further, myriad transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of blood stem and progenitor cell biology during development, in response to infection or injury, or in the setting of hematologic malignancy continues to deepen, zebrafish will remain essential for exploring the spatiotemporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease.
Collapse
Affiliation(s)
- Kelli J Carroll
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
31
|
Kim JD, Kim J. Alk3/Alk3b and Smad5 mediate BMP signaling during lymphatic development in zebrafish. Mol Cells 2014; 37:270-4. [PMID: 24608800 PMCID: PMC3969049 DOI: 10.14348/molcells.2014.0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/28/2014] [Indexed: 12/02/2022] Open
Abstract
Lymphatic vessels are essential to regulate interstitial fluid homeostasis and diverse immune responses. A number of crucial factors, such as VEGFC, SOX18, PROX1, FOX2C, and GJC2, have been implicated in differentiation and/or maintenance of lymphatic endothelial cells (LECs). In humans, dysregulation of these genes is known to cause lymphedema, a debilitating condition which adversely impacts the quality of life of affected individuals. However, there are no currently available pharmacological treatments for lymphedema, necessitating identification of additional factors modulating lymphatic development and function which can be targeted for therapy. In this report, we investigate the function of genes associated with Bone Morphogenetic Protein (BMP) signaling in lymphatic development using zebrafish embryos. The knock-down of BMP type II receptors, Bmpr2a and Bmpr2b, and type I receptors, Alk3 and Alk3b, as well as SMAD5, an essential cellular mediator of BMP signaling, led to distinct lymphatic defects in developing zebrafish. Therefore, it appears that each constituent of the BMP signaling pathway may have a unique function during lymphatic development. Taken together, our data demonstrate that BMP signaling is essential for normal lymphatic vessel development in zebrafish.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511,
USA
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
32
|
Extraembryonic Signals under the Control of MGA, Max, and Smad4 Are Required for Dorsoventral Patterning. Dev Cell 2014; 28:322-34. [DOI: 10.1016/j.devcel.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/13/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022]
|
33
|
Pattanayak S, Paul S, Nandi B, Sinha S. Improved protocol for the synthesis of flexibly protected morpholino monomers from unprotected ribonucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 31:763-82. [PMID: 23145948 DOI: 10.1080/15257770.2012.724491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An inexpensive and much improved protocol has been developed for the synthesis of protected morpholino monomers from unprotected ribonucleosides in high overall yield, using oxidative glycol cleavage and reductive amination strategy. Unlike the previous methods, the present strategy allows installing the exocyclic amine protections at a later stage, and thus avoids the use of expensive, or commercially unavailable, exocyclic amine-protected ribonucleosides as starting materials. To demonstrate the flexibility of the present method in choosing protecting groups, the monomers have been protected with several such groups of different deblocking properties at the exocyclic amine position.
Collapse
Affiliation(s)
- Sankha Pattanayak
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | | | |
Collapse
|
34
|
Fish: a suitable system to model human bone disorders and discover drugs with osteogenic or osteotoxic activities. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ddmod.2014.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Miyares RL, Stein C, Renisch B, Anderson JL, Hammerschmidt M, Farber SA. Long-chain Acyl-CoA synthetase 4A regulates Smad activity and dorsoventral patterning in the zebrafish embryo. Dev Cell 2013; 27:635-47. [PMID: 24332754 PMCID: PMC3895552 DOI: 10.1016/j.devcel.2013.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/09/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFA) and their metabolites are critical players in cell biology and embryonic development. Here we show that long-chain acyl-CoA synthetase 4a (Acsl4a), an LC-PUFA activating enzyme, is essential for proper patterning of the zebrafish dorsoventral axis. Loss of Acsl4a results in dorsalized embryos due to attenuated bone morphogenetic protein (Bmp) signaling. We demonstrate that Acsl4a modulates the activity of Smad transcription factors, the downstream mediators of Bmp signaling. Acsl4a promotes the inhibition of p38 mitogen-activated protein kinase and the Akt-mediated inhibition of glycogen synthase kinase 3, critical inhibitors of Smad activity. Consequently, introduction of a constitutively active Akt can rescue the dorsalized phenotype of Acsl4a-deficient embryos. Our results reveal a critical role for Acsl4a in modulating Bmp-Smad activity and provide a potential avenue for LC-PUFAs to influence a variety of developmental processes.
Collapse
Affiliation(s)
- Rosa Linda Miyares
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Cornelia Stein
- Institute of Developmental Biology, University of Cologne, D-50674 Cologne, Germany
| | - Björn Renisch
- Institute of Developmental Biology, University of Cologne, D-50674 Cologne, Germany
| | | | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, D-50674 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, D-50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50674 Cologne, Germany.
| | - Steven Arthur Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
36
|
He Y, Xu X, Zhao S, Ma S, Sun L, Liu Z, Luo C. Maternal control of axial-paraxial mesoderm patterning via direct transcriptional repression in zebrafish. Dev Biol 2013; 386:96-110. [PMID: 24296303 DOI: 10.1016/j.ydbio.2013.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
Abstract
Axial-paraxial mesoderm patterning is a special dorsal-ventral patterning event of establishing the vertebrate body plan. Though dorsal-ventral patterning has been extensively studied, the initiation of axial-paraxial mesoderm pattering remains largely unrevealed. In zebrafish, spt cell-autonomously regulates paraxial mesoderm specification and flh represses spt expression to promote axial mesoderm fate, but the expression domains of spt and flh initially overlap in the entire marginal zone of the embryo. Defining spt and flh territories is therefore a premise of axial-paraxial mesoderm patterning. In this study, we investigated why and how the initial expression of flh becomes repressed in the ventrolateral marginal cells during blastula stage. Loss- and gain-of-function experiments showed that a maternal transcription factor Vsx1 is essential for restricting flh expression within the dorsal margin and preserving spt expression and paraxial mesoderm specification in the ventrolateral margin of embryo. Chromatin immunoprecipitation and electrophoretic mobility shift assays in combination with core consensus sequence mutation analysis further revealed that Vsx1 can directly repress flh by binding to the proximal promoter at a specific site. Inhibiting maternal vsx1 translation resulted in confusion of axial and paraxial mesoderm markers expression and axial-paraxial mesoderm patterning. These results demonstrated that direct transcriptional repression of the decisive axial mesoderm gene by maternal ventralizing factor is a crucial regulatory mechanism of initiating axial-paraxial mesoderm patterning in vertebrates.
Collapse
Affiliation(s)
- Ying He
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Xiaofeng Xu
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Shufang Zhao
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Shanshan Ma
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Lei Sun
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Zhenghua Liu
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Chen Luo
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
37
|
The effect of BMP-2, BMP-4 and BMP-6 on bone destruction of cholesteatoma presence. Am J Otolaryngol 2013; 34:652-7. [PMID: 23927997 DOI: 10.1016/j.amjoto.2013.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of our study was to investigate the relationship between the destruction of temporal bone structures, ossicular chain destruction, dissemination of cholesteatoma and the expressions of bone morphogenetic proteins (BMPs), BMP-2, BMP-4 and BMP-6 in patients with acquired cholesteatoma. MATERIAL AND METHODS This study was performed in a total of 80 patients with cholesteatoma and without cholesteatoma who had undergone surgery due to chronic otitis media. The patients were grouped as the study and the control groups. The study group comprised patients with primary acquired cholesteatoma, and the control group consisted of chronic otitis media patients without cholesteatoma. The samples were obtained from cholesteatoma tissue and the external acoustic meatus skin in study group patients and they were obtained from the external acoustic meatus skin only in control group patients. The Reverse Transcriptase Polymerase Chain Reaction method was used for the measurements of BMPs, BMP-2, BMP-4 and BMP-6 expressions. Polymerase Chain Reaction was studied by isolation of Ribonucleic Acid from the tissue samples. RESULTS When the expressions of BMP in the external acoustic meatus skin were compared between the study and the control groups, the BMPs, BMP-2 and BMP-6 were determined to have a statistically significant relation in the study group (p<0.05), but BMP-4 was not significant (p>0.05). When the expression of BMP in cholesteatoma tissue was investigated in the study group patients, the BMPs, BMP-2 and BMP-6 were determined with statistically significant positivity (p<0.05), but there was no significant positivity for BMP-4 (p>0.05). In the study group, there was no statistical significance between the expressions of BMPs, BMP-2, BMP-4 and BMP-6 in cholesteatoma tissue, in the external acoustic meatus skin, and temporal and ossicular chain destruction, and dissemination of cholesteatoma (p>0.05). A statistically significant positivity for BMPs expression in cholesteatoma tissue was determined in patients with destruction of the incus+malleus+stapes (p<0.05). CONCLUSION The expressions of BMPs, BMP-2 and BMP-6, were elevated in cholesteatoma tissue. Furthermore, the positivity of BMPs expression was statistically significant in patients with destruction of all the ossicles, and we think that this marker can be used for evaluation of the aggressiveness of cholesteatoma.
Collapse
|
38
|
Ramel MC, Hill CS. The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Dev Biol 2013; 378:170-82. [PMID: 23499658 PMCID: PMC3899928 DOI: 10.1016/j.ydbio.2013.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/26/2022]
Abstract
In the early zebrafish embryo, a ventral to dorsal gradient of bone morphogenetic protein (BMP) activity is established, which is essential for the specification of cell fates along this axis. To visualise and mechanistically determine how this BMP activity gradient forms, we have used a transgenic zebrafish line that expresses monomeric red fluorescent protein (mRFP) under the control of well-characterised BMP responsive elements. We demonstrate that mRFP expression in this line faithfully reports BMP and GDF signalling at both early and late stages of development. Taking advantage of the unstable nature of mRFP transcripts, we use in situ hybridisation to reveal the dynamic spatio-temporal pattern of BMP activity and establish the timing and sequence of events that lead to the formation of the BMP activity gradient. We show that the BMP transcriptional activity gradient is established between 30% and 40% epiboly stages and that it is preceded by graded mRNA expression of the BMP ligands. Both Dharma and FGF signalling contribute to graded bmp transcription during these early stages and it is subsequently maintained through autocrine BMP signalling. We show that BMP2B protein is also expressed in a gradient as early as blastula stages, but do not find any evidence of diffusion of this BMP to generate the BMP transcriptional activity gradient. Thus, in contrast to diffusion/transport-based models of BMP gradient formation in Drosophila, our results indicate that the establishment of the BMP activity gradient in early zebrafish embryos is determined by graded expression of the BMP ligands.
Collapse
Affiliation(s)
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| |
Collapse
|
39
|
Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:559-85. [PMID: 24014448 DOI: 10.1002/wdev.92] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrates form a progressive series of up to three kidney organs during development-the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways.
Collapse
Affiliation(s)
- Gary F Gerlach
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
40
|
Abstract
The membrane-curvature-inducing protein Fcho was proposed to be part of a ubiquitous nucleation mechanism for clathrin-coated pits. However, studies in developing zebrafish embryos now indicate a role for Fcho as a receptor-specific adaptor in bone morphogenetic protein (BMP) signalling, rather than a global coated-pit nucleator.
Collapse
|
41
|
Protein Phosphatase 4 Cooperates with Smads to Promote BMP Signaling in Dorsoventral Patterning of Zebrafish Embryos. Dev Cell 2012; 22:1065-78. [DOI: 10.1016/j.devcel.2012.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 12/29/2011] [Accepted: 03/03/2012] [Indexed: 11/21/2022]
|
42
|
Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning. Nat Cell Biol 2012; 14:488-501. [PMID: 22484487 PMCID: PMC3354769 DOI: 10.1038/ncb2473] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/29/2012] [Indexed: 12/13/2022]
Abstract
Clathrin-mediated endocytosis occurs at multiple independent import sites on the plasma membrane, but how these positions are selected and how different cargo is simultaneously recognized is obscure. FCHO1 and FCHO2 are early-arriving proteins at surface clathrin assemblies and are speculated to act as compulsory coat nucleators, preceding the core clathrin adaptor AP-2. Here, we show the μ-homology domain (μHD) of FCHO1/2 represents a novel endocytic interaction hub. Translational silencing of fcho1 in zebrafish embryos causes strong dorsoventral patterning defects analogous to Bmp signal failure. The Fcho1 μHD interacts with the Bmp receptor Alk8, uncovering a new endocytic component that positively modulates Bmp signal transmission. Still, the fcho1 morphant phenotype is distinct from severe embryonic defects apparent when AP-2 is depleted. Our data thus contradict the primacy of FCHO1/2 in coat initiation.
Collapse
|
43
|
de Pater E, Ciampricotti M, Priller F, Veerkamp J, Strate I, Smith K, Lagendijk AK, Schilling TF, Herzog W, Abdelilah-Seyfried S, Hammerschmidt M, Bakkers J. Bmp signaling exerts opposite effects on cardiac differentiation. Circ Res 2012; 110:578-87. [PMID: 22247485 DOI: 10.1161/circresaha.111.261172] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE The importance for Bmp signaling during embryonic stem cell differentiation into myocardial cells has been recognized. The question when and where Bmp signaling in vivo regulates myocardial differentiation has remained largely unanswered. OBJECTIVE To identify when and where Bmp signaling regulates cardiogenic differentiation. METHODS AND RESULTS Here we have observed that in zebrafish embryos, Bmp signaling is active in cardiac progenitor cells prior to their differentiation into cardiomyocytes. Bmp signaling is continuously required during somitogenesis within the anterior lateral plate mesoderm to induce myocardial differentiation. Surprisingly, Bmp signaling is actively repressed in differentiating myocardial cells. We identified the inhibitory Smad6a, which is expressed in the cardiac tissue, to be required to inhibit Bmp signaling and thereby promote expansion of the ventricular myocardium. CONCLUSION Bmp signaling exerts opposing effects on myocardial differentiation in the embryo by promoting as well as inhibiting cardiac growth.
Collapse
Affiliation(s)
- Emma de Pater
- Cardiac development and genetics group, Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shore EM. Fibrodysplasia ossificans progressiva: a human genetic disorder of extraskeletal bone formation, or--how does one tissue become another? WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:153-65. [PMID: 22408652 PMCID: PMC3297114 DOI: 10.1002/wdev.9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic disease in which de novo osteogenesis—a developmental process occurring during embryonic skeletal formation—is induced aberrantly and progressively beginning during early childhood in soft connective tissues. Episodic initiation of spontaneous bone-forming lesions occurs over time, affecting a generally predictable sequence of body locations following a pattern similar to that of the developing embryonic skeleton. The heterotopic (extraskeletal) bone formation in FOP can also be induced by connective tissue injury. At the tissue level, an initial tissue degradation phase is followed by a tissue formation phase during which soft connective tissues are replaced by bone tissue through endochondral osteogenesis. This extraskeletal bone is physiologically normal and develops through the same series of tissue differentiation events that occur during normal embryonic skeletal development. The underlying genetic mutation in FOP alters the signals that regulate induction of cell differentiation leading to bone formation. In addition to postnatal heterotopic ossification, FOP patients show specific malformations of skeletal elements indicating effects on bone formation during embryonic development as well. Nearly all cases of FOP are caused by the identical mutation in the ACVR1 gene that causes a single amino acid substitution, R206H, in the bone morphogenetic protein (BMP) type I receptor ACVR1 (formerly known as ALK2). This mutation causes mild constitutive activation of the BMP signaling pathway and identifies ACVR1 as a key regulator of cell fate decisions and bone formation, providing opportunities to investigate previously unrecognized functions for this receptor during tissue development and homeostasis.
Collapse
Affiliation(s)
- Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Lenhart KF, Lin SY, Titus TA, Postlethwait JH, Burdine RD. Two additional midline barriers function with midline lefty1 expression to maintain asymmetric Nodal signaling during left-right axis specification in zebrafish. Development 2011; 138:4405-10. [PMID: 21937597 DOI: 10.1242/dev.071092] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Left-right (L/R) patterning is crucial for the proper development of all vertebrates and requires asymmetric expression of nodal in the lateral plate mesoderm (LPM). The mechanisms governing asymmetric initiation of nodal have been studied extensively, but because Nodal is a potent activator of its own transcription, it is also crucial to understand the regulation required to maintain this asymmetry once it is established. The 'midline barrier', consisting of lefty1 expression, is a conserved mechanism for restricting Nodal activity to the left. However, the anterior and posterior extremes of the LPM are competent to respond to Nodal signals yet are not adjacent to this barrier, suggesting that lefty1 is not the only mechanism preventing ectopic Nodal activation. Here, we demonstrate the existence of two additional midline barriers. The first is a 'posterior barrier' mediated by Bmp signaling that prevents nodal propagation through the posterior LPM. In contrast to previous reports, we find that Bmp represses Nodal signaling independently of lefty1 expression and through the activity of a ligand other than Bmp4. The 'anterior barrier' is mediated by lefty2 expression in the left cardiac field and prevents Nodal activation from traveling across the anterior limit of the notochord and propagating down the right LPM. Both barriers appear to be conserved across model systems and are thus likely to be present in all vertebrates.
Collapse
Affiliation(s)
- Kari F Lenhart
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
46
|
Smith KA, Noël E, Thurlings I, Rehmann H, Chocron S, Bakkers J. Bmp and nodal independently regulate lefty1 expression to maintain unilateral nodal activity during left-right axis specification in zebrafish. PLoS Genet 2011; 7:e1002289. [PMID: 21980297 PMCID: PMC3183088 DOI: 10.1371/journal.pgen.1002289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/30/2011] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning. Although vertebrates are bilaterally symmetric when observed from the outside, inside the body cavity the organs are positioned asymmetrically with respect to the left and right sides. Cases where all the organs are mirror imaged, known as situs inversus, are not associated with any medical defects. Severe medical problems occur however in infants with a partial organ reversal (situs ambigious or heterotaxia), which arises during embryonic development. Left-right asymmetry in the embryo is established by unilateral expression of Nodal, a member of the Tgf-ß superfamily of secreted growth factors, a role that has been conserved from human to snails. By performing a genetic screen in zebrafish for laterality mutants, we have identified the linkspoot mutant, which displayed partial defects in asymmetric left-right positioning of the internal organs. The gene disrupted in the linkspoot mutant encodes a receptor for bone morphogenetic proteins (Bmp), another member of the Tgf-ß superfamily of secreted growth factors. Further analysis of Bmp over-expression or knock-down models demonstrate that Bmp signalling is required for unilateral Nodal expression, through the initiation and maintenance of an embryonic midline barrier. Our results demonstrate a novel and important mechanism by which left-right asymmetry in the vertebrate embryo is established and regulated.
Collapse
Affiliation(s)
- Kelly A. Smith
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emily Noël
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ingrid Thurlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Holger Rehmann
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sonja Chocron
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
47
|
Li D, Sun H, Deng W, Tao D, Liu Y, Ma Y. Zili Antagonizes Bmp Signaling to Regulate Dorsal-Ventral Patterning during Zebrafish Early Embryogenesis. Zoolog Sci 2011; 28:397-402. [DOI: 10.2108/zsj.28.397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Verhoeven MC, Haase C, Christoffels VM, Weidinger G, Bakkers J. Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. ACTA ACUST UNITED AC 2011; 91:435-40. [PMID: 21567896 DOI: 10.1002/bdra.20804] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/18/2011] [Accepted: 02/08/2011] [Indexed: 11/12/2022]
Abstract
In the developing heart, the atrioventricular canal (AVC) is essential for separation and alignment of the cardiac chambers, for valve formation, and serves to delay the electrical impulse from the atria to the ventricles. Defects in various aspects of its formation are the most common form of congenital heart defects. Using mutant and transgenic approaches in zebrafish, this study demonstrates that Wnt/β-catenin signaling is both sufficient and required for the induction of BMP4 and Tbx2b expression in the AVC and consequently the proper patterning of the myocardium. Furthermore, genetic analysis shows that Wnt/β-catenin signaling is upstream and in a linear pathway with BMP and Tbx2 during AVC specification.
Collapse
Affiliation(s)
- Manon C Verhoeven
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Laux DW, Febbo JA, Roman BL. Dynamic analysis of BMP-responsive smad activity in live zebrafish embryos. Dev Dyn 2011; 240:682-94. [PMID: 21337466 DOI: 10.1002/dvdy.22558] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2010] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are critical players in development and disease, regulating such diverse processes as dorsoventral patterning, palate formation, and ossification. These ligands are classically considered to signal via BMP receptor-specific Smad proteins 1, 5, and 8. To determine the spatiotemporal pattern of Smad1/5/8 activity and thus canonical BMP signaling in the developing zebrafish embryo, we generated a transgenic line expressing EGFP under the control of a BMP-responsive element. EGFP is expressed in many established BMP signaling domains and is responsive to alterations in BMP type I receptor activity and smad1 and smad5 expression. This transgenic Smad1/5/8 reporter line will be useful for determining ligand and receptor requirements for specific domains of BMP activity, as well as for genetic and pharmacological screens aimed at identifying enhancers or suppressors of canonical BMP signaling.
Collapse
|
50
|
Collery RF, Link BA. Dynamic smad-mediated BMP signaling revealed through transgenic zebrafish. Dev Dyn 2011; 240:712-22. [PMID: 21337469 DOI: 10.1002/dvdy.22567] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 11/11/2022] Open
Abstract
Bone morphogenic protein (BMP) signaling is fundamental to development, injury response, and homeostasis. We have developed transgenic zebrafish that report Smad-mediated BMP signaling in embryos and adults. These lines express either enhanced green fluorescent protein (eGFP), destabilized eGFP, or destabilized Kusabira Orange 2 (KO2) under the well-characterized BMP Response Element (BRE). These fluorescent proteins were found to be expressed dynamically in regions of known BMP signaling including the developing tail bud, hematopoietic lineage, dorsal eye, brain structures, heart, jaw, fins, and somites, as well as other tissues. Responsiveness to changes in BMP signaling was confirmed by observing fluorescence after activation in an hsp70:bmp2b transgenic background or by inhibition in an hsp70:nog3 background. We further demonstrated faithful reportage by the BRE transgenic lines following chemical repression of BMP signaling using an inhibitor of BMP receptor activity, dorsomorphin. Overall, these lines will serve as valuable tools to explore the mechanisms and regulation of BMP signal during embryogenesis, in tissue maintenance, and during disease.
Collapse
Affiliation(s)
- Ross F Collery
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|